1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "livedebug" 23 #include "LiveDebugVariables.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/CodeGen/LexicalScopes.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/VirtRegMap.h" 34 #include "llvm/DebugInfo.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableLDV("live-debug-variables", cl::init(true), 48 cl::desc("Enable the live debug variables pass"), cl::Hidden); 49 50 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 51 char LiveDebugVariables::ID = 0; 52 53 INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", 54 "Debug Variable Analysis", false, false) 55 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 56 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 57 INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", 58 "Debug Variable Analysis", false, false) 59 60 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 61 AU.addRequired<MachineDominatorTree>(); 62 AU.addRequiredTransitive<LiveIntervals>(); 63 AU.setPreservesAll(); 64 MachineFunctionPass::getAnalysisUsage(AU); 65 } 66 67 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) { 68 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 69 } 70 71 /// LocMap - Map of where a user value is live, and its location. 72 typedef IntervalMap<SlotIndex, unsigned, 4> LocMap; 73 74 namespace { 75 /// UserValueScopes - Keeps track of lexical scopes associated with an 76 /// user value's source location. 77 class UserValueScopes { 78 DebugLoc DL; 79 LexicalScopes &LS; 80 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks; 81 82 public: 83 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(D), LS(L) {} 84 85 /// dominates - Return true if current scope dominates at least one machine 86 /// instruction in a given machine basic block. 87 bool dominates(MachineBasicBlock *MBB) { 88 if (LBlocks.empty()) 89 LS.getMachineBasicBlocks(DL, LBlocks); 90 if (LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB)) 91 return true; 92 return false; 93 } 94 }; 95 } // end anonymous namespace 96 97 /// UserValue - A user value is a part of a debug info user variable. 98 /// 99 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 100 /// holds part of a user variable. The part is identified by a byte offset. 101 /// 102 /// UserValues are grouped into equivalence classes for easier searching. Two 103 /// user values are related if they refer to the same variable, or if they are 104 /// held by the same virtual register. The equivalence class is the transitive 105 /// closure of that relation. 106 namespace { 107 class LDVImpl; 108 class UserValue { 109 const MDNode *variable; ///< The debug info variable we are part of. 110 unsigned offset; ///< Byte offset into variable. 111 bool IsIndirect; ///< true if this is a register-indirect+offset value. 112 DebugLoc dl; ///< The debug location for the variable. This is 113 ///< used by dwarf writer to find lexical scope. 114 UserValue *leader; ///< Equivalence class leader. 115 UserValue *next; ///< Next value in equivalence class, or null. 116 117 /// Numbered locations referenced by locmap. 118 SmallVector<MachineOperand, 4> locations; 119 120 /// Map of slot indices where this value is live. 121 LocMap locInts; 122 123 /// coalesceLocation - After LocNo was changed, check if it has become 124 /// identical to another location, and coalesce them. This may cause LocNo or 125 /// a later location to be erased, but no earlier location will be erased. 126 void coalesceLocation(unsigned LocNo); 127 128 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 129 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, 130 LiveIntervals &LIS, const TargetInstrInfo &TII); 131 132 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 133 /// is live. Returns true if any changes were made. 134 bool splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs); 135 136 public: 137 /// UserValue - Create a new UserValue. 138 UserValue(const MDNode *var, unsigned o, bool i, DebugLoc L, 139 LocMap::Allocator &alloc) 140 : variable(var), offset(o), IsIndirect(i), dl(L), leader(this), 141 next(0), locInts(alloc) 142 {} 143 144 /// getLeader - Get the leader of this value's equivalence class. 145 UserValue *getLeader() { 146 UserValue *l = leader; 147 while (l != l->leader) 148 l = l->leader; 149 return leader = l; 150 } 151 152 /// getNext - Return the next UserValue in the equivalence class. 153 UserValue *getNext() const { return next; } 154 155 /// match - Does this UserValue match the parameters? 156 bool match(const MDNode *Var, unsigned Offset) const { 157 return Var == variable && Offset == offset; 158 } 159 160 /// merge - Merge equivalence classes. 161 static UserValue *merge(UserValue *L1, UserValue *L2) { 162 L2 = L2->getLeader(); 163 if (!L1) 164 return L2; 165 L1 = L1->getLeader(); 166 if (L1 == L2) 167 return L1; 168 // Splice L2 before L1's members. 169 UserValue *End = L2; 170 while (End->next) 171 End->leader = L1, End = End->next; 172 End->leader = L1; 173 End->next = L1->next; 174 L1->next = L2; 175 return L1; 176 } 177 178 /// getLocationNo - Return the location number that matches Loc. 179 unsigned getLocationNo(const MachineOperand &LocMO) { 180 if (LocMO.isReg()) { 181 if (LocMO.getReg() == 0) 182 return ~0u; 183 // For register locations we dont care about use/def and other flags. 184 for (unsigned i = 0, e = locations.size(); i != e; ++i) 185 if (locations[i].isReg() && 186 locations[i].getReg() == LocMO.getReg() && 187 locations[i].getSubReg() == LocMO.getSubReg()) 188 return i; 189 } else 190 for (unsigned i = 0, e = locations.size(); i != e; ++i) 191 if (LocMO.isIdenticalTo(locations[i])) 192 return i; 193 locations.push_back(LocMO); 194 // We are storing a MachineOperand outside a MachineInstr. 195 locations.back().clearParent(); 196 // Don't store def operands. 197 if (locations.back().isReg()) 198 locations.back().setIsUse(); 199 return locations.size() - 1; 200 } 201 202 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 203 void mapVirtRegs(LDVImpl *LDV); 204 205 /// addDef - Add a definition point to this value. 206 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 207 // Add a singular (Idx,Idx) -> Loc mapping. 208 LocMap::iterator I = locInts.find(Idx); 209 if (!I.valid() || I.start() != Idx) 210 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 211 else 212 // A later DBG_VALUE at the same SlotIndex overrides the old location. 213 I.setValue(getLocationNo(LocMO)); 214 } 215 216 /// extendDef - Extend the current definition as far as possible down the 217 /// dominator tree. Stop when meeting an existing def or when leaving the live 218 /// range of VNI. 219 /// End points where VNI is no longer live are added to Kills. 220 /// @param Idx Starting point for the definition. 221 /// @param LocNo Location number to propagate. 222 /// @param LI Restrict liveness to where LI has the value VNI. May be null. 223 /// @param VNI When LI is not null, this is the value to restrict to. 224 /// @param Kills Append end points of VNI's live range to Kills. 225 /// @param LIS Live intervals analysis. 226 /// @param MDT Dominator tree. 227 void extendDef(SlotIndex Idx, unsigned LocNo, 228 LiveInterval *LI, const VNInfo *VNI, 229 SmallVectorImpl<SlotIndex> *Kills, 230 LiveIntervals &LIS, MachineDominatorTree &MDT, 231 UserValueScopes &UVS); 232 233 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 234 /// registers. Determine if any of the copies are available at the kill 235 /// points, and add defs if possible. 236 /// @param LI Scan for copies of the value in LI->reg. 237 /// @param LocNo Location number of LI->reg. 238 /// @param Kills Points where the range of LocNo could be extended. 239 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 240 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 241 const SmallVectorImpl<SlotIndex> &Kills, 242 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs, 243 MachineRegisterInfo &MRI, 244 LiveIntervals &LIS); 245 246 /// computeIntervals - Compute the live intervals of all locations after 247 /// collecting all their def points. 248 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 249 LiveIntervals &LIS, MachineDominatorTree &MDT, 250 UserValueScopes &UVS); 251 252 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 253 /// live. Returns true if any changes were made. 254 bool splitRegister(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs); 255 256 /// rewriteLocations - Rewrite virtual register locations according to the 257 /// provided virtual register map. 258 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); 259 260 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 261 void emitDebugValues(VirtRegMap *VRM, 262 LiveIntervals &LIS, const TargetInstrInfo &TRI); 263 264 /// findDebugLoc - Return DebugLoc used for this DBG_VALUE instruction. A 265 /// variable may have more than one corresponding DBG_VALUE instructions. 266 /// Only first one needs DebugLoc to identify variable's lexical scope 267 /// in source file. 268 DebugLoc findDebugLoc(); 269 270 /// getDebugLoc - Return DebugLoc of this UserValue. 271 DebugLoc getDebugLoc() { return dl;} 272 void print(raw_ostream&, const TargetMachine*); 273 }; 274 } // namespace 275 276 /// LDVImpl - Implementation of the LiveDebugVariables pass. 277 namespace { 278 class LDVImpl { 279 LiveDebugVariables &pass; 280 LocMap::Allocator allocator; 281 MachineFunction *MF; 282 LiveIntervals *LIS; 283 LexicalScopes LS; 284 MachineDominatorTree *MDT; 285 const TargetRegisterInfo *TRI; 286 287 /// Whether emitDebugValues is called. 288 bool EmitDone; 289 /// Whether the machine function is modified during the pass. 290 bool ModifiedMF; 291 292 /// userValues - All allocated UserValue instances. 293 SmallVector<UserValue*, 8> userValues; 294 295 /// Map virtual register to eq class leader. 296 typedef DenseMap<unsigned, UserValue*> VRMap; 297 VRMap virtRegToEqClass; 298 299 /// Map user variable to eq class leader. 300 typedef DenseMap<const MDNode *, UserValue*> UVMap; 301 UVMap userVarMap; 302 303 /// getUserValue - Find or create a UserValue. 304 UserValue *getUserValue(const MDNode *Var, unsigned Offset, 305 bool IsIndirect, DebugLoc DL); 306 307 /// lookupVirtReg - Find the EC leader for VirtReg or null. 308 UserValue *lookupVirtReg(unsigned VirtReg); 309 310 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 311 /// @param MI DBG_VALUE instruction 312 /// @param Idx Last valid SLotIndex before instruction. 313 /// @return True if the DBG_VALUE instruction should be deleted. 314 bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); 315 316 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 317 /// a UserValue def for each instruction. 318 /// @param mf MachineFunction to be scanned. 319 /// @return True if any debug values were found. 320 bool collectDebugValues(MachineFunction &mf); 321 322 /// computeIntervals - Compute the live intervals of all user values after 323 /// collecting all their def points. 324 void computeIntervals(); 325 326 public: 327 LDVImpl(LiveDebugVariables *ps) : pass(*ps), EmitDone(false), 328 ModifiedMF(false) {} 329 bool runOnMachineFunction(MachineFunction &mf); 330 331 /// clear - Release all memory. 332 void clear() { 333 DeleteContainerPointers(userValues); 334 userValues.clear(); 335 virtRegToEqClass.clear(); 336 userVarMap.clear(); 337 // Make sure we call emitDebugValues if the machine function was modified. 338 assert((!ModifiedMF || EmitDone) && 339 "Dbg values are not emitted in LDV"); 340 EmitDone = false; 341 ModifiedMF = false; 342 } 343 344 /// mapVirtReg - Map virtual register to an equivalence class. 345 void mapVirtReg(unsigned VirtReg, UserValue *EC); 346 347 /// splitRegister - Replace all references to OldReg with NewRegs. 348 void splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs); 349 350 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 351 void emitDebugValues(VirtRegMap *VRM); 352 353 void print(raw_ostream&); 354 }; 355 } // namespace 356 357 void UserValue::print(raw_ostream &OS, const TargetMachine *TM) { 358 DIVariable DV(variable); 359 OS << "!\""; 360 DV.printExtendedName(OS); 361 OS << "\"\t"; 362 if (offset) 363 OS << '+' << offset; 364 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 365 OS << " [" << I.start() << ';' << I.stop() << "):"; 366 if (I.value() == ~0u) 367 OS << "undef"; 368 else 369 OS << I.value(); 370 } 371 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 372 OS << " Loc" << i << '='; 373 locations[i].print(OS, TM); 374 } 375 OS << '\n'; 376 } 377 378 void LDVImpl::print(raw_ostream &OS) { 379 OS << "********** DEBUG VARIABLES **********\n"; 380 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 381 userValues[i]->print(OS, &MF->getTarget()); 382 } 383 384 void UserValue::coalesceLocation(unsigned LocNo) { 385 unsigned KeepLoc = 0; 386 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 387 if (KeepLoc == LocNo) 388 continue; 389 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 390 break; 391 } 392 // No matches. 393 if (KeepLoc == locations.size()) 394 return; 395 396 // Keep the smaller location, erase the larger one. 397 unsigned EraseLoc = LocNo; 398 if (KeepLoc > EraseLoc) 399 std::swap(KeepLoc, EraseLoc); 400 locations.erase(locations.begin() + EraseLoc); 401 402 // Rewrite values. 403 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 404 unsigned v = I.value(); 405 if (v == EraseLoc) 406 I.setValue(KeepLoc); // Coalesce when possible. 407 else if (v > EraseLoc) 408 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 409 } 410 } 411 412 void UserValue::mapVirtRegs(LDVImpl *LDV) { 413 for (unsigned i = 0, e = locations.size(); i != e; ++i) 414 if (locations[i].isReg() && 415 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 416 LDV->mapVirtReg(locations[i].getReg(), this); 417 } 418 419 UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset, 420 bool IsIndirect, DebugLoc DL) { 421 UserValue *&Leader = userVarMap[Var]; 422 if (Leader) { 423 UserValue *UV = Leader->getLeader(); 424 Leader = UV; 425 for (; UV; UV = UV->getNext()) 426 if (UV->match(Var, Offset)) 427 return UV; 428 } 429 430 UserValue *UV = new UserValue(Var, Offset, IsIndirect, DL, allocator); 431 userValues.push_back(UV); 432 Leader = UserValue::merge(Leader, UV); 433 return UV; 434 } 435 436 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 437 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 438 UserValue *&Leader = virtRegToEqClass[VirtReg]; 439 Leader = UserValue::merge(Leader, EC); 440 } 441 442 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 443 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 444 return UV->getLeader(); 445 return 0; 446 } 447 448 bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { 449 // DBG_VALUE loc, offset, variable 450 if (MI->getNumOperands() != 3 || 451 !(MI->getOperand(1).isReg() || MI->getOperand(1).isImm()) || 452 !MI->getOperand(2).isMetadata()) { 453 DEBUG(dbgs() << "Can't handle " << *MI); 454 return false; 455 } 456 457 // Get or create the UserValue for (variable,offset). 458 bool IsIndirect = MI->getOperand(1).isImm(); 459 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 460 const MDNode *Var = MI->getOperand(2).getMetadata(); 461 UserValue *UV = getUserValue(Var, Offset, IsIndirect, MI->getDebugLoc()); 462 UV->addDef(Idx, MI->getOperand(0)); 463 return true; 464 } 465 466 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 467 bool Changed = false; 468 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 469 ++MFI) { 470 MachineBasicBlock *MBB = MFI; 471 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 472 MBBI != MBBE;) { 473 if (!MBBI->isDebugValue()) { 474 ++MBBI; 475 continue; 476 } 477 // DBG_VALUE has no slot index, use the previous instruction instead. 478 SlotIndex Idx = MBBI == MBB->begin() ? 479 LIS->getMBBStartIdx(MBB) : 480 LIS->getInstructionIndex(llvm::prior(MBBI)).getRegSlot(); 481 // Handle consecutive DBG_VALUE instructions with the same slot index. 482 do { 483 if (handleDebugValue(MBBI, Idx)) { 484 MBBI = MBB->erase(MBBI); 485 Changed = true; 486 } else 487 ++MBBI; 488 } while (MBBI != MBBE && MBBI->isDebugValue()); 489 } 490 } 491 return Changed; 492 } 493 494 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, 495 LiveInterval *LI, const VNInfo *VNI, 496 SmallVectorImpl<SlotIndex> *Kills, 497 LiveIntervals &LIS, MachineDominatorTree &MDT, 498 UserValueScopes &UVS) { 499 SmallVector<SlotIndex, 16> Todo; 500 Todo.push_back(Idx); 501 do { 502 SlotIndex Start = Todo.pop_back_val(); 503 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 504 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 505 LocMap::iterator I = locInts.find(Start); 506 507 // Limit to VNI's live range. 508 bool ToEnd = true; 509 if (LI && VNI) { 510 LiveRange *Range = LI->getLiveRangeContaining(Start); 511 if (!Range || Range->valno != VNI) { 512 if (Kills) 513 Kills->push_back(Start); 514 continue; 515 } 516 if (Range->end < Stop) 517 Stop = Range->end, ToEnd = false; 518 } 519 520 // There could already be a short def at Start. 521 if (I.valid() && I.start() <= Start) { 522 // Stop when meeting a different location or an already extended interval. 523 Start = Start.getNextSlot(); 524 if (I.value() != LocNo || I.stop() != Start) 525 continue; 526 // This is a one-slot placeholder. Just skip it. 527 ++I; 528 } 529 530 // Limited by the next def. 531 if (I.valid() && I.start() < Stop) 532 Stop = I.start(), ToEnd = false; 533 // Limited by VNI's live range. 534 else if (!ToEnd && Kills) 535 Kills->push_back(Stop); 536 537 if (Start >= Stop) 538 continue; 539 540 I.insert(Start, Stop, LocNo); 541 542 // If we extended to the MBB end, propagate down the dominator tree. 543 if (!ToEnd) 544 continue; 545 const std::vector<MachineDomTreeNode*> &Children = 546 MDT.getNode(MBB)->getChildren(); 547 for (unsigned i = 0, e = Children.size(); i != e; ++i) { 548 MachineBasicBlock *MBB = Children[i]->getBlock(); 549 if (UVS.dominates(MBB)) 550 Todo.push_back(LIS.getMBBStartIdx(MBB)); 551 } 552 } while (!Todo.empty()); 553 } 554 555 void 556 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 557 const SmallVectorImpl<SlotIndex> &Kills, 558 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs, 559 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 560 if (Kills.empty()) 561 return; 562 // Don't track copies from physregs, there are too many uses. 563 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 564 return; 565 566 // Collect all the (vreg, valno) pairs that are copies of LI. 567 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 568 for (MachineRegisterInfo::use_nodbg_iterator 569 UI = MRI.use_nodbg_begin(LI->reg), 570 UE = MRI.use_nodbg_end(); UI != UE; ++UI) { 571 // Copies of the full value. 572 if (UI.getOperand().getSubReg() || !UI->isCopy()) 573 continue; 574 MachineInstr *MI = &*UI; 575 unsigned DstReg = MI->getOperand(0).getReg(); 576 577 // Don't follow copies to physregs. These are usually setting up call 578 // arguments, and the argument registers are always call clobbered. We are 579 // better off in the source register which could be a callee-saved register, 580 // or it could be spilled. 581 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 582 continue; 583 584 // Is LocNo extended to reach this copy? If not, another def may be blocking 585 // it, or we are looking at a wrong value of LI. 586 SlotIndex Idx = LIS.getInstructionIndex(MI); 587 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 588 if (!I.valid() || I.value() != LocNo) 589 continue; 590 591 if (!LIS.hasInterval(DstReg)) 592 continue; 593 LiveInterval *DstLI = &LIS.getInterval(DstReg); 594 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 595 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 596 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 597 } 598 599 if (CopyValues.empty()) 600 return; 601 602 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 603 604 // Try to add defs of the copied values for each kill point. 605 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 606 SlotIndex Idx = Kills[i]; 607 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 608 LiveInterval *DstLI = CopyValues[j].first; 609 const VNInfo *DstVNI = CopyValues[j].second; 610 if (DstLI->getVNInfoAt(Idx) != DstVNI) 611 continue; 612 // Check that there isn't already a def at Idx 613 LocMap::iterator I = locInts.find(Idx); 614 if (I.valid() && I.start() <= Idx) 615 continue; 616 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 617 << DstVNI->id << " in " << *DstLI << '\n'); 618 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 619 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 620 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 621 I.insert(Idx, Idx.getNextSlot(), LocNo); 622 NewDefs.push_back(std::make_pair(Idx, LocNo)); 623 break; 624 } 625 } 626 } 627 628 void 629 UserValue::computeIntervals(MachineRegisterInfo &MRI, 630 const TargetRegisterInfo &TRI, 631 LiveIntervals &LIS, 632 MachineDominatorTree &MDT, 633 UserValueScopes &UVS) { 634 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 635 636 // Collect all defs to be extended (Skipping undefs). 637 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 638 if (I.value() != ~0u) 639 Defs.push_back(std::make_pair(I.start(), I.value())); 640 641 // Extend all defs, and possibly add new ones along the way. 642 for (unsigned i = 0; i != Defs.size(); ++i) { 643 SlotIndex Idx = Defs[i].first; 644 unsigned LocNo = Defs[i].second; 645 const MachineOperand &Loc = locations[LocNo]; 646 647 if (!Loc.isReg()) { 648 extendDef(Idx, LocNo, 0, 0, 0, LIS, MDT, UVS); 649 continue; 650 } 651 652 // Register locations are constrained to where the register value is live. 653 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 654 LiveInterval *LI = 0; 655 const VNInfo *VNI = 0; 656 if (LIS.hasInterval(Loc.getReg())) { 657 LI = &LIS.getInterval(Loc.getReg()); 658 VNI = LI->getVNInfoAt(Idx); 659 } 660 SmallVector<SlotIndex, 16> Kills; 661 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS, MDT, UVS); 662 if (LI) 663 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 664 continue; 665 } 666 667 // For physregs, use the live range of the first regunit as a guide. 668 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 669 LiveInterval *LI = &LIS.getRegUnit(Unit); 670 const VNInfo *VNI = LI->getVNInfoAt(Idx); 671 // Don't track copies from physregs, it is too expensive. 672 extendDef(Idx, LocNo, LI, VNI, 0, LIS, MDT, UVS); 673 } 674 675 // Finally, erase all the undefs. 676 for (LocMap::iterator I = locInts.begin(); I.valid();) 677 if (I.value() == ~0u) 678 I.erase(); 679 else 680 ++I; 681 } 682 683 void LDVImpl::computeIntervals() { 684 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 685 UserValueScopes UVS(userValues[i]->getDebugLoc(), LS); 686 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, *MDT, UVS); 687 userValues[i]->mapVirtRegs(this); 688 } 689 } 690 691 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 692 MF = &mf; 693 LIS = &pass.getAnalysis<LiveIntervals>(); 694 MDT = &pass.getAnalysis<MachineDominatorTree>(); 695 TRI = mf.getTarget().getRegisterInfo(); 696 clear(); 697 LS.initialize(mf); 698 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 699 << mf.getName() << " **********\n"); 700 701 bool Changed = collectDebugValues(mf); 702 computeIntervals(); 703 DEBUG(print(dbgs())); 704 LS.releaseMemory(); 705 ModifiedMF = Changed; 706 return Changed; 707 } 708 709 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 710 if (!EnableLDV) 711 return false; 712 if (!pImpl) 713 pImpl = new LDVImpl(this); 714 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 715 } 716 717 void LiveDebugVariables::releaseMemory() { 718 if (pImpl) 719 static_cast<LDVImpl*>(pImpl)->clear(); 720 } 721 722 LiveDebugVariables::~LiveDebugVariables() { 723 if (pImpl) 724 delete static_cast<LDVImpl*>(pImpl); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // Live Range Splitting 729 //===----------------------------------------------------------------------===// 730 731 bool 732 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<LiveInterval*> NewRegs) { 733 DEBUG({ 734 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 735 print(dbgs(), 0); 736 }); 737 bool DidChange = false; 738 LocMap::iterator LocMapI; 739 LocMapI.setMap(locInts); 740 for (unsigned i = 0; i != NewRegs.size(); ++i) { 741 LiveInterval *LI = NewRegs[i]; 742 if (LI->empty()) 743 continue; 744 745 // Don't allocate the new LocNo until it is needed. 746 unsigned NewLocNo = ~0u; 747 748 // Iterate over the overlaps between locInts and LI. 749 LocMapI.find(LI->beginIndex()); 750 if (!LocMapI.valid()) 751 continue; 752 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 753 LiveInterval::iterator LIE = LI->end(); 754 while (LocMapI.valid() && LII != LIE) { 755 // At this point, we know that LocMapI.stop() > LII->start. 756 LII = LI->advanceTo(LII, LocMapI.start()); 757 if (LII == LIE) 758 break; 759 760 // Now LII->end > LocMapI.start(). Do we have an overlap? 761 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 762 // Overlapping correct location. Allocate NewLocNo now. 763 if (NewLocNo == ~0u) { 764 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 765 MO.setSubReg(locations[OldLocNo].getSubReg()); 766 NewLocNo = getLocationNo(MO); 767 DidChange = true; 768 } 769 770 SlotIndex LStart = LocMapI.start(); 771 SlotIndex LStop = LocMapI.stop(); 772 773 // Trim LocMapI down to the LII overlap. 774 if (LStart < LII->start) 775 LocMapI.setStartUnchecked(LII->start); 776 if (LStop > LII->end) 777 LocMapI.setStopUnchecked(LII->end); 778 779 // Change the value in the overlap. This may trigger coalescing. 780 LocMapI.setValue(NewLocNo); 781 782 // Re-insert any removed OldLocNo ranges. 783 if (LStart < LocMapI.start()) { 784 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 785 ++LocMapI; 786 assert(LocMapI.valid() && "Unexpected coalescing"); 787 } 788 if (LStop > LocMapI.stop()) { 789 ++LocMapI; 790 LocMapI.insert(LII->end, LStop, OldLocNo); 791 --LocMapI; 792 } 793 } 794 795 // Advance to the next overlap. 796 if (LII->end < LocMapI.stop()) { 797 if (++LII == LIE) 798 break; 799 LocMapI.advanceTo(LII->start); 800 } else { 801 ++LocMapI; 802 if (!LocMapI.valid()) 803 break; 804 LII = LI->advanceTo(LII, LocMapI.start()); 805 } 806 } 807 } 808 809 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 810 locations.erase(locations.begin() + OldLocNo); 811 LocMapI.goToBegin(); 812 while (LocMapI.valid()) { 813 unsigned v = LocMapI.value(); 814 if (v == OldLocNo) { 815 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 816 << LocMapI.stop() << ")\n"); 817 LocMapI.erase(); 818 } else { 819 if (v > OldLocNo) 820 LocMapI.setValueUnchecked(v-1); 821 ++LocMapI; 822 } 823 } 824 825 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), 0);}); 826 return DidChange; 827 } 828 829 bool 830 UserValue::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) { 831 bool DidChange = false; 832 // Split locations referring to OldReg. Iterate backwards so splitLocation can 833 // safely erase unused locations. 834 for (unsigned i = locations.size(); i ; --i) { 835 unsigned LocNo = i-1; 836 const MachineOperand *Loc = &locations[LocNo]; 837 if (!Loc->isReg() || Loc->getReg() != OldReg) 838 continue; 839 DidChange |= splitLocation(LocNo, NewRegs); 840 } 841 return DidChange; 842 } 843 844 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) { 845 bool DidChange = false; 846 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 847 DidChange |= UV->splitRegister(OldReg, NewRegs); 848 849 if (!DidChange) 850 return; 851 852 // Map all of the new virtual registers. 853 UserValue *UV = lookupVirtReg(OldReg); 854 for (unsigned i = 0; i != NewRegs.size(); ++i) 855 mapVirtReg(NewRegs[i]->reg, UV); 856 } 857 858 void LiveDebugVariables:: 859 splitRegister(unsigned OldReg, ArrayRef<LiveInterval*> NewRegs) { 860 if (pImpl) 861 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 862 } 863 864 void 865 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { 866 // Iterate over locations in reverse makes it easier to handle coalescing. 867 for (unsigned i = locations.size(); i ; --i) { 868 unsigned LocNo = i-1; 869 MachineOperand &Loc = locations[LocNo]; 870 // Only virtual registers are rewritten. 871 if (!Loc.isReg() || !Loc.getReg() || 872 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 873 continue; 874 unsigned VirtReg = Loc.getReg(); 875 if (VRM.isAssignedReg(VirtReg) && 876 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 877 // This can create a %noreg operand in rare cases when the sub-register 878 // index is no longer available. That means the user value is in a 879 // non-existent sub-register, and %noreg is exactly what we want. 880 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 881 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 882 // FIXME: Translate SubIdx to a stackslot offset. 883 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 884 } else { 885 Loc.setReg(0); 886 Loc.setSubReg(0); 887 } 888 coalesceLocation(LocNo); 889 } 890 } 891 892 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 893 /// instruction. 894 static MachineBasicBlock::iterator 895 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 896 LiveIntervals &LIS) { 897 SlotIndex Start = LIS.getMBBStartIdx(MBB); 898 Idx = Idx.getBaseIndex(); 899 900 // Try to find an insert location by going backwards from Idx. 901 MachineInstr *MI; 902 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 903 // We've reached the beginning of MBB. 904 if (Idx == Start) { 905 MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin()); 906 return I; 907 } 908 Idx = Idx.getPrevIndex(); 909 } 910 911 // Don't insert anything after the first terminator, though. 912 return MI->isTerminator() ? MBB->getFirstTerminator() : 913 llvm::next(MachineBasicBlock::iterator(MI)); 914 } 915 916 DebugLoc UserValue::findDebugLoc() { 917 DebugLoc D = dl; 918 dl = DebugLoc(); 919 return D; 920 } 921 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 922 unsigned LocNo, 923 LiveIntervals &LIS, 924 const TargetInstrInfo &TII) { 925 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 926 MachineOperand &Loc = locations[LocNo]; 927 ++NumInsertedDebugValues; 928 929 if (Loc.isReg()) 930 BuildMI(*MBB, I, findDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 931 IsIndirect, Loc.getReg(), offset, variable); 932 else 933 BuildMI(*MBB, I, findDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 934 .addOperand(Loc).addImm(offset).addMetadata(variable); 935 } 936 937 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 938 const TargetInstrInfo &TII) { 939 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 940 941 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 942 SlotIndex Start = I.start(); 943 SlotIndex Stop = I.stop(); 944 unsigned LocNo = I.value(); 945 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 946 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 947 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 948 949 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 950 insertDebugValue(MBB, Start, LocNo, LIS, TII); 951 // This interval may span multiple basic blocks. 952 // Insert a DBG_VALUE into each one. 953 while(Stop > MBBEnd) { 954 // Move to the next block. 955 Start = MBBEnd; 956 if (++MBB == MFEnd) 957 break; 958 MBBEnd = LIS.getMBBEndIdx(MBB); 959 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 960 insertDebugValue(MBB, Start, LocNo, LIS, TII); 961 } 962 DEBUG(dbgs() << '\n'); 963 if (MBB == MFEnd) 964 break; 965 966 ++I; 967 } 968 } 969 970 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 971 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 972 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 973 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 974 DEBUG(userValues[i]->print(dbgs(), &MF->getTarget())); 975 userValues[i]->rewriteLocations(*VRM, *TRI); 976 userValues[i]->emitDebugValues(VRM, *LIS, *TII); 977 } 978 EmitDone = true; 979 } 980 981 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 982 if (pImpl) 983 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 984 } 985 986 987 #ifndef NDEBUG 988 void LiveDebugVariables::dump() { 989 if (pImpl) 990 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 991 } 992 #endif 993