Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineShifts.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitShl, visitLShr, and visitAShr functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
     23   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
     24   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
     25 
     26   // See if we can fold away this shift.
     27   if (SimplifyDemandedInstructionBits(I))
     28     return &I;
     29 
     30   // Try to fold constant and into select arguments.
     31   if (isa<Constant>(Op0))
     32     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
     33       if (Instruction *R = FoldOpIntoSelect(I, SI))
     34         return R;
     35 
     36   if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
     37     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
     38       return Res;
     39 
     40   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
     41   // Because shifts by negative values (which could occur if A were negative)
     42   // are undefined.
     43   Value *A; const APInt *B;
     44   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
     45     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
     46     // demand the sign bit (and many others) here??
     47     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
     48                                     Op1->getName());
     49     I.setOperand(1, Rem);
     50     return &I;
     51   }
     52 
     53   return 0;
     54 }
     55 
     56 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
     57 /// logically to the left or right by some number of bits.  This should return
     58 /// true if the expression can be computed for the same cost as the current
     59 /// expression tree.  This is used to eliminate extraneous shifting from things
     60 /// like:
     61 ///      %C = shl i128 %A, 64
     62 ///      %D = shl i128 %B, 96
     63 ///      %E = or i128 %C, %D
     64 ///      %F = lshr i128 %E, 64
     65 /// where the client will ask if E can be computed shifted right by 64-bits.  If
     66 /// this succeeds, the GetShiftedValue function will be called to produce the
     67 /// value.
     68 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
     69                                InstCombiner &IC) {
     70   // We can always evaluate constants shifted.
     71   if (isa<Constant>(V))
     72     return true;
     73 
     74   Instruction *I = dyn_cast<Instruction>(V);
     75   if (!I) return false;
     76 
     77   // If this is the opposite shift, we can directly reuse the input of the shift
     78   // if the needed bits are already zero in the input.  This allows us to reuse
     79   // the value which means that we don't care if the shift has multiple uses.
     80   //  TODO:  Handle opposite shift by exact value.
     81   ConstantInt *CI = 0;
     82   if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
     83       (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
     84     if (CI->getZExtValue() == NumBits) {
     85       // TODO: Check that the input bits are already zero with MaskedValueIsZero
     86 #if 0
     87       // If this is a truncate of a logical shr, we can truncate it to a smaller
     88       // lshr iff we know that the bits we would otherwise be shifting in are
     89       // already zeros.
     90       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
     91       uint32_t BitWidth = Ty->getScalarSizeInBits();
     92       if (MaskedValueIsZero(I->getOperand(0),
     93             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
     94           CI->getLimitedValue(BitWidth) < BitWidth) {
     95         return CanEvaluateTruncated(I->getOperand(0), Ty);
     96       }
     97 #endif
     98 
     99     }
    100   }
    101 
    102   // We can't mutate something that has multiple uses: doing so would
    103   // require duplicating the instruction in general, which isn't profitable.
    104   if (!I->hasOneUse()) return false;
    105 
    106   switch (I->getOpcode()) {
    107   default: return false;
    108   case Instruction::And:
    109   case Instruction::Or:
    110   case Instruction::Xor:
    111     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    112     return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
    113            CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
    114 
    115   case Instruction::Shl: {
    116     // We can often fold the shift into shifts-by-a-constant.
    117     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    118     if (CI == 0) return false;
    119 
    120     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    121     if (isLeftShift) return true;
    122 
    123     // We can always turn shl(c)+shr(c) -> and(c2).
    124     if (CI->getValue() == NumBits) return true;
    125 
    126     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    127 
    128     // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
    129     // profitable unless we know the and'd out bits are already zero.
    130     if (CI->getZExtValue() > NumBits) {
    131       unsigned LowBits = TypeWidth - CI->getZExtValue();
    132       if (MaskedValueIsZero(I->getOperand(0),
    133                        APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
    134         return true;
    135     }
    136 
    137     return false;
    138   }
    139   case Instruction::LShr: {
    140     // We can often fold the shift into shifts-by-a-constant.
    141     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    142     if (CI == 0) return false;
    143 
    144     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    145     if (!isLeftShift) return true;
    146 
    147     // We can always turn lshr(c)+shl(c) -> and(c2).
    148     if (CI->getValue() == NumBits) return true;
    149 
    150     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    151 
    152     // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
    153     // profitable unless we know the and'd out bits are already zero.
    154     if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
    155       unsigned LowBits = CI->getZExtValue() - NumBits;
    156       if (MaskedValueIsZero(I->getOperand(0),
    157                           APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
    158         return true;
    159     }
    160 
    161     return false;
    162   }
    163   case Instruction::Select: {
    164     SelectInst *SI = cast<SelectInst>(I);
    165     return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
    166            CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
    167   }
    168   case Instruction::PHI: {
    169     // We can change a phi if we can change all operands.  Note that we never
    170     // get into trouble with cyclic PHIs here because we only consider
    171     // instructions with a single use.
    172     PHINode *PN = cast<PHINode>(I);
    173     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    174       if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
    175         return false;
    176     return true;
    177   }
    178   }
    179 }
    180 
    181 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
    182 /// this value inserts the new computation that produces the shifted value.
    183 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
    184                               InstCombiner &IC) {
    185   // We can always evaluate constants shifted.
    186   if (Constant *C = dyn_cast<Constant>(V)) {
    187     if (isLeftShift)
    188       V = IC.Builder->CreateShl(C, NumBits);
    189     else
    190       V = IC.Builder->CreateLShr(C, NumBits);
    191     // If we got a constantexpr back, try to simplify it with TD info.
    192     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    193       V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
    194                                          IC.getTargetLibraryInfo());
    195     return V;
    196   }
    197 
    198   Instruction *I = cast<Instruction>(V);
    199   IC.Worklist.Add(I);
    200 
    201   switch (I->getOpcode()) {
    202   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
    203   case Instruction::And:
    204   case Instruction::Or:
    205   case Instruction::Xor:
    206     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    207     I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
    208     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
    209     return I;
    210 
    211   case Instruction::Shl: {
    212     BinaryOperator *BO = cast<BinaryOperator>(I);
    213     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    214 
    215     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    216     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    217 
    218     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    219     if (isLeftShift) {
    220       // If this is oversized composite shift, then unsigned shifts get 0.
    221       unsigned NewShAmt = NumBits+CI->getZExtValue();
    222       if (NewShAmt >= TypeWidth)
    223         return Constant::getNullValue(I->getType());
    224 
    225       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    226       BO->setHasNoUnsignedWrap(false);
    227       BO->setHasNoSignedWrap(false);
    228       return I;
    229     }
    230 
    231     // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
    232     // zeros.
    233     if (CI->getValue() == NumBits) {
    234       APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
    235       V = IC.Builder->CreateAnd(BO->getOperand(0),
    236                                 ConstantInt::get(BO->getContext(), Mask));
    237       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    238         VI->moveBefore(BO);
    239         VI->takeName(BO);
    240       }
    241       return V;
    242     }
    243 
    244     // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
    245     // the and won't be needed.
    246     assert(CI->getZExtValue() > NumBits);
    247     BO->setOperand(1, ConstantInt::get(BO->getType(),
    248                                        CI->getZExtValue() - NumBits));
    249     BO->setHasNoUnsignedWrap(false);
    250     BO->setHasNoSignedWrap(false);
    251     return BO;
    252   }
    253   case Instruction::LShr: {
    254     BinaryOperator *BO = cast<BinaryOperator>(I);
    255     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    256     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    257     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    258 
    259     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    260     if (!isLeftShift) {
    261       // If this is oversized composite shift, then unsigned shifts get 0.
    262       unsigned NewShAmt = NumBits+CI->getZExtValue();
    263       if (NewShAmt >= TypeWidth)
    264         return Constant::getNullValue(BO->getType());
    265 
    266       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    267       BO->setIsExact(false);
    268       return I;
    269     }
    270 
    271     // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
    272     // zeros.
    273     if (CI->getValue() == NumBits) {
    274       APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
    275       V = IC.Builder->CreateAnd(I->getOperand(0),
    276                                 ConstantInt::get(BO->getContext(), Mask));
    277       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    278         VI->moveBefore(I);
    279         VI->takeName(I);
    280       }
    281       return V;
    282     }
    283 
    284     // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
    285     // the and won't be needed.
    286     assert(CI->getZExtValue() > NumBits);
    287     BO->setOperand(1, ConstantInt::get(BO->getType(),
    288                                        CI->getZExtValue() - NumBits));
    289     BO->setIsExact(false);
    290     return BO;
    291   }
    292 
    293   case Instruction::Select:
    294     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
    295     I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
    296     return I;
    297   case Instruction::PHI: {
    298     // We can change a phi if we can change all operands.  Note that we never
    299     // get into trouble with cyclic PHIs here because we only consider
    300     // instructions with a single use.
    301     PHINode *PN = cast<PHINode>(I);
    302     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    303       PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
    304                                               NumBits, isLeftShift, IC));
    305     return PN;
    306   }
    307   }
    308 }
    309 
    310 
    311 
    312 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
    313                                                BinaryOperator &I) {
    314   bool isLeftShift = I.getOpcode() == Instruction::Shl;
    315 
    316 
    317   // See if we can propagate this shift into the input, this covers the trivial
    318   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
    319   if (I.getOpcode() != Instruction::AShr &&
    320       CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
    321     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
    322               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
    323 
    324     return ReplaceInstUsesWith(I,
    325                  GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
    326   }
    327 
    328 
    329   // See if we can simplify any instructions used by the instruction whose sole
    330   // purpose is to compute bits we don't care about.
    331   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
    332 
    333   // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
    334   // a signed shift.
    335   //
    336   if (Op1->uge(TypeBits)) {
    337     if (I.getOpcode() != Instruction::AShr)
    338       return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
    339     // ashr i32 X, 32 --> ashr i32 X, 31
    340     I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
    341     return &I;
    342   }
    343 
    344   // ((X*C1) << C2) == (X * (C1 << C2))
    345   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
    346     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
    347       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
    348         return BinaryOperator::CreateMul(BO->getOperand(0),
    349                                         ConstantExpr::getShl(BOOp, Op1));
    350 
    351   // Try to fold constant and into select arguments.
    352   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    353     if (Instruction *R = FoldOpIntoSelect(I, SI))
    354       return R;
    355   if (isa<PHINode>(Op0))
    356     if (Instruction *NV = FoldOpIntoPhi(I))
    357       return NV;
    358 
    359   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
    360   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    361     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    362     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    363     // place.  Don't try to do this transformation in this case.  Also, we
    364     // require that the input operand is a shift-by-constant so that we have
    365     // confidence that the shifts will get folded together.  We could do this
    366     // xform in more cases, but it is unlikely to be profitable.
    367     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
    368         isa<ConstantInt>(TrOp->getOperand(1))) {
    369       // Okay, we'll do this xform.  Make the shift of shift.
    370       Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
    371       // (shift2 (shift1 & 0x00FF), c2)
    372       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
    373 
    374       // For logical shifts, the truncation has the effect of making the high
    375       // part of the register be zeros.  Emulate this by inserting an AND to
    376       // clear the top bits as needed.  This 'and' will usually be zapped by
    377       // other xforms later if dead.
    378       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
    379       unsigned DstSize = TI->getType()->getScalarSizeInBits();
    380       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
    381 
    382       // The mask we constructed says what the trunc would do if occurring
    383       // between the shifts.  We want to know the effect *after* the second
    384       // shift.  We know that it is a logical shift by a constant, so adjust the
    385       // mask as appropriate.
    386       if (I.getOpcode() == Instruction::Shl)
    387         MaskV <<= Op1->getZExtValue();
    388       else {
    389         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
    390         MaskV = MaskV.lshr(Op1->getZExtValue());
    391       }
    392 
    393       // shift1 & 0x00FF
    394       Value *And = Builder->CreateAnd(NSh,
    395                                       ConstantInt::get(I.getContext(), MaskV),
    396                                       TI->getName());
    397 
    398       // Return the value truncated to the interesting size.
    399       return new TruncInst(And, I.getType());
    400     }
    401   }
    402 
    403   if (Op0->hasOneUse()) {
    404     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
    405       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    406       Value *V1, *V2;
    407       ConstantInt *CC;
    408       switch (Op0BO->getOpcode()) {
    409       default: break;
    410       case Instruction::Add:
    411       case Instruction::And:
    412       case Instruction::Or:
    413       case Instruction::Xor: {
    414         // These operators commute.
    415         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
    416         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
    417             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
    418                   m_Specific(Op1)))) {
    419           Value *YS =         // (Y << C)
    420             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
    421           // (X + (Y << C))
    422           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
    423                                           Op0BO->getOperand(1)->getName());
    424           uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
    425           return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
    426                      APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
    427         }
    428 
    429         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
    430         Value *Op0BOOp1 = Op0BO->getOperand(1);
    431         if (isLeftShift && Op0BOOp1->hasOneUse() &&
    432             match(Op0BOOp1,
    433                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
    434                         m_ConstantInt(CC)))) {
    435           Value *YS =   // (Y << C)
    436             Builder->CreateShl(Op0BO->getOperand(0), Op1,
    437                                          Op0BO->getName());
    438           // X & (CC << C)
    439           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    440                                          V1->getName()+".mask");
    441           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
    442         }
    443       }
    444 
    445       // FALL THROUGH.
    446       case Instruction::Sub: {
    447         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    448         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    449             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
    450                   m_Specific(Op1)))) {
    451           Value *YS =  // (Y << C)
    452             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    453           // (X + (Y << C))
    454           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
    455                                           Op0BO->getOperand(0)->getName());
    456           uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
    457           return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
    458                      APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
    459         }
    460 
    461         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
    462         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    463             match(Op0BO->getOperand(0),
    464                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
    465                         m_ConstantInt(CC))) && V2 == Op1) {
    466           Value *YS = // (Y << C)
    467             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    468           // X & (CC << C)
    469           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    470                                          V1->getName()+".mask");
    471 
    472           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
    473         }
    474 
    475         break;
    476       }
    477       }
    478 
    479 
    480       // If the operand is an bitwise operator with a constant RHS, and the
    481       // shift is the only use, we can pull it out of the shift.
    482       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
    483         bool isValid = true;     // Valid only for And, Or, Xor
    484         bool highBitSet = false; // Transform if high bit of constant set?
    485 
    486         switch (Op0BO->getOpcode()) {
    487         default: isValid = false; break;   // Do not perform transform!
    488         case Instruction::Add:
    489           isValid = isLeftShift;
    490           break;
    491         case Instruction::Or:
    492         case Instruction::Xor:
    493           highBitSet = false;
    494           break;
    495         case Instruction::And:
    496           highBitSet = true;
    497           break;
    498         }
    499 
    500         // If this is a signed shift right, and the high bit is modified
    501         // by the logical operation, do not perform the transformation.
    502         // The highBitSet boolean indicates the value of the high bit of
    503         // the constant which would cause it to be modified for this
    504         // operation.
    505         //
    506         if (isValid && I.getOpcode() == Instruction::AShr)
    507           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
    508 
    509         if (isValid) {
    510           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
    511 
    512           Value *NewShift =
    513             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
    514           NewShift->takeName(Op0BO);
    515 
    516           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
    517                                         NewRHS);
    518         }
    519       }
    520     }
    521   }
    522 
    523   // Find out if this is a shift of a shift by a constant.
    524   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
    525   if (ShiftOp && !ShiftOp->isShift())
    526     ShiftOp = 0;
    527 
    528   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
    529 
    530     // This is a constant shift of a constant shift. Be careful about hiding
    531     // shl instructions behind bit masks. They are used to represent multiplies
    532     // by a constant, and it is important that simple arithmetic expressions
    533     // are still recognizable by scalar evolution.
    534     //
    535     // The transforms applied to shl are very similar to the transforms applied
    536     // to mul by constant. We can be more aggressive about optimizing right
    537     // shifts.
    538     //
    539     // Combinations of right and left shifts will still be optimized in
    540     // DAGCombine where scalar evolution no longer applies.
    541 
    542     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
    543     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
    544     uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
    545     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
    546     if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
    547     Value *X = ShiftOp->getOperand(0);
    548 
    549     IntegerType *Ty = cast<IntegerType>(I.getType());
    550 
    551     // Check for (X << c1) << c2  and  (X >> c1) >> c2
    552     if (I.getOpcode() == ShiftOp->getOpcode()) {
    553       uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
    554       // If this is oversized composite shift, then unsigned shifts get 0, ashr
    555       // saturates.
    556       if (AmtSum >= TypeBits) {
    557         if (I.getOpcode() != Instruction::AShr)
    558           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    559         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
    560       }
    561 
    562       return BinaryOperator::Create(I.getOpcode(), X,
    563                                     ConstantInt::get(Ty, AmtSum));
    564     }
    565 
    566     if (ShiftAmt1 == ShiftAmt2) {
    567       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
    568       if (I.getOpcode() == Instruction::LShr &&
    569           ShiftOp->getOpcode() == Instruction::Shl) {
    570         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
    571         return BinaryOperator::CreateAnd(X,
    572                                         ConstantInt::get(I.getContext(), Mask));
    573       }
    574     } else if (ShiftAmt1 < ShiftAmt2) {
    575       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
    576 
    577       // (X >>?,exact C1) << C2 --> X << (C2-C1)
    578       // The inexact version is deferred to DAGCombine so we don't hide shl
    579       // behind a bit mask.
    580       if (I.getOpcode() == Instruction::Shl &&
    581           ShiftOp->getOpcode() != Instruction::Shl &&
    582           ShiftOp->isExact()) {
    583         assert(ShiftOp->getOpcode() == Instruction::LShr ||
    584                ShiftOp->getOpcode() == Instruction::AShr);
    585         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    586         BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    587                                                         X, ShiftDiffCst);
    588         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    589         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
    590         return NewShl;
    591       }
    592 
    593       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
    594       if (I.getOpcode() == Instruction::LShr &&
    595           ShiftOp->getOpcode() == Instruction::Shl) {
    596         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    597         // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
    598         if (ShiftOp->hasNoUnsignedWrap()) {
    599           BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
    600                                                            X, ShiftDiffCst);
    601           NewLShr->setIsExact(I.isExact());
    602           return NewLShr;
    603         }
    604         Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
    605 
    606         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    607         return BinaryOperator::CreateAnd(Shift,
    608                                          ConstantInt::get(I.getContext(),Mask));
    609       }
    610 
    611       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    612       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    613       if (I.getOpcode() == Instruction::AShr &&
    614           ShiftOp->getOpcode() == Instruction::Shl) {
    615         if (ShiftOp->hasNoSignedWrap()) {
    616           // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
    617           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    618           BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
    619                                                            X, ShiftDiffCst);
    620           NewAShr->setIsExact(I.isExact());
    621           return NewAShr;
    622         }
    623       }
    624     } else {
    625       assert(ShiftAmt2 < ShiftAmt1);
    626       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
    627 
    628       // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
    629       // The inexact version is deferred to DAGCombine so we don't hide shl
    630       // behind a bit mask.
    631       if (I.getOpcode() == Instruction::Shl &&
    632           ShiftOp->getOpcode() != Instruction::Shl &&
    633           ShiftOp->isExact()) {
    634         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    635         BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
    636                                                         X, ShiftDiffCst);
    637         NewShr->setIsExact(true);
    638         return NewShr;
    639       }
    640 
    641       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
    642       if (I.getOpcode() == Instruction::LShr &&
    643           ShiftOp->getOpcode() == Instruction::Shl) {
    644         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    645         if (ShiftOp->hasNoUnsignedWrap()) {
    646           // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
    647           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    648                                                           X, ShiftDiffCst);
    649           NewShl->setHasNoUnsignedWrap(true);
    650           return NewShl;
    651         }
    652         Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
    653 
    654         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    655         return BinaryOperator::CreateAnd(Shift,
    656                                          ConstantInt::get(I.getContext(),Mask));
    657       }
    658 
    659       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    660       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    661       if (I.getOpcode() == Instruction::AShr &&
    662           ShiftOp->getOpcode() == Instruction::Shl) {
    663         if (ShiftOp->hasNoSignedWrap()) {
    664           // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
    665           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    666           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    667                                                           X, ShiftDiffCst);
    668           NewShl->setHasNoSignedWrap(true);
    669           return NewShl;
    670         }
    671       }
    672     }
    673   }
    674   return 0;
    675 }
    676 
    677 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
    678   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
    679                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
    680                                  TD))
    681     return ReplaceInstUsesWith(I, V);
    682 
    683   if (Instruction *V = commonShiftTransforms(I))
    684     return V;
    685 
    686   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
    687     unsigned ShAmt = Op1C->getZExtValue();
    688 
    689     // If the shifted-out value is known-zero, then this is a NUW shift.
    690     if (!I.hasNoUnsignedWrap() &&
    691         MaskedValueIsZero(I.getOperand(0),
    692                           APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
    693           I.setHasNoUnsignedWrap();
    694           return &I;
    695         }
    696 
    697     // If the shifted out value is all signbits, this is a NSW shift.
    698     if (!I.hasNoSignedWrap() &&
    699         ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
    700       I.setHasNoSignedWrap();
    701       return &I;
    702     }
    703   }
    704 
    705   // (C1 << A) << C2 -> (C1 << C2) << A
    706   Constant *C1, *C2;
    707   Value *A;
    708   if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
    709       match(I.getOperand(1), m_Constant(C2)))
    710     return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
    711 
    712   return 0;
    713 }
    714 
    715 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
    716   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
    717                                   I.isExact(), TD))
    718     return ReplaceInstUsesWith(I, V);
    719 
    720   if (Instruction *R = commonShiftTransforms(I))
    721     return R;
    722 
    723   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    724 
    725   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    726     unsigned ShAmt = Op1C->getZExtValue();
    727 
    728     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
    729       unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
    730       // ctlz.i32(x)>>5  --> zext(x == 0)
    731       // cttz.i32(x)>>5  --> zext(x == 0)
    732       // ctpop.i32(x)>>5 --> zext(x == -1)
    733       if ((II->getIntrinsicID() == Intrinsic::ctlz ||
    734            II->getIntrinsicID() == Intrinsic::cttz ||
    735            II->getIntrinsicID() == Intrinsic::ctpop) &&
    736           isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
    737         bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
    738         Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
    739         Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
    740         return new ZExtInst(Cmp, II->getType());
    741       }
    742     }
    743 
    744     // If the shifted-out value is known-zero, then this is an exact shift.
    745     if (!I.isExact() &&
    746         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
    747       I.setIsExact();
    748       return &I;
    749     }
    750   }
    751 
    752   return 0;
    753 }
    754 
    755 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
    756   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
    757                                   I.isExact(), TD))
    758     return ReplaceInstUsesWith(I, V);
    759 
    760   if (Instruction *R = commonShiftTransforms(I))
    761     return R;
    762 
    763   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    764 
    765   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    766     unsigned ShAmt = Op1C->getZExtValue();
    767 
    768     // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
    769     // have a sign-extend idiom.
    770     Value *X;
    771     if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
    772       // If the left shift is just shifting out partial signbits, delete the
    773       // extension.
    774       if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
    775         return ReplaceInstUsesWith(I, X);
    776 
    777       // If the input is an extension from the shifted amount value, e.g.
    778       //   %x = zext i8 %A to i32
    779       //   %y = shl i32 %x, 24
    780       //   %z = ashr %y, 24
    781       // then turn this into "z = sext i8 A to i32".
    782       if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
    783         uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
    784         uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
    785         if (Op1C->getZExtValue() == DestBits-SrcBits)
    786           return new SExtInst(ZI->getOperand(0), ZI->getType());
    787       }
    788     }
    789 
    790     // If the shifted-out value is known-zero, then this is an exact shift.
    791     if (!I.isExact() &&
    792         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
    793       I.setIsExact();
    794       return &I;
    795     }
    796   }
    797 
    798   // See if we can turn a signed shr into an unsigned shr.
    799   if (MaskedValueIsZero(Op0,
    800                         APInt::getSignBit(I.getType()->getScalarSizeInBits())))
    801     return BinaryOperator::CreateLShr(Op0, Op1);
    802 
    803   // Arithmetic shifting an all-sign-bit value is a no-op.
    804   unsigned NumSignBits = ComputeNumSignBits(Op0);
    805   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
    806     return ReplaceInstUsesWith(I, Op0);
    807 
    808   return 0;
    809 }
    810 
    811