1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the VirtRegMap class. 11 // 12 // It also contains implementations of the Spiller interface, which, given a 13 // virtual register map and a machine function, eliminates all virtual 14 // references by replacing them with physical register references - adding spill 15 // code as necessary. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "regalloc" 20 #include "llvm/CodeGen/VirtRegMap.h" 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 25 #include "llvm/CodeGen/LiveStackAnalysis.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 42 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 43 44 //===----------------------------------------------------------------------===// 45 // VirtRegMap implementation 46 //===----------------------------------------------------------------------===// 47 48 char VirtRegMap::ID = 0; 49 50 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 51 52 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 53 MRI = &mf.getRegInfo(); 54 TII = mf.getTarget().getInstrInfo(); 55 TRI = mf.getTarget().getRegisterInfo(); 56 MF = &mf; 57 58 Virt2PhysMap.clear(); 59 Virt2StackSlotMap.clear(); 60 Virt2SplitMap.clear(); 61 62 grow(); 63 return false; 64 } 65 66 void VirtRegMap::grow() { 67 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 68 Virt2PhysMap.resize(NumRegs); 69 Virt2StackSlotMap.resize(NumRegs); 70 Virt2SplitMap.resize(NumRegs); 71 } 72 73 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 74 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 75 RC->getAlignment()); 76 ++NumSpillSlots; 77 return SS; 78 } 79 80 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { 81 unsigned Hint = MRI->getSimpleHint(VirtReg); 82 if (!Hint) 83 return 0; 84 if (TargetRegisterInfo::isVirtualRegister(Hint)) 85 Hint = getPhys(Hint); 86 return getPhys(VirtReg) == Hint; 87 } 88 89 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { 90 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 91 if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) 92 return true; 93 if (TargetRegisterInfo::isVirtualRegister(Hint.second)) 94 return hasPhys(Hint.second); 95 return false; 96 } 97 98 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { 99 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 100 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 101 "attempt to assign stack slot to already spilled register"); 102 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 103 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 104 } 105 106 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { 107 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 108 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 109 "attempt to assign stack slot to already spilled register"); 110 assert((SS >= 0 || 111 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && 112 "illegal fixed frame index"); 113 Virt2StackSlotMap[virtReg] = SS; 114 } 115 116 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 117 OS << "********** REGISTER MAP **********\n"; 118 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 119 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 120 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 121 OS << '[' << PrintReg(Reg, TRI) << " -> " 122 << PrintReg(Virt2PhysMap[Reg], TRI) << "] " 123 << MRI->getRegClass(Reg)->getName() << "\n"; 124 } 125 } 126 127 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 128 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 129 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 130 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 131 << "] " << MRI->getRegClass(Reg)->getName() << "\n"; 132 } 133 } 134 OS << '\n'; 135 } 136 137 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 138 void VirtRegMap::dump() const { 139 print(dbgs()); 140 } 141 #endif 142 143 //===----------------------------------------------------------------------===// 144 // VirtRegRewriter 145 //===----------------------------------------------------------------------===// 146 // 147 // The VirtRegRewriter is the last of the register allocator passes. 148 // It rewrites virtual registers to physical registers as specified in the 149 // VirtRegMap analysis. It also updates live-in information on basic blocks 150 // according to LiveIntervals. 151 // 152 namespace { 153 class VirtRegRewriter : public MachineFunctionPass { 154 MachineFunction *MF; 155 const TargetMachine *TM; 156 const TargetRegisterInfo *TRI; 157 const TargetInstrInfo *TII; 158 MachineRegisterInfo *MRI; 159 SlotIndexes *Indexes; 160 LiveIntervals *LIS; 161 VirtRegMap *VRM; 162 163 void rewrite(); 164 void addMBBLiveIns(); 165 public: 166 static char ID; 167 VirtRegRewriter() : MachineFunctionPass(ID) {} 168 169 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 170 171 virtual bool runOnMachineFunction(MachineFunction&); 172 }; 173 } // end anonymous namespace 174 175 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 176 177 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 178 "Virtual Register Rewriter", false, false) 179 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 180 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 181 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 182 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 183 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 184 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 185 "Virtual Register Rewriter", false, false) 186 187 char VirtRegRewriter::ID = 0; 188 189 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 190 AU.setPreservesCFG(); 191 AU.addRequired<LiveIntervals>(); 192 AU.addRequired<SlotIndexes>(); 193 AU.addPreserved<SlotIndexes>(); 194 AU.addRequired<LiveDebugVariables>(); 195 AU.addRequired<LiveStacks>(); 196 AU.addPreserved<LiveStacks>(); 197 AU.addRequired<VirtRegMap>(); 198 MachineFunctionPass::getAnalysisUsage(AU); 199 } 200 201 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 202 MF = &fn; 203 TM = &MF->getTarget(); 204 TRI = TM->getRegisterInfo(); 205 TII = TM->getInstrInfo(); 206 MRI = &MF->getRegInfo(); 207 Indexes = &getAnalysis<SlotIndexes>(); 208 LIS = &getAnalysis<LiveIntervals>(); 209 VRM = &getAnalysis<VirtRegMap>(); 210 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 211 << "********** Function: " 212 << MF->getName() << '\n'); 213 DEBUG(VRM->dump()); 214 215 // Add kill flags while we still have virtual registers. 216 LIS->addKillFlags(VRM); 217 218 // Live-in lists on basic blocks are required for physregs. 219 addMBBLiveIns(); 220 221 // Rewrite virtual registers. 222 rewrite(); 223 224 // Write out new DBG_VALUE instructions. 225 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 226 227 // All machine operands and other references to virtual registers have been 228 // replaced. Remove the virtual registers and release all the transient data. 229 VRM->clearAllVirt(); 230 MRI->clearVirtRegs(); 231 return true; 232 } 233 234 // Compute MBB live-in lists from virtual register live ranges and their 235 // assignments. 236 void VirtRegRewriter::addMBBLiveIns() { 237 SmallVector<MachineBasicBlock*, 16> LiveIn; 238 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 239 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); 240 if (MRI->reg_nodbg_empty(VirtReg)) 241 continue; 242 LiveInterval &LI = LIS->getInterval(VirtReg); 243 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 244 continue; 245 // This is a virtual register that is live across basic blocks. Its 246 // assigned PhysReg must be marked as live-in to those blocks. 247 unsigned PhysReg = VRM->getPhys(VirtReg); 248 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 249 250 // Scan the segments of LI. 251 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E; 252 ++I) { 253 if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn)) 254 continue; 255 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) 256 if (!LiveIn[i]->isLiveIn(PhysReg)) 257 LiveIn[i]->addLiveIn(PhysReg); 258 LiveIn.clear(); 259 } 260 } 261 } 262 263 void VirtRegRewriter::rewrite() { 264 SmallVector<unsigned, 8> SuperDeads; 265 SmallVector<unsigned, 8> SuperDefs; 266 SmallVector<unsigned, 8> SuperKills; 267 268 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 269 MBBI != MBBE; ++MBBI) { 270 DEBUG(MBBI->print(dbgs(), Indexes)); 271 for (MachineBasicBlock::instr_iterator 272 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 273 MachineInstr *MI = MII; 274 ++MII; 275 276 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 277 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 278 MachineOperand &MO = *MOI; 279 280 // Make sure MRI knows about registers clobbered by regmasks. 281 if (MO.isRegMask()) 282 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 283 284 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 285 continue; 286 unsigned VirtReg = MO.getReg(); 287 unsigned PhysReg = VRM->getPhys(VirtReg); 288 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 289 "Instruction uses unmapped VirtReg"); 290 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 291 292 // Preserve semantics of sub-register operands. 293 if (MO.getSubReg()) { 294 // A virtual register kill refers to the whole register, so we may 295 // have to add <imp-use,kill> operands for the super-register. A 296 // partial redef always kills and redefines the super-register. 297 if (MO.readsReg() && (MO.isDef() || MO.isKill())) 298 SuperKills.push_back(PhysReg); 299 300 if (MO.isDef()) { 301 // The <def,undef> flag only makes sense for sub-register defs, and 302 // we are substituting a full physreg. An <imp-use,kill> operand 303 // from the SuperKills list will represent the partial read of the 304 // super-register. 305 MO.setIsUndef(false); 306 307 // Also add implicit defs for the super-register. 308 if (MO.isDead()) 309 SuperDeads.push_back(PhysReg); 310 else 311 SuperDefs.push_back(PhysReg); 312 } 313 314 // PhysReg operands cannot have subregister indexes. 315 PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); 316 assert(PhysReg && "Invalid SubReg for physical register"); 317 MO.setSubReg(0); 318 } 319 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 320 // we need the inlining here. 321 MO.setReg(PhysReg); 322 } 323 324 // Add any missing super-register kills after rewriting the whole 325 // instruction. 326 while (!SuperKills.empty()) 327 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 328 329 while (!SuperDeads.empty()) 330 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 331 332 while (!SuperDefs.empty()) 333 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 334 335 DEBUG(dbgs() << "> " << *MI); 336 337 // Finally, remove any identity copies. 338 if (MI->isIdentityCopy()) { 339 ++NumIdCopies; 340 if (MI->getNumOperands() == 2) { 341 DEBUG(dbgs() << "Deleting identity copy.\n"); 342 if (Indexes) 343 Indexes->removeMachineInstrFromMaps(MI); 344 // It's safe to erase MI because MII has already been incremented. 345 MI->eraseFromParent(); 346 } else { 347 // Transform identity copy to a KILL to deal with subregisters. 348 MI->setDesc(TII->get(TargetOpcode::KILL)); 349 DEBUG(dbgs() << "Identity copy: " << *MI); 350 } 351 } 352 } 353 } 354 355 // Tell MRI about physical registers in use. 356 for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) 357 if (!MRI->reg_nodbg_empty(Reg)) 358 MRI->setPhysRegUsed(Reg); 359 } 360