Home | History | Annotate | Download | only in ARM
      1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that splits the constant pool up into 'islands'
     11 // which are scattered through-out the function.  This is required due to the
     12 // limited pc-relative displacements that ARM has.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "arm-cp-islands"
     17 #include "ARM.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "MCTargetDesc/ARMAddressingModes.h"
     20 #include "Thumb2InstrInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 
     39 STATISTIC(NumCPEs,       "Number of constpool entries");
     40 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     41 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     42 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     43 STATISTIC(NumTBs,        "Number of table branches generated");
     44 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
     45 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
     46 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
     47 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
     48 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
     49 
     50 
     51 static cl::opt<bool>
     52 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
     53           cl::desc("Adjust basic block layout to better use TB[BH]"));
     54 
     55 // FIXME: This option should be removed once it has received sufficient testing.
     56 static cl::opt<bool>
     57 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
     58           cl::desc("Align constant islands in code"));
     59 
     60 /// UnknownPadding - Return the worst case padding that could result from
     61 /// unknown offset bits.  This does not include alignment padding caused by
     62 /// known offset bits.
     63 ///
     64 /// @param LogAlign log2(alignment)
     65 /// @param KnownBits Number of known low offset bits.
     66 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
     67   if (KnownBits < LogAlign)
     68     return (1u << LogAlign) - (1u << KnownBits);
     69   return 0;
     70 }
     71 
     72 namespace {
     73   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
     74   /// requires constant pool entries to be scattered among the instructions
     75   /// inside a function.  To do this, it completely ignores the normal LLVM
     76   /// constant pool; instead, it places constants wherever it feels like with
     77   /// special instructions.
     78   ///
     79   /// The terminology used in this pass includes:
     80   ///   Islands - Clumps of constants placed in the function.
     81   ///   Water   - Potential places where an island could be formed.
     82   ///   CPE     - A constant pool entry that has been placed somewhere, which
     83   ///             tracks a list of users.
     84   class ARMConstantIslands : public MachineFunctionPass {
     85     /// BasicBlockInfo - Information about the offset and size of a single
     86     /// basic block.
     87     struct BasicBlockInfo {
     88       /// Offset - Distance from the beginning of the function to the beginning
     89       /// of this basic block.
     90       ///
     91       /// Offsets are computed assuming worst case padding before an aligned
     92       /// block. This means that subtracting basic block offsets always gives a
     93       /// conservative estimate of the real distance which may be smaller.
     94       ///
     95       /// Because worst case padding is used, the computed offset of an aligned
     96       /// block may not actually be aligned.
     97       unsigned Offset;
     98 
     99       /// Size - Size of the basic block in bytes.  If the block contains
    100       /// inline assembly, this is a worst case estimate.
    101       ///
    102       /// The size does not include any alignment padding whether from the
    103       /// beginning of the block, or from an aligned jump table at the end.
    104       unsigned Size;
    105 
    106       /// KnownBits - The number of low bits in Offset that are known to be
    107       /// exact.  The remaining bits of Offset are an upper bound.
    108       uint8_t KnownBits;
    109 
    110       /// Unalign - When non-zero, the block contains instructions (inline asm)
    111       /// of unknown size.  The real size may be smaller than Size bytes by a
    112       /// multiple of 1 << Unalign.
    113       uint8_t Unalign;
    114 
    115       /// PostAlign - When non-zero, the block terminator contains a .align
    116       /// directive, so the end of the block is aligned to 1 << PostAlign
    117       /// bytes.
    118       uint8_t PostAlign;
    119 
    120       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
    121         PostAlign(0) {}
    122 
    123       /// Compute the number of known offset bits internally to this block.
    124       /// This number should be used to predict worst case padding when
    125       /// splitting the block.
    126       unsigned internalKnownBits() const {
    127         unsigned Bits = Unalign ? Unalign : KnownBits;
    128         // If the block size isn't a multiple of the known bits, assume the
    129         // worst case padding.
    130         if (Size & ((1u << Bits) - 1))
    131           Bits = countTrailingZeros(Size);
    132         return Bits;
    133       }
    134 
    135       /// Compute the offset immediately following this block.  If LogAlign is
    136       /// specified, return the offset the successor block will get if it has
    137       /// this alignment.
    138       unsigned postOffset(unsigned LogAlign = 0) const {
    139         unsigned PO = Offset + Size;
    140         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
    141         if (!LA)
    142           return PO;
    143         // Add alignment padding from the terminator.
    144         return PO + UnknownPadding(LA, internalKnownBits());
    145       }
    146 
    147       /// Compute the number of known low bits of postOffset.  If this block
    148       /// contains inline asm, the number of known bits drops to the
    149       /// instruction alignment.  An aligned terminator may increase the number
    150       /// of know bits.
    151       /// If LogAlign is given, also consider the alignment of the next block.
    152       unsigned postKnownBits(unsigned LogAlign = 0) const {
    153         return std::max(std::max(unsigned(PostAlign), LogAlign),
    154                         internalKnownBits());
    155       }
    156     };
    157 
    158     std::vector<BasicBlockInfo> BBInfo;
    159 
    160     /// WaterList - A sorted list of basic blocks where islands could be placed
    161     /// (i.e. blocks that don't fall through to the following block, due
    162     /// to a return, unreachable, or unconditional branch).
    163     std::vector<MachineBasicBlock*> WaterList;
    164 
    165     /// NewWaterList - The subset of WaterList that was created since the
    166     /// previous iteration by inserting unconditional branches.
    167     SmallSet<MachineBasicBlock*, 4> NewWaterList;
    168 
    169     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
    170 
    171     /// CPUser - One user of a constant pool, keeping the machine instruction
    172     /// pointer, the constant pool being referenced, and the max displacement
    173     /// allowed from the instruction to the CP.  The HighWaterMark records the
    174     /// highest basic block where a new CPEntry can be placed.  To ensure this
    175     /// pass terminates, the CP entries are initially placed at the end of the
    176     /// function and then move monotonically to lower addresses.  The
    177     /// exception to this rule is when the current CP entry for a particular
    178     /// CPUser is out of range, but there is another CP entry for the same
    179     /// constant value in range.  We want to use the existing in-range CP
    180     /// entry, but if it later moves out of range, the search for new water
    181     /// should resume where it left off.  The HighWaterMark is used to record
    182     /// that point.
    183     struct CPUser {
    184       MachineInstr *MI;
    185       MachineInstr *CPEMI;
    186       MachineBasicBlock *HighWaterMark;
    187     private:
    188       unsigned MaxDisp;
    189     public:
    190       bool NegOk;
    191       bool IsSoImm;
    192       bool KnownAlignment;
    193       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    194              bool neg, bool soimm)
    195         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
    196           KnownAlignment(false) {
    197         HighWaterMark = CPEMI->getParent();
    198       }
    199       /// getMaxDisp - Returns the maximum displacement supported by MI.
    200       /// Correct for unknown alignment.
    201       /// Conservatively subtract 2 bytes to handle weird alignment effects.
    202       unsigned getMaxDisp() const {
    203         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
    204       }
    205     };
    206 
    207     /// CPUsers - Keep track of all of the machine instructions that use various
    208     /// constant pools and their max displacement.
    209     std::vector<CPUser> CPUsers;
    210 
    211     /// CPEntry - One per constant pool entry, keeping the machine instruction
    212     /// pointer, the constpool index, and the number of CPUser's which
    213     /// reference this entry.
    214     struct CPEntry {
    215       MachineInstr *CPEMI;
    216       unsigned CPI;
    217       unsigned RefCount;
    218       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    219         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    220     };
    221 
    222     /// CPEntries - Keep track of all of the constant pool entry machine
    223     /// instructions. For each original constpool index (i.e. those that
    224     /// existed upon entry to this pass), it keeps a vector of entries.
    225     /// Original elements are cloned as we go along; the clones are
    226     /// put in the vector of the original element, but have distinct CPIs.
    227     std::vector<std::vector<CPEntry> > CPEntries;
    228 
    229     /// ImmBranch - One per immediate branch, keeping the machine instruction
    230     /// pointer, conditional or unconditional, the max displacement,
    231     /// and (if isCond is true) the corresponding unconditional branch
    232     /// opcode.
    233     struct ImmBranch {
    234       MachineInstr *MI;
    235       unsigned MaxDisp : 31;
    236       bool isCond : 1;
    237       int UncondBr;
    238       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    239         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    240     };
    241 
    242     /// ImmBranches - Keep track of all the immediate branch instructions.
    243     ///
    244     std::vector<ImmBranch> ImmBranches;
    245 
    246     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
    247     ///
    248     SmallVector<MachineInstr*, 4> PushPopMIs;
    249 
    250     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
    251     SmallVector<MachineInstr*, 4> T2JumpTables;
    252 
    253     /// HasFarJump - True if any far jump instruction has been emitted during
    254     /// the branch fix up pass.
    255     bool HasFarJump;
    256 
    257     MachineFunction *MF;
    258     MachineConstantPool *MCP;
    259     const ARMBaseInstrInfo *TII;
    260     const ARMSubtarget *STI;
    261     ARMFunctionInfo *AFI;
    262     bool isThumb;
    263     bool isThumb1;
    264     bool isThumb2;
    265   public:
    266     static char ID;
    267     ARMConstantIslands() : MachineFunctionPass(ID) {}
    268 
    269     virtual bool runOnMachineFunction(MachineFunction &MF);
    270 
    271     virtual const char *getPassName() const {
    272       return "ARM constant island placement and branch shortening pass";
    273     }
    274 
    275   private:
    276     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    277     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    278     unsigned getCPELogAlign(const MachineInstr *CPEMI);
    279     void scanFunctionJumpTables();
    280     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    281     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
    282     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    283     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    284     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    285     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    286     bool findAvailableWater(CPUser&U, unsigned UserOffset,
    287                             water_iterator &WaterIter);
    288     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
    289                         MachineBasicBlock *&NewMBB);
    290     bool handleConstantPoolUser(unsigned CPUserIndex);
    291     void removeDeadCPEMI(MachineInstr *CPEMI);
    292     bool removeUnusedCPEntries();
    293     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
    294                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    295                           bool DoDump = false);
    296     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
    297                         CPUser &U, unsigned &Growth);
    298     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    299     bool fixupImmediateBr(ImmBranch &Br);
    300     bool fixupConditionalBr(ImmBranch &Br);
    301     bool fixupUnconditionalBr(ImmBranch &Br);
    302     bool undoLRSpillRestore();
    303     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
    304     bool optimizeThumb2Instructions();
    305     bool optimizeThumb2Branches();
    306     bool reorderThumb2JumpTables();
    307     bool optimizeThumb2JumpTables();
    308     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
    309                                                   MachineBasicBlock *JTBB);
    310 
    311     void computeBlockSize(MachineBasicBlock *MBB);
    312     unsigned getOffsetOf(MachineInstr *MI) const;
    313     unsigned getUserOffset(CPUser&) const;
    314     void dumpBBs();
    315     void verify();
    316 
    317     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    318                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
    319     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    320                          const CPUser &U) {
    321       return isOffsetInRange(UserOffset, TrialOffset,
    322                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
    323     }
    324   };
    325   char ARMConstantIslands::ID = 0;
    326 }
    327 
    328 /// verify - check BBOffsets, BBSizes, alignment of islands
    329 void ARMConstantIslands::verify() {
    330 #ifndef NDEBUG
    331   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    332        MBBI != E; ++MBBI) {
    333     MachineBasicBlock *MBB = MBBI;
    334     unsigned MBBId = MBB->getNumber();
    335     assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
    336   }
    337   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
    338   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
    339     CPUser &U = CPUsers[i];
    340     unsigned UserOffset = getUserOffset(U);
    341     // Verify offset using the real max displacement without the safety
    342     // adjustment.
    343     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
    344                          /* DoDump = */ true)) {
    345       DEBUG(dbgs() << "OK\n");
    346       continue;
    347     }
    348     DEBUG(dbgs() << "Out of range.\n");
    349     dumpBBs();
    350     DEBUG(MF->dump());
    351     llvm_unreachable("Constant pool entry out of range!");
    352   }
    353 #endif
    354 }
    355 
    356 /// print block size and offset information - debugging
    357 void ARMConstantIslands::dumpBBs() {
    358   DEBUG({
    359     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    360       const BasicBlockInfo &BBI = BBInfo[J];
    361       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
    362              << " kb=" << unsigned(BBI.KnownBits)
    363              << " ua=" << unsigned(BBI.Unalign)
    364              << " pa=" << unsigned(BBI.PostAlign)
    365              << format(" size=%#x\n", BBInfo[J].Size);
    366     }
    367   });
    368 }
    369 
    370 /// createARMConstantIslandPass - returns an instance of the constpool
    371 /// island pass.
    372 FunctionPass *llvm::createARMConstantIslandPass() {
    373   return new ARMConstantIslands();
    374 }
    375 
    376 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
    377   MF = &mf;
    378   MCP = mf.getConstantPool();
    379 
    380   DEBUG(dbgs() << "***** ARMConstantIslands: "
    381                << MCP->getConstants().size() << " CP entries, aligned to "
    382                << MCP->getConstantPoolAlignment() << " bytes *****\n");
    383 
    384   TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
    385   AFI = MF->getInfo<ARMFunctionInfo>();
    386   STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
    387 
    388   isThumb = AFI->isThumbFunction();
    389   isThumb1 = AFI->isThumb1OnlyFunction();
    390   isThumb2 = AFI->isThumb2Function();
    391 
    392   HasFarJump = false;
    393 
    394   // This pass invalidates liveness information when it splits basic blocks.
    395   MF->getRegInfo().invalidateLiveness();
    396 
    397   // Renumber all of the machine basic blocks in the function, guaranteeing that
    398   // the numbers agree with the position of the block in the function.
    399   MF->RenumberBlocks();
    400 
    401   // Try to reorder and otherwise adjust the block layout to make good use
    402   // of the TB[BH] instructions.
    403   bool MadeChange = false;
    404   if (isThumb2 && AdjustJumpTableBlocks) {
    405     scanFunctionJumpTables();
    406     MadeChange |= reorderThumb2JumpTables();
    407     // Data is out of date, so clear it. It'll be re-computed later.
    408     T2JumpTables.clear();
    409     // Blocks may have shifted around. Keep the numbering up to date.
    410     MF->RenumberBlocks();
    411   }
    412 
    413   // Thumb1 functions containing constant pools get 4-byte alignment.
    414   // This is so we can keep exact track of where the alignment padding goes.
    415 
    416   // ARM and Thumb2 functions need to be 4-byte aligned.
    417   if (!isThumb1)
    418     MF->ensureAlignment(2);  // 2 = log2(4)
    419 
    420   // Perform the initial placement of the constant pool entries.  To start with,
    421   // we put them all at the end of the function.
    422   std::vector<MachineInstr*> CPEMIs;
    423   if (!MCP->isEmpty())
    424     doInitialPlacement(CPEMIs);
    425 
    426   /// The next UID to take is the first unused one.
    427   AFI->initPICLabelUId(CPEMIs.size());
    428 
    429   // Do the initial scan of the function, building up information about the
    430   // sizes of each block, the location of all the water, and finding all of the
    431   // constant pool users.
    432   initializeFunctionInfo(CPEMIs);
    433   CPEMIs.clear();
    434   DEBUG(dumpBBs());
    435 
    436 
    437   /// Remove dead constant pool entries.
    438   MadeChange |= removeUnusedCPEntries();
    439 
    440   // Iteratively place constant pool entries and fix up branches until there
    441   // is no change.
    442   unsigned NoCPIters = 0, NoBRIters = 0;
    443   while (true) {
    444     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    445     bool CPChange = false;
    446     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    447       CPChange |= handleConstantPoolUser(i);
    448     if (CPChange && ++NoCPIters > 30)
    449       report_fatal_error("Constant Island pass failed to converge!");
    450     DEBUG(dumpBBs());
    451 
    452     // Clear NewWaterList now.  If we split a block for branches, it should
    453     // appear as "new water" for the next iteration of constant pool placement.
    454     NewWaterList.clear();
    455 
    456     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    457     bool BRChange = false;
    458     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    459       BRChange |= fixupImmediateBr(ImmBranches[i]);
    460     if (BRChange && ++NoBRIters > 30)
    461       report_fatal_error("Branch Fix Up pass failed to converge!");
    462     DEBUG(dumpBBs());
    463 
    464     if (!CPChange && !BRChange)
    465       break;
    466     MadeChange = true;
    467   }
    468 
    469   // Shrink 32-bit Thumb2 branch, load, and store instructions.
    470   if (isThumb2 && !STI->prefers32BitThumb())
    471     MadeChange |= optimizeThumb2Instructions();
    472 
    473   // After a while, this might be made debug-only, but it is not expensive.
    474   verify();
    475 
    476   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
    477   // undo the spill / restore of LR if possible.
    478   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
    479     MadeChange |= undoLRSpillRestore();
    480 
    481   // Save the mapping between original and cloned constpool entries.
    482   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
    483     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
    484       const CPEntry & CPE = CPEntries[i][j];
    485       AFI->recordCPEClone(i, CPE.CPI);
    486     }
    487   }
    488 
    489   DEBUG(dbgs() << '\n'; dumpBBs());
    490 
    491   BBInfo.clear();
    492   WaterList.clear();
    493   CPUsers.clear();
    494   CPEntries.clear();
    495   ImmBranches.clear();
    496   PushPopMIs.clear();
    497   T2JumpTables.clear();
    498 
    499   return MadeChange;
    500 }
    501 
    502 /// doInitialPlacement - Perform the initial placement of the constant pool
    503 /// entries.  To start with, we put them all at the end of the function.
    504 void
    505 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
    506   // Create the basic block to hold the CPE's.
    507   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
    508   MF->push_back(BB);
    509 
    510   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
    511   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
    512 
    513   // Mark the basic block as required by the const-pool.
    514   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
    515   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
    516 
    517   // The function needs to be as aligned as the basic blocks. The linker may
    518   // move functions around based on their alignment.
    519   MF->ensureAlignment(BB->getAlignment());
    520 
    521   // Order the entries in BB by descending alignment.  That ensures correct
    522   // alignment of all entries as long as BB is sufficiently aligned.  Keep
    523   // track of the insertion point for each alignment.  We are going to bucket
    524   // sort the entries as they are created.
    525   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
    526 
    527   // Add all of the constants from the constant pool to the end block, use an
    528   // identity mapping of CPI's to CPE's.
    529   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
    530 
    531   const DataLayout &TD = *MF->getTarget().getDataLayout();
    532   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    533     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    534     assert(Size >= 4 && "Too small constant pool entry");
    535     unsigned Align = CPs[i].getAlignment();
    536     assert(isPowerOf2_32(Align) && "Invalid alignment");
    537     // Verify that all constant pool entries are a multiple of their alignment.
    538     // If not, we would have to pad them out so that instructions stay aligned.
    539     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
    540 
    541     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    542     unsigned LogAlign = Log2_32(Align);
    543     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
    544     MachineInstr *CPEMI =
    545       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
    546         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    547     CPEMIs.push_back(CPEMI);
    548 
    549     // Ensure that future entries with higher alignment get inserted before
    550     // CPEMI. This is bucket sort with iterators.
    551     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
    552       if (InsPoint[a] == InsAt)
    553         InsPoint[a] = CPEMI;
    554 
    555     // Add a new CPEntry, but no corresponding CPUser yet.
    556     std::vector<CPEntry> CPEs;
    557     CPEs.push_back(CPEntry(CPEMI, i));
    558     CPEntries.push_back(CPEs);
    559     ++NumCPEs;
    560     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
    561                  << Size << ", align = " << Align <<'\n');
    562   }
    563   DEBUG(BB->dump());
    564 }
    565 
    566 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    567 /// into the block immediately after it.
    568 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    569   // Get the next machine basic block in the function.
    570   MachineFunction::iterator MBBI = MBB;
    571   // Can't fall off end of function.
    572   if (llvm::next(MBBI) == MBB->getParent()->end())
    573     return false;
    574 
    575   MachineBasicBlock *NextBB = llvm::next(MBBI);
    576   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    577        E = MBB->succ_end(); I != E; ++I)
    578     if (*I == NextBB)
    579       return true;
    580 
    581   return false;
    582 }
    583 
    584 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    585 /// look up the corresponding CPEntry.
    586 ARMConstantIslands::CPEntry
    587 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
    588                                         const MachineInstr *CPEMI) {
    589   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    590   // Number of entries per constpool index should be small, just do a
    591   // linear search.
    592   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    593     if (CPEs[i].CPEMI == CPEMI)
    594       return &CPEs[i];
    595   }
    596   return NULL;
    597 }
    598 
    599 /// getCPELogAlign - Returns the required alignment of the constant pool entry
    600 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
    601 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
    602   assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
    603 
    604   // Everything is 4-byte aligned unless AlignConstantIslands is set.
    605   if (!AlignConstantIslands)
    606     return 2;
    607 
    608   unsigned CPI = CPEMI->getOperand(1).getIndex();
    609   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
    610   unsigned Align = MCP->getConstants()[CPI].getAlignment();
    611   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
    612   return Log2_32(Align);
    613 }
    614 
    615 /// scanFunctionJumpTables - Do a scan of the function, building up
    616 /// information about the sizes of each block and the locations of all
    617 /// the jump tables.
    618 void ARMConstantIslands::scanFunctionJumpTables() {
    619   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    620        MBBI != E; ++MBBI) {
    621     MachineBasicBlock &MBB = *MBBI;
    622 
    623     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    624          I != E; ++I)
    625       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
    626         T2JumpTables.push_back(I);
    627   }
    628 }
    629 
    630 /// initializeFunctionInfo - Do the initial scan of the function, building up
    631 /// information about the sizes of each block, the location of all the water,
    632 /// and finding all of the constant pool users.
    633 void ARMConstantIslands::
    634 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
    635   BBInfo.clear();
    636   BBInfo.resize(MF->getNumBlockIDs());
    637 
    638   // First thing, compute the size of all basic blocks, and see if the function
    639   // has any inline assembly in it. If so, we have to be conservative about
    640   // alignment assumptions, as we don't know for sure the size of any
    641   // instructions in the inline assembly.
    642   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    643     computeBlockSize(I);
    644 
    645   // The known bits of the entry block offset are determined by the function
    646   // alignment.
    647   BBInfo.front().KnownBits = MF->getAlignment();
    648 
    649   // Compute block offsets and known bits.
    650   adjustBBOffsetsAfter(MF->begin());
    651 
    652   // Now go back through the instructions and build up our data structures.
    653   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    654        MBBI != E; ++MBBI) {
    655     MachineBasicBlock &MBB = *MBBI;
    656 
    657     // If this block doesn't fall through into the next MBB, then this is
    658     // 'water' that a constant pool island could be placed.
    659     if (!BBHasFallthrough(&MBB))
    660       WaterList.push_back(&MBB);
    661 
    662     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    663          I != E; ++I) {
    664       if (I->isDebugValue())
    665         continue;
    666 
    667       int Opc = I->getOpcode();
    668       if (I->isBranch()) {
    669         bool isCond = false;
    670         unsigned Bits = 0;
    671         unsigned Scale = 1;
    672         int UOpc = Opc;
    673         switch (Opc) {
    674         default:
    675           continue;  // Ignore other JT branches
    676         case ARM::t2BR_JT:
    677           T2JumpTables.push_back(I);
    678           continue;   // Does not get an entry in ImmBranches
    679         case ARM::Bcc:
    680           isCond = true;
    681           UOpc = ARM::B;
    682           // Fallthrough
    683         case ARM::B:
    684           Bits = 24;
    685           Scale = 4;
    686           break;
    687         case ARM::tBcc:
    688           isCond = true;
    689           UOpc = ARM::tB;
    690           Bits = 8;
    691           Scale = 2;
    692           break;
    693         case ARM::tB:
    694           Bits = 11;
    695           Scale = 2;
    696           break;
    697         case ARM::t2Bcc:
    698           isCond = true;
    699           UOpc = ARM::t2B;
    700           Bits = 20;
    701           Scale = 2;
    702           break;
    703         case ARM::t2B:
    704           Bits = 24;
    705           Scale = 2;
    706           break;
    707         }
    708 
    709         // Record this immediate branch.
    710         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    711         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
    712       }
    713 
    714       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
    715         PushPopMIs.push_back(I);
    716 
    717       if (Opc == ARM::CONSTPOOL_ENTRY)
    718         continue;
    719 
    720       // Scan the instructions for constant pool operands.
    721       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
    722         if (I->getOperand(op).isCPI()) {
    723           // We found one.  The addressing mode tells us the max displacement
    724           // from the PC that this instruction permits.
    725 
    726           // Basic size info comes from the TSFlags field.
    727           unsigned Bits = 0;
    728           unsigned Scale = 1;
    729           bool NegOk = false;
    730           bool IsSoImm = false;
    731 
    732           switch (Opc) {
    733           default:
    734             llvm_unreachable("Unknown addressing mode for CP reference!");
    735 
    736           // Taking the address of a CP entry.
    737           case ARM::LEApcrel:
    738             // This takes a SoImm, which is 8 bit immediate rotated. We'll
    739             // pretend the maximum offset is 255 * 4. Since each instruction
    740             // 4 byte wide, this is always correct. We'll check for other
    741             // displacements that fits in a SoImm as well.
    742             Bits = 8;
    743             Scale = 4;
    744             NegOk = true;
    745             IsSoImm = true;
    746             break;
    747           case ARM::t2LEApcrel:
    748             Bits = 12;
    749             NegOk = true;
    750             break;
    751           case ARM::tLEApcrel:
    752             Bits = 8;
    753             Scale = 4;
    754             break;
    755 
    756           case ARM::LDRBi12:
    757           case ARM::LDRi12:
    758           case ARM::LDRcp:
    759           case ARM::t2LDRpci:
    760             Bits = 12;  // +-offset_12
    761             NegOk = true;
    762             break;
    763 
    764           case ARM::tLDRpci:
    765             Bits = 8;
    766             Scale = 4;  // +(offset_8*4)
    767             break;
    768 
    769           case ARM::VLDRD:
    770           case ARM::VLDRS:
    771             Bits = 8;
    772             Scale = 4;  // +-(offset_8*4)
    773             NegOk = true;
    774             break;
    775           }
    776 
    777           // Remember that this is a user of a CP entry.
    778           unsigned CPI = I->getOperand(op).getIndex();
    779           MachineInstr *CPEMI = CPEMIs[CPI];
    780           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    781           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
    782 
    783           // Increment corresponding CPEntry reference count.
    784           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    785           assert(CPE && "Cannot find a corresponding CPEntry!");
    786           CPE->RefCount++;
    787 
    788           // Instructions can only use one CP entry, don't bother scanning the
    789           // rest of the operands.
    790           break;
    791         }
    792     }
    793   }
    794 }
    795 
    796 /// computeBlockSize - Compute the size and some alignment information for MBB.
    797 /// This function updates BBInfo directly.
    798 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
    799   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
    800   BBI.Size = 0;
    801   BBI.Unalign = 0;
    802   BBI.PostAlign = 0;
    803 
    804   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    805        ++I) {
    806     BBI.Size += TII->GetInstSizeInBytes(I);
    807     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
    808     // The actual size may be smaller, but still a multiple of the instr size.
    809     if (I->isInlineAsm())
    810       BBI.Unalign = isThumb ? 1 : 2;
    811     // Also consider instructions that may be shrunk later.
    812     else if (isThumb && mayOptimizeThumb2Instruction(I))
    813       BBI.Unalign = 1;
    814   }
    815 
    816   // tBR_JTr contains a .align 2 directive.
    817   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
    818     BBI.PostAlign = 2;
    819     MBB->getParent()->ensureAlignment(2);
    820   }
    821 }
    822 
    823 /// getOffsetOf - Return the current offset of the specified machine instruction
    824 /// from the start of the function.  This offset changes as stuff is moved
    825 /// around inside the function.
    826 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
    827   MachineBasicBlock *MBB = MI->getParent();
    828 
    829   // The offset is composed of two things: the sum of the sizes of all MBB's
    830   // before this instruction's block, and the offset from the start of the block
    831   // it is in.
    832   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
    833 
    834   // Sum instructions before MI in MBB.
    835   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    836     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    837     Offset += TII->GetInstSizeInBytes(I);
    838   }
    839   return Offset;
    840 }
    841 
    842 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    843 /// ID.
    844 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    845                               const MachineBasicBlock *RHS) {
    846   return LHS->getNumber() < RHS->getNumber();
    847 }
    848 
    849 /// updateForInsertedWaterBlock - When a block is newly inserted into the
    850 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    851 /// and update the arrays that parallel this numbering.
    852 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
    853   // Renumber the MBB's to keep them consecutive.
    854   NewBB->getParent()->RenumberBlocks(NewBB);
    855 
    856   // Insert an entry into BBInfo to align it properly with the (newly
    857   // renumbered) block numbers.
    858   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    859 
    860   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    861   // available water after it.
    862   water_iterator IP =
    863     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    864                      CompareMBBNumbers);
    865   WaterList.insert(IP, NewBB);
    866 }
    867 
    868 
    869 /// Split the basic block containing MI into two blocks, which are joined by
    870 /// an unconditional branch.  Update data structures and renumber blocks to
    871 /// account for this change and returns the newly created block.
    872 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
    873   MachineBasicBlock *OrigBB = MI->getParent();
    874 
    875   // Create a new MBB for the code after the OrigBB.
    876   MachineBasicBlock *NewBB =
    877     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
    878   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
    879   MF->insert(MBBI, NewBB);
    880 
    881   // Splice the instructions starting with MI over to NewBB.
    882   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    883 
    884   // Add an unconditional branch from OrigBB to NewBB.
    885   // Note the new unconditional branch is not being recorded.
    886   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    887   // correspond to anything in the source.
    888   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
    889   if (!isThumb)
    890     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
    891   else
    892     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
    893             .addImm(ARMCC::AL).addReg(0);
    894   ++NumSplit;
    895 
    896   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    897   NewBB->transferSuccessors(OrigBB);
    898 
    899   // OrigBB branches to NewBB.
    900   OrigBB->addSuccessor(NewBB);
    901 
    902   // Update internal data structures to account for the newly inserted MBB.
    903   // This is almost the same as updateForInsertedWaterBlock, except that
    904   // the Water goes after OrigBB, not NewBB.
    905   MF->RenumberBlocks(NewBB);
    906 
    907   // Insert an entry into BBInfo to align it properly with the (newly
    908   // renumbered) block numbers.
    909   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    910 
    911   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    912   // available water after it (but not if it's already there, which happens
    913   // when splitting before a conditional branch that is followed by an
    914   // unconditional branch - in that case we want to insert NewBB).
    915   water_iterator IP =
    916     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    917                      CompareMBBNumbers);
    918   MachineBasicBlock* WaterBB = *IP;
    919   if (WaterBB == OrigBB)
    920     WaterList.insert(llvm::next(IP), NewBB);
    921   else
    922     WaterList.insert(IP, OrigBB);
    923   NewWaterList.insert(OrigBB);
    924 
    925   // Figure out how large the OrigBB is.  As the first half of the original
    926   // block, it cannot contain a tablejump.  The size includes
    927   // the new jump we added.  (It should be possible to do this without
    928   // recounting everything, but it's very confusing, and this is rarely
    929   // executed.)
    930   computeBlockSize(OrigBB);
    931 
    932   // Figure out how large the NewMBB is.  As the second half of the original
    933   // block, it may contain a tablejump.
    934   computeBlockSize(NewBB);
    935 
    936   // All BBOffsets following these blocks must be modified.
    937   adjustBBOffsetsAfter(OrigBB);
    938 
    939   return NewBB;
    940 }
    941 
    942 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
    943 /// displacement computation.  Update U.KnownAlignment to match its current
    944 /// basic block location.
    945 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
    946   unsigned UserOffset = getOffsetOf(U.MI);
    947   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
    948   unsigned KnownBits = BBI.internalKnownBits();
    949 
    950   // The value read from PC is offset from the actual instruction address.
    951   UserOffset += (isThumb ? 4 : 8);
    952 
    953   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
    954   // Make sure U.getMaxDisp() returns a constrained range.
    955   U.KnownAlignment = (KnownBits >= 2);
    956 
    957   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
    958   // purposes of the displacement computation; compensate for that here.
    959   // For unknown alignments, getMaxDisp() constrains the range instead.
    960   if (isThumb && U.KnownAlignment)
    961     UserOffset &= ~3u;
    962 
    963   return UserOffset;
    964 }
    965 
    966 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
    967 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    968 /// constant pool entry).
    969 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
    970 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
    971 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
    972 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
    973                                          unsigned TrialOffset, unsigned MaxDisp,
    974                                          bool NegativeOK, bool IsSoImm) {
    975   if (UserOffset <= TrialOffset) {
    976     // User before the Trial.
    977     if (TrialOffset - UserOffset <= MaxDisp)
    978       return true;
    979     // FIXME: Make use full range of soimm values.
    980   } else if (NegativeOK) {
    981     if (UserOffset - TrialOffset <= MaxDisp)
    982       return true;
    983     // FIXME: Make use full range of soimm values.
    984   }
    985   return false;
    986 }
    987 
    988 /// isWaterInRange - Returns true if a CPE placed after the specified
    989 /// Water (a basic block) will be in range for the specific MI.
    990 ///
    991 /// Compute how much the function will grow by inserting a CPE after Water.
    992 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
    993                                         MachineBasicBlock* Water, CPUser &U,
    994                                         unsigned &Growth) {
    995   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
    996   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
    997   unsigned NextBlockOffset, NextBlockAlignment;
    998   MachineFunction::const_iterator NextBlock = Water;
    999   if (++NextBlock == MF->end()) {
   1000     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
   1001     NextBlockAlignment = 0;
   1002   } else {
   1003     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
   1004     NextBlockAlignment = NextBlock->getAlignment();
   1005   }
   1006   unsigned Size = U.CPEMI->getOperand(2).getImm();
   1007   unsigned CPEEnd = CPEOffset + Size;
   1008 
   1009   // The CPE may be able to hide in the alignment padding before the next
   1010   // block. It may also cause more padding to be required if it is more aligned
   1011   // that the next block.
   1012   if (CPEEnd > NextBlockOffset) {
   1013     Growth = CPEEnd - NextBlockOffset;
   1014     // Compute the padding that would go at the end of the CPE to align the next
   1015     // block.
   1016     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
   1017 
   1018     // If the CPE is to be inserted before the instruction, that will raise
   1019     // the offset of the instruction. Also account for unknown alignment padding
   1020     // in blocks between CPE and the user.
   1021     if (CPEOffset < UserOffset)
   1022       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
   1023   } else
   1024     // CPE fits in existing padding.
   1025     Growth = 0;
   1026 
   1027   return isOffsetInRange(UserOffset, CPEOffset, U);
   1028 }
   1029 
   1030 /// isCPEntryInRange - Returns true if the distance between specific MI and
   1031 /// specific ConstPool entry instruction can fit in MI's displacement field.
   1032 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
   1033                                       MachineInstr *CPEMI, unsigned MaxDisp,
   1034                                       bool NegOk, bool DoDump) {
   1035   unsigned CPEOffset  = getOffsetOf(CPEMI);
   1036 
   1037   if (DoDump) {
   1038     DEBUG({
   1039       unsigned Block = MI->getParent()->getNumber();
   1040       const BasicBlockInfo &BBI = BBInfo[Block];
   1041       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
   1042              << " max delta=" << MaxDisp
   1043              << format(" insn address=%#x", UserOffset)
   1044              << " in BB#" << Block << ": "
   1045              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
   1046              << format("CPE address=%#x offset=%+d: ", CPEOffset,
   1047                        int(CPEOffset-UserOffset));
   1048     });
   1049   }
   1050 
   1051   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
   1052 }
   1053 
   1054 #ifndef NDEBUG
   1055 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
   1056 /// unconditionally branches to its only successor.
   1057 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
   1058   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
   1059     return false;
   1060 
   1061   MachineBasicBlock *Succ = *MBB->succ_begin();
   1062   MachineBasicBlock *Pred = *MBB->pred_begin();
   1063   MachineInstr *PredMI = &Pred->back();
   1064   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
   1065       || PredMI->getOpcode() == ARM::t2B)
   1066     return PredMI->getOperand(0).getMBB() == Succ;
   1067   return false;
   1068 }
   1069 #endif // NDEBUG
   1070 
   1071 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
   1072   unsigned BBNum = BB->getNumber();
   1073   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
   1074     // Get the offset and known bits at the end of the layout predecessor.
   1075     // Include the alignment of the current block.
   1076     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
   1077     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
   1078     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
   1079 
   1080     // This is where block i begins.  Stop if the offset is already correct,
   1081     // and we have updated 2 blocks.  This is the maximum number of blocks
   1082     // changed before calling this function.
   1083     if (i > BBNum + 2 &&
   1084         BBInfo[i].Offset == Offset &&
   1085         BBInfo[i].KnownBits == KnownBits)
   1086       break;
   1087 
   1088     BBInfo[i].Offset = Offset;
   1089     BBInfo[i].KnownBits = KnownBits;
   1090   }
   1091 }
   1092 
   1093 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
   1094 /// and instruction CPEMI, and decrement its refcount.  If the refcount
   1095 /// becomes 0 remove the entry and instruction.  Returns true if we removed
   1096 /// the entry, false if we didn't.
   1097 
   1098 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
   1099                                                     MachineInstr *CPEMI) {
   1100   // Find the old entry. Eliminate it if it is no longer used.
   1101   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
   1102   assert(CPE && "Unexpected!");
   1103   if (--CPE->RefCount == 0) {
   1104     removeDeadCPEMI(CPEMI);
   1105     CPE->CPEMI = NULL;
   1106     --NumCPEs;
   1107     return true;
   1108   }
   1109   return false;
   1110 }
   1111 
   1112 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1113 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1114 /// change the data structures so the user references the clone.  Returns:
   1115 /// 0 = no existing entry found
   1116 /// 1 = entry found, and there were no code insertions or deletions
   1117 /// 2 = entry found, and there were code insertions or deletions
   1118 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
   1119 {
   1120   MachineInstr *UserMI = U.MI;
   1121   MachineInstr *CPEMI  = U.CPEMI;
   1122 
   1123   // Check to see if the CPE is already in-range.
   1124   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
   1125                        true)) {
   1126     DEBUG(dbgs() << "In range\n");
   1127     return 1;
   1128   }
   1129 
   1130   // No.  Look for previously created clones of the CPE that are in range.
   1131   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1132   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1133   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1134     // We already tried this one
   1135     if (CPEs[i].CPEMI == CPEMI)
   1136       continue;
   1137     // Removing CPEs can leave empty entries, skip
   1138     if (CPEs[i].CPEMI == NULL)
   1139       continue;
   1140     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
   1141                      U.NegOk)) {
   1142       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1143                    << CPEs[i].CPI << "\n");
   1144       // Point the CPUser node to the replacement
   1145       U.CPEMI = CPEs[i].CPEMI;
   1146       // Change the CPI in the instruction operand to refer to the clone.
   1147       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1148         if (UserMI->getOperand(j).isCPI()) {
   1149           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1150           break;
   1151         }
   1152       // Adjust the refcount of the clone...
   1153       CPEs[i].RefCount++;
   1154       // ...and the original.  If we didn't remove the old entry, none of the
   1155       // addresses changed, so we don't need another pass.
   1156       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1157     }
   1158   }
   1159   return 0;
   1160 }
   1161 
   1162 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1163 /// the specific unconditional branch instruction.
   1164 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1165   switch (Opc) {
   1166   case ARM::tB:
   1167     return ((1<<10)-1)*2;
   1168   case ARM::t2B:
   1169     return ((1<<23)-1)*2;
   1170   default:
   1171     break;
   1172   }
   1173 
   1174   return ((1<<23)-1)*4;
   1175 }
   1176 
   1177 /// findAvailableWater - Look for an existing entry in the WaterList in which
   1178 /// we can place the CPE referenced from U so it's within range of U's MI.
   1179 /// Returns true if found, false if not.  If it returns true, WaterIter
   1180 /// is set to the WaterList entry.  For Thumb, prefer water that will not
   1181 /// introduce padding to water that will.  To ensure that this pass
   1182 /// terminates, the CPE location for a particular CPUser is only allowed to
   1183 /// move to a lower address, so search backward from the end of the list and
   1184 /// prefer the first water that is in range.
   1185 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
   1186                                       water_iterator &WaterIter) {
   1187   if (WaterList.empty())
   1188     return false;
   1189 
   1190   unsigned BestGrowth = ~0u;
   1191   for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
   1192        --IP) {
   1193     MachineBasicBlock* WaterBB = *IP;
   1194     // Check if water is in range and is either at a lower address than the
   1195     // current "high water mark" or a new water block that was created since
   1196     // the previous iteration by inserting an unconditional branch.  In the
   1197     // latter case, we want to allow resetting the high water mark back to
   1198     // this new water since we haven't seen it before.  Inserting branches
   1199     // should be relatively uncommon and when it does happen, we want to be
   1200     // sure to take advantage of it for all the CPEs near that block, so that
   1201     // we don't insert more branches than necessary.
   1202     unsigned Growth;
   1203     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
   1204         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1205          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
   1206       // This is the least amount of required padding seen so far.
   1207       BestGrowth = Growth;
   1208       WaterIter = IP;
   1209       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
   1210                    << " Growth=" << Growth << '\n');
   1211 
   1212       // Keep looking unless it is perfect.
   1213       if (BestGrowth == 0)
   1214         return true;
   1215     }
   1216     if (IP == B)
   1217       break;
   1218   }
   1219   return BestGrowth != ~0u;
   1220 }
   1221 
   1222 /// createNewWater - No existing WaterList entry will work for
   1223 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1224 /// block is used if in range, and the conditional branch munged so control
   1225 /// flow is correct.  Otherwise the block is split to create a hole with an
   1226 /// unconditional branch around it.  In either case NewMBB is set to a
   1227 /// block following which the new island can be inserted (the WaterList
   1228 /// is not adjusted).
   1229 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
   1230                                         unsigned UserOffset,
   1231                                         MachineBasicBlock *&NewMBB) {
   1232   CPUser &U = CPUsers[CPUserIndex];
   1233   MachineInstr *UserMI = U.MI;
   1234   MachineInstr *CPEMI  = U.CPEMI;
   1235   unsigned CPELogAlign = getCPELogAlign(CPEMI);
   1236   MachineBasicBlock *UserMBB = UserMI->getParent();
   1237   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
   1238 
   1239   // If the block does not end in an unconditional branch already, and if the
   1240   // end of the block is within range, make new water there.  (The addition
   1241   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
   1242   // Thumb2, 2 on Thumb1.
   1243   if (BBHasFallthrough(UserMBB)) {
   1244     // Size of branch to insert.
   1245     unsigned Delta = isThumb1 ? 2 : 4;
   1246     // Compute the offset where the CPE will begin.
   1247     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
   1248 
   1249     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
   1250       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
   1251             << format(", expected CPE offset %#x\n", CPEOffset));
   1252       NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
   1253       // Add an unconditional branch from UserMBB to fallthrough block.  Record
   1254       // it for branch lengthening; this new branch will not get out of range,
   1255       // but if the preceding conditional branch is out of range, the targets
   1256       // will be exchanged, and the altered branch may be out of range, so the
   1257       // machinery has to know about it.
   1258       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
   1259       if (!isThumb)
   1260         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1261       else
   1262         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
   1263           .addImm(ARMCC::AL).addReg(0);
   1264       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1265       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1266                                       MaxDisp, false, UncondBr));
   1267       BBInfo[UserMBB->getNumber()].Size += Delta;
   1268       adjustBBOffsetsAfter(UserMBB);
   1269       return;
   1270     }
   1271   }
   1272 
   1273   // What a big block.  Find a place within the block to split it.  This is a
   1274   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
   1275   // entries are 4 bytes: if instruction I references island CPE, and
   1276   // instruction I+1 references CPE', it will not work well to put CPE as far
   1277   // forward as possible, since then CPE' cannot immediately follow it (that
   1278   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
   1279   // need to create a new island.  So, we make a first guess, then walk through
   1280   // the instructions between the one currently being looked at and the
   1281   // possible insertion point, and make sure any other instructions that
   1282   // reference CPEs will be able to use the same island area; if not, we back
   1283   // up the insertion point.
   1284 
   1285   // Try to split the block so it's fully aligned.  Compute the latest split
   1286   // point where we can add a 4-byte branch instruction, and then align to
   1287   // LogAlign which is the largest possible alignment in the function.
   1288   unsigned LogAlign = MF->getAlignment();
   1289   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
   1290   unsigned KnownBits = UserBBI.internalKnownBits();
   1291   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
   1292   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
   1293   DEBUG(dbgs() << format("Split in middle of big block before %#x",
   1294                          BaseInsertOffset));
   1295 
   1296   // The 4 in the following is for the unconditional branch we'll be inserting
   1297   // (allows for long branch on Thumb1).  Alignment of the island is handled
   1298   // inside isOffsetInRange.
   1299   BaseInsertOffset -= 4;
   1300 
   1301   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
   1302                << " la=" << LogAlign
   1303                << " kb=" << KnownBits
   1304                << " up=" << UPad << '\n');
   1305 
   1306   // This could point off the end of the block if we've already got constant
   1307   // pool entries following this block; only the last one is in the water list.
   1308   // Back past any possible branches (allow for a conditional and a maximally
   1309   // long unconditional).
   1310   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
   1311     BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
   1312     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
   1313   }
   1314   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
   1315     CPEMI->getOperand(2).getImm();
   1316   MachineBasicBlock::iterator MI = UserMI;
   1317   ++MI;
   1318   unsigned CPUIndex = CPUserIndex+1;
   1319   unsigned NumCPUsers = CPUsers.size();
   1320   MachineInstr *LastIT = 0;
   1321   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
   1322        Offset < BaseInsertOffset;
   1323        Offset += TII->GetInstSizeInBytes(MI),
   1324        MI = llvm::next(MI)) {
   1325     assert(MI != UserMBB->end() && "Fell off end of block");
   1326     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
   1327       CPUser &U = CPUsers[CPUIndex];
   1328       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
   1329         // Shift intertion point by one unit of alignment so it is within reach.
   1330         BaseInsertOffset -= 1u << LogAlign;
   1331         EndInsertOffset  -= 1u << LogAlign;
   1332       }
   1333       // This is overly conservative, as we don't account for CPEMIs being
   1334       // reused within the block, but it doesn't matter much.  Also assume CPEs
   1335       // are added in order with alignment padding.  We may eventually be able
   1336       // to pack the aligned CPEs better.
   1337       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
   1338       CPUIndex++;
   1339     }
   1340 
   1341     // Remember the last IT instruction.
   1342     if (MI->getOpcode() == ARM::t2IT)
   1343       LastIT = MI;
   1344   }
   1345 
   1346   --MI;
   1347 
   1348   // Avoid splitting an IT block.
   1349   if (LastIT) {
   1350     unsigned PredReg = 0;
   1351     ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
   1352     if (CC != ARMCC::AL)
   1353       MI = LastIT;
   1354   }
   1355   NewMBB = splitBlockBeforeInstr(MI);
   1356 }
   1357 
   1358 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
   1359 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1360 /// place in-range.  Return true if we changed any addresses (thus must run
   1361 /// another pass of branch lengthening), false otherwise.
   1362 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
   1363   CPUser &U = CPUsers[CPUserIndex];
   1364   MachineInstr *UserMI = U.MI;
   1365   MachineInstr *CPEMI  = U.CPEMI;
   1366   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1367   unsigned Size = CPEMI->getOperand(2).getImm();
   1368   // Compute this only once, it's expensive.
   1369   unsigned UserOffset = getUserOffset(U);
   1370 
   1371   // See if the current entry is within range, or there is a clone of it
   1372   // in range.
   1373   int result = findInRangeCPEntry(U, UserOffset);
   1374   if (result==1) return false;
   1375   else if (result==2) return true;
   1376 
   1377   // No existing clone of this CPE is within range.
   1378   // We will be generating a new clone.  Get a UID for it.
   1379   unsigned ID = AFI->createPICLabelUId();
   1380 
   1381   // Look for water where we can place this CPE.
   1382   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
   1383   MachineBasicBlock *NewMBB;
   1384   water_iterator IP;
   1385   if (findAvailableWater(U, UserOffset, IP)) {
   1386     DEBUG(dbgs() << "Found water in range\n");
   1387     MachineBasicBlock *WaterBB = *IP;
   1388 
   1389     // If the original WaterList entry was "new water" on this iteration,
   1390     // propagate that to the new island.  This is just keeping NewWaterList
   1391     // updated to match the WaterList, which will be updated below.
   1392     if (NewWaterList.erase(WaterBB))
   1393       NewWaterList.insert(NewIsland);
   1394 
   1395     // The new CPE goes before the following block (NewMBB).
   1396     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
   1397 
   1398   } else {
   1399     // No water found.
   1400     DEBUG(dbgs() << "No water found\n");
   1401     createNewWater(CPUserIndex, UserOffset, NewMBB);
   1402 
   1403     // splitBlockBeforeInstr adds to WaterList, which is important when it is
   1404     // called while handling branches so that the water will be seen on the
   1405     // next iteration for constant pools, but in this context, we don't want
   1406     // it.  Check for this so it will be removed from the WaterList.
   1407     // Also remove any entry from NewWaterList.
   1408     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
   1409     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1410     if (IP != WaterList.end())
   1411       NewWaterList.erase(WaterBB);
   1412 
   1413     // We are adding new water.  Update NewWaterList.
   1414     NewWaterList.insert(NewIsland);
   1415   }
   1416 
   1417   // Remove the original WaterList entry; we want subsequent insertions in
   1418   // this vicinity to go after the one we're about to insert.  This
   1419   // considerably reduces the number of times we have to move the same CPE
   1420   // more than once and is also important to ensure the algorithm terminates.
   1421   if (IP != WaterList.end())
   1422     WaterList.erase(IP);
   1423 
   1424   // Okay, we know we can put an island before NewMBB now, do it!
   1425   MF->insert(NewMBB, NewIsland);
   1426 
   1427   // Update internal data structures to account for the newly inserted MBB.
   1428   updateForInsertedWaterBlock(NewIsland);
   1429 
   1430   // Decrement the old entry, and remove it if refcount becomes 0.
   1431   decrementCPEReferenceCount(CPI, CPEMI);
   1432 
   1433   // Now that we have an island to add the CPE to, clone the original CPE and
   1434   // add it to the island.
   1435   U.HighWaterMark = NewIsland;
   1436   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
   1437                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1438   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1439   ++NumCPEs;
   1440 
   1441   // Mark the basic block as aligned as required by the const-pool entry.
   1442   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
   1443 
   1444   // Increase the size of the island block to account for the new entry.
   1445   BBInfo[NewIsland->getNumber()].Size += Size;
   1446   adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
   1447 
   1448   // Finally, change the CPI in the instruction operand to be ID.
   1449   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1450     if (UserMI->getOperand(i).isCPI()) {
   1451       UserMI->getOperand(i).setIndex(ID);
   1452       break;
   1453     }
   1454 
   1455   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1456         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
   1457 
   1458   return true;
   1459 }
   1460 
   1461 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1462 /// sizes and offsets of impacted basic blocks.
   1463 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
   1464   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1465   unsigned Size = CPEMI->getOperand(2).getImm();
   1466   CPEMI->eraseFromParent();
   1467   BBInfo[CPEBB->getNumber()].Size -= Size;
   1468   // All succeeding offsets have the current size value added in, fix this.
   1469   if (CPEBB->empty()) {
   1470     BBInfo[CPEBB->getNumber()].Size = 0;
   1471 
   1472     // This block no longer needs to be aligned.
   1473     CPEBB->setAlignment(0);
   1474   } else
   1475     // Entries are sorted by descending alignment, so realign from the front.
   1476     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
   1477 
   1478   adjustBBOffsetsAfter(CPEBB);
   1479   // An island has only one predecessor BB and one successor BB. Check if
   1480   // this BB's predecessor jumps directly to this BB's successor. This
   1481   // shouldn't happen currently.
   1482   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1483   // FIXME: remove the empty blocks after all the work is done?
   1484 }
   1485 
   1486 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
   1487 /// are zero.
   1488 bool ARMConstantIslands::removeUnusedCPEntries() {
   1489   unsigned MadeChange = false;
   1490   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1491       std::vector<CPEntry> &CPEs = CPEntries[i];
   1492       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1493         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1494           removeDeadCPEMI(CPEs[j].CPEMI);
   1495           CPEs[j].CPEMI = NULL;
   1496           MadeChange = true;
   1497         }
   1498       }
   1499   }
   1500   return MadeChange;
   1501 }
   1502 
   1503 /// isBBInRange - Returns true if the distance between specific MI and
   1504 /// specific BB can fit in MI's displacement field.
   1505 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
   1506                                      unsigned MaxDisp) {
   1507   unsigned PCAdj      = isThumb ? 4 : 8;
   1508   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
   1509   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1510 
   1511   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
   1512                << " from BB#" << MI->getParent()->getNumber()
   1513                << " max delta=" << MaxDisp
   1514                << " from " << getOffsetOf(MI) << " to " << DestOffset
   1515                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1516 
   1517   if (BrOffset <= DestOffset) {
   1518     // Branch before the Dest.
   1519     if (DestOffset-BrOffset <= MaxDisp)
   1520       return true;
   1521   } else {
   1522     if (BrOffset-DestOffset <= MaxDisp)
   1523       return true;
   1524   }
   1525   return false;
   1526 }
   1527 
   1528 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
   1529 /// away to fit in its displacement field.
   1530 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
   1531   MachineInstr *MI = Br.MI;
   1532   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1533 
   1534   // Check to see if the DestBB is already in-range.
   1535   if (isBBInRange(MI, DestBB, Br.MaxDisp))
   1536     return false;
   1537 
   1538   if (!Br.isCond)
   1539     return fixupUnconditionalBr(Br);
   1540   return fixupConditionalBr(Br);
   1541 }
   1542 
   1543 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
   1544 /// too far away to fit in its displacement field. If the LR register has been
   1545 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1546 /// Otherwise, add an intermediate branch instruction to a branch.
   1547 bool
   1548 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
   1549   MachineInstr *MI = Br.MI;
   1550   MachineBasicBlock *MBB = MI->getParent();
   1551   if (!isThumb1)
   1552     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
   1553 
   1554   // Use BL to implement far jump.
   1555   Br.MaxDisp = (1 << 21) * 2;
   1556   MI->setDesc(TII->get(ARM::tBfar));
   1557   BBInfo[MBB->getNumber()].Size += 2;
   1558   adjustBBOffsetsAfter(MBB);
   1559   HasFarJump = true;
   1560   ++NumUBrFixed;
   1561 
   1562   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
   1563 
   1564   return true;
   1565 }
   1566 
   1567 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
   1568 /// far away to fit in its displacement field. It is converted to an inverse
   1569 /// conditional branch + an unconditional branch to the destination.
   1570 bool
   1571 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
   1572   MachineInstr *MI = Br.MI;
   1573   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1574 
   1575   // Add an unconditional branch to the destination and invert the branch
   1576   // condition to jump over it:
   1577   // blt L1
   1578   // =>
   1579   // bge L2
   1580   // b   L1
   1581   // L2:
   1582   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
   1583   CC = ARMCC::getOppositeCondition(CC);
   1584   unsigned CCReg = MI->getOperand(2).getReg();
   1585 
   1586   // If the branch is at the end of its MBB and that has a fall-through block,
   1587   // direct the updated conditional branch to the fall-through block. Otherwise,
   1588   // split the MBB before the next instruction.
   1589   MachineBasicBlock *MBB = MI->getParent();
   1590   MachineInstr *BMI = &MBB->back();
   1591   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1592 
   1593   ++NumCBrFixed;
   1594   if (BMI != MI) {
   1595     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
   1596         BMI->getOpcode() == Br.UncondBr) {
   1597       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1598       // condition and swap destinations:
   1599       // beq L1
   1600       // b   L2
   1601       // =>
   1602       // bne L2
   1603       // b   L1
   1604       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
   1605       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
   1606         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
   1607                      << *BMI);
   1608         BMI->getOperand(0).setMBB(DestBB);
   1609         MI->getOperand(0).setMBB(NewDest);
   1610         MI->getOperand(1).setImm(CC);
   1611         return true;
   1612       }
   1613     }
   1614   }
   1615 
   1616   if (NeedSplit) {
   1617     splitBlockBeforeInstr(MI);
   1618     // No need for the branch to the next block. We're adding an unconditional
   1619     // branch to the destination.
   1620     int delta = TII->GetInstSizeInBytes(&MBB->back());
   1621     BBInfo[MBB->getNumber()].Size -= delta;
   1622     MBB->back().eraseFromParent();
   1623     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
   1624   }
   1625   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
   1626 
   1627   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
   1628                << " also invert condition and change dest. to BB#"
   1629                << NextBB->getNumber() << "\n");
   1630 
   1631   // Insert a new conditional branch and a new unconditional branch.
   1632   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1633   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
   1634     .addMBB(NextBB).addImm(CC).addReg(CCReg);
   1635   Br.MI = &MBB->back();
   1636   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1637   if (isThumb)
   1638     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
   1639             .addImm(ARMCC::AL).addReg(0);
   1640   else
   1641     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1642   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1643   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1644   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1645 
   1646   // Remove the old conditional branch.  It may or may not still be in MBB.
   1647   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
   1648   MI->eraseFromParent();
   1649   adjustBBOffsetsAfter(MBB);
   1650   return true;
   1651 }
   1652 
   1653 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
   1654 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
   1655 /// to do this if tBfar is not used.
   1656 bool ARMConstantIslands::undoLRSpillRestore() {
   1657   bool MadeChange = false;
   1658   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
   1659     MachineInstr *MI = PushPopMIs[i];
   1660     // First two operands are predicates.
   1661     if (MI->getOpcode() == ARM::tPOP_RET &&
   1662         MI->getOperand(2).getReg() == ARM::PC &&
   1663         MI->getNumExplicitOperands() == 3) {
   1664       // Create the new insn and copy the predicate from the old.
   1665       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
   1666         .addOperand(MI->getOperand(0))
   1667         .addOperand(MI->getOperand(1));
   1668       MI->eraseFromParent();
   1669       MadeChange = true;
   1670     }
   1671   }
   1672   return MadeChange;
   1673 }
   1674 
   1675 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
   1676 // below may shrink MI.
   1677 bool
   1678 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
   1679   switch(MI->getOpcode()) {
   1680     // optimizeThumb2Instructions.
   1681     case ARM::t2LEApcrel:
   1682     case ARM::t2LDRpci:
   1683     // optimizeThumb2Branches.
   1684     case ARM::t2B:
   1685     case ARM::t2Bcc:
   1686     case ARM::tBcc:
   1687     // optimizeThumb2JumpTables.
   1688     case ARM::t2BR_JT:
   1689       return true;
   1690   }
   1691   return false;
   1692 }
   1693 
   1694 bool ARMConstantIslands::optimizeThumb2Instructions() {
   1695   bool MadeChange = false;
   1696 
   1697   // Shrink ADR and LDR from constantpool.
   1698   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
   1699     CPUser &U = CPUsers[i];
   1700     unsigned Opcode = U.MI->getOpcode();
   1701     unsigned NewOpc = 0;
   1702     unsigned Scale = 1;
   1703     unsigned Bits = 0;
   1704     switch (Opcode) {
   1705     default: break;
   1706     case ARM::t2LEApcrel:
   1707       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1708         NewOpc = ARM::tLEApcrel;
   1709         Bits = 8;
   1710         Scale = 4;
   1711       }
   1712       break;
   1713     case ARM::t2LDRpci:
   1714       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1715         NewOpc = ARM::tLDRpci;
   1716         Bits = 8;
   1717         Scale = 4;
   1718       }
   1719       break;
   1720     }
   1721 
   1722     if (!NewOpc)
   1723       continue;
   1724 
   1725     unsigned UserOffset = getUserOffset(U);
   1726     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
   1727 
   1728     // Be conservative with inline asm.
   1729     if (!U.KnownAlignment)
   1730       MaxOffs -= 2;
   1731 
   1732     // FIXME: Check if offset is multiple of scale if scale is not 4.
   1733     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
   1734       DEBUG(dbgs() << "Shrink: " << *U.MI);
   1735       U.MI->setDesc(TII->get(NewOpc));
   1736       MachineBasicBlock *MBB = U.MI->getParent();
   1737       BBInfo[MBB->getNumber()].Size -= 2;
   1738       adjustBBOffsetsAfter(MBB);
   1739       ++NumT2CPShrunk;
   1740       MadeChange = true;
   1741     }
   1742   }
   1743 
   1744   MadeChange |= optimizeThumb2Branches();
   1745   MadeChange |= optimizeThumb2JumpTables();
   1746   return MadeChange;
   1747 }
   1748 
   1749 bool ARMConstantIslands::optimizeThumb2Branches() {
   1750   bool MadeChange = false;
   1751 
   1752   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
   1753     ImmBranch &Br = ImmBranches[i];
   1754     unsigned Opcode = Br.MI->getOpcode();
   1755     unsigned NewOpc = 0;
   1756     unsigned Scale = 1;
   1757     unsigned Bits = 0;
   1758     switch (Opcode) {
   1759     default: break;
   1760     case ARM::t2B:
   1761       NewOpc = ARM::tB;
   1762       Bits = 11;
   1763       Scale = 2;
   1764       break;
   1765     case ARM::t2Bcc: {
   1766       NewOpc = ARM::tBcc;
   1767       Bits = 8;
   1768       Scale = 2;
   1769       break;
   1770     }
   1771     }
   1772     if (NewOpc) {
   1773       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
   1774       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1775       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
   1776         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
   1777         Br.MI->setDesc(TII->get(NewOpc));
   1778         MachineBasicBlock *MBB = Br.MI->getParent();
   1779         BBInfo[MBB->getNumber()].Size -= 2;
   1780         adjustBBOffsetsAfter(MBB);
   1781         ++NumT2BrShrunk;
   1782         MadeChange = true;
   1783       }
   1784     }
   1785 
   1786     Opcode = Br.MI->getOpcode();
   1787     if (Opcode != ARM::tBcc)
   1788       continue;
   1789 
   1790     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
   1791     // so this transformation is not safe.
   1792     if (!Br.MI->killsRegister(ARM::CPSR))
   1793       continue;
   1794 
   1795     NewOpc = 0;
   1796     unsigned PredReg = 0;
   1797     ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
   1798     if (Pred == ARMCC::EQ)
   1799       NewOpc = ARM::tCBZ;
   1800     else if (Pred == ARMCC::NE)
   1801       NewOpc = ARM::tCBNZ;
   1802     if (!NewOpc)
   1803       continue;
   1804     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1805     // Check if the distance is within 126. Subtract starting offset by 2
   1806     // because the cmp will be eliminated.
   1807     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
   1808     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1809     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
   1810       MachineBasicBlock::iterator CmpMI = Br.MI;
   1811       if (CmpMI != Br.MI->getParent()->begin()) {
   1812         --CmpMI;
   1813         if (CmpMI->getOpcode() == ARM::tCMPi8) {
   1814           unsigned Reg = CmpMI->getOperand(0).getReg();
   1815           Pred = getInstrPredicate(CmpMI, PredReg);
   1816           if (Pred == ARMCC::AL &&
   1817               CmpMI->getOperand(1).getImm() == 0 &&
   1818               isARMLowRegister(Reg)) {
   1819             MachineBasicBlock *MBB = Br.MI->getParent();
   1820             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
   1821             MachineInstr *NewBR =
   1822               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
   1823               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
   1824             CmpMI->eraseFromParent();
   1825             Br.MI->eraseFromParent();
   1826             Br.MI = NewBR;
   1827             BBInfo[MBB->getNumber()].Size -= 2;
   1828             adjustBBOffsetsAfter(MBB);
   1829             ++NumCBZ;
   1830             MadeChange = true;
   1831           }
   1832         }
   1833       }
   1834     }
   1835   }
   1836 
   1837   return MadeChange;
   1838 }
   1839 
   1840 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
   1841 /// jumptables when it's possible.
   1842 bool ARMConstantIslands::optimizeThumb2JumpTables() {
   1843   bool MadeChange = false;
   1844 
   1845   // FIXME: After the tables are shrunk, can we get rid some of the
   1846   // constantpool tables?
   1847   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1848   if (MJTI == 0) return false;
   1849 
   1850   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1851   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1852     MachineInstr *MI = T2JumpTables[i];
   1853     const MCInstrDesc &MCID = MI->getDesc();
   1854     unsigned NumOps = MCID.getNumOperands();
   1855     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   1856     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1857     unsigned JTI = JTOP.getIndex();
   1858     assert(JTI < JT.size());
   1859 
   1860     bool ByteOk = true;
   1861     bool HalfWordOk = true;
   1862     unsigned JTOffset = getOffsetOf(MI) + 4;
   1863     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1864     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1865       MachineBasicBlock *MBB = JTBBs[j];
   1866       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
   1867       // Negative offset is not ok. FIXME: We should change BB layout to make
   1868       // sure all the branches are forward.
   1869       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
   1870         ByteOk = false;
   1871       unsigned TBHLimit = ((1<<16)-1)*2;
   1872       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
   1873         HalfWordOk = false;
   1874       if (!ByteOk && !HalfWordOk)
   1875         break;
   1876     }
   1877 
   1878     if (ByteOk || HalfWordOk) {
   1879       MachineBasicBlock *MBB = MI->getParent();
   1880       unsigned BaseReg = MI->getOperand(0).getReg();
   1881       bool BaseRegKill = MI->getOperand(0).isKill();
   1882       if (!BaseRegKill)
   1883         continue;
   1884       unsigned IdxReg = MI->getOperand(1).getReg();
   1885       bool IdxRegKill = MI->getOperand(1).isKill();
   1886 
   1887       // Scan backwards to find the instruction that defines the base
   1888       // register. Due to post-RA scheduling, we can't count on it
   1889       // immediately preceding the branch instruction.
   1890       MachineBasicBlock::iterator PrevI = MI;
   1891       MachineBasicBlock::iterator B = MBB->begin();
   1892       while (PrevI != B && !PrevI->definesRegister(BaseReg))
   1893         --PrevI;
   1894 
   1895       // If for some reason we didn't find it, we can't do anything, so
   1896       // just skip this one.
   1897       if (!PrevI->definesRegister(BaseReg))
   1898         continue;
   1899 
   1900       MachineInstr *AddrMI = PrevI;
   1901       bool OptOk = true;
   1902       // Examine the instruction that calculates the jumptable entry address.
   1903       // Make sure it only defines the base register and kills any uses
   1904       // other than the index register.
   1905       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
   1906         const MachineOperand &MO = AddrMI->getOperand(k);
   1907         if (!MO.isReg() || !MO.getReg())
   1908           continue;
   1909         if (MO.isDef() && MO.getReg() != BaseReg) {
   1910           OptOk = false;
   1911           break;
   1912         }
   1913         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
   1914           OptOk = false;
   1915           break;
   1916         }
   1917       }
   1918       if (!OptOk)
   1919         continue;
   1920 
   1921       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
   1922       // that gave us the initial base register definition.
   1923       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
   1924         ;
   1925 
   1926       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
   1927       // to delete it as well.
   1928       MachineInstr *LeaMI = PrevI;
   1929       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
   1930            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
   1931           LeaMI->getOperand(0).getReg() != BaseReg)
   1932         OptOk = false;
   1933 
   1934       if (!OptOk)
   1935         continue;
   1936 
   1937       DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI
   1938                    << "      lea: " << *LeaMI);
   1939       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
   1940       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
   1941         .addReg(IdxReg, getKillRegState(IdxRegKill))
   1942         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
   1943         .addImm(MI->getOperand(JTOpIdx+1).getImm());
   1944       DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
   1945       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
   1946       // is 2-byte aligned. For now, asm printer will fix it up.
   1947       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
   1948       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
   1949       OrigSize += TII->GetInstSizeInBytes(LeaMI);
   1950       OrigSize += TII->GetInstSizeInBytes(MI);
   1951 
   1952       AddrMI->eraseFromParent();
   1953       LeaMI->eraseFromParent();
   1954       MI->eraseFromParent();
   1955 
   1956       int delta = OrigSize - NewSize;
   1957       BBInfo[MBB->getNumber()].Size -= delta;
   1958       adjustBBOffsetsAfter(MBB);
   1959 
   1960       ++NumTBs;
   1961       MadeChange = true;
   1962     }
   1963   }
   1964 
   1965   return MadeChange;
   1966 }
   1967 
   1968 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
   1969 /// jump tables always branch forwards, since that's what tbb and tbh need.
   1970 bool ARMConstantIslands::reorderThumb2JumpTables() {
   1971   bool MadeChange = false;
   1972 
   1973   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1974   if (MJTI == 0) return false;
   1975 
   1976   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1977   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1978     MachineInstr *MI = T2JumpTables[i];
   1979     const MCInstrDesc &MCID = MI->getDesc();
   1980     unsigned NumOps = MCID.getNumOperands();
   1981     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   1982     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1983     unsigned JTI = JTOP.getIndex();
   1984     assert(JTI < JT.size());
   1985 
   1986     // We prefer if target blocks for the jump table come after the jump
   1987     // instruction so we can use TB[BH]. Loop through the target blocks
   1988     // and try to adjust them such that that's true.
   1989     int JTNumber = MI->getParent()->getNumber();
   1990     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1991     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1992       MachineBasicBlock *MBB = JTBBs[j];
   1993       int DTNumber = MBB->getNumber();
   1994 
   1995       if (DTNumber < JTNumber) {
   1996         // The destination precedes the switch. Try to move the block forward
   1997         // so we have a positive offset.
   1998         MachineBasicBlock *NewBB =
   1999           adjustJTTargetBlockForward(MBB, MI->getParent());
   2000         if (NewBB)
   2001           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
   2002         MadeChange = true;
   2003       }
   2004     }
   2005   }
   2006 
   2007   return MadeChange;
   2008 }
   2009 
   2010 MachineBasicBlock *ARMConstantIslands::
   2011 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
   2012   // If the destination block is terminated by an unconditional branch,
   2013   // try to move it; otherwise, create a new block following the jump
   2014   // table that branches back to the actual target. This is a very simple
   2015   // heuristic. FIXME: We can definitely improve it.
   2016   MachineBasicBlock *TBB = 0, *FBB = 0;
   2017   SmallVector<MachineOperand, 4> Cond;
   2018   SmallVector<MachineOperand, 4> CondPrior;
   2019   MachineFunction::iterator BBi = BB;
   2020   MachineFunction::iterator OldPrior = prior(BBi);
   2021 
   2022   // If the block terminator isn't analyzable, don't try to move the block
   2023   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
   2024 
   2025   // If the block ends in an unconditional branch, move it. The prior block
   2026   // has to have an analyzable terminator for us to move this one. Be paranoid
   2027   // and make sure we're not trying to move the entry block of the function.
   2028   if (!B && Cond.empty() && BB != MF->begin() &&
   2029       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
   2030     BB->moveAfter(JTBB);
   2031     OldPrior->updateTerminator();
   2032     BB->updateTerminator();
   2033     // Update numbering to account for the block being moved.
   2034     MF->RenumberBlocks();
   2035     ++NumJTMoved;
   2036     return NULL;
   2037   }
   2038 
   2039   // Create a new MBB for the code after the jump BB.
   2040   MachineBasicBlock *NewBB =
   2041     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
   2042   MachineFunction::iterator MBBI = JTBB; ++MBBI;
   2043   MF->insert(MBBI, NewBB);
   2044 
   2045   // Add an unconditional branch from NewBB to BB.
   2046   // There doesn't seem to be meaningful DebugInfo available; this doesn't
   2047   // correspond directly to anything in the source.
   2048   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
   2049   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
   2050           .addImm(ARMCC::AL).addReg(0);
   2051 
   2052   // Update internal data structures to account for the newly inserted MBB.
   2053   MF->RenumberBlocks(NewBB);
   2054 
   2055   // Update the CFG.
   2056   NewBB->addSuccessor(BB);
   2057   JTBB->removeSuccessor(BB);
   2058   JTBB->addSuccessor(NewBB);
   2059 
   2060   ++NumJTInserted;
   2061   return NewBB;
   2062 }
   2063