Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonInstrInfo.h"
     15 #include "Hexagon.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/DFAPacketizer.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/PseudoSourceValue.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #define GET_INSTRINFO_CTOR
     30 #define GET_INSTRMAP_INFO
     31 #include "HexagonGenInstrInfo.inc"
     32 #include "HexagonGenDFAPacketizer.inc"
     33 
     34 using namespace llvm;
     35 
     36 ///
     37 /// Constants for Hexagon instructions.
     38 ///
     39 const int Hexagon_MEMW_OFFSET_MAX = 4095;
     40 const int Hexagon_MEMW_OFFSET_MIN = -4096;
     41 const int Hexagon_MEMD_OFFSET_MAX = 8191;
     42 const int Hexagon_MEMD_OFFSET_MIN = -8192;
     43 const int Hexagon_MEMH_OFFSET_MAX = 2047;
     44 const int Hexagon_MEMH_OFFSET_MIN = -2048;
     45 const int Hexagon_MEMB_OFFSET_MAX = 1023;
     46 const int Hexagon_MEMB_OFFSET_MIN = -1024;
     47 const int Hexagon_ADDI_OFFSET_MAX = 32767;
     48 const int Hexagon_ADDI_OFFSET_MIN = -32768;
     49 const int Hexagon_MEMD_AUTOINC_MAX = 56;
     50 const int Hexagon_MEMD_AUTOINC_MIN = -64;
     51 const int Hexagon_MEMW_AUTOINC_MAX = 28;
     52 const int Hexagon_MEMW_AUTOINC_MIN = -32;
     53 const int Hexagon_MEMH_AUTOINC_MAX = 14;
     54 const int Hexagon_MEMH_AUTOINC_MIN = -16;
     55 const int Hexagon_MEMB_AUTOINC_MAX = 7;
     56 const int Hexagon_MEMB_AUTOINC_MIN = -8;
     57 
     58 
     59 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
     60   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
     61     RI(ST), Subtarget(ST) {
     62 }
     63 
     64 
     65 /// isLoadFromStackSlot - If the specified machine instruction is a direct
     66 /// load from a stack slot, return the virtual or physical register number of
     67 /// the destination along with the FrameIndex of the loaded stack slot.  If
     68 /// not, return 0.  This predicate must return 0 if the instruction has
     69 /// any side effects other than loading from the stack slot.
     70 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
     71                                              int &FrameIndex) const {
     72 
     73 
     74   switch (MI->getOpcode()) {
     75   default: break;
     76   case Hexagon::LDriw:
     77   case Hexagon::LDrid:
     78   case Hexagon::LDrih:
     79   case Hexagon::LDrib:
     80   case Hexagon::LDriub:
     81     if (MI->getOperand(2).isFI() &&
     82         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
     83       FrameIndex = MI->getOperand(2).getIndex();
     84       return MI->getOperand(0).getReg();
     85     }
     86     break;
     87   }
     88   return 0;
     89 }
     90 
     91 
     92 /// isStoreToStackSlot - If the specified machine instruction is a direct
     93 /// store to a stack slot, return the virtual or physical register number of
     94 /// the source reg along with the FrameIndex of the loaded stack slot.  If
     95 /// not, return 0.  This predicate must return 0 if the instruction has
     96 /// any side effects other than storing to the stack slot.
     97 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
     98                                             int &FrameIndex) const {
     99   switch (MI->getOpcode()) {
    100   default: break;
    101   case Hexagon::STriw:
    102   case Hexagon::STrid:
    103   case Hexagon::STrih:
    104   case Hexagon::STrib:
    105     if (MI->getOperand(2).isFI() &&
    106         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
    107       FrameIndex = MI->getOperand(0).getIndex();
    108       return MI->getOperand(2).getReg();
    109     }
    110     break;
    111   }
    112   return 0;
    113 }
    114 
    115 
    116 unsigned
    117 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
    118                              MachineBasicBlock *FBB,
    119                              const SmallVectorImpl<MachineOperand> &Cond,
    120                              DebugLoc DL) const{
    121 
    122     int BOpc   = Hexagon::JMP;
    123     int BccOpc = Hexagon::JMP_t;
    124 
    125     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    126 
    127     int regPos = 0;
    128     // Check if ReverseBranchCondition has asked to reverse this branch
    129     // If we want to reverse the branch an odd number of times, we want
    130     // JMP_f.
    131     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
    132       BccOpc = Hexagon::JMP_f;
    133       regPos = 1;
    134     }
    135 
    136     if (FBB == 0) {
    137       if (Cond.empty()) {
    138         // Due to a bug in TailMerging/CFG Optimization, we need to add a
    139         // special case handling of a predicated jump followed by an
    140         // unconditional jump. If not, Tail Merging and CFG Optimization go
    141         // into an infinite loop.
    142         MachineBasicBlock *NewTBB, *NewFBB;
    143         SmallVector<MachineOperand, 4> Cond;
    144         MachineInstr *Term = MBB.getFirstTerminator();
    145         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
    146                                                  false)) {
    147           MachineBasicBlock *NextBB =
    148             llvm::next(MachineFunction::iterator(&MBB));
    149           if (NewTBB == NextBB) {
    150             ReverseBranchCondition(Cond);
    151             RemoveBranch(MBB);
    152             return InsertBranch(MBB, TBB, 0, Cond, DL);
    153           }
    154         }
    155         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    156       } else {
    157         BuildMI(&MBB, DL,
    158                 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    159       }
    160       return 1;
    161     }
    162 
    163     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    164     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    165 
    166     return 2;
    167 }
    168 
    169 
    170 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    171                                      MachineBasicBlock *&TBB,
    172                                  MachineBasicBlock *&FBB,
    173                                  SmallVectorImpl<MachineOperand> &Cond,
    174                                  bool AllowModify) const {
    175   TBB = NULL;
    176   FBB = NULL;
    177 
    178   // If the block has no terminators, it just falls into the block after it.
    179   MachineBasicBlock::instr_iterator I = MBB.instr_end();
    180   if (I == MBB.instr_begin())
    181     return false;
    182 
    183   // A basic block may looks like this:
    184   //
    185   //  [   insn
    186   //     EH_LABEL
    187   //      insn
    188   //      insn
    189   //      insn
    190   //     EH_LABEL
    191   //      insn     ]
    192   //
    193   // It has two succs but does not have a terminator
    194   // Don't know how to handle it.
    195   do {
    196     --I;
    197     if (I->isEHLabel())
    198       return true;
    199   } while (I != MBB.instr_begin());
    200 
    201   I = MBB.instr_end();
    202   --I;
    203 
    204   while (I->isDebugValue()) {
    205     if (I == MBB.instr_begin())
    206       return false;
    207     --I;
    208   }
    209 
    210   // Delete the JMP if it's equivalent to a fall-through.
    211   if (AllowModify && I->getOpcode() == Hexagon::JMP &&
    212       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
    213     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
    214     I->eraseFromParent();
    215     I = MBB.instr_end();
    216     if (I == MBB.instr_begin())
    217       return false;
    218     --I;
    219   }
    220   if (!isUnpredicatedTerminator(I))
    221     return false;
    222 
    223   // Get the last instruction in the block.
    224   MachineInstr *LastInst = I;
    225   MachineInstr *SecondLastInst = NULL;
    226   // Find one more terminator if present.
    227   do {
    228     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
    229       if (!SecondLastInst)
    230         SecondLastInst = I;
    231       else
    232         // This is a third branch.
    233         return true;
    234     }
    235     if (I == MBB.instr_begin())
    236       break;
    237     --I;
    238   } while(I);
    239 
    240   int LastOpcode = LastInst->getOpcode();
    241 
    242   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
    243   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
    244 
    245   // If there is only one terminator instruction, process it.
    246   if (LastInst && !SecondLastInst) {
    247     if (LastOpcode == Hexagon::JMP) {
    248       TBB = LastInst->getOperand(0).getMBB();
    249       return false;
    250     }
    251     if (LastOpcode == Hexagon::ENDLOOP0) {
    252       TBB = LastInst->getOperand(0).getMBB();
    253       Cond.push_back(LastInst->getOperand(0));
    254       return false;
    255     }
    256     if (LastOpcodeHasJMP_c) {
    257       TBB = LastInst->getOperand(1).getMBB();
    258       if (LastOpcodeHasNot) {
    259         Cond.push_back(MachineOperand::CreateImm(0));
    260       }
    261       Cond.push_back(LastInst->getOperand(0));
    262       return false;
    263     }
    264     // Otherwise, don't know what this is.
    265     return true;
    266   }
    267 
    268   int SecLastOpcode = SecondLastInst->getOpcode();
    269 
    270   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
    271   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
    272   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
    273     TBB =  SecondLastInst->getOperand(1).getMBB();
    274     if (SecLastOpcodeHasNot)
    275       Cond.push_back(MachineOperand::CreateImm(0));
    276     Cond.push_back(SecondLastInst->getOperand(0));
    277     FBB = LastInst->getOperand(0).getMBB();
    278     return false;
    279   }
    280 
    281   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
    282   // executed, so remove it.
    283   if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
    284     TBB = SecondLastInst->getOperand(0).getMBB();
    285     I = LastInst;
    286     if (AllowModify)
    287       I->eraseFromParent();
    288     return false;
    289   }
    290 
    291   // If the block ends with an ENDLOOP, and JMP, handle it.
    292   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
    293       LastOpcode == Hexagon::JMP) {
    294     TBB = SecondLastInst->getOperand(0).getMBB();
    295     Cond.push_back(SecondLastInst->getOperand(0));
    296     FBB = LastInst->getOperand(0).getMBB();
    297     return false;
    298   }
    299 
    300   // Otherwise, can't handle this.
    301   return true;
    302 }
    303 
    304 
    305 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    306   int BOpc   = Hexagon::JMP;
    307   int BccOpc = Hexagon::JMP_t;
    308   int BccOpcNot = Hexagon::JMP_f;
    309 
    310   MachineBasicBlock::iterator I = MBB.end();
    311   if (I == MBB.begin()) return 0;
    312   --I;
    313   if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
    314       I->getOpcode() != BccOpcNot)
    315     return 0;
    316 
    317   // Remove the branch.
    318   I->eraseFromParent();
    319 
    320   I = MBB.end();
    321 
    322   if (I == MBB.begin()) return 1;
    323   --I;
    324   if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
    325     return 1;
    326 
    327   // Remove the branch.
    328   I->eraseFromParent();
    329   return 2;
    330 }
    331 
    332 
    333 /// \brief For a comparison instruction, return the source registers in
    334 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
    335 /// compares against in CmpValue. Return true if the comparison instruction
    336 /// can be analyzed.
    337 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
    338                                       unsigned &SrcReg, unsigned &SrcReg2,
    339                                       int &Mask, int &Value) const {
    340   unsigned Opc = MI->getOpcode();
    341 
    342   // Set mask and the first source register.
    343   switch (Opc) {
    344     case Hexagon::CMPEHexagon4rr:
    345     case Hexagon::CMPEQri:
    346     case Hexagon::CMPEQrr:
    347     case Hexagon::CMPGT64rr:
    348     case Hexagon::CMPGTU64rr:
    349     case Hexagon::CMPGTUri:
    350     case Hexagon::CMPGTUrr:
    351     case Hexagon::CMPGTri:
    352     case Hexagon::CMPGTrr:
    353       SrcReg = MI->getOperand(1).getReg();
    354       Mask = ~0;
    355       break;
    356     case Hexagon::CMPbEQri_V4:
    357     case Hexagon::CMPbEQrr_sbsb_V4:
    358     case Hexagon::CMPbEQrr_ubub_V4:
    359     case Hexagon::CMPbGTUri_V4:
    360     case Hexagon::CMPbGTUrr_V4:
    361     case Hexagon::CMPbGTrr_V4:
    362       SrcReg = MI->getOperand(1).getReg();
    363       Mask = 0xFF;
    364       break;
    365     case Hexagon::CMPhEQri_V4:
    366     case Hexagon::CMPhEQrr_shl_V4:
    367     case Hexagon::CMPhEQrr_xor_V4:
    368     case Hexagon::CMPhGTUri_V4:
    369     case Hexagon::CMPhGTUrr_V4:
    370     case Hexagon::CMPhGTrr_shl_V4:
    371       SrcReg = MI->getOperand(1).getReg();
    372       Mask = 0xFFFF;
    373       break;
    374   }
    375 
    376   // Set the value/second source register.
    377   switch (Opc) {
    378     case Hexagon::CMPEHexagon4rr:
    379     case Hexagon::CMPEQrr:
    380     case Hexagon::CMPGT64rr:
    381     case Hexagon::CMPGTU64rr:
    382     case Hexagon::CMPGTUrr:
    383     case Hexagon::CMPGTrr:
    384     case Hexagon::CMPbEQrr_sbsb_V4:
    385     case Hexagon::CMPbEQrr_ubub_V4:
    386     case Hexagon::CMPbGTUrr_V4:
    387     case Hexagon::CMPbGTrr_V4:
    388     case Hexagon::CMPhEQrr_shl_V4:
    389     case Hexagon::CMPhEQrr_xor_V4:
    390     case Hexagon::CMPhGTUrr_V4:
    391     case Hexagon::CMPhGTrr_shl_V4:
    392       SrcReg2 = MI->getOperand(2).getReg();
    393       return true;
    394 
    395     case Hexagon::CMPEQri:
    396     case Hexagon::CMPGTUri:
    397     case Hexagon::CMPGTri:
    398     case Hexagon::CMPbEQri_V4:
    399     case Hexagon::CMPbGTUri_V4:
    400     case Hexagon::CMPhEQri_V4:
    401     case Hexagon::CMPhGTUri_V4:
    402       SrcReg2 = 0;
    403       Value = MI->getOperand(2).getImm();
    404       return true;
    405   }
    406 
    407   return false;
    408 }
    409 
    410 
    411 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    412                                  MachineBasicBlock::iterator I, DebugLoc DL,
    413                                  unsigned DestReg, unsigned SrcReg,
    414                                  bool KillSrc) const {
    415   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    416     BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
    417     return;
    418   }
    419   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    420     BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
    421     return;
    422   }
    423   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    424     // Map Pd = Ps to Pd = or(Ps, Ps).
    425     BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
    426             DestReg).addReg(SrcReg).addReg(SrcReg);
    427     return;
    428   }
    429   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
    430       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    431     // We can have an overlap between single and double reg: r1:0 = r0.
    432     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
    433         // r1:0 = r0
    434         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    435                 Hexagon::subreg_hireg))).addImm(0);
    436     } else {
    437         // r1:0 = r1 or no overlap.
    438         BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
    439                 Hexagon::subreg_loreg))).addReg(SrcReg);
    440         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    441                 Hexagon::subreg_hireg))).addImm(0);
    442     }
    443     return;
    444   }
    445   if (Hexagon::CRRegsRegClass.contains(DestReg) &&
    446       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    447     BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
    448     return;
    449   }
    450   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    451       Hexagon::IntRegsRegClass.contains(DestReg)) {
    452     BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
    453       addReg(SrcReg, getKillRegState(KillSrc));
    454     return;
    455   }
    456   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
    457       Hexagon::PredRegsRegClass.contains(DestReg)) {
    458     BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
    459       addReg(SrcReg, getKillRegState(KillSrc));
    460     return;
    461   }
    462 
    463   llvm_unreachable("Unimplemented");
    464 }
    465 
    466 
    467 void HexagonInstrInfo::
    468 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    469                     unsigned SrcReg, bool isKill, int FI,
    470                     const TargetRegisterClass *RC,
    471                     const TargetRegisterInfo *TRI) const {
    472 
    473   DebugLoc DL = MBB.findDebugLoc(I);
    474   MachineFunction &MF = *MBB.getParent();
    475   MachineFrameInfo &MFI = *MF.getFrameInfo();
    476   unsigned Align = MFI.getObjectAlignment(FI);
    477 
    478   MachineMemOperand *MMO =
    479       MF.getMachineMemOperand(
    480                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    481                       MachineMemOperand::MOStore,
    482                       MFI.getObjectSize(FI),
    483                       Align);
    484 
    485   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    486     BuildMI(MBB, I, DL, get(Hexagon::STriw))
    487           .addFrameIndex(FI).addImm(0)
    488           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    489   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    490     BuildMI(MBB, I, DL, get(Hexagon::STrid))
    491           .addFrameIndex(FI).addImm(0)
    492           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    493   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    494     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
    495           .addFrameIndex(FI).addImm(0)
    496           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    497   } else {
    498     llvm_unreachable("Unimplemented");
    499   }
    500 }
    501 
    502 
    503 void HexagonInstrInfo::storeRegToAddr(
    504                                  MachineFunction &MF, unsigned SrcReg,
    505                                  bool isKill,
    506                                  SmallVectorImpl<MachineOperand> &Addr,
    507                                  const TargetRegisterClass *RC,
    508                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
    509 {
    510   llvm_unreachable("Unimplemented");
    511 }
    512 
    513 
    514 void HexagonInstrInfo::
    515 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    516                      unsigned DestReg, int FI,
    517                      const TargetRegisterClass *RC,
    518                      const TargetRegisterInfo *TRI) const {
    519   DebugLoc DL = MBB.findDebugLoc(I);
    520   MachineFunction &MF = *MBB.getParent();
    521   MachineFrameInfo &MFI = *MF.getFrameInfo();
    522   unsigned Align = MFI.getObjectAlignment(FI);
    523 
    524   MachineMemOperand *MMO =
    525       MF.getMachineMemOperand(
    526                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    527                       MachineMemOperand::MOLoad,
    528                       MFI.getObjectSize(FI),
    529                       Align);
    530   if (RC == &Hexagon::IntRegsRegClass) {
    531     BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
    532           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    533   } else if (RC == &Hexagon::DoubleRegsRegClass) {
    534     BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
    535           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    536   } else if (RC == &Hexagon::PredRegsRegClass) {
    537     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
    538           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    539   } else {
    540     llvm_unreachable("Can't store this register to stack slot");
    541   }
    542 }
    543 
    544 
    545 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    546                                         SmallVectorImpl<MachineOperand> &Addr,
    547                                         const TargetRegisterClass *RC,
    548                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
    549   llvm_unreachable("Unimplemented");
    550 }
    551 
    552 
    553 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
    554                                                     MachineInstr* MI,
    555                                           const SmallVectorImpl<unsigned> &Ops,
    556                                                     int FI) const {
    557   // Hexagon_TODO: Implement.
    558   return(0);
    559 }
    560 
    561 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
    562 
    563   MachineRegisterInfo &RegInfo = MF->getRegInfo();
    564   const TargetRegisterClass *TRC;
    565   if (VT == MVT::i1) {
    566     TRC = &Hexagon::PredRegsRegClass;
    567   } else if (VT == MVT::i32 || VT == MVT::f32) {
    568     TRC = &Hexagon::IntRegsRegClass;
    569   } else if (VT == MVT::i64 || VT == MVT::f64) {
    570     TRC = &Hexagon::DoubleRegsRegClass;
    571   } else {
    572     llvm_unreachable("Cannot handle this register class");
    573   }
    574 
    575   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
    576   return NewReg;
    577 }
    578 
    579 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
    580   // Constant extenders are allowed only for V4 and above.
    581   if (!Subtarget.hasV4TOps())
    582     return false;
    583 
    584   const MCInstrDesc &MID = MI->getDesc();
    585   const uint64_t F = MID.TSFlags;
    586   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
    587     return true;
    588 
    589   // TODO: This is largely obsolete now. Will need to be removed
    590   // in consecutive patches.
    591   switch(MI->getOpcode()) {
    592     // TFR_FI Remains a special case.
    593     case Hexagon::TFR_FI:
    594       return true;
    595     default:
    596       return false;
    597   }
    598   return  false;
    599 }
    600 
    601 // This returns true in two cases:
    602 // - The OP code itself indicates that this is an extended instruction.
    603 // - One of MOs has been marked with HMOTF_ConstExtended flag.
    604 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
    605   // First check if this is permanently extended op code.
    606   const uint64_t F = MI->getDesc().TSFlags;
    607   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
    608     return true;
    609   // Use MO operand flags to determine if one of MI's operands
    610   // has HMOTF_ConstExtended flag set.
    611   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
    612        E = MI->operands_end(); I != E; ++I) {
    613     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
    614       return true;
    615   }
    616   return  false;
    617 }
    618 
    619 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
    620   return MI->getDesc().isBranch();
    621 }
    622 
    623 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
    624   if (isNewValueJump(MI))
    625     return true;
    626 
    627   if (isNewValueStore(MI))
    628     return true;
    629 
    630   return false;
    631 }
    632 
    633 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
    634   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
    635 }
    636 
    637 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
    638   bool isPred = MI->getDesc().isPredicable();
    639 
    640   if (!isPred)
    641     return false;
    642 
    643   const int Opc = MI->getOpcode();
    644 
    645   switch(Opc) {
    646   case Hexagon::TFRI:
    647     return isInt<12>(MI->getOperand(1).getImm());
    648 
    649   case Hexagon::STrid:
    650   case Hexagon::STrid_indexed:
    651     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
    652 
    653   case Hexagon::STriw:
    654   case Hexagon::STriw_indexed:
    655   case Hexagon::STriw_nv_V4:
    656     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
    657 
    658   case Hexagon::STrih:
    659   case Hexagon::STrih_indexed:
    660   case Hexagon::STrih_nv_V4:
    661     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
    662 
    663   case Hexagon::STrib:
    664   case Hexagon::STrib_indexed:
    665   case Hexagon::STrib_nv_V4:
    666     return isUInt<6>(MI->getOperand(1).getImm());
    667 
    668   case Hexagon::LDrid:
    669   case Hexagon::LDrid_indexed:
    670     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
    671 
    672   case Hexagon::LDriw:
    673   case Hexagon::LDriw_indexed:
    674     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
    675 
    676   case Hexagon::LDrih:
    677   case Hexagon::LDriuh:
    678   case Hexagon::LDrih_indexed:
    679   case Hexagon::LDriuh_indexed:
    680     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
    681 
    682   case Hexagon::LDrib:
    683   case Hexagon::LDriub:
    684   case Hexagon::LDrib_indexed:
    685   case Hexagon::LDriub_indexed:
    686     return isUInt<6>(MI->getOperand(2).getImm());
    687 
    688   case Hexagon::POST_LDrid:
    689     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
    690 
    691   case Hexagon::POST_LDriw:
    692     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
    693 
    694   case Hexagon::POST_LDrih:
    695   case Hexagon::POST_LDriuh:
    696     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
    697 
    698   case Hexagon::POST_LDrib:
    699   case Hexagon::POST_LDriub:
    700     return isInt<4>(MI->getOperand(3).getImm());
    701 
    702   case Hexagon::STrib_imm_V4:
    703   case Hexagon::STrih_imm_V4:
    704   case Hexagon::STriw_imm_V4:
    705     return (isUInt<6>(MI->getOperand(1).getImm()) &&
    706             isInt<6>(MI->getOperand(2).getImm()));
    707 
    708   case Hexagon::ADD_ri:
    709     return isInt<8>(MI->getOperand(2).getImm());
    710 
    711   case Hexagon::ASLH:
    712   case Hexagon::ASRH:
    713   case Hexagon::SXTB:
    714   case Hexagon::SXTH:
    715   case Hexagon::ZXTB:
    716   case Hexagon::ZXTH:
    717     return Subtarget.hasV4TOps();
    718   }
    719 
    720   return true;
    721 }
    722 
    723 // This function performs the following inversiones:
    724 //
    725 //  cPt    ---> cNotPt
    726 //  cNotPt ---> cPt
    727 //
    728 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
    729   int InvPredOpcode;
    730   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
    731                                         : Hexagon::getTruePredOpcode(Opc);
    732   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
    733     return InvPredOpcode;
    734 
    735   switch(Opc) {
    736     default: llvm_unreachable("Unexpected predicated instruction");
    737     case Hexagon::COMBINE_rr_cPt:
    738       return Hexagon::COMBINE_rr_cNotPt;
    739     case Hexagon::COMBINE_rr_cNotPt:
    740       return Hexagon::COMBINE_rr_cPt;
    741 
    742       // Dealloc_return.
    743     case Hexagon::DEALLOC_RET_cPt_V4:
    744       return Hexagon::DEALLOC_RET_cNotPt_V4;
    745     case Hexagon::DEALLOC_RET_cNotPt_V4:
    746       return Hexagon::DEALLOC_RET_cPt_V4;
    747   }
    748 }
    749 
    750 // New Value Store instructions.
    751 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
    752   const uint64_t F = MI->getDesc().TSFlags;
    753 
    754   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    755 }
    756 
    757 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
    758   const uint64_t F = get(Opcode).TSFlags;
    759 
    760   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    761 }
    762 
    763 int HexagonInstrInfo::
    764 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
    765   enum Hexagon::PredSense inPredSense;
    766   inPredSense = invertPredicate ? Hexagon::PredSense_false :
    767                                   Hexagon::PredSense_true;
    768   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
    769   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
    770     return CondOpcode;
    771 
    772   // This switch case will be removed once all the instructions have been
    773   // modified to use relation maps.
    774   switch(Opc) {
    775   case Hexagon::TFRI_f:
    776     return !invertPredicate ? Hexagon::TFRI_cPt_f :
    777                               Hexagon::TFRI_cNotPt_f;
    778   case Hexagon::COMBINE_rr:
    779     return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
    780                               Hexagon::COMBINE_rr_cNotPt;
    781 
    782   // Word.
    783   case Hexagon::STriw_f:
    784     return !invertPredicate ? Hexagon::STriw_cPt :
    785                               Hexagon::STriw_cNotPt;
    786   case Hexagon::STriw_indexed_f:
    787     return !invertPredicate ? Hexagon::STriw_indexed_cPt :
    788                               Hexagon::STriw_indexed_cNotPt;
    789 
    790   // DEALLOC_RETURN.
    791   case Hexagon::DEALLOC_RET_V4:
    792     return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
    793                               Hexagon::DEALLOC_RET_cNotPt_V4;
    794   }
    795   llvm_unreachable("Unexpected predicable instruction");
    796 }
    797 
    798 
    799 bool HexagonInstrInfo::
    800 PredicateInstruction(MachineInstr *MI,
    801                      const SmallVectorImpl<MachineOperand> &Cond) const {
    802   int Opc = MI->getOpcode();
    803   assert (isPredicable(MI) && "Expected predicable instruction");
    804   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
    805                      (Cond[0].getImm() == 0));
    806 
    807   // This will change MI's opcode to its predicate version.
    808   // However, its operand list is still the old one, i.e. the
    809   // non-predicate one.
    810   MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
    811 
    812   int oper = -1;
    813   unsigned int GAIdx = 0;
    814 
    815   // Indicates whether the current MI has a GlobalAddress operand
    816   bool hasGAOpnd = false;
    817   std::vector<MachineOperand> tmpOpnds;
    818 
    819   // Indicates whether we need to shift operands to right.
    820   bool needShift = true;
    821 
    822   // The predicate is ALWAYS the FIRST input operand !!!
    823   if (MI->getNumOperands() == 0) {
    824     // The non-predicate version of MI does not take any operands,
    825     // i.e. no outs and no ins. In this condition, the predicate
    826     // operand will be directly placed at Operands[0]. No operand
    827     // shift is needed.
    828     // Example: BARRIER
    829     needShift = false;
    830     oper = -1;
    831   }
    832   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
    833            && MI->getOperand(MI->getNumOperands()-1).isDef()
    834            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
    835     // The non-predicate version of MI does not have any input operands.
    836     // In this condition, we extend the length of Operands[] by one and
    837     // copy the original last operand to the newly allocated slot.
    838     // At this moment, it is just a place holder. Later, we will put
    839     // predicate operand directly into it. No operand shift is needed.
    840     // Example: r0=BARRIER (this is a faked insn used here for illustration)
    841     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    842     needShift = false;
    843     oper = MI->getNumOperands() - 2;
    844   }
    845   else {
    846     // We need to right shift all input operands by one. Duplicate the
    847     // last operand into the newly allocated slot.
    848     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    849   }
    850 
    851   if (needShift)
    852   {
    853     // Operands[ MI->getNumOperands() - 2 ] has been copied into
    854     // Operands[ MI->getNumOperands() - 1 ], so we start from
    855     // Operands[ MI->getNumOperands() - 3 ].
    856     // oper is a signed int.
    857     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
    858     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
    859     {
    860       MachineOperand &MO = MI->getOperand(oper);
    861 
    862       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
    863       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
    864       //               /\~
    865       //              /||\~
    866       //               ||
    867       //        Predicate Operand here
    868       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
    869         break;
    870       }
    871       if (MO.isReg()) {
    872         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
    873                                                 MO.isImplicit(), MO.isKill(),
    874                                                 MO.isDead(), MO.isUndef(),
    875                                                 MO.isDebug());
    876       }
    877       else if (MO.isImm()) {
    878         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
    879       }
    880       else if (MO.isGlobal()) {
    881         // MI can not have more than one GlobalAddress operand.
    882         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
    883 
    884         // There is no member function called "ChangeToGlobalAddress" in the
    885         // MachineOperand class (not like "ChangeToRegister" and
    886         // "ChangeToImmediate"). So we have to remove them from Operands[] list
    887         // first, and then add them back after we have inserted the predicate
    888         // operand. tmpOpnds[] is to remember these operands before we remove
    889         // them.
    890         tmpOpnds.push_back(MO);
    891 
    892         // Operands[oper] is a GlobalAddress operand;
    893         // Operands[oper+1] has been copied into Operands[oper+2];
    894         hasGAOpnd = true;
    895         GAIdx = oper;
    896         continue;
    897       }
    898       else {
    899         assert(false && "Unexpected operand type");
    900       }
    901     }
    902   }
    903 
    904   int regPos = invertJump ? 1 : 0;
    905   MachineOperand PredMO = Cond[regPos];
    906 
    907   // [oper] now points to the last explicit Def. Predicate operand must be
    908   // located at [oper+1]. See diagram above.
    909   // This assumes that the predicate is always the first operand,
    910   // i.e. Operands[0+numResults], in the set of inputs
    911   // It is better to have an assert here to check this. But I don't know how
    912   // to write this assert because findFirstPredOperandIdx() would return -1
    913   if (oper < -1) oper = -1;
    914 
    915   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
    916                                           PredMO.isImplicit(), false,
    917                                           PredMO.isDead(), PredMO.isUndef(),
    918                                           PredMO.isDebug());
    919 
    920   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
    921   RegInfo.clearKillFlags(PredMO.getReg());
    922 
    923   if (hasGAOpnd)
    924   {
    925     unsigned int i;
    926 
    927     // Operands[GAIdx] is the original GlobalAddress operand, which is
    928     // already copied into tmpOpnds[0].
    929     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
    930     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
    931     // so we start from [GAIdx+2]
    932     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
    933       tmpOpnds.push_back(MI->getOperand(i));
    934 
    935     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
    936     // It is very important that we always remove from the end of Operands[]
    937     // MI->getNumOperands() is at least 2 if program goes to here.
    938     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
    939       MI->RemoveOperand(i);
    940 
    941     for (i = 0; i < tmpOpnds.size(); ++i)
    942       MI->addOperand(tmpOpnds[i]);
    943   }
    944 
    945   return true;
    946 }
    947 
    948 
    949 bool
    950 HexagonInstrInfo::
    951 isProfitableToIfCvt(MachineBasicBlock &MBB,
    952                     unsigned NumCycles,
    953                     unsigned ExtraPredCycles,
    954                     const BranchProbability &Probability) const {
    955   return true;
    956 }
    957 
    958 
    959 bool
    960 HexagonInstrInfo::
    961 isProfitableToIfCvt(MachineBasicBlock &TMBB,
    962                     unsigned NumTCycles,
    963                     unsigned ExtraTCycles,
    964                     MachineBasicBlock &FMBB,
    965                     unsigned NumFCycles,
    966                     unsigned ExtraFCycles,
    967                     const BranchProbability &Probability) const {
    968   return true;
    969 }
    970 
    971 // Returns true if an instruction is predicated irrespective of the predicate
    972 // sense. For example, all of the following will return true.
    973 // if (p0) R1 = add(R2, R3)
    974 // if (!p0) R1 = add(R2, R3)
    975 // if (p0.new) R1 = add(R2, R3)
    976 // if (!p0.new) R1 = add(R2, R3)
    977 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
    978   const uint64_t F = MI->getDesc().TSFlags;
    979 
    980   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
    981 }
    982 
    983 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
    984   const uint64_t F = get(Opcode).TSFlags;
    985 
    986   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
    987 }
    988 
    989 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
    990   const uint64_t F = MI->getDesc().TSFlags;
    991 
    992   assert(isPredicated(MI));
    993   return (!((F >> HexagonII::PredicatedFalsePos) &
    994             HexagonII::PredicatedFalseMask));
    995 }
    996 
    997 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
    998   const uint64_t F = get(Opcode).TSFlags;
    999 
   1000   // Make sure that the instruction is predicated.
   1001   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1002   return (!((F >> HexagonII::PredicatedFalsePos) &
   1003             HexagonII::PredicatedFalseMask));
   1004 }
   1005 
   1006 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
   1007   const uint64_t F = MI->getDesc().TSFlags;
   1008 
   1009   assert(isPredicated(MI));
   1010   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1011 }
   1012 
   1013 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
   1014   const uint64_t F = get(Opcode).TSFlags;
   1015 
   1016   assert(isPredicated(Opcode));
   1017   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1018 }
   1019 
   1020 // Returns true, if a ST insn can be promoted to a new-value store.
   1021 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
   1022   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1023   const uint64_t F = MI->getDesc().TSFlags;
   1024 
   1025   return ((F >> HexagonII::mayNVStorePos) &
   1026            HexagonII::mayNVStoreMask &
   1027            QRI.Subtarget.hasV4TOps());
   1028 }
   1029 
   1030 bool
   1031 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
   1032                                    std::vector<MachineOperand> &Pred) const {
   1033   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
   1034     MachineOperand MO = MI->getOperand(oper);
   1035     if (MO.isReg() && MO.isDef()) {
   1036       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
   1037       if (RC == &Hexagon::PredRegsRegClass) {
   1038         Pred.push_back(MO);
   1039         return true;
   1040       }
   1041     }
   1042   }
   1043   return false;
   1044 }
   1045 
   1046 
   1047 bool
   1048 HexagonInstrInfo::
   1049 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
   1050                   const SmallVectorImpl<MachineOperand> &Pred2) const {
   1051   // TODO: Fix this
   1052   return false;
   1053 }
   1054 
   1055 
   1056 //
   1057 // We indicate that we want to reverse the branch by
   1058 // inserting a 0 at the beginning of the Cond vector.
   1059 //
   1060 bool HexagonInstrInfo::
   1061 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1062   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
   1063     Cond.erase(Cond.begin());
   1064   } else {
   1065     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
   1066   }
   1067   return false;
   1068 }
   1069 
   1070 
   1071 bool HexagonInstrInfo::
   1072 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
   1073                           const BranchProbability &Probability) const {
   1074   return (NumInstrs <= 4);
   1075 }
   1076 
   1077 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
   1078   switch (MI->getOpcode()) {
   1079   default: return false;
   1080   case Hexagon::DEALLOC_RET_V4 :
   1081   case Hexagon::DEALLOC_RET_cPt_V4 :
   1082   case Hexagon::DEALLOC_RET_cNotPt_V4 :
   1083   case Hexagon::DEALLOC_RET_cdnPnt_V4 :
   1084   case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
   1085   case Hexagon::DEALLOC_RET_cdnPt_V4 :
   1086   case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
   1087    return true;
   1088   }
   1089 }
   1090 
   1091 
   1092 bool HexagonInstrInfo::
   1093 isValidOffset(const int Opcode, const int Offset) const {
   1094   // This function is to check whether the "Offset" is in the correct range of
   1095   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
   1096   // inserted to calculate the final address. Due to this reason, the function
   1097   // assumes that the "Offset" has correct alignment.
   1098   // We used to assert if the offset was not properly aligned, however,
   1099   // there are cases where a misaligned pointer recast can cause this
   1100   // problem, and we need to allow for it. The front end warns of such
   1101   // misaligns with respect to load size.
   1102 
   1103   switch(Opcode) {
   1104 
   1105   case Hexagon::LDriw:
   1106   case Hexagon::LDriw_indexed:
   1107   case Hexagon::LDriw_f:
   1108   case Hexagon::STriw_indexed:
   1109   case Hexagon::STriw:
   1110   case Hexagon::STriw_f:
   1111     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
   1112       (Offset <= Hexagon_MEMW_OFFSET_MAX);
   1113 
   1114   case Hexagon::LDrid:
   1115   case Hexagon::LDrid_indexed:
   1116   case Hexagon::LDrid_f:
   1117   case Hexagon::STrid:
   1118   case Hexagon::STrid_indexed:
   1119   case Hexagon::STrid_f:
   1120     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
   1121       (Offset <= Hexagon_MEMD_OFFSET_MAX);
   1122 
   1123   case Hexagon::LDrih:
   1124   case Hexagon::LDriuh:
   1125   case Hexagon::STrih:
   1126     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
   1127       (Offset <= Hexagon_MEMH_OFFSET_MAX);
   1128 
   1129   case Hexagon::LDrib:
   1130   case Hexagon::STrib:
   1131   case Hexagon::LDriub:
   1132     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
   1133       (Offset <= Hexagon_MEMB_OFFSET_MAX);
   1134 
   1135   case Hexagon::ADD_ri:
   1136   case Hexagon::TFR_FI:
   1137     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
   1138       (Offset <= Hexagon_ADDI_OFFSET_MAX);
   1139 
   1140   case Hexagon::MemOPw_ADDi_V4 :
   1141   case Hexagon::MemOPw_SUBi_V4 :
   1142   case Hexagon::MemOPw_ADDr_V4 :
   1143   case Hexagon::MemOPw_SUBr_V4 :
   1144   case Hexagon::MemOPw_ANDr_V4 :
   1145   case Hexagon::MemOPw_ORr_V4 :
   1146     return (0 <= Offset && Offset <= 255);
   1147 
   1148   case Hexagon::MemOPh_ADDi_V4 :
   1149   case Hexagon::MemOPh_SUBi_V4 :
   1150   case Hexagon::MemOPh_ADDr_V4 :
   1151   case Hexagon::MemOPh_SUBr_V4 :
   1152   case Hexagon::MemOPh_ANDr_V4 :
   1153   case Hexagon::MemOPh_ORr_V4 :
   1154     return (0 <= Offset && Offset <= 127);
   1155 
   1156   case Hexagon::MemOPb_ADDi_V4 :
   1157   case Hexagon::MemOPb_SUBi_V4 :
   1158   case Hexagon::MemOPb_ADDr_V4 :
   1159   case Hexagon::MemOPb_SUBr_V4 :
   1160   case Hexagon::MemOPb_ANDr_V4 :
   1161   case Hexagon::MemOPb_ORr_V4 :
   1162     return (0 <= Offset && Offset <= 63);
   1163 
   1164   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
   1165   // any size. Later pass knows how to handle it.
   1166   case Hexagon::STriw_pred:
   1167   case Hexagon::LDriw_pred:
   1168     return true;
   1169 
   1170   case Hexagon::LOOP0_i:
   1171     return isUInt<10>(Offset);
   1172 
   1173   // INLINEASM is very special.
   1174   case Hexagon::INLINEASM:
   1175     return true;
   1176   }
   1177 
   1178   llvm_unreachable("No offset range is defined for this opcode. "
   1179                    "Please define it in the above switch statement!");
   1180 }
   1181 
   1182 
   1183 //
   1184 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
   1185 //
   1186 bool HexagonInstrInfo::
   1187 isValidAutoIncImm(const EVT VT, const int Offset) const {
   1188 
   1189   if (VT == MVT::i64) {
   1190       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
   1191               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
   1192               (Offset & 0x7) == 0);
   1193   }
   1194   if (VT == MVT::i32) {
   1195       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
   1196               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
   1197               (Offset & 0x3) == 0);
   1198   }
   1199   if (VT == MVT::i16) {
   1200       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
   1201               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
   1202               (Offset & 0x1) == 0);
   1203   }
   1204   if (VT == MVT::i8) {
   1205       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
   1206               Offset <= Hexagon_MEMB_AUTOINC_MAX);
   1207   }
   1208   llvm_unreachable("Not an auto-inc opc!");
   1209 }
   1210 
   1211 
   1212 bool HexagonInstrInfo::
   1213 isMemOp(const MachineInstr *MI) const {
   1214 //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
   1215 
   1216   switch (MI->getOpcode())
   1217   {
   1218     default: return false;
   1219     case Hexagon::MemOPw_ADDi_V4 :
   1220     case Hexagon::MemOPw_SUBi_V4 :
   1221     case Hexagon::MemOPw_ADDr_V4 :
   1222     case Hexagon::MemOPw_SUBr_V4 :
   1223     case Hexagon::MemOPw_ANDr_V4 :
   1224     case Hexagon::MemOPw_ORr_V4 :
   1225     case Hexagon::MemOPh_ADDi_V4 :
   1226     case Hexagon::MemOPh_SUBi_V4 :
   1227     case Hexagon::MemOPh_ADDr_V4 :
   1228     case Hexagon::MemOPh_SUBr_V4 :
   1229     case Hexagon::MemOPh_ANDr_V4 :
   1230     case Hexagon::MemOPh_ORr_V4 :
   1231     case Hexagon::MemOPb_ADDi_V4 :
   1232     case Hexagon::MemOPb_SUBi_V4 :
   1233     case Hexagon::MemOPb_ADDr_V4 :
   1234     case Hexagon::MemOPb_SUBr_V4 :
   1235     case Hexagon::MemOPb_ANDr_V4 :
   1236     case Hexagon::MemOPb_ORr_V4 :
   1237     case Hexagon::MemOPb_SETBITi_V4:
   1238     case Hexagon::MemOPh_SETBITi_V4:
   1239     case Hexagon::MemOPw_SETBITi_V4:
   1240     case Hexagon::MemOPb_CLRBITi_V4:
   1241     case Hexagon::MemOPh_CLRBITi_V4:
   1242     case Hexagon::MemOPw_CLRBITi_V4:
   1243     return true;
   1244   }
   1245   return false;
   1246 }
   1247 
   1248 
   1249 bool HexagonInstrInfo::
   1250 isSpillPredRegOp(const MachineInstr *MI) const {
   1251   switch (MI->getOpcode()) {
   1252     default: return false;
   1253     case Hexagon::STriw_pred :
   1254     case Hexagon::LDriw_pred :
   1255       return true;
   1256   }
   1257 }
   1258 
   1259 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
   1260   switch (MI->getOpcode()) {
   1261     default: return false;
   1262     case Hexagon::CMPEQrr:
   1263     case Hexagon::CMPEQri:
   1264     case Hexagon::CMPGTrr:
   1265     case Hexagon::CMPGTri:
   1266     case Hexagon::CMPGTUrr:
   1267     case Hexagon::CMPGTUri:
   1268       return true;
   1269   }
   1270 }
   1271 
   1272 bool HexagonInstrInfo::
   1273 isConditionalTransfer (const MachineInstr *MI) const {
   1274   switch (MI->getOpcode()) {
   1275     default: return false;
   1276     case Hexagon::TFR_cPt:
   1277     case Hexagon::TFR_cNotPt:
   1278     case Hexagon::TFRI_cPt:
   1279     case Hexagon::TFRI_cNotPt:
   1280     case Hexagon::TFR_cdnPt:
   1281     case Hexagon::TFR_cdnNotPt:
   1282     case Hexagon::TFRI_cdnPt:
   1283     case Hexagon::TFRI_cdnNotPt:
   1284       return true;
   1285   }
   1286 }
   1287 
   1288 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
   1289   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1290   switch (MI->getOpcode())
   1291   {
   1292     default: return false;
   1293     case Hexagon::ADD_ri_cPt:
   1294     case Hexagon::ADD_ri_cNotPt:
   1295     case Hexagon::ADD_rr_cPt:
   1296     case Hexagon::ADD_rr_cNotPt:
   1297     case Hexagon::XOR_rr_cPt:
   1298     case Hexagon::XOR_rr_cNotPt:
   1299     case Hexagon::AND_rr_cPt:
   1300     case Hexagon::AND_rr_cNotPt:
   1301     case Hexagon::OR_rr_cPt:
   1302     case Hexagon::OR_rr_cNotPt:
   1303     case Hexagon::SUB_rr_cPt:
   1304     case Hexagon::SUB_rr_cNotPt:
   1305     case Hexagon::COMBINE_rr_cPt:
   1306     case Hexagon::COMBINE_rr_cNotPt:
   1307       return true;
   1308     case Hexagon::ASLH_cPt_V4:
   1309     case Hexagon::ASLH_cNotPt_V4:
   1310     case Hexagon::ASRH_cPt_V4:
   1311     case Hexagon::ASRH_cNotPt_V4:
   1312     case Hexagon::SXTB_cPt_V4:
   1313     case Hexagon::SXTB_cNotPt_V4:
   1314     case Hexagon::SXTH_cPt_V4:
   1315     case Hexagon::SXTH_cNotPt_V4:
   1316     case Hexagon::ZXTB_cPt_V4:
   1317     case Hexagon::ZXTB_cNotPt_V4:
   1318     case Hexagon::ZXTH_cPt_V4:
   1319     case Hexagon::ZXTH_cNotPt_V4:
   1320       return QRI.Subtarget.hasV4TOps();
   1321   }
   1322 }
   1323 
   1324 bool HexagonInstrInfo::
   1325 isConditionalLoad (const MachineInstr* MI) const {
   1326   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1327   switch (MI->getOpcode())
   1328   {
   1329     default: return false;
   1330     case Hexagon::LDrid_cPt :
   1331     case Hexagon::LDrid_cNotPt :
   1332     case Hexagon::LDrid_indexed_cPt :
   1333     case Hexagon::LDrid_indexed_cNotPt :
   1334     case Hexagon::LDriw_cPt :
   1335     case Hexagon::LDriw_cNotPt :
   1336     case Hexagon::LDriw_indexed_cPt :
   1337     case Hexagon::LDriw_indexed_cNotPt :
   1338     case Hexagon::LDrih_cPt :
   1339     case Hexagon::LDrih_cNotPt :
   1340     case Hexagon::LDrih_indexed_cPt :
   1341     case Hexagon::LDrih_indexed_cNotPt :
   1342     case Hexagon::LDrib_cPt :
   1343     case Hexagon::LDrib_cNotPt :
   1344     case Hexagon::LDrib_indexed_cPt :
   1345     case Hexagon::LDrib_indexed_cNotPt :
   1346     case Hexagon::LDriuh_cPt :
   1347     case Hexagon::LDriuh_cNotPt :
   1348     case Hexagon::LDriuh_indexed_cPt :
   1349     case Hexagon::LDriuh_indexed_cNotPt :
   1350     case Hexagon::LDriub_cPt :
   1351     case Hexagon::LDriub_cNotPt :
   1352     case Hexagon::LDriub_indexed_cPt :
   1353     case Hexagon::LDriub_indexed_cNotPt :
   1354       return true;
   1355     case Hexagon::POST_LDrid_cPt :
   1356     case Hexagon::POST_LDrid_cNotPt :
   1357     case Hexagon::POST_LDriw_cPt :
   1358     case Hexagon::POST_LDriw_cNotPt :
   1359     case Hexagon::POST_LDrih_cPt :
   1360     case Hexagon::POST_LDrih_cNotPt :
   1361     case Hexagon::POST_LDrib_cPt :
   1362     case Hexagon::POST_LDrib_cNotPt :
   1363     case Hexagon::POST_LDriuh_cPt :
   1364     case Hexagon::POST_LDriuh_cNotPt :
   1365     case Hexagon::POST_LDriub_cPt :
   1366     case Hexagon::POST_LDriub_cNotPt :
   1367       return QRI.Subtarget.hasV4TOps();
   1368     case Hexagon::LDrid_indexed_shl_cPt_V4 :
   1369     case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
   1370     case Hexagon::LDrib_indexed_shl_cPt_V4 :
   1371     case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
   1372     case Hexagon::LDriub_indexed_shl_cPt_V4 :
   1373     case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
   1374     case Hexagon::LDrih_indexed_shl_cPt_V4 :
   1375     case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
   1376     case Hexagon::LDriuh_indexed_shl_cPt_V4 :
   1377     case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
   1378     case Hexagon::LDriw_indexed_shl_cPt_V4 :
   1379     case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
   1380       return QRI.Subtarget.hasV4TOps();
   1381   }
   1382 }
   1383 
   1384 // Returns true if an instruction is a conditional store.
   1385 //
   1386 // Note: It doesn't include conditional new-value stores as they can't be
   1387 // converted to .new predicate.
   1388 //
   1389 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
   1390 //                ^           ^
   1391 //               /             \ (not OK. it will cause new-value store to be
   1392 //              /               X conditional on p0.new while R2 producer is
   1393 //             /                 \ on p0)
   1394 //            /                   \.
   1395 //     p.new store                 p.old NV store
   1396 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
   1397 //            ^                  ^
   1398 //             \                /
   1399 //              \              /
   1400 //               \            /
   1401 //                 p.old store
   1402 //             [if (p0)memw(R0+#0)=R2]
   1403 //
   1404 // The above diagram shows the steps involoved in the conversion of a predicated
   1405 // store instruction to its .new predicated new-value form.
   1406 //
   1407 // The following set of instructions further explains the scenario where
   1408 // conditional new-value store becomes invalid when promoted to .new predicate
   1409 // form.
   1410 //
   1411 // { 1) if (p0) r0 = add(r1, r2)
   1412 //   2) p0 = cmp.eq(r3, #0) }
   1413 //
   1414 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
   1415 // the first two instructions because in instr 1, r0 is conditional on old value
   1416 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
   1417 // is not valid for new-value stores.
   1418 bool HexagonInstrInfo::
   1419 isConditionalStore (const MachineInstr* MI) const {
   1420   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1421   switch (MI->getOpcode())
   1422   {
   1423     default: return false;
   1424     case Hexagon::STrib_imm_cPt_V4 :
   1425     case Hexagon::STrib_imm_cNotPt_V4 :
   1426     case Hexagon::STrib_indexed_shl_cPt_V4 :
   1427     case Hexagon::STrib_indexed_shl_cNotPt_V4 :
   1428     case Hexagon::STrib_cPt :
   1429     case Hexagon::STrib_cNotPt :
   1430     case Hexagon::POST_STbri_cPt :
   1431     case Hexagon::POST_STbri_cNotPt :
   1432     case Hexagon::STrid_indexed_cPt :
   1433     case Hexagon::STrid_indexed_cNotPt :
   1434     case Hexagon::STrid_indexed_shl_cPt_V4 :
   1435     case Hexagon::POST_STdri_cPt :
   1436     case Hexagon::POST_STdri_cNotPt :
   1437     case Hexagon::STrih_cPt :
   1438     case Hexagon::STrih_cNotPt :
   1439     case Hexagon::STrih_indexed_cPt :
   1440     case Hexagon::STrih_indexed_cNotPt :
   1441     case Hexagon::STrih_imm_cPt_V4 :
   1442     case Hexagon::STrih_imm_cNotPt_V4 :
   1443     case Hexagon::STrih_indexed_shl_cPt_V4 :
   1444     case Hexagon::STrih_indexed_shl_cNotPt_V4 :
   1445     case Hexagon::POST_SThri_cPt :
   1446     case Hexagon::POST_SThri_cNotPt :
   1447     case Hexagon::STriw_cPt :
   1448     case Hexagon::STriw_cNotPt :
   1449     case Hexagon::STriw_indexed_cPt :
   1450     case Hexagon::STriw_indexed_cNotPt :
   1451     case Hexagon::STriw_imm_cPt_V4 :
   1452     case Hexagon::STriw_imm_cNotPt_V4 :
   1453     case Hexagon::STriw_indexed_shl_cPt_V4 :
   1454     case Hexagon::STriw_indexed_shl_cNotPt_V4 :
   1455     case Hexagon::POST_STwri_cPt :
   1456     case Hexagon::POST_STwri_cNotPt :
   1457       return QRI.Subtarget.hasV4TOps();
   1458 
   1459     // V4 global address store before promoting to dot new.
   1460     case Hexagon::STd_GP_cPt_V4 :
   1461     case Hexagon::STd_GP_cNotPt_V4 :
   1462     case Hexagon::STb_GP_cPt_V4 :
   1463     case Hexagon::STb_GP_cNotPt_V4 :
   1464     case Hexagon::STh_GP_cPt_V4 :
   1465     case Hexagon::STh_GP_cNotPt_V4 :
   1466     case Hexagon::STw_GP_cPt_V4 :
   1467     case Hexagon::STw_GP_cNotPt_V4 :
   1468       return QRI.Subtarget.hasV4TOps();
   1469 
   1470     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   1471     // from the "Conditional Store" list. Because a predicated new value store
   1472     // would NOT be promoted to a double dot new store. See diagram below:
   1473     // This function returns yes for those stores that are predicated but not
   1474     // yet promoted to predicate dot new instructions.
   1475     //
   1476     //                          +---------------------+
   1477     //                    /-----| if (p0) memw(..)=r0 |---------\~
   1478     //                   ||     +---------------------+         ||
   1479     //          promote  ||       /\       /\                   ||  promote
   1480     //                   ||      /||\     /||\                  ||
   1481     //                  \||/    demote     ||                  \||/
   1482     //                   \/       ||       ||                   \/
   1483     //       +-------------------------+   ||   +-------------------------+
   1484     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
   1485     //       +-------------------------+   ||   +-------------------------+
   1486     //                        ||           ||         ||
   1487     //                        ||         demote      \||/
   1488     //                      promote        ||         \/ NOT possible
   1489     //                        ||           ||         /\~
   1490     //                       \||/          ||        /||\~
   1491     //                        \/           ||         ||
   1492     //                      +-----------------------------+
   1493     //                      | if (p0.new) memw(..)=r0.new |
   1494     //                      +-----------------------------+
   1495     //                           Double Dot New Store
   1496     //
   1497   }
   1498 }
   1499 
   1500 
   1501 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
   1502   if (isNewValue(MI) && isBranch(MI))
   1503     return true;
   1504   return false;
   1505 }
   1506 
   1507 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
   1508   return (getAddrMode(MI) == HexagonII::PostInc);
   1509 }
   1510 
   1511 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
   1512   const uint64_t F = MI->getDesc().TSFlags;
   1513   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
   1514 }
   1515 
   1516 // Returns true, if any one of the operands is a dot new
   1517 // insn, whether it is predicated dot new or register dot new.
   1518 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
   1519   return (isNewValueInst(MI) ||
   1520      (isPredicated(MI) && isPredicatedNew(MI)));
   1521 }
   1522 
   1523 // Returns the most basic instruction for the .new predicated instructions and
   1524 // new-value stores.
   1525 // For example, all of the following instructions will be converted back to the
   1526 // same instruction:
   1527 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
   1528 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
   1529 // 3) if (p0.new) memw(R0+#0) = R1      --->
   1530 //
   1531 
   1532 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
   1533   int NewOp = opc;
   1534   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
   1535     NewOp = Hexagon::getPredOldOpcode(NewOp);
   1536     if (NewOp < 0)
   1537       assert(0 && "Couldn't change predicate new instruction to its old form.");
   1538   }
   1539 
   1540   if (isNewValueStore(NewOp)) { // Convert into non new-value format
   1541     NewOp = Hexagon::getNonNVStore(NewOp);
   1542     if (NewOp < 0)
   1543       assert(0 && "Couldn't change new-value store to its old form.");
   1544   }
   1545   return NewOp;
   1546 }
   1547 
   1548 // Return the new value instruction for a given store.
   1549 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
   1550   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
   1551   if (NVOpcode >= 0) // Valid new-value store instruction.
   1552     return NVOpcode;
   1553 
   1554   switch (MI->getOpcode()) {
   1555   default: llvm_unreachable("Unknown .new type");
   1556   // store new value byte
   1557   case Hexagon::STrib_shl_V4:
   1558     return Hexagon::STrib_shl_nv_V4;
   1559 
   1560   case Hexagon::STrih_shl_V4:
   1561     return Hexagon::STrih_shl_nv_V4;
   1562 
   1563   case Hexagon::STriw_f:
   1564     return Hexagon::STriw_nv_V4;
   1565 
   1566   case Hexagon::STriw_indexed_f:
   1567     return Hexagon::STriw_indexed_nv_V4;
   1568 
   1569   case Hexagon::STriw_shl_V4:
   1570     return Hexagon::STriw_shl_nv_V4;
   1571 
   1572   }
   1573   return 0;
   1574 }
   1575 
   1576 // Return .new predicate version for an instruction.
   1577 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
   1578                                       const MachineBranchProbabilityInfo
   1579                                       *MBPI) const {
   1580 
   1581   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   1582   if (NewOpcode >= 0) // Valid predicate new instruction
   1583     return NewOpcode;
   1584 
   1585   switch (MI->getOpcode()) {
   1586   default: llvm_unreachable("Unknown .new type");
   1587   // Condtional Jumps
   1588   case Hexagon::JMP_t:
   1589   case Hexagon::JMP_f:
   1590     return getDotNewPredJumpOp(MI, MBPI);
   1591 
   1592   case Hexagon::JMPR_t:
   1593     return Hexagon::JMPR_tnew_tV3;
   1594 
   1595   case Hexagon::JMPR_f:
   1596     return Hexagon::JMPR_fnew_tV3;
   1597 
   1598   case Hexagon::JMPret_t:
   1599     return Hexagon::JMPret_tnew_tV3;
   1600 
   1601   case Hexagon::JMPret_f:
   1602     return Hexagon::JMPret_fnew_tV3;
   1603 
   1604 
   1605   // Conditional combine
   1606   case Hexagon::COMBINE_rr_cPt :
   1607     return Hexagon::COMBINE_rr_cdnPt;
   1608   case Hexagon::COMBINE_rr_cNotPt :
   1609     return Hexagon::COMBINE_rr_cdnNotPt;
   1610   }
   1611 }
   1612 
   1613 
   1614 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
   1615   const uint64_t F = MI->getDesc().TSFlags;
   1616 
   1617   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
   1618 }
   1619 
   1620 /// immediateExtend - Changes the instruction in place to one using an immediate
   1621 /// extender.
   1622 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
   1623   assert((isExtendable(MI)||isConstExtended(MI)) &&
   1624                                "Instruction must be extendable");
   1625   // Find which operand is extendable.
   1626   short ExtOpNum = getCExtOpNum(MI);
   1627   MachineOperand &MO = MI->getOperand(ExtOpNum);
   1628   // This needs to be something we understand.
   1629   assert((MO.isMBB() || MO.isImm()) &&
   1630          "Branch with unknown extendable field type");
   1631   // Mark given operand as extended.
   1632   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
   1633 }
   1634 
   1635 DFAPacketizer *HexagonInstrInfo::
   1636 CreateTargetScheduleState(const TargetMachine *TM,
   1637                            const ScheduleDAG *DAG) const {
   1638   const InstrItineraryData *II = TM->getInstrItineraryData();
   1639   return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
   1640 }
   1641 
   1642 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1643                                             const MachineBasicBlock *MBB,
   1644                                             const MachineFunction &MF) const {
   1645   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1646   // due to the special treatment of IT instructions below, otherwise a
   1647   // dbg_value followed by an IT will result in the IT instruction being
   1648   // considered a scheduling hazard, which is wrong. It should be the actual
   1649   // instruction preceding the dbg_value instruction(s), just like it is
   1650   // when debug info is not present.
   1651   if (MI->isDebugValue())
   1652     return false;
   1653 
   1654   // Terminators and labels can't be scheduled around.
   1655   if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
   1656     return true;
   1657 
   1658   return false;
   1659 }
   1660 
   1661 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
   1662 
   1663   // Constant extenders are allowed only for V4 and above.
   1664   if (!Subtarget.hasV4TOps())
   1665     return false;
   1666 
   1667   const uint64_t F = MI->getDesc().TSFlags;
   1668   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
   1669   if (isExtended) // Instruction must be extended.
   1670     return true;
   1671 
   1672   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
   1673                           & HexagonII::ExtendableMask;
   1674   if (!isExtendable)
   1675     return false;
   1676 
   1677   short ExtOpNum = getCExtOpNum(MI);
   1678   const MachineOperand &MO = MI->getOperand(ExtOpNum);
   1679   // Use MO operand flags to determine if MO
   1680   // has the HMOTF_ConstExtended flag set.
   1681   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   1682     return true;
   1683   // If this is a Machine BB address we are talking about, and it is
   1684   // not marked as extended, say so.
   1685   if (MO.isMBB())
   1686     return false;
   1687 
   1688   // We could be using an instruction with an extendable immediate and shoehorn
   1689   // a global address into it. If it is a global address it will be constant
   1690   // extended. We do this for COMBINE.
   1691   // We currently only handle isGlobal() because it is the only kind of
   1692   // object we are going to end up with here for now.
   1693   // In the future we probably should add isSymbol(), etc.
   1694   if (MO.isGlobal() || MO.isSymbol())
   1695     return true;
   1696 
   1697   // If the extendable operand is not 'Immediate' type, the instruction should
   1698   // have 'isExtended' flag set.
   1699   assert(MO.isImm() && "Extendable operand must be Immediate type");
   1700 
   1701   int MinValue = getMinValue(MI);
   1702   int MaxValue = getMaxValue(MI);
   1703   int ImmValue = MO.getImm();
   1704 
   1705   return (ImmValue < MinValue || ImmValue > MaxValue);
   1706 }
   1707 
   1708 // Returns the opcode to use when converting MI, which is a conditional jump,
   1709 // into a conditional instruction which uses the .new value of the predicate.
   1710 // We also use branch probabilities to add a hint to the jump.
   1711 int
   1712 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
   1713                                   const
   1714                                   MachineBranchProbabilityInfo *MBPI) const {
   1715 
   1716   // We assume that block can have at most two successors.
   1717   bool taken = false;
   1718   MachineBasicBlock *Src = MI->getParent();
   1719   MachineOperand *BrTarget = &MI->getOperand(1);
   1720   MachineBasicBlock *Dst = BrTarget->getMBB();
   1721 
   1722   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
   1723   if (Prediction >= BranchProbability(1,2))
   1724     taken = true;
   1725 
   1726   switch (MI->getOpcode()) {
   1727   case Hexagon::JMP_t:
   1728     return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
   1729   case Hexagon::JMP_f:
   1730     return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
   1731 
   1732   default:
   1733     llvm_unreachable("Unexpected jump instruction.");
   1734   }
   1735 }
   1736 // Returns true if a particular operand is extendable for an instruction.
   1737 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
   1738                                          unsigned short OperandNum) const {
   1739   // Constant extenders are allowed only for V4 and above.
   1740   if (!Subtarget.hasV4TOps())
   1741     return false;
   1742 
   1743   const uint64_t F = MI->getDesc().TSFlags;
   1744 
   1745   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
   1746           == OperandNum;
   1747 }
   1748 
   1749 // Returns Operand Index for the constant extended instruction.
   1750 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
   1751   const uint64_t F = MI->getDesc().TSFlags;
   1752   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
   1753 }
   1754 
   1755 // Returns the min value that doesn't need to be extended.
   1756 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   1757   const uint64_t F = MI->getDesc().TSFlags;
   1758   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1759                     & HexagonII::ExtentSignedMask;
   1760   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1761                     & HexagonII::ExtentBitsMask;
   1762 
   1763   if (isSigned) // if value is signed
   1764     return -1 << (bits - 1);
   1765   else
   1766     return 0;
   1767 }
   1768 
   1769 // Returns the max value that doesn't need to be extended.
   1770 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   1771   const uint64_t F = MI->getDesc().TSFlags;
   1772   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1773                     & HexagonII::ExtentSignedMask;
   1774   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1775                     & HexagonII::ExtentBitsMask;
   1776 
   1777   if (isSigned) // if value is signed
   1778     return ~(-1 << (bits - 1));
   1779   else
   1780     return ~(-1 << bits);
   1781 }
   1782 
   1783 // Returns true if an instruction can be converted into a non-extended
   1784 // equivalent instruction.
   1785 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
   1786 
   1787   short NonExtOpcode;
   1788   // Check if the instruction has a register form that uses register in place
   1789   // of the extended operand, if so return that as the non-extended form.
   1790   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
   1791     return true;
   1792 
   1793   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1794     // Check addressing mode and retreive non-ext equivalent instruction.
   1795 
   1796     switch (getAddrMode(MI)) {
   1797     case HexagonII::Absolute :
   1798       // Load/store with absolute addressing mode can be converted into
   1799       // base+offset mode.
   1800       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1801       break;
   1802     case HexagonII::BaseImmOffset :
   1803       // Load/store with base+offset addressing mode can be converted into
   1804       // base+register offset addressing mode. However left shift operand should
   1805       // be set to 0.
   1806       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1807       break;
   1808     default:
   1809       return false;
   1810     }
   1811     if (NonExtOpcode < 0)
   1812       return false;
   1813     return true;
   1814   }
   1815   return false;
   1816 }
   1817 
   1818 // Returns opcode of the non-extended equivalent instruction.
   1819 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
   1820 
   1821   // Check if the instruction has a register form that uses register in place
   1822   // of the extended operand, if so return that as the non-extended form.
   1823   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
   1824     if (NonExtOpcode >= 0)
   1825       return NonExtOpcode;
   1826 
   1827   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1828     // Check addressing mode and retreive non-ext equivalent instruction.
   1829     switch (getAddrMode(MI)) {
   1830     case HexagonII::Absolute :
   1831       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1832     case HexagonII::BaseImmOffset :
   1833       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1834     default:
   1835       return -1;
   1836     }
   1837   }
   1838   return -1;
   1839 }
   1840 
   1841 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
   1842   return (Opcode == Hexagon::JMP_t) ||
   1843          (Opcode == Hexagon::JMP_f) ||
   1844          (Opcode == Hexagon::JMP_tnew_t) ||
   1845          (Opcode == Hexagon::JMP_fnew_t) ||
   1846          (Opcode == Hexagon::JMP_tnew_nt) ||
   1847          (Opcode == Hexagon::JMP_fnew_nt);
   1848 }
   1849 
   1850 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
   1851   return (Opcode == Hexagon::JMP_f) ||
   1852          (Opcode == Hexagon::JMP_fnew_t) ||
   1853          (Opcode == Hexagon::JMP_fnew_nt);
   1854 }
   1855