1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements semantic analysis for C++ templates. 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TypeVisitor.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/ParsedTemplate.h" 26 #include "clang/Sema/Scope.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "clang/Sema/Template.h" 29 #include "clang/Sema/TemplateDeduction.h" 30 #include "llvm/ADT/SmallBitVector.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 using namespace clang; 34 using namespace sema; 35 36 // Exported for use by Parser. 37 SourceRange 38 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 39 unsigned N) { 40 if (!N) return SourceRange(); 41 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 42 } 43 44 /// \brief Determine whether the declaration found is acceptable as the name 45 /// of a template and, if so, return that template declaration. Otherwise, 46 /// returns NULL. 47 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 48 NamedDecl *Orig, 49 bool AllowFunctionTemplates) { 50 NamedDecl *D = Orig->getUnderlyingDecl(); 51 52 if (isa<TemplateDecl>(D)) { 53 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 54 return 0; 55 56 return Orig; 57 } 58 59 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 60 // C++ [temp.local]p1: 61 // Like normal (non-template) classes, class templates have an 62 // injected-class-name (Clause 9). The injected-class-name 63 // can be used with or without a template-argument-list. When 64 // it is used without a template-argument-list, it is 65 // equivalent to the injected-class-name followed by the 66 // template-parameters of the class template enclosed in 67 // <>. When it is used with a template-argument-list, it 68 // refers to the specified class template specialization, 69 // which could be the current specialization or another 70 // specialization. 71 if (Record->isInjectedClassName()) { 72 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 73 if (Record->getDescribedClassTemplate()) 74 return Record->getDescribedClassTemplate(); 75 76 if (ClassTemplateSpecializationDecl *Spec 77 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 78 return Spec->getSpecializedTemplate(); 79 } 80 81 return 0; 82 } 83 84 return 0; 85 } 86 87 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 88 bool AllowFunctionTemplates) { 89 // The set of class templates we've already seen. 90 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 91 LookupResult::Filter filter = R.makeFilter(); 92 while (filter.hasNext()) { 93 NamedDecl *Orig = filter.next(); 94 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 95 AllowFunctionTemplates); 96 if (!Repl) 97 filter.erase(); 98 else if (Repl != Orig) { 99 100 // C++ [temp.local]p3: 101 // A lookup that finds an injected-class-name (10.2) can result in an 102 // ambiguity in certain cases (for example, if it is found in more than 103 // one base class). If all of the injected-class-names that are found 104 // refer to specializations of the same class template, and if the name 105 // is used as a template-name, the reference refers to the class 106 // template itself and not a specialization thereof, and is not 107 // ambiguous. 108 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 109 if (!ClassTemplates.insert(ClassTmpl)) { 110 filter.erase(); 111 continue; 112 } 113 114 // FIXME: we promote access to public here as a workaround to 115 // the fact that LookupResult doesn't let us remember that we 116 // found this template through a particular injected class name, 117 // which means we end up doing nasty things to the invariants. 118 // Pretending that access is public is *much* safer. 119 filter.replace(Repl, AS_public); 120 } 121 } 122 filter.done(); 123 } 124 125 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 126 bool AllowFunctionTemplates) { 127 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 128 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 129 return true; 130 131 return false; 132 } 133 134 TemplateNameKind Sema::isTemplateName(Scope *S, 135 CXXScopeSpec &SS, 136 bool hasTemplateKeyword, 137 UnqualifiedId &Name, 138 ParsedType ObjectTypePtr, 139 bool EnteringContext, 140 TemplateTy &TemplateResult, 141 bool &MemberOfUnknownSpecialization) { 142 assert(getLangOpts().CPlusPlus && "No template names in C!"); 143 144 DeclarationName TName; 145 MemberOfUnknownSpecialization = false; 146 147 switch (Name.getKind()) { 148 case UnqualifiedId::IK_Identifier: 149 TName = DeclarationName(Name.Identifier); 150 break; 151 152 case UnqualifiedId::IK_OperatorFunctionId: 153 TName = Context.DeclarationNames.getCXXOperatorName( 154 Name.OperatorFunctionId.Operator); 155 break; 156 157 case UnqualifiedId::IK_LiteralOperatorId: 158 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 159 break; 160 161 default: 162 return TNK_Non_template; 163 } 164 165 QualType ObjectType = ObjectTypePtr.get(); 166 167 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 168 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 169 MemberOfUnknownSpecialization); 170 if (R.empty()) return TNK_Non_template; 171 if (R.isAmbiguous()) { 172 // Suppress diagnostics; we'll redo this lookup later. 173 R.suppressDiagnostics(); 174 175 // FIXME: we might have ambiguous templates, in which case we 176 // should at least parse them properly! 177 return TNK_Non_template; 178 } 179 180 TemplateName Template; 181 TemplateNameKind TemplateKind; 182 183 unsigned ResultCount = R.end() - R.begin(); 184 if (ResultCount > 1) { 185 // We assume that we'll preserve the qualifier from a function 186 // template name in other ways. 187 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 188 TemplateKind = TNK_Function_template; 189 190 // We'll do this lookup again later. 191 R.suppressDiagnostics(); 192 } else { 193 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 194 195 if (SS.isSet() && !SS.isInvalid()) { 196 NestedNameSpecifier *Qualifier 197 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 198 Template = Context.getQualifiedTemplateName(Qualifier, 199 hasTemplateKeyword, TD); 200 } else { 201 Template = TemplateName(TD); 202 } 203 204 if (isa<FunctionTemplateDecl>(TD)) { 205 TemplateKind = TNK_Function_template; 206 207 // We'll do this lookup again later. 208 R.suppressDiagnostics(); 209 } else { 210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)); 212 TemplateKind = 213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; 214 } 215 } 216 217 TemplateResult = TemplateTy::make(Template); 218 return TemplateKind; 219 } 220 221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 222 SourceLocation IILoc, 223 Scope *S, 224 const CXXScopeSpec *SS, 225 TemplateTy &SuggestedTemplate, 226 TemplateNameKind &SuggestedKind) { 227 // We can't recover unless there's a dependent scope specifier preceding the 228 // template name. 229 // FIXME: Typo correction? 230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 231 computeDeclContext(*SS)) 232 return false; 233 234 // The code is missing a 'template' keyword prior to the dependent template 235 // name. 236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 237 Diag(IILoc, diag::err_template_kw_missing) 238 << Qualifier << II.getName() 239 << FixItHint::CreateInsertion(IILoc, "template "); 240 SuggestedTemplate 241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 242 SuggestedKind = TNK_Dependent_template_name; 243 return true; 244 } 245 246 void Sema::LookupTemplateName(LookupResult &Found, 247 Scope *S, CXXScopeSpec &SS, 248 QualType ObjectType, 249 bool EnteringContext, 250 bool &MemberOfUnknownSpecialization) { 251 // Determine where to perform name lookup 252 MemberOfUnknownSpecialization = false; 253 DeclContext *LookupCtx = 0; 254 bool isDependent = false; 255 if (!ObjectType.isNull()) { 256 // This nested-name-specifier occurs in a member access expression, e.g., 257 // x->B::f, and we are looking into the type of the object. 258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 259 LookupCtx = computeDeclContext(ObjectType); 260 isDependent = ObjectType->isDependentType(); 261 assert((isDependent || !ObjectType->isIncompleteType() || 262 ObjectType->castAs<TagType>()->isBeingDefined()) && 263 "Caller should have completed object type"); 264 265 // Template names cannot appear inside an Objective-C class or object type. 266 if (ObjectType->isObjCObjectOrInterfaceType()) { 267 Found.clear(); 268 return; 269 } 270 } else if (SS.isSet()) { 271 // This nested-name-specifier occurs after another nested-name-specifier, 272 // so long into the context associated with the prior nested-name-specifier. 273 LookupCtx = computeDeclContext(SS, EnteringContext); 274 isDependent = isDependentScopeSpecifier(SS); 275 276 // The declaration context must be complete. 277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 278 return; 279 } 280 281 bool ObjectTypeSearchedInScope = false; 282 bool AllowFunctionTemplatesInLookup = true; 283 if (LookupCtx) { 284 // Perform "qualified" name lookup into the declaration context we 285 // computed, which is either the type of the base of a member access 286 // expression or the declaration context associated with a prior 287 // nested-name-specifier. 288 LookupQualifiedName(Found, LookupCtx); 289 if (!ObjectType.isNull() && Found.empty()) { 290 // C++ [basic.lookup.classref]p1: 291 // In a class member access expression (5.2.5), if the . or -> token is 292 // immediately followed by an identifier followed by a <, the 293 // identifier must be looked up to determine whether the < is the 294 // beginning of a template argument list (14.2) or a less-than operator. 295 // The identifier is first looked up in the class of the object 296 // expression. If the identifier is not found, it is then looked up in 297 // the context of the entire postfix-expression and shall name a class 298 // or function template. 299 if (S) LookupName(Found, S); 300 ObjectTypeSearchedInScope = true; 301 AllowFunctionTemplatesInLookup = false; 302 } 303 } else if (isDependent && (!S || ObjectType.isNull())) { 304 // We cannot look into a dependent object type or nested nme 305 // specifier. 306 MemberOfUnknownSpecialization = true; 307 return; 308 } else { 309 // Perform unqualified name lookup in the current scope. 310 LookupName(Found, S); 311 312 if (!ObjectType.isNull()) 313 AllowFunctionTemplatesInLookup = false; 314 } 315 316 if (Found.empty() && !isDependent) { 317 // If we did not find any names, attempt to correct any typos. 318 DeclarationName Name = Found.getLookupName(); 319 Found.clear(); 320 // Simple filter callback that, for keywords, only accepts the C++ *_cast 321 CorrectionCandidateCallback FilterCCC; 322 FilterCCC.WantTypeSpecifiers = false; 323 FilterCCC.WantExpressionKeywords = false; 324 FilterCCC.WantRemainingKeywords = false; 325 FilterCCC.WantCXXNamedCasts = true; 326 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 327 Found.getLookupKind(), S, &SS, 328 FilterCCC, LookupCtx)) { 329 Found.setLookupName(Corrected.getCorrection()); 330 if (Corrected.getCorrectionDecl()) 331 Found.addDecl(Corrected.getCorrectionDecl()); 332 FilterAcceptableTemplateNames(Found); 333 if (!Found.empty()) { 334 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 335 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 336 if (LookupCtx) { 337 bool droppedSpecifier = Corrected.WillReplaceSpecifier() && 338 Name.getAsString() == CorrectedStr; 339 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 340 << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr 341 << SS.getRange() 342 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 343 CorrectedStr); 344 } else { 345 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 346 << Name << CorrectedQuotedStr 347 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 348 } 349 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 350 Diag(Template->getLocation(), diag::note_previous_decl) 351 << CorrectedQuotedStr; 352 } 353 } else { 354 Found.setLookupName(Name); 355 } 356 } 357 358 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 359 if (Found.empty()) { 360 if (isDependent) 361 MemberOfUnknownSpecialization = true; 362 return; 363 } 364 365 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 366 !(getLangOpts().CPlusPlus11 && !Found.empty())) { 367 // C++03 [basic.lookup.classref]p1: 368 // [...] If the lookup in the class of the object expression finds a 369 // template, the name is also looked up in the context of the entire 370 // postfix-expression and [...] 371 // 372 // Note: C++11 does not perform this second lookup. 373 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 374 LookupOrdinaryName); 375 LookupName(FoundOuter, S); 376 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 377 378 if (FoundOuter.empty()) { 379 // - if the name is not found, the name found in the class of the 380 // object expression is used, otherwise 381 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 382 FoundOuter.isAmbiguous()) { 383 // - if the name is found in the context of the entire 384 // postfix-expression and does not name a class template, the name 385 // found in the class of the object expression is used, otherwise 386 FoundOuter.clear(); 387 } else if (!Found.isSuppressingDiagnostics()) { 388 // - if the name found is a class template, it must refer to the same 389 // entity as the one found in the class of the object expression, 390 // otherwise the program is ill-formed. 391 if (!Found.isSingleResult() || 392 Found.getFoundDecl()->getCanonicalDecl() 393 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 394 Diag(Found.getNameLoc(), 395 diag::ext_nested_name_member_ref_lookup_ambiguous) 396 << Found.getLookupName() 397 << ObjectType; 398 Diag(Found.getRepresentativeDecl()->getLocation(), 399 diag::note_ambig_member_ref_object_type) 400 << ObjectType; 401 Diag(FoundOuter.getFoundDecl()->getLocation(), 402 diag::note_ambig_member_ref_scope); 403 404 // Recover by taking the template that we found in the object 405 // expression's type. 406 } 407 } 408 } 409 } 410 411 /// ActOnDependentIdExpression - Handle a dependent id-expression that 412 /// was just parsed. This is only possible with an explicit scope 413 /// specifier naming a dependent type. 414 ExprResult 415 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 416 SourceLocation TemplateKWLoc, 417 const DeclarationNameInfo &NameInfo, 418 bool isAddressOfOperand, 419 const TemplateArgumentListInfo *TemplateArgs) { 420 DeclContext *DC = getFunctionLevelDeclContext(); 421 422 if (!isAddressOfOperand && 423 isa<CXXMethodDecl>(DC) && 424 cast<CXXMethodDecl>(DC)->isInstance()) { 425 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 426 427 // Since the 'this' expression is synthesized, we don't need to 428 // perform the double-lookup check. 429 NamedDecl *FirstQualifierInScope = 0; 430 431 return Owned(CXXDependentScopeMemberExpr::Create(Context, 432 /*This*/ 0, ThisType, 433 /*IsArrow*/ true, 434 /*Op*/ SourceLocation(), 435 SS.getWithLocInContext(Context), 436 TemplateKWLoc, 437 FirstQualifierInScope, 438 NameInfo, 439 TemplateArgs)); 440 } 441 442 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 443 } 444 445 ExprResult 446 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 447 SourceLocation TemplateKWLoc, 448 const DeclarationNameInfo &NameInfo, 449 const TemplateArgumentListInfo *TemplateArgs) { 450 return Owned(DependentScopeDeclRefExpr::Create(Context, 451 SS.getWithLocInContext(Context), 452 TemplateKWLoc, 453 NameInfo, 454 TemplateArgs)); 455 } 456 457 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 458 /// that the template parameter 'PrevDecl' is being shadowed by a new 459 /// declaration at location Loc. Returns true to indicate that this is 460 /// an error, and false otherwise. 461 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 462 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 463 464 // Microsoft Visual C++ permits template parameters to be shadowed. 465 if (getLangOpts().MicrosoftExt) 466 return; 467 468 // C++ [temp.local]p4: 469 // A template-parameter shall not be redeclared within its 470 // scope (including nested scopes). 471 Diag(Loc, diag::err_template_param_shadow) 472 << cast<NamedDecl>(PrevDecl)->getDeclName(); 473 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 474 return; 475 } 476 477 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 478 /// the parameter D to reference the templated declaration and return a pointer 479 /// to the template declaration. Otherwise, do nothing to D and return null. 480 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 481 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 482 D = Temp->getTemplatedDecl(); 483 return Temp; 484 } 485 return 0; 486 } 487 488 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 489 SourceLocation EllipsisLoc) const { 490 assert(Kind == Template && 491 "Only template template arguments can be pack expansions here"); 492 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 493 "Template template argument pack expansion without packs"); 494 ParsedTemplateArgument Result(*this); 495 Result.EllipsisLoc = EllipsisLoc; 496 return Result; 497 } 498 499 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 500 const ParsedTemplateArgument &Arg) { 501 502 switch (Arg.getKind()) { 503 case ParsedTemplateArgument::Type: { 504 TypeSourceInfo *DI; 505 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 506 if (!DI) 507 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 508 return TemplateArgumentLoc(TemplateArgument(T), DI); 509 } 510 511 case ParsedTemplateArgument::NonType: { 512 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 513 return TemplateArgumentLoc(TemplateArgument(E), E); 514 } 515 516 case ParsedTemplateArgument::Template: { 517 TemplateName Template = Arg.getAsTemplate().get(); 518 TemplateArgument TArg; 519 if (Arg.getEllipsisLoc().isValid()) 520 TArg = TemplateArgument(Template, Optional<unsigned int>()); 521 else 522 TArg = Template; 523 return TemplateArgumentLoc(TArg, 524 Arg.getScopeSpec().getWithLocInContext( 525 SemaRef.Context), 526 Arg.getLocation(), 527 Arg.getEllipsisLoc()); 528 } 529 } 530 531 llvm_unreachable("Unhandled parsed template argument"); 532 } 533 534 /// \brief Translates template arguments as provided by the parser 535 /// into template arguments used by semantic analysis. 536 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 537 TemplateArgumentListInfo &TemplateArgs) { 538 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 539 TemplateArgs.addArgument(translateTemplateArgument(*this, 540 TemplateArgsIn[I])); 541 } 542 543 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 544 SourceLocation Loc, 545 IdentifierInfo *Name) { 546 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 547 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration); 548 if (PrevDecl && PrevDecl->isTemplateParameter()) 549 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 550 } 551 552 /// ActOnTypeParameter - Called when a C++ template type parameter 553 /// (e.g., "typename T") has been parsed. Typename specifies whether 554 /// the keyword "typename" was used to declare the type parameter 555 /// (otherwise, "class" was used), and KeyLoc is the location of the 556 /// "class" or "typename" keyword. ParamName is the name of the 557 /// parameter (NULL indicates an unnamed template parameter) and 558 /// ParamNameLoc is the location of the parameter name (if any). 559 /// If the type parameter has a default argument, it will be added 560 /// later via ActOnTypeParameterDefault. 561 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 562 SourceLocation EllipsisLoc, 563 SourceLocation KeyLoc, 564 IdentifierInfo *ParamName, 565 SourceLocation ParamNameLoc, 566 unsigned Depth, unsigned Position, 567 SourceLocation EqualLoc, 568 ParsedType DefaultArg) { 569 assert(S->isTemplateParamScope() && 570 "Template type parameter not in template parameter scope!"); 571 bool Invalid = false; 572 573 SourceLocation Loc = ParamNameLoc; 574 if (!ParamName) 575 Loc = KeyLoc; 576 577 TemplateTypeParmDecl *Param 578 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 579 KeyLoc, Loc, Depth, Position, ParamName, 580 Typename, Ellipsis); 581 Param->setAccess(AS_public); 582 if (Invalid) 583 Param->setInvalidDecl(); 584 585 if (ParamName) { 586 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 587 588 // Add the template parameter into the current scope. 589 S->AddDecl(Param); 590 IdResolver.AddDecl(Param); 591 } 592 593 // C++0x [temp.param]p9: 594 // A default template-argument may be specified for any kind of 595 // template-parameter that is not a template parameter pack. 596 if (DefaultArg && Ellipsis) { 597 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 598 DefaultArg = ParsedType(); 599 } 600 601 // Handle the default argument, if provided. 602 if (DefaultArg) { 603 TypeSourceInfo *DefaultTInfo; 604 GetTypeFromParser(DefaultArg, &DefaultTInfo); 605 606 assert(DefaultTInfo && "expected source information for type"); 607 608 // Check for unexpanded parameter packs. 609 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 610 UPPC_DefaultArgument)) 611 return Param; 612 613 // Check the template argument itself. 614 if (CheckTemplateArgument(Param, DefaultTInfo)) { 615 Param->setInvalidDecl(); 616 return Param; 617 } 618 619 Param->setDefaultArgument(DefaultTInfo, false); 620 } 621 622 return Param; 623 } 624 625 /// \brief Check that the type of a non-type template parameter is 626 /// well-formed. 627 /// 628 /// \returns the (possibly-promoted) parameter type if valid; 629 /// otherwise, produces a diagnostic and returns a NULL type. 630 QualType 631 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 632 // We don't allow variably-modified types as the type of non-type template 633 // parameters. 634 if (T->isVariablyModifiedType()) { 635 Diag(Loc, diag::err_variably_modified_nontype_template_param) 636 << T; 637 return QualType(); 638 } 639 640 // C++ [temp.param]p4: 641 // 642 // A non-type template-parameter shall have one of the following 643 // (optionally cv-qualified) types: 644 // 645 // -- integral or enumeration type, 646 if (T->isIntegralOrEnumerationType() || 647 // -- pointer to object or pointer to function, 648 T->isPointerType() || 649 // -- reference to object or reference to function, 650 T->isReferenceType() || 651 // -- pointer to member, 652 T->isMemberPointerType() || 653 // -- std::nullptr_t. 654 T->isNullPtrType() || 655 // If T is a dependent type, we can't do the check now, so we 656 // assume that it is well-formed. 657 T->isDependentType()) { 658 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 659 // are ignored when determining its type. 660 return T.getUnqualifiedType(); 661 } 662 663 // C++ [temp.param]p8: 664 // 665 // A non-type template-parameter of type "array of T" or 666 // "function returning T" is adjusted to be of type "pointer to 667 // T" or "pointer to function returning T", respectively. 668 else if (T->isArrayType()) 669 // FIXME: Keep the type prior to promotion? 670 return Context.getArrayDecayedType(T); 671 else if (T->isFunctionType()) 672 // FIXME: Keep the type prior to promotion? 673 return Context.getPointerType(T); 674 675 Diag(Loc, diag::err_template_nontype_parm_bad_type) 676 << T; 677 678 return QualType(); 679 } 680 681 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 682 unsigned Depth, 683 unsigned Position, 684 SourceLocation EqualLoc, 685 Expr *Default) { 686 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 687 QualType T = TInfo->getType(); 688 689 assert(S->isTemplateParamScope() && 690 "Non-type template parameter not in template parameter scope!"); 691 bool Invalid = false; 692 693 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 694 if (T.isNull()) { 695 T = Context.IntTy; // Recover with an 'int' type. 696 Invalid = true; 697 } 698 699 IdentifierInfo *ParamName = D.getIdentifier(); 700 bool IsParameterPack = D.hasEllipsis(); 701 NonTypeTemplateParmDecl *Param 702 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 703 D.getLocStart(), 704 D.getIdentifierLoc(), 705 Depth, Position, ParamName, T, 706 IsParameterPack, TInfo); 707 Param->setAccess(AS_public); 708 709 if (Invalid) 710 Param->setInvalidDecl(); 711 712 if (ParamName) { 713 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 714 ParamName); 715 716 // Add the template parameter into the current scope. 717 S->AddDecl(Param); 718 IdResolver.AddDecl(Param); 719 } 720 721 // C++0x [temp.param]p9: 722 // A default template-argument may be specified for any kind of 723 // template-parameter that is not a template parameter pack. 724 if (Default && IsParameterPack) { 725 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 726 Default = 0; 727 } 728 729 // Check the well-formedness of the default template argument, if provided. 730 if (Default) { 731 // Check for unexpanded parameter packs. 732 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 733 return Param; 734 735 TemplateArgument Converted; 736 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 737 if (DefaultRes.isInvalid()) { 738 Param->setInvalidDecl(); 739 return Param; 740 } 741 Default = DefaultRes.take(); 742 743 Param->setDefaultArgument(Default, false); 744 } 745 746 return Param; 747 } 748 749 /// ActOnTemplateTemplateParameter - Called when a C++ template template 750 /// parameter (e.g. T in template <template \<typename> class T> class array) 751 /// has been parsed. S is the current scope. 752 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 753 SourceLocation TmpLoc, 754 TemplateParameterList *Params, 755 SourceLocation EllipsisLoc, 756 IdentifierInfo *Name, 757 SourceLocation NameLoc, 758 unsigned Depth, 759 unsigned Position, 760 SourceLocation EqualLoc, 761 ParsedTemplateArgument Default) { 762 assert(S->isTemplateParamScope() && 763 "Template template parameter not in template parameter scope!"); 764 765 // Construct the parameter object. 766 bool IsParameterPack = EllipsisLoc.isValid(); 767 TemplateTemplateParmDecl *Param = 768 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 769 NameLoc.isInvalid()? TmpLoc : NameLoc, 770 Depth, Position, IsParameterPack, 771 Name, Params); 772 Param->setAccess(AS_public); 773 774 // If the template template parameter has a name, then link the identifier 775 // into the scope and lookup mechanisms. 776 if (Name) { 777 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 778 779 S->AddDecl(Param); 780 IdResolver.AddDecl(Param); 781 } 782 783 if (Params->size() == 0) { 784 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 785 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 786 Param->setInvalidDecl(); 787 } 788 789 // C++0x [temp.param]p9: 790 // A default template-argument may be specified for any kind of 791 // template-parameter that is not a template parameter pack. 792 if (IsParameterPack && !Default.isInvalid()) { 793 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 794 Default = ParsedTemplateArgument(); 795 } 796 797 if (!Default.isInvalid()) { 798 // Check only that we have a template template argument. We don't want to 799 // try to check well-formedness now, because our template template parameter 800 // might have dependent types in its template parameters, which we wouldn't 801 // be able to match now. 802 // 803 // If none of the template template parameter's template arguments mention 804 // other template parameters, we could actually perform more checking here. 805 // However, it isn't worth doing. 806 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 807 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 808 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 809 << DefaultArg.getSourceRange(); 810 return Param; 811 } 812 813 // Check for unexpanded parameter packs. 814 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 815 DefaultArg.getArgument().getAsTemplate(), 816 UPPC_DefaultArgument)) 817 return Param; 818 819 Param->setDefaultArgument(DefaultArg, false); 820 } 821 822 return Param; 823 } 824 825 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 826 /// contains the template parameters in Params/NumParams. 827 TemplateParameterList * 828 Sema::ActOnTemplateParameterList(unsigned Depth, 829 SourceLocation ExportLoc, 830 SourceLocation TemplateLoc, 831 SourceLocation LAngleLoc, 832 Decl **Params, unsigned NumParams, 833 SourceLocation RAngleLoc) { 834 if (ExportLoc.isValid()) 835 Diag(ExportLoc, diag::warn_template_export_unsupported); 836 837 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 838 (NamedDecl**)Params, NumParams, 839 RAngleLoc); 840 } 841 842 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 843 if (SS.isSet()) 844 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 845 } 846 847 DeclResult 848 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 849 SourceLocation KWLoc, CXXScopeSpec &SS, 850 IdentifierInfo *Name, SourceLocation NameLoc, 851 AttributeList *Attr, 852 TemplateParameterList *TemplateParams, 853 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 854 unsigned NumOuterTemplateParamLists, 855 TemplateParameterList** OuterTemplateParamLists) { 856 assert(TemplateParams && TemplateParams->size() > 0 && 857 "No template parameters"); 858 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 859 bool Invalid = false; 860 861 // Check that we can declare a template here. 862 if (CheckTemplateDeclScope(S, TemplateParams)) 863 return true; 864 865 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 866 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 867 868 // There is no such thing as an unnamed class template. 869 if (!Name) { 870 Diag(KWLoc, diag::err_template_unnamed_class); 871 return true; 872 } 873 874 // Find any previous declaration with this name. For a friend with no 875 // scope explicitly specified, we only look for tag declarations (per 876 // C++11 [basic.lookup.elab]p2). 877 DeclContext *SemanticContext; 878 LookupResult Previous(*this, Name, NameLoc, 879 (SS.isEmpty() && TUK == TUK_Friend) 880 ? LookupTagName : LookupOrdinaryName, 881 ForRedeclaration); 882 if (SS.isNotEmpty() && !SS.isInvalid()) { 883 SemanticContext = computeDeclContext(SS, true); 884 if (!SemanticContext) { 885 // FIXME: Horrible, horrible hack! We can't currently represent this 886 // in the AST, and historically we have just ignored such friend 887 // class templates, so don't complain here. 888 if (TUK != TUK_Friend) 889 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 890 << SS.getScopeRep() << SS.getRange(); 891 return true; 892 } 893 894 if (RequireCompleteDeclContext(SS, SemanticContext)) 895 return true; 896 897 // If we're adding a template to a dependent context, we may need to 898 // rebuilding some of the types used within the template parameter list, 899 // now that we know what the current instantiation is. 900 if (SemanticContext->isDependentContext()) { 901 ContextRAII SavedContext(*this, SemanticContext); 902 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 903 Invalid = true; 904 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 905 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 906 907 LookupQualifiedName(Previous, SemanticContext); 908 } else { 909 SemanticContext = CurContext; 910 LookupName(Previous, S); 911 } 912 913 if (Previous.isAmbiguous()) 914 return true; 915 916 NamedDecl *PrevDecl = 0; 917 if (Previous.begin() != Previous.end()) 918 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 919 920 // If there is a previous declaration with the same name, check 921 // whether this is a valid redeclaration. 922 ClassTemplateDecl *PrevClassTemplate 923 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 924 925 // We may have found the injected-class-name of a class template, 926 // class template partial specialization, or class template specialization. 927 // In these cases, grab the template that is being defined or specialized. 928 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 929 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 930 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 931 PrevClassTemplate 932 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 933 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 934 PrevClassTemplate 935 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 936 ->getSpecializedTemplate(); 937 } 938 } 939 940 if (TUK == TUK_Friend) { 941 // C++ [namespace.memdef]p3: 942 // [...] When looking for a prior declaration of a class or a function 943 // declared as a friend, and when the name of the friend class or 944 // function is neither a qualified name nor a template-id, scopes outside 945 // the innermost enclosing namespace scope are not considered. 946 if (!SS.isSet()) { 947 DeclContext *OutermostContext = CurContext; 948 while (!OutermostContext->isFileContext()) 949 OutermostContext = OutermostContext->getLookupParent(); 950 951 if (PrevDecl && 952 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 953 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 954 SemanticContext = PrevDecl->getDeclContext(); 955 } else { 956 // Declarations in outer scopes don't matter. However, the outermost 957 // context we computed is the semantic context for our new 958 // declaration. 959 PrevDecl = PrevClassTemplate = 0; 960 SemanticContext = OutermostContext; 961 962 // Check that the chosen semantic context doesn't already contain a 963 // declaration of this name as a non-tag type. 964 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 965 ForRedeclaration); 966 DeclContext *LookupContext = SemanticContext; 967 while (LookupContext->isTransparentContext()) 968 LookupContext = LookupContext->getLookupParent(); 969 LookupQualifiedName(Previous, LookupContext); 970 971 if (Previous.isAmbiguous()) 972 return true; 973 974 if (Previous.begin() != Previous.end()) 975 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 976 } 977 } 978 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 979 PrevDecl = PrevClassTemplate = 0; 980 981 if (PrevClassTemplate) { 982 // Ensure that the template parameter lists are compatible. Skip this check 983 // for a friend in a dependent context: the template parameter list itself 984 // could be dependent. 985 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 986 !TemplateParameterListsAreEqual(TemplateParams, 987 PrevClassTemplate->getTemplateParameters(), 988 /*Complain=*/true, 989 TPL_TemplateMatch)) 990 return true; 991 992 // C++ [temp.class]p4: 993 // In a redeclaration, partial specialization, explicit 994 // specialization or explicit instantiation of a class template, 995 // the class-key shall agree in kind with the original class 996 // template declaration (7.1.5.3). 997 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 998 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 999 TUK == TUK_Definition, KWLoc, *Name)) { 1000 Diag(KWLoc, diag::err_use_with_wrong_tag) 1001 << Name 1002 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1003 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1004 Kind = PrevRecordDecl->getTagKind(); 1005 } 1006 1007 // Check for redefinition of this class template. 1008 if (TUK == TUK_Definition) { 1009 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1010 Diag(NameLoc, diag::err_redefinition) << Name; 1011 Diag(Def->getLocation(), diag::note_previous_definition); 1012 // FIXME: Would it make sense to try to "forget" the previous 1013 // definition, as part of error recovery? 1014 return true; 1015 } 1016 } 1017 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1018 // Maybe we will complain about the shadowed template parameter. 1019 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1020 // Just pretend that we didn't see the previous declaration. 1021 PrevDecl = 0; 1022 } else if (PrevDecl) { 1023 // C++ [temp]p5: 1024 // A class template shall not have the same name as any other 1025 // template, class, function, object, enumeration, enumerator, 1026 // namespace, or type in the same scope (3.3), except as specified 1027 // in (14.5.4). 1028 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1029 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1030 return true; 1031 } 1032 1033 // Check the template parameter list of this declaration, possibly 1034 // merging in the template parameter list from the previous class 1035 // template declaration. Skip this check for a friend in a dependent 1036 // context, because the template parameter list might be dependent. 1037 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1038 CheckTemplateParameterList( 1039 TemplateParams, 1040 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0, 1041 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1042 SemanticContext->isDependentContext()) 1043 ? TPC_ClassTemplateMember 1044 : TUK == TUK_Friend ? TPC_FriendClassTemplate 1045 : TPC_ClassTemplate)) 1046 Invalid = true; 1047 1048 if (SS.isSet()) { 1049 // If the name of the template was qualified, we must be defining the 1050 // template out-of-line. 1051 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1052 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1053 : diag::err_member_def_does_not_match) 1054 << Name << SemanticContext << SS.getRange(); 1055 Invalid = true; 1056 } 1057 } 1058 1059 CXXRecordDecl *NewClass = 1060 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1061 PrevClassTemplate? 1062 PrevClassTemplate->getTemplatedDecl() : 0, 1063 /*DelayTypeCreation=*/true); 1064 SetNestedNameSpecifier(NewClass, SS); 1065 if (NumOuterTemplateParamLists > 0) 1066 NewClass->setTemplateParameterListsInfo(Context, 1067 NumOuterTemplateParamLists, 1068 OuterTemplateParamLists); 1069 1070 // Add alignment attributes if necessary; these attributes are checked when 1071 // the ASTContext lays out the structure. 1072 if (TUK == TUK_Definition) { 1073 AddAlignmentAttributesForRecord(NewClass); 1074 AddMsStructLayoutForRecord(NewClass); 1075 } 1076 1077 ClassTemplateDecl *NewTemplate 1078 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1079 DeclarationName(Name), TemplateParams, 1080 NewClass, PrevClassTemplate); 1081 NewClass->setDescribedClassTemplate(NewTemplate); 1082 1083 if (ModulePrivateLoc.isValid()) 1084 NewTemplate->setModulePrivate(); 1085 1086 // Build the type for the class template declaration now. 1087 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1088 T = Context.getInjectedClassNameType(NewClass, T); 1089 assert(T->isDependentType() && "Class template type is not dependent?"); 1090 (void)T; 1091 1092 // If we are providing an explicit specialization of a member that is a 1093 // class template, make a note of that. 1094 if (PrevClassTemplate && 1095 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1096 PrevClassTemplate->setMemberSpecialization(); 1097 1098 // Set the access specifier. 1099 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1100 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1101 1102 // Set the lexical context of these templates 1103 NewClass->setLexicalDeclContext(CurContext); 1104 NewTemplate->setLexicalDeclContext(CurContext); 1105 1106 if (TUK == TUK_Definition) 1107 NewClass->startDefinition(); 1108 1109 if (Attr) 1110 ProcessDeclAttributeList(S, NewClass, Attr); 1111 1112 if (PrevClassTemplate) 1113 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1114 1115 AddPushedVisibilityAttribute(NewClass); 1116 1117 if (TUK != TUK_Friend) 1118 PushOnScopeChains(NewTemplate, S); 1119 else { 1120 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1121 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1122 NewClass->setAccess(PrevClassTemplate->getAccess()); 1123 } 1124 1125 NewTemplate->setObjectOfFriendDecl(); 1126 1127 // Friend templates are visible in fairly strange ways. 1128 if (!CurContext->isDependentContext()) { 1129 DeclContext *DC = SemanticContext->getRedeclContext(); 1130 DC->makeDeclVisibleInContext(NewTemplate); 1131 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1132 PushOnScopeChains(NewTemplate, EnclosingScope, 1133 /* AddToContext = */ false); 1134 } 1135 1136 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1137 NewClass->getLocation(), 1138 NewTemplate, 1139 /*FIXME:*/NewClass->getLocation()); 1140 Friend->setAccess(AS_public); 1141 CurContext->addDecl(Friend); 1142 } 1143 1144 if (Invalid) { 1145 NewTemplate->setInvalidDecl(); 1146 NewClass->setInvalidDecl(); 1147 } 1148 1149 ActOnDocumentableDecl(NewTemplate); 1150 1151 return NewTemplate; 1152 } 1153 1154 /// \brief Diagnose the presence of a default template argument on a 1155 /// template parameter, which is ill-formed in certain contexts. 1156 /// 1157 /// \returns true if the default template argument should be dropped. 1158 static bool DiagnoseDefaultTemplateArgument(Sema &S, 1159 Sema::TemplateParamListContext TPC, 1160 SourceLocation ParamLoc, 1161 SourceRange DefArgRange) { 1162 switch (TPC) { 1163 case Sema::TPC_ClassTemplate: 1164 case Sema::TPC_VarTemplate: 1165 case Sema::TPC_TypeAliasTemplate: 1166 return false; 1167 1168 case Sema::TPC_FunctionTemplate: 1169 case Sema::TPC_FriendFunctionTemplateDefinition: 1170 // C++ [temp.param]p9: 1171 // A default template-argument shall not be specified in a 1172 // function template declaration or a function template 1173 // definition [...] 1174 // If a friend function template declaration specifies a default 1175 // template-argument, that declaration shall be a definition and shall be 1176 // the only declaration of the function template in the translation unit. 1177 // (C++98/03 doesn't have this wording; see DR226). 1178 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1179 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1180 : diag::ext_template_parameter_default_in_function_template) 1181 << DefArgRange; 1182 return false; 1183 1184 case Sema::TPC_ClassTemplateMember: 1185 // C++0x [temp.param]p9: 1186 // A default template-argument shall not be specified in the 1187 // template-parameter-lists of the definition of a member of a 1188 // class template that appears outside of the member's class. 1189 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1190 << DefArgRange; 1191 return true; 1192 1193 case Sema::TPC_FriendClassTemplate: 1194 case Sema::TPC_FriendFunctionTemplate: 1195 // C++ [temp.param]p9: 1196 // A default template-argument shall not be specified in a 1197 // friend template declaration. 1198 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1199 << DefArgRange; 1200 return true; 1201 1202 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1203 // for friend function templates if there is only a single 1204 // declaration (and it is a definition). Strange! 1205 } 1206 1207 llvm_unreachable("Invalid TemplateParamListContext!"); 1208 } 1209 1210 /// \brief Check for unexpanded parameter packs within the template parameters 1211 /// of a template template parameter, recursively. 1212 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1213 TemplateTemplateParmDecl *TTP) { 1214 // A template template parameter which is a parameter pack is also a pack 1215 // expansion. 1216 if (TTP->isParameterPack()) 1217 return false; 1218 1219 TemplateParameterList *Params = TTP->getTemplateParameters(); 1220 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1221 NamedDecl *P = Params->getParam(I); 1222 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1223 if (!NTTP->isParameterPack() && 1224 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1225 NTTP->getTypeSourceInfo(), 1226 Sema::UPPC_NonTypeTemplateParameterType)) 1227 return true; 1228 1229 continue; 1230 } 1231 1232 if (TemplateTemplateParmDecl *InnerTTP 1233 = dyn_cast<TemplateTemplateParmDecl>(P)) 1234 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1235 return true; 1236 } 1237 1238 return false; 1239 } 1240 1241 /// \brief Checks the validity of a template parameter list, possibly 1242 /// considering the template parameter list from a previous 1243 /// declaration. 1244 /// 1245 /// If an "old" template parameter list is provided, it must be 1246 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 1247 /// template parameter list. 1248 /// 1249 /// \param NewParams Template parameter list for a new template 1250 /// declaration. This template parameter list will be updated with any 1251 /// default arguments that are carried through from the previous 1252 /// template parameter list. 1253 /// 1254 /// \param OldParams If provided, template parameter list from a 1255 /// previous declaration of the same template. Default template 1256 /// arguments will be merged from the old template parameter list to 1257 /// the new template parameter list. 1258 /// 1259 /// \param TPC Describes the context in which we are checking the given 1260 /// template parameter list. 1261 /// 1262 /// \returns true if an error occurred, false otherwise. 1263 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1264 TemplateParameterList *OldParams, 1265 TemplateParamListContext TPC) { 1266 bool Invalid = false; 1267 1268 // C++ [temp.param]p10: 1269 // The set of default template-arguments available for use with a 1270 // template declaration or definition is obtained by merging the 1271 // default arguments from the definition (if in scope) and all 1272 // declarations in scope in the same way default function 1273 // arguments are (8.3.6). 1274 bool SawDefaultArgument = false; 1275 SourceLocation PreviousDefaultArgLoc; 1276 1277 // Dummy initialization to avoid warnings. 1278 TemplateParameterList::iterator OldParam = NewParams->end(); 1279 if (OldParams) 1280 OldParam = OldParams->begin(); 1281 1282 bool RemoveDefaultArguments = false; 1283 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1284 NewParamEnd = NewParams->end(); 1285 NewParam != NewParamEnd; ++NewParam) { 1286 // Variables used to diagnose redundant default arguments 1287 bool RedundantDefaultArg = false; 1288 SourceLocation OldDefaultLoc; 1289 SourceLocation NewDefaultLoc; 1290 1291 // Variable used to diagnose missing default arguments 1292 bool MissingDefaultArg = false; 1293 1294 // Variable used to diagnose non-final parameter packs 1295 bool SawParameterPack = false; 1296 1297 if (TemplateTypeParmDecl *NewTypeParm 1298 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1299 // Check the presence of a default argument here. 1300 if (NewTypeParm->hasDefaultArgument() && 1301 DiagnoseDefaultTemplateArgument(*this, TPC, 1302 NewTypeParm->getLocation(), 1303 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1304 .getSourceRange())) 1305 NewTypeParm->removeDefaultArgument(); 1306 1307 // Merge default arguments for template type parameters. 1308 TemplateTypeParmDecl *OldTypeParm 1309 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1310 1311 if (NewTypeParm->isParameterPack()) { 1312 assert(!NewTypeParm->hasDefaultArgument() && 1313 "Parameter packs can't have a default argument!"); 1314 SawParameterPack = true; 1315 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1316 NewTypeParm->hasDefaultArgument()) { 1317 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1318 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1319 SawDefaultArgument = true; 1320 RedundantDefaultArg = true; 1321 PreviousDefaultArgLoc = NewDefaultLoc; 1322 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1323 // Merge the default argument from the old declaration to the 1324 // new declaration. 1325 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1326 true); 1327 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1328 } else if (NewTypeParm->hasDefaultArgument()) { 1329 SawDefaultArgument = true; 1330 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1331 } else if (SawDefaultArgument) 1332 MissingDefaultArg = true; 1333 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1334 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1335 // Check for unexpanded parameter packs. 1336 if (!NewNonTypeParm->isParameterPack() && 1337 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1338 NewNonTypeParm->getTypeSourceInfo(), 1339 UPPC_NonTypeTemplateParameterType)) { 1340 Invalid = true; 1341 continue; 1342 } 1343 1344 // Check the presence of a default argument here. 1345 if (NewNonTypeParm->hasDefaultArgument() && 1346 DiagnoseDefaultTemplateArgument(*this, TPC, 1347 NewNonTypeParm->getLocation(), 1348 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1349 NewNonTypeParm->removeDefaultArgument(); 1350 } 1351 1352 // Merge default arguments for non-type template parameters 1353 NonTypeTemplateParmDecl *OldNonTypeParm 1354 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1355 if (NewNonTypeParm->isParameterPack()) { 1356 assert(!NewNonTypeParm->hasDefaultArgument() && 1357 "Parameter packs can't have a default argument!"); 1358 if (!NewNonTypeParm->isPackExpansion()) 1359 SawParameterPack = true; 1360 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1361 NewNonTypeParm->hasDefaultArgument()) { 1362 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1363 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1364 SawDefaultArgument = true; 1365 RedundantDefaultArg = true; 1366 PreviousDefaultArgLoc = NewDefaultLoc; 1367 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1368 // Merge the default argument from the old declaration to the 1369 // new declaration. 1370 // FIXME: We need to create a new kind of "default argument" 1371 // expression that points to a previous non-type template 1372 // parameter. 1373 NewNonTypeParm->setDefaultArgument( 1374 OldNonTypeParm->getDefaultArgument(), 1375 /*Inherited=*/ true); 1376 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1377 } else if (NewNonTypeParm->hasDefaultArgument()) { 1378 SawDefaultArgument = true; 1379 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1380 } else if (SawDefaultArgument) 1381 MissingDefaultArg = true; 1382 } else { 1383 TemplateTemplateParmDecl *NewTemplateParm 1384 = cast<TemplateTemplateParmDecl>(*NewParam); 1385 1386 // Check for unexpanded parameter packs, recursively. 1387 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1388 Invalid = true; 1389 continue; 1390 } 1391 1392 // Check the presence of a default argument here. 1393 if (NewTemplateParm->hasDefaultArgument() && 1394 DiagnoseDefaultTemplateArgument(*this, TPC, 1395 NewTemplateParm->getLocation(), 1396 NewTemplateParm->getDefaultArgument().getSourceRange())) 1397 NewTemplateParm->removeDefaultArgument(); 1398 1399 // Merge default arguments for template template parameters 1400 TemplateTemplateParmDecl *OldTemplateParm 1401 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1402 if (NewTemplateParm->isParameterPack()) { 1403 assert(!NewTemplateParm->hasDefaultArgument() && 1404 "Parameter packs can't have a default argument!"); 1405 if (!NewTemplateParm->isPackExpansion()) 1406 SawParameterPack = true; 1407 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1408 NewTemplateParm->hasDefaultArgument()) { 1409 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1410 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1411 SawDefaultArgument = true; 1412 RedundantDefaultArg = true; 1413 PreviousDefaultArgLoc = NewDefaultLoc; 1414 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1415 // Merge the default argument from the old declaration to the 1416 // new declaration. 1417 // FIXME: We need to create a new kind of "default argument" expression 1418 // that points to a previous template template parameter. 1419 NewTemplateParm->setDefaultArgument( 1420 OldTemplateParm->getDefaultArgument(), 1421 /*Inherited=*/ true); 1422 PreviousDefaultArgLoc 1423 = OldTemplateParm->getDefaultArgument().getLocation(); 1424 } else if (NewTemplateParm->hasDefaultArgument()) { 1425 SawDefaultArgument = true; 1426 PreviousDefaultArgLoc 1427 = NewTemplateParm->getDefaultArgument().getLocation(); 1428 } else if (SawDefaultArgument) 1429 MissingDefaultArg = true; 1430 } 1431 1432 // C++11 [temp.param]p11: 1433 // If a template parameter of a primary class template or alias template 1434 // is a template parameter pack, it shall be the last template parameter. 1435 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1436 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 1437 TPC == TPC_TypeAliasTemplate)) { 1438 Diag((*NewParam)->getLocation(), 1439 diag::err_template_param_pack_must_be_last_template_parameter); 1440 Invalid = true; 1441 } 1442 1443 if (RedundantDefaultArg) { 1444 // C++ [temp.param]p12: 1445 // A template-parameter shall not be given default arguments 1446 // by two different declarations in the same scope. 1447 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1448 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1449 Invalid = true; 1450 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1451 // C++ [temp.param]p11: 1452 // If a template-parameter of a class template has a default 1453 // template-argument, each subsequent template-parameter shall either 1454 // have a default template-argument supplied or be a template parameter 1455 // pack. 1456 Diag((*NewParam)->getLocation(), 1457 diag::err_template_param_default_arg_missing); 1458 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1459 Invalid = true; 1460 RemoveDefaultArguments = true; 1461 } 1462 1463 // If we have an old template parameter list that we're merging 1464 // in, move on to the next parameter. 1465 if (OldParams) 1466 ++OldParam; 1467 } 1468 1469 // We were missing some default arguments at the end of the list, so remove 1470 // all of the default arguments. 1471 if (RemoveDefaultArguments) { 1472 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1473 NewParamEnd = NewParams->end(); 1474 NewParam != NewParamEnd; ++NewParam) { 1475 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1476 TTP->removeDefaultArgument(); 1477 else if (NonTypeTemplateParmDecl *NTTP 1478 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1479 NTTP->removeDefaultArgument(); 1480 else 1481 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1482 } 1483 } 1484 1485 return Invalid; 1486 } 1487 1488 namespace { 1489 1490 /// A class which looks for a use of a certain level of template 1491 /// parameter. 1492 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1493 typedef RecursiveASTVisitor<DependencyChecker> super; 1494 1495 unsigned Depth; 1496 bool Match; 1497 1498 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1499 NamedDecl *ND = Params->getParam(0); 1500 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1501 Depth = PD->getDepth(); 1502 } else if (NonTypeTemplateParmDecl *PD = 1503 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1504 Depth = PD->getDepth(); 1505 } else { 1506 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1507 } 1508 } 1509 1510 bool Matches(unsigned ParmDepth) { 1511 if (ParmDepth >= Depth) { 1512 Match = true; 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1519 return !Matches(T->getDepth()); 1520 } 1521 1522 bool TraverseTemplateName(TemplateName N) { 1523 if (TemplateTemplateParmDecl *PD = 1524 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1525 if (Matches(PD->getDepth())) return false; 1526 return super::TraverseTemplateName(N); 1527 } 1528 1529 bool VisitDeclRefExpr(DeclRefExpr *E) { 1530 if (NonTypeTemplateParmDecl *PD = 1531 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1532 if (PD->getDepth() == Depth) { 1533 Match = true; 1534 return false; 1535 } 1536 } 1537 return super::VisitDeclRefExpr(E); 1538 } 1539 1540 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1541 return TraverseType(T->getInjectedSpecializationType()); 1542 } 1543 }; 1544 } 1545 1546 /// Determines whether a given type depends on the given parameter 1547 /// list. 1548 static bool 1549 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1550 DependencyChecker Checker(Params); 1551 Checker.TraverseType(T); 1552 return Checker.Match; 1553 } 1554 1555 // Find the source range corresponding to the named type in the given 1556 // nested-name-specifier, if any. 1557 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1558 QualType T, 1559 const CXXScopeSpec &SS) { 1560 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1561 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1562 if (const Type *CurType = NNS->getAsType()) { 1563 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1564 return NNSLoc.getTypeLoc().getSourceRange(); 1565 } else 1566 break; 1567 1568 NNSLoc = NNSLoc.getPrefix(); 1569 } 1570 1571 return SourceRange(); 1572 } 1573 1574 /// \brief Match the given template parameter lists to the given scope 1575 /// specifier, returning the template parameter list that applies to the 1576 /// name. 1577 /// 1578 /// \param DeclStartLoc the start of the declaration that has a scope 1579 /// specifier or a template parameter list. 1580 /// 1581 /// \param DeclLoc The location of the declaration itself. 1582 /// 1583 /// \param SS the scope specifier that will be matched to the given template 1584 /// parameter lists. This scope specifier precedes a qualified name that is 1585 /// being declared. 1586 /// 1587 /// \param ParamLists the template parameter lists, from the outermost to the 1588 /// innermost template parameter lists. 1589 /// 1590 /// \param IsFriend Whether to apply the slightly different rules for 1591 /// matching template parameters to scope specifiers in friend 1592 /// declarations. 1593 /// 1594 /// \param IsExplicitSpecialization will be set true if the entity being 1595 /// declared is an explicit specialization, false otherwise. 1596 /// 1597 /// \returns the template parameter list, if any, that corresponds to the 1598 /// name that is preceded by the scope specifier @p SS. This template 1599 /// parameter list may have template parameters (if we're declaring a 1600 /// template) or may have no template parameters (if we're declaring a 1601 /// template specialization), or may be NULL (if what we're declaring isn't 1602 /// itself a template). 1603 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 1604 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 1605 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 1606 bool &IsExplicitSpecialization, bool &Invalid) { 1607 IsExplicitSpecialization = false; 1608 Invalid = false; 1609 1610 // The sequence of nested types to which we will match up the template 1611 // parameter lists. We first build this list by starting with the type named 1612 // by the nested-name-specifier and walking out until we run out of types. 1613 SmallVector<QualType, 4> NestedTypes; 1614 QualType T; 1615 if (SS.getScopeRep()) { 1616 if (CXXRecordDecl *Record 1617 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1618 T = Context.getTypeDeclType(Record); 1619 else 1620 T = QualType(SS.getScopeRep()->getAsType(), 0); 1621 } 1622 1623 // If we found an explicit specialization that prevents us from needing 1624 // 'template<>' headers, this will be set to the location of that 1625 // explicit specialization. 1626 SourceLocation ExplicitSpecLoc; 1627 1628 while (!T.isNull()) { 1629 NestedTypes.push_back(T); 1630 1631 // Retrieve the parent of a record type. 1632 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1633 // If this type is an explicit specialization, we're done. 1634 if (ClassTemplateSpecializationDecl *Spec 1635 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1636 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1637 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1638 ExplicitSpecLoc = Spec->getLocation(); 1639 break; 1640 } 1641 } else if (Record->getTemplateSpecializationKind() 1642 == TSK_ExplicitSpecialization) { 1643 ExplicitSpecLoc = Record->getLocation(); 1644 break; 1645 } 1646 1647 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1648 T = Context.getTypeDeclType(Parent); 1649 else 1650 T = QualType(); 1651 continue; 1652 } 1653 1654 if (const TemplateSpecializationType *TST 1655 = T->getAs<TemplateSpecializationType>()) { 1656 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1657 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1658 T = Context.getTypeDeclType(Parent); 1659 else 1660 T = QualType(); 1661 continue; 1662 } 1663 } 1664 1665 // Look one step prior in a dependent template specialization type. 1666 if (const DependentTemplateSpecializationType *DependentTST 1667 = T->getAs<DependentTemplateSpecializationType>()) { 1668 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1669 T = QualType(NNS->getAsType(), 0); 1670 else 1671 T = QualType(); 1672 continue; 1673 } 1674 1675 // Look one step prior in a dependent name type. 1676 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1677 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1678 T = QualType(NNS->getAsType(), 0); 1679 else 1680 T = QualType(); 1681 continue; 1682 } 1683 1684 // Retrieve the parent of an enumeration type. 1685 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1686 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1687 // check here. 1688 EnumDecl *Enum = EnumT->getDecl(); 1689 1690 // Get to the parent type. 1691 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1692 T = Context.getTypeDeclType(Parent); 1693 else 1694 T = QualType(); 1695 continue; 1696 } 1697 1698 T = QualType(); 1699 } 1700 // Reverse the nested types list, since we want to traverse from the outermost 1701 // to the innermost while checking template-parameter-lists. 1702 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1703 1704 // C++0x [temp.expl.spec]p17: 1705 // A member or a member template may be nested within many 1706 // enclosing class templates. In an explicit specialization for 1707 // such a member, the member declaration shall be preceded by a 1708 // template<> for each enclosing class template that is 1709 // explicitly specialized. 1710 bool SawNonEmptyTemplateParameterList = false; 1711 unsigned ParamIdx = 0; 1712 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1713 ++TypeIdx) { 1714 T = NestedTypes[TypeIdx]; 1715 1716 // Whether we expect a 'template<>' header. 1717 bool NeedEmptyTemplateHeader = false; 1718 1719 // Whether we expect a template header with parameters. 1720 bool NeedNonemptyTemplateHeader = false; 1721 1722 // For a dependent type, the set of template parameters that we 1723 // expect to see. 1724 TemplateParameterList *ExpectedTemplateParams = 0; 1725 1726 // C++0x [temp.expl.spec]p15: 1727 // A member or a member template may be nested within many enclosing 1728 // class templates. In an explicit specialization for such a member, the 1729 // member declaration shall be preceded by a template<> for each 1730 // enclosing class template that is explicitly specialized. 1731 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1732 if (ClassTemplatePartialSpecializationDecl *Partial 1733 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1734 ExpectedTemplateParams = Partial->getTemplateParameters(); 1735 NeedNonemptyTemplateHeader = true; 1736 } else if (Record->isDependentType()) { 1737 if (Record->getDescribedClassTemplate()) { 1738 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1739 ->getTemplateParameters(); 1740 NeedNonemptyTemplateHeader = true; 1741 } 1742 } else if (ClassTemplateSpecializationDecl *Spec 1743 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1744 // C++0x [temp.expl.spec]p4: 1745 // Members of an explicitly specialized class template are defined 1746 // in the same manner as members of normal classes, and not using 1747 // the template<> syntax. 1748 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1749 NeedEmptyTemplateHeader = true; 1750 else 1751 continue; 1752 } else if (Record->getTemplateSpecializationKind()) { 1753 if (Record->getTemplateSpecializationKind() 1754 != TSK_ExplicitSpecialization && 1755 TypeIdx == NumTypes - 1) 1756 IsExplicitSpecialization = true; 1757 1758 continue; 1759 } 1760 } else if (const TemplateSpecializationType *TST 1761 = T->getAs<TemplateSpecializationType>()) { 1762 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1763 ExpectedTemplateParams = Template->getTemplateParameters(); 1764 NeedNonemptyTemplateHeader = true; 1765 } 1766 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1767 // FIXME: We actually could/should check the template arguments here 1768 // against the corresponding template parameter list. 1769 NeedNonemptyTemplateHeader = false; 1770 } 1771 1772 // C++ [temp.expl.spec]p16: 1773 // In an explicit specialization declaration for a member of a class 1774 // template or a member template that ap- pears in namespace scope, the 1775 // member template and some of its enclosing class templates may remain 1776 // unspecialized, except that the declaration shall not explicitly 1777 // specialize a class member template if its en- closing class templates 1778 // are not explicitly specialized as well. 1779 if (ParamIdx < ParamLists.size()) { 1780 if (ParamLists[ParamIdx]->size() == 0) { 1781 if (SawNonEmptyTemplateParameterList) { 1782 Diag(DeclLoc, diag::err_specialize_member_of_template) 1783 << ParamLists[ParamIdx]->getSourceRange(); 1784 Invalid = true; 1785 IsExplicitSpecialization = false; 1786 return 0; 1787 } 1788 } else 1789 SawNonEmptyTemplateParameterList = true; 1790 } 1791 1792 if (NeedEmptyTemplateHeader) { 1793 // If we're on the last of the types, and we need a 'template<>' header 1794 // here, then it's an explicit specialization. 1795 if (TypeIdx == NumTypes - 1) 1796 IsExplicitSpecialization = true; 1797 1798 if (ParamIdx < ParamLists.size()) { 1799 if (ParamLists[ParamIdx]->size() > 0) { 1800 // The header has template parameters when it shouldn't. Complain. 1801 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1802 diag::err_template_param_list_matches_nontemplate) 1803 << T 1804 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1805 ParamLists[ParamIdx]->getRAngleLoc()) 1806 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1807 Invalid = true; 1808 return 0; 1809 } 1810 1811 // Consume this template header. 1812 ++ParamIdx; 1813 continue; 1814 } 1815 1816 if (!IsFriend) { 1817 // We don't have a template header, but we should. 1818 SourceLocation ExpectedTemplateLoc; 1819 if (!ParamLists.empty()) 1820 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1821 else 1822 ExpectedTemplateLoc = DeclStartLoc; 1823 1824 Diag(DeclLoc, diag::err_template_spec_needs_header) 1825 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1826 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1827 } 1828 1829 continue; 1830 } 1831 1832 if (NeedNonemptyTemplateHeader) { 1833 // In friend declarations we can have template-ids which don't 1834 // depend on the corresponding template parameter lists. But 1835 // assume that empty parameter lists are supposed to match this 1836 // template-id. 1837 if (IsFriend && T->isDependentType()) { 1838 if (ParamIdx < ParamLists.size() && 1839 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1840 ExpectedTemplateParams = 0; 1841 else 1842 continue; 1843 } 1844 1845 if (ParamIdx < ParamLists.size()) { 1846 // Check the template parameter list, if we can. 1847 if (ExpectedTemplateParams && 1848 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1849 ExpectedTemplateParams, 1850 true, TPL_TemplateMatch)) 1851 Invalid = true; 1852 1853 if (!Invalid && 1854 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1855 TPC_ClassTemplateMember)) 1856 Invalid = true; 1857 1858 ++ParamIdx; 1859 continue; 1860 } 1861 1862 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1863 << T 1864 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1865 Invalid = true; 1866 continue; 1867 } 1868 } 1869 1870 // If there were at least as many template-ids as there were template 1871 // parameter lists, then there are no template parameter lists remaining for 1872 // the declaration itself. 1873 if (ParamIdx >= ParamLists.size()) 1874 return 0; 1875 1876 // If there were too many template parameter lists, complain about that now. 1877 if (ParamIdx < ParamLists.size() - 1) { 1878 bool HasAnyExplicitSpecHeader = false; 1879 bool AllExplicitSpecHeaders = true; 1880 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 1881 if (ParamLists[I]->size() == 0) 1882 HasAnyExplicitSpecHeader = true; 1883 else 1884 AllExplicitSpecHeaders = false; 1885 } 1886 1887 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1888 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 1889 : diag::err_template_spec_extra_headers) 1890 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1891 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 1892 1893 // If there was a specialization somewhere, such that 'template<>' is 1894 // not required, and there were any 'template<>' headers, note where the 1895 // specialization occurred. 1896 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1897 Diag(ExplicitSpecLoc, 1898 diag::note_explicit_template_spec_does_not_need_header) 1899 << NestedTypes.back(); 1900 1901 // We have a template parameter list with no corresponding scope, which 1902 // means that the resulting template declaration can't be instantiated 1903 // properly (we'll end up with dependent nodes when we shouldn't). 1904 if (!AllExplicitSpecHeaders) 1905 Invalid = true; 1906 } 1907 1908 // C++ [temp.expl.spec]p16: 1909 // In an explicit specialization declaration for a member of a class 1910 // template or a member template that ap- pears in namespace scope, the 1911 // member template and some of its enclosing class templates may remain 1912 // unspecialized, except that the declaration shall not explicitly 1913 // specialize a class member template if its en- closing class templates 1914 // are not explicitly specialized as well. 1915 if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) { 1916 Diag(DeclLoc, diag::err_specialize_member_of_template) 1917 << ParamLists[ParamIdx]->getSourceRange(); 1918 Invalid = true; 1919 IsExplicitSpecialization = false; 1920 return 0; 1921 } 1922 1923 // Return the last template parameter list, which corresponds to the 1924 // entity being declared. 1925 return ParamLists.back(); 1926 } 1927 1928 void Sema::NoteAllFoundTemplates(TemplateName Name) { 1929 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1930 Diag(Template->getLocation(), diag::note_template_declared_here) 1931 << (isa<FunctionTemplateDecl>(Template) 1932 ? 0 1933 : isa<ClassTemplateDecl>(Template) 1934 ? 1 1935 : isa<VarTemplateDecl>(Template) 1936 ? 2 1937 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 1938 << Template->getDeclName(); 1939 return; 1940 } 1941 1942 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1943 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1944 IEnd = OST->end(); 1945 I != IEnd; ++I) 1946 Diag((*I)->getLocation(), diag::note_template_declared_here) 1947 << 0 << (*I)->getDeclName(); 1948 1949 return; 1950 } 1951 } 1952 1953 QualType Sema::CheckTemplateIdType(TemplateName Name, 1954 SourceLocation TemplateLoc, 1955 TemplateArgumentListInfo &TemplateArgs) { 1956 DependentTemplateName *DTN 1957 = Name.getUnderlying().getAsDependentTemplateName(); 1958 if (DTN && DTN->isIdentifier()) 1959 // When building a template-id where the template-name is dependent, 1960 // assume the template is a type template. Either our assumption is 1961 // correct, or the code is ill-formed and will be diagnosed when the 1962 // dependent name is substituted. 1963 return Context.getDependentTemplateSpecializationType(ETK_None, 1964 DTN->getQualifier(), 1965 DTN->getIdentifier(), 1966 TemplateArgs); 1967 1968 TemplateDecl *Template = Name.getAsTemplateDecl(); 1969 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1970 // We might have a substituted template template parameter pack. If so, 1971 // build a template specialization type for it. 1972 if (Name.getAsSubstTemplateTemplateParmPack()) 1973 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1974 1975 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1976 << Name; 1977 NoteAllFoundTemplates(Name); 1978 return QualType(); 1979 } 1980 1981 // Check that the template argument list is well-formed for this 1982 // template. 1983 SmallVector<TemplateArgument, 4> Converted; 1984 bool ExpansionIntoFixedList = false; 1985 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1986 false, Converted, &ExpansionIntoFixedList)) 1987 return QualType(); 1988 1989 QualType CanonType; 1990 1991 bool InstantiationDependent = false; 1992 TypeAliasTemplateDecl *AliasTemplate = 0; 1993 if (!ExpansionIntoFixedList && 1994 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1995 // Find the canonical type for this type alias template specialization. 1996 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1997 if (Pattern->isInvalidDecl()) 1998 return QualType(); 1999 2000 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2001 Converted.data(), Converted.size()); 2002 2003 // Only substitute for the innermost template argument list. 2004 MultiLevelTemplateArgumentList TemplateArgLists; 2005 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2006 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2007 for (unsigned I = 0; I < Depth; ++I) 2008 TemplateArgLists.addOuterTemplateArguments(None); 2009 2010 LocalInstantiationScope Scope(*this); 2011 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2012 if (Inst) 2013 return QualType(); 2014 2015 CanonType = SubstType(Pattern->getUnderlyingType(), 2016 TemplateArgLists, AliasTemplate->getLocation(), 2017 AliasTemplate->getDeclName()); 2018 if (CanonType.isNull()) 2019 return QualType(); 2020 } else if (Name.isDependent() || 2021 TemplateSpecializationType::anyDependentTemplateArguments( 2022 TemplateArgs, InstantiationDependent)) { 2023 // This class template specialization is a dependent 2024 // type. Therefore, its canonical type is another class template 2025 // specialization type that contains all of the converted 2026 // arguments in canonical form. This ensures that, e.g., A<T> and 2027 // A<T, T> have identical types when A is declared as: 2028 // 2029 // template<typename T, typename U = T> struct A; 2030 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2031 CanonType = Context.getTemplateSpecializationType(CanonName, 2032 Converted.data(), 2033 Converted.size()); 2034 2035 // FIXME: CanonType is not actually the canonical type, and unfortunately 2036 // it is a TemplateSpecializationType that we will never use again. 2037 // In the future, we need to teach getTemplateSpecializationType to only 2038 // build the canonical type and return that to us. 2039 CanonType = Context.getCanonicalType(CanonType); 2040 2041 // This might work out to be a current instantiation, in which 2042 // case the canonical type needs to be the InjectedClassNameType. 2043 // 2044 // TODO: in theory this could be a simple hashtable lookup; most 2045 // changes to CurContext don't change the set of current 2046 // instantiations. 2047 if (isa<ClassTemplateDecl>(Template)) { 2048 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2049 // If we get out to a namespace, we're done. 2050 if (Ctx->isFileContext()) break; 2051 2052 // If this isn't a record, keep looking. 2053 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2054 if (!Record) continue; 2055 2056 // Look for one of the two cases with InjectedClassNameTypes 2057 // and check whether it's the same template. 2058 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2059 !Record->getDescribedClassTemplate()) 2060 continue; 2061 2062 // Fetch the injected class name type and check whether its 2063 // injected type is equal to the type we just built. 2064 QualType ICNT = Context.getTypeDeclType(Record); 2065 QualType Injected = cast<InjectedClassNameType>(ICNT) 2066 ->getInjectedSpecializationType(); 2067 2068 if (CanonType != Injected->getCanonicalTypeInternal()) 2069 continue; 2070 2071 // If so, the canonical type of this TST is the injected 2072 // class name type of the record we just found. 2073 assert(ICNT.isCanonical()); 2074 CanonType = ICNT; 2075 break; 2076 } 2077 } 2078 } else if (ClassTemplateDecl *ClassTemplate 2079 = dyn_cast<ClassTemplateDecl>(Template)) { 2080 // Find the class template specialization declaration that 2081 // corresponds to these arguments. 2082 void *InsertPos = 0; 2083 ClassTemplateSpecializationDecl *Decl 2084 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2085 InsertPos); 2086 if (!Decl) { 2087 // This is the first time we have referenced this class template 2088 // specialization. Create the canonical declaration and add it to 2089 // the set of specializations. 2090 Decl = ClassTemplateSpecializationDecl::Create(Context, 2091 ClassTemplate->getTemplatedDecl()->getTagKind(), 2092 ClassTemplate->getDeclContext(), 2093 ClassTemplate->getTemplatedDecl()->getLocStart(), 2094 ClassTemplate->getLocation(), 2095 ClassTemplate, 2096 Converted.data(), 2097 Converted.size(), 0); 2098 ClassTemplate->AddSpecialization(Decl, InsertPos); 2099 if (ClassTemplate->isOutOfLine()) 2100 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2101 } 2102 2103 CanonType = Context.getTypeDeclType(Decl); 2104 assert(isa<RecordType>(CanonType) && 2105 "type of non-dependent specialization is not a RecordType"); 2106 } 2107 2108 // Build the fully-sugared type for this class template 2109 // specialization, which refers back to the class template 2110 // specialization we created or found. 2111 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2112 } 2113 2114 TypeResult 2115 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2116 TemplateTy TemplateD, SourceLocation TemplateLoc, 2117 SourceLocation LAngleLoc, 2118 ASTTemplateArgsPtr TemplateArgsIn, 2119 SourceLocation RAngleLoc, 2120 bool IsCtorOrDtorName) { 2121 if (SS.isInvalid()) 2122 return true; 2123 2124 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2125 2126 // Translate the parser's template argument list in our AST format. 2127 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2128 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2129 2130 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2131 QualType T 2132 = Context.getDependentTemplateSpecializationType(ETK_None, 2133 DTN->getQualifier(), 2134 DTN->getIdentifier(), 2135 TemplateArgs); 2136 // Build type-source information. 2137 TypeLocBuilder TLB; 2138 DependentTemplateSpecializationTypeLoc SpecTL 2139 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2140 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2141 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2142 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2143 SpecTL.setTemplateNameLoc(TemplateLoc); 2144 SpecTL.setLAngleLoc(LAngleLoc); 2145 SpecTL.setRAngleLoc(RAngleLoc); 2146 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2147 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2148 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2149 } 2150 2151 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2152 2153 if (Result.isNull()) 2154 return true; 2155 2156 // Build type-source information. 2157 TypeLocBuilder TLB; 2158 TemplateSpecializationTypeLoc SpecTL 2159 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2160 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2161 SpecTL.setTemplateNameLoc(TemplateLoc); 2162 SpecTL.setLAngleLoc(LAngleLoc); 2163 SpecTL.setRAngleLoc(RAngleLoc); 2164 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2165 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2166 2167 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2168 // constructor or destructor name (in such a case, the scope specifier 2169 // will be attached to the enclosing Decl or Expr node). 2170 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2171 // Create an elaborated-type-specifier containing the nested-name-specifier. 2172 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2173 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2174 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2175 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2176 } 2177 2178 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2179 } 2180 2181 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2182 TypeSpecifierType TagSpec, 2183 SourceLocation TagLoc, 2184 CXXScopeSpec &SS, 2185 SourceLocation TemplateKWLoc, 2186 TemplateTy TemplateD, 2187 SourceLocation TemplateLoc, 2188 SourceLocation LAngleLoc, 2189 ASTTemplateArgsPtr TemplateArgsIn, 2190 SourceLocation RAngleLoc) { 2191 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2192 2193 // Translate the parser's template argument list in our AST format. 2194 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2195 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2196 2197 // Determine the tag kind 2198 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2199 ElaboratedTypeKeyword Keyword 2200 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2201 2202 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2203 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2204 DTN->getQualifier(), 2205 DTN->getIdentifier(), 2206 TemplateArgs); 2207 2208 // Build type-source information. 2209 TypeLocBuilder TLB; 2210 DependentTemplateSpecializationTypeLoc SpecTL 2211 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2212 SpecTL.setElaboratedKeywordLoc(TagLoc); 2213 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2214 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2215 SpecTL.setTemplateNameLoc(TemplateLoc); 2216 SpecTL.setLAngleLoc(LAngleLoc); 2217 SpecTL.setRAngleLoc(RAngleLoc); 2218 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2219 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2220 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2221 } 2222 2223 if (TypeAliasTemplateDecl *TAT = 2224 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2225 // C++0x [dcl.type.elab]p2: 2226 // If the identifier resolves to a typedef-name or the simple-template-id 2227 // resolves to an alias template specialization, the 2228 // elaborated-type-specifier is ill-formed. 2229 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2230 Diag(TAT->getLocation(), diag::note_declared_at); 2231 } 2232 2233 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2234 if (Result.isNull()) 2235 return TypeResult(true); 2236 2237 // Check the tag kind 2238 if (const RecordType *RT = Result->getAs<RecordType>()) { 2239 RecordDecl *D = RT->getDecl(); 2240 2241 IdentifierInfo *Id = D->getIdentifier(); 2242 assert(Id && "templated class must have an identifier"); 2243 2244 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2245 TagLoc, *Id)) { 2246 Diag(TagLoc, diag::err_use_with_wrong_tag) 2247 << Result 2248 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2249 Diag(D->getLocation(), diag::note_previous_use); 2250 } 2251 } 2252 2253 // Provide source-location information for the template specialization. 2254 TypeLocBuilder TLB; 2255 TemplateSpecializationTypeLoc SpecTL 2256 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2257 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2258 SpecTL.setTemplateNameLoc(TemplateLoc); 2259 SpecTL.setLAngleLoc(LAngleLoc); 2260 SpecTL.setRAngleLoc(RAngleLoc); 2261 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2262 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2263 2264 // Construct an elaborated type containing the nested-name-specifier (if any) 2265 // and tag keyword. 2266 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2267 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2268 ElabTL.setElaboratedKeywordLoc(TagLoc); 2269 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2270 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2271 } 2272 2273 static bool CheckTemplatePartialSpecializationArgs( 2274 Sema &S, TemplateParameterList *TemplateParams, 2275 SmallVectorImpl<TemplateArgument> &TemplateArgs); 2276 2277 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 2278 NamedDecl *PrevDecl, 2279 SourceLocation Loc, 2280 bool IsPartialSpecialization); 2281 2282 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 2283 /* 2284 // Check the new variable specialization against the parsed input. 2285 // 2286 // FIXME: Model this against function specializations where 2287 // a new function declaration is checked against the specialization 2288 // as candidate for redefinition... (?) 2289 static bool CheckVariableTemplateSpecializationType() { 2290 2291 if (ExpectedType is undeduced && ParsedType is not undeduced) 2292 ExpectedType = dedudeType(); 2293 2294 if (both types are undeduced) 2295 ???; 2296 2297 bool CheckType = !ExpectedType()-> 2298 2299 if (!Context.hasSameType(DI->getType(), ExpectedDI->getType())) { 2300 unsigned ErrStr = IsPartialSpecialization ? 2 : 1; 2301 Diag(D.getIdentifierLoc(), diag::err_invalid_var_template_spec_type) 2302 << ErrStr << VarTemplate << DI->getType() << ExpectedDI->getType(); 2303 Diag(VarTemplate->getLocation(), diag::note_template_declared_here) 2304 << 2 << VarTemplate->getDeclName(); 2305 return true; 2306 } 2307 } 2308 */ 2309 2310 DeclResult Sema::ActOnVarTemplateSpecialization( 2311 Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI, 2312 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, 2313 VarDecl::StorageClass SC, bool IsPartialSpecialization) { 2314 assert(VarTemplate && "A variable template id without template?"); 2315 2316 // D must be variable template id. 2317 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId && 2318 "Variable template specialization is declared with a template it."); 2319 2320 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 2321 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 2322 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 2323 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 2324 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 2325 TemplateId->NumArgs); 2326 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2327 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 2328 TemplateName Name(VarTemplate); 2329 2330 // Check for unexpanded parameter packs in any of the template arguments. 2331 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 2332 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 2333 UPPC_PartialSpecialization)) 2334 return true; 2335 2336 // Check that the template argument list is well-formed for this 2337 // template. 2338 SmallVector<TemplateArgument, 4> Converted; 2339 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 2340 false, Converted)) 2341 return true; 2342 2343 // Check that the type of this variable template specialization 2344 // matches the expected type. 2345 TypeSourceInfo *ExpectedDI; 2346 { 2347 // Do substitution on the type of the declaration 2348 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 2349 Converted.data(), Converted.size()); 2350 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate); 2351 if (Inst) 2352 return true; 2353 VarDecl *Templated = VarTemplate->getTemplatedDecl(); 2354 ExpectedDI = 2355 SubstType(Templated->getTypeSourceInfo(), 2356 MultiLevelTemplateArgumentList(TemplateArgList), 2357 Templated->getTypeSpecStartLoc(), Templated->getDeclName()); 2358 } 2359 if (!ExpectedDI) 2360 return true; 2361 2362 /* 2363 // Check the new variable specialization against the parsed input. 2364 // (Attributes are merged later below.) 2365 if (CheckVariableTemplateSpecializationType()) 2366 return true; 2367 */ 2368 2369 // Find the variable template (partial) specialization declaration that 2370 // corresponds to these arguments. 2371 if (IsPartialSpecialization) { 2372 if (CheckTemplatePartialSpecializationArgs( 2373 *this, VarTemplate->getTemplateParameters(), Converted)) 2374 return true; 2375 2376 bool InstantiationDependent; 2377 if (!Name.isDependent() && 2378 !TemplateSpecializationType::anyDependentTemplateArguments( 2379 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 2380 InstantiationDependent)) { 2381 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 2382 << VarTemplate->getDeclName(); 2383 IsPartialSpecialization = false; 2384 } 2385 } 2386 2387 void *InsertPos = 0; 2388 VarTemplateSpecializationDecl *PrevDecl = 0; 2389 2390 if (IsPartialSpecialization) 2391 // FIXME: Template parameter list matters too 2392 PrevDecl = VarTemplate->findPartialSpecialization( 2393 Converted.data(), Converted.size(), InsertPos); 2394 else 2395 PrevDecl = VarTemplate->findSpecialization(Converted.data(), 2396 Converted.size(), InsertPos); 2397 2398 VarTemplateSpecializationDecl *Specialization = 0; 2399 2400 // Check whether we can declare a variable template specialization in 2401 // the current scope. 2402 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 2403 TemplateNameLoc, 2404 IsPartialSpecialization)) 2405 return true; 2406 2407 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2408 // Since the only prior variable template specialization with these 2409 // arguments was referenced but not declared, reuse that 2410 // declaration node as our own, updating its source location and 2411 // the list of outer template parameters to reflect our new declaration. 2412 Specialization = PrevDecl; 2413 Specialization->setLocation(TemplateNameLoc); 2414 PrevDecl = 0; 2415 } else if (IsPartialSpecialization) { 2416 // Create a new class template partial specialization declaration node. 2417 VarTemplatePartialSpecializationDecl *PrevPartial = 2418 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 2419 unsigned SequenceNumber = 2420 PrevPartial ? PrevPartial->getSequenceNumber() 2421 : VarTemplate->getNextPartialSpecSequenceNumber(); 2422 VarTemplatePartialSpecializationDecl *Partial = 2423 VarTemplatePartialSpecializationDecl::Create( 2424 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 2425 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 2426 Converted.data(), Converted.size(), TemplateArgs, SequenceNumber); 2427 2428 if (!PrevPartial) 2429 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 2430 Specialization = Partial; 2431 2432 // If we are providing an explicit specialization of a member variable 2433 // template specialization, make a note of that. 2434 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 2435 Partial->setMemberSpecialization(); 2436 2437 // Check that all of the template parameters of the variable template 2438 // partial specialization are deducible from the template 2439 // arguments. If not, this variable template partial specialization 2440 // will never be used. 2441 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 2442 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2443 TemplateParams->getDepth(), DeducibleParams); 2444 2445 if (!DeducibleParams.all()) { 2446 unsigned NumNonDeducible = 2447 DeducibleParams.size() - DeducibleParams.count(); 2448 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2449 << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc); 2450 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2451 if (!DeducibleParams[I]) { 2452 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2453 if (Param->getDeclName()) 2454 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2455 << Param->getDeclName(); 2456 else 2457 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2458 << "<anonymous>"; 2459 } 2460 } 2461 } 2462 } else { 2463 // Create a new class template specialization declaration node for 2464 // this explicit specialization or friend declaration. 2465 Specialization = VarTemplateSpecializationDecl::Create( 2466 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 2467 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size()); 2468 Specialization->setTemplateArgsInfo(TemplateArgs); 2469 2470 if (!PrevDecl) 2471 VarTemplate->AddSpecialization(Specialization, InsertPos); 2472 } 2473 2474 // C++ [temp.expl.spec]p6: 2475 // If a template, a member template or the member of a class template is 2476 // explicitly specialized then that specialization shall be declared 2477 // before the first use of that specialization that would cause an implicit 2478 // instantiation to take place, in every translation unit in which such a 2479 // use occurs; no diagnostic is required. 2480 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 2481 bool Okay = false; 2482 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 2483 // Is there any previous explicit specialization declaration? 2484 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 2485 Okay = true; 2486 break; 2487 } 2488 } 2489 2490 if (!Okay) { 2491 SourceRange Range(TemplateNameLoc, RAngleLoc); 2492 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 2493 << Name << Range; 2494 2495 Diag(PrevDecl->getPointOfInstantiation(), 2496 diag::note_instantiation_required_here) 2497 << (PrevDecl->getTemplateSpecializationKind() != 2498 TSK_ImplicitInstantiation); 2499 return true; 2500 } 2501 } 2502 2503 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 2504 Specialization->setLexicalDeclContext(CurContext); 2505 2506 // Add the specialization into its lexical context, so that it can 2507 // be seen when iterating through the list of declarations in that 2508 // context. However, specializations are not found by name lookup. 2509 CurContext->addDecl(Specialization); 2510 2511 // Note that this is an explicit specialization. 2512 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2513 2514 if (PrevDecl) { 2515 // Check that this isn't a redefinition of this specialization, 2516 // merging with previous declarations. 2517 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 2518 ForRedeclaration); 2519 PrevSpec.addDecl(PrevDecl); 2520 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 2521 } 2522 2523 // Link instantiations of static data members back to the template from 2524 // which they were instantiated. 2525 if (Specialization->isStaticDataMember()) 2526 Specialization->setInstantiationOfStaticDataMember( 2527 VarTemplate->getTemplatedDecl(), 2528 Specialization->getSpecializationKind()); 2529 2530 return Specialization; 2531 } 2532 2533 namespace { 2534 /// \brief A partial specialization whose template arguments have matched 2535 /// a given template-id. 2536 struct PartialSpecMatchResult { 2537 VarTemplatePartialSpecializationDecl *Partial; 2538 TemplateArgumentList *Args; 2539 }; 2540 } 2541 2542 DeclResult 2543 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 2544 SourceLocation TemplateNameLoc, 2545 const TemplateArgumentListInfo &TemplateArgs) { 2546 assert(Template && "A variable template id without template?"); 2547 2548 // Check that the template argument list is well-formed for this template. 2549 SmallVector<TemplateArgument, 4> Converted; 2550 bool ExpansionIntoFixedList = false; 2551 if (CheckTemplateArgumentList( 2552 Template, TemplateNameLoc, 2553 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 2554 Converted, &ExpansionIntoFixedList)) 2555 return true; 2556 2557 // Find the variable template specialization declaration that 2558 // corresponds to these arguments. 2559 void *InsertPos = 0; 2560 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 2561 Converted.data(), Converted.size(), InsertPos)) 2562 // If we already have a variable template specialization, return it. 2563 return Spec; 2564 2565 // This is the first time we have referenced this variable template 2566 // specialization. Create the canonical declaration and add it to 2567 // the set of specializations, based on the closest partial specialization 2568 // that it represents. That is, 2569 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 2570 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 2571 Converted.data(), Converted.size()); 2572 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 2573 bool AmbiguousPartialSpec = false; 2574 typedef PartialSpecMatchResult MatchResult; 2575 SmallVector<MatchResult, 4> Matched; 2576 SourceLocation PointOfInstantiation = TemplateNameLoc; 2577 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation); 2578 2579 // 1. Attempt to find the closest partial specialization that this 2580 // specializes, if any. 2581 // If any of the template arguments is dependent, then this is probably 2582 // a placeholder for an incomplete declarative context; which must be 2583 // complete by instantiation time. Thus, do not search through the partial 2584 // specializations yet. 2585 // FIXME: Unify with InstantiateClassTemplateSpecialization()? 2586 bool InstantiationDependent = false; 2587 if (!TemplateSpecializationType::anyDependentTemplateArguments( 2588 TemplateArgs, InstantiationDependent)) { 2589 2590 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 2591 Template->getPartialSpecializations(PartialSpecs); 2592 2593 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 2594 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 2595 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 2596 2597 if (TemplateDeductionResult Result = 2598 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 2599 // Store the failed-deduction information for use in diagnostics, later. 2600 FailedCandidates.addCandidate() 2601 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info)); 2602 (void)Result; 2603 } else { 2604 Matched.push_back(PartialSpecMatchResult()); 2605 Matched.back().Partial = Partial; 2606 Matched.back().Args = Info.take(); 2607 } 2608 } 2609 2610 // If we're dealing with a member template where the template parameters 2611 // have been instantiated, this provides the original template parameters 2612 // from which the member template's parameters were instantiated. 2613 SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters; 2614 2615 if (Matched.size() >= 1) { 2616 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 2617 if (Matched.size() == 1) { 2618 // -- If exactly one matching specialization is found, the 2619 // instantiation is generated from that specialization. 2620 // We don't need to do anything for this. 2621 } else { 2622 // -- If more than one matching specialization is found, the 2623 // partial order rules (14.5.4.2) are used to determine 2624 // whether one of the specializations is more specialized 2625 // than the others. If none of the specializations is more 2626 // specialized than all of the other matching 2627 // specializations, then the use of the variable template is 2628 // ambiguous and the program is ill-formed. 2629 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 2630 PEnd = Matched.end(); 2631 P != PEnd; ++P) { 2632 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 2633 PointOfInstantiation) == 2634 P->Partial) 2635 Best = P; 2636 } 2637 2638 // Determine if the best partial specialization is more specialized than 2639 // the others. 2640 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2641 PEnd = Matched.end(); 2642 P != PEnd; ++P) { 2643 if (P != Best && getMoreSpecializedPartialSpecialization( 2644 P->Partial, Best->Partial, 2645 PointOfInstantiation) != Best->Partial) { 2646 AmbiguousPartialSpec = true; 2647 break; 2648 } 2649 } 2650 } 2651 2652 // Instantiate using the best variable template partial specialization. 2653 InstantiationPattern = Best->Partial; 2654 InstantiationArgs = Best->Args; 2655 } else { 2656 // -- If no match is found, the instantiation is generated 2657 // from the primary template. 2658 // InstantiationPattern = Template->getTemplatedDecl(); 2659 } 2660 } 2661 2662 // FIXME: Actually use FailedCandidates. 2663 2664 // 2. Create the canonical declaration. 2665 // Note that we do not instantiate the variable just yet, since 2666 // instantiation is handled in DoMarkVarDeclReferenced(). 2667 // FIXME: LateAttrs et al.? 2668 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 2669 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 2670 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 2671 if (!Decl) 2672 return true; 2673 2674 if (AmbiguousPartialSpec) { 2675 // Partial ordering did not produce a clear winner. Complain. 2676 Decl->setInvalidDecl(); 2677 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 2678 << Decl; 2679 2680 // Print the matching partial specializations. 2681 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2682 PEnd = Matched.end(); 2683 P != PEnd; ++P) 2684 Diag(P->Partial->getLocation(), diag::note_partial_spec_match) 2685 << getTemplateArgumentBindingsText( 2686 P->Partial->getTemplateParameters(), *P->Args); 2687 return true; 2688 } 2689 2690 if (VarTemplatePartialSpecializationDecl *D = 2691 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 2692 Decl->setInstantiationOf(D, InstantiationArgs); 2693 2694 assert(Decl && "No variable template specialization?"); 2695 return Decl; 2696 } 2697 2698 ExprResult 2699 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 2700 const DeclarationNameInfo &NameInfo, 2701 VarTemplateDecl *Template, SourceLocation TemplateLoc, 2702 const TemplateArgumentListInfo *TemplateArgs) { 2703 2704 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 2705 *TemplateArgs); 2706 if (Decl.isInvalid()) 2707 return ExprError(); 2708 2709 VarDecl *Var = cast<VarDecl>(Decl.get()); 2710 if (!Var->getTemplateSpecializationKind()) 2711 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 2712 NameInfo.getLoc()); 2713 2714 // Build an ordinary singleton decl ref. 2715 return BuildDeclarationNameExpr(SS, NameInfo, Var, 2716 /*FoundD=*/0, TemplateArgs); 2717 } 2718 2719 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2720 SourceLocation TemplateKWLoc, 2721 LookupResult &R, 2722 bool RequiresADL, 2723 const TemplateArgumentListInfo *TemplateArgs) { 2724 // FIXME: Can we do any checking at this point? I guess we could check the 2725 // template arguments that we have against the template name, if the template 2726 // name refers to a single template. That's not a terribly common case, 2727 // though. 2728 // foo<int> could identify a single function unambiguously 2729 // This approach does NOT work, since f<int>(1); 2730 // gets resolved prior to resorting to overload resolution 2731 // i.e., template<class T> void f(double); 2732 // vs template<class T, class U> void f(U); 2733 2734 // These should be filtered out by our callers. 2735 assert(!R.empty() && "empty lookup results when building templateid"); 2736 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2737 2738 // In C++1y, check variable template ids. 2739 if (R.getAsSingle<VarTemplateDecl>()) { 2740 return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(), 2741 R.getAsSingle<VarTemplateDecl>(), 2742 TemplateKWLoc, TemplateArgs)); 2743 } 2744 2745 // We don't want lookup warnings at this point. 2746 R.suppressDiagnostics(); 2747 2748 UnresolvedLookupExpr *ULE 2749 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2750 SS.getWithLocInContext(Context), 2751 TemplateKWLoc, 2752 R.getLookupNameInfo(), 2753 RequiresADL, TemplateArgs, 2754 R.begin(), R.end()); 2755 2756 return Owned(ULE); 2757 } 2758 2759 // We actually only call this from template instantiation. 2760 ExprResult 2761 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2762 SourceLocation TemplateKWLoc, 2763 const DeclarationNameInfo &NameInfo, 2764 const TemplateArgumentListInfo *TemplateArgs) { 2765 2766 assert(TemplateArgs || TemplateKWLoc.isValid()); 2767 DeclContext *DC; 2768 if (!(DC = computeDeclContext(SS, false)) || 2769 DC->isDependentContext() || 2770 RequireCompleteDeclContext(SS, DC)) 2771 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2772 2773 bool MemberOfUnknownSpecialization; 2774 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2775 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2776 MemberOfUnknownSpecialization); 2777 2778 if (R.isAmbiguous()) 2779 return ExprError(); 2780 2781 if (R.empty()) { 2782 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2783 << NameInfo.getName() << SS.getRange(); 2784 return ExprError(); 2785 } 2786 2787 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2788 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2789 << (NestedNameSpecifier*) SS.getScopeRep() 2790 << NameInfo.getName() << SS.getRange(); 2791 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2792 return ExprError(); 2793 } 2794 2795 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2796 } 2797 2798 /// \brief Form a dependent template name. 2799 /// 2800 /// This action forms a dependent template name given the template 2801 /// name and its (presumably dependent) scope specifier. For 2802 /// example, given "MetaFun::template apply", the scope specifier \p 2803 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2804 /// of the "template" keyword, and "apply" is the \p Name. 2805 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2806 CXXScopeSpec &SS, 2807 SourceLocation TemplateKWLoc, 2808 UnqualifiedId &Name, 2809 ParsedType ObjectType, 2810 bool EnteringContext, 2811 TemplateTy &Result) { 2812 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2813 Diag(TemplateKWLoc, 2814 getLangOpts().CPlusPlus11 ? 2815 diag::warn_cxx98_compat_template_outside_of_template : 2816 diag::ext_template_outside_of_template) 2817 << FixItHint::CreateRemoval(TemplateKWLoc); 2818 2819 DeclContext *LookupCtx = 0; 2820 if (SS.isSet()) 2821 LookupCtx = computeDeclContext(SS, EnteringContext); 2822 if (!LookupCtx && ObjectType) 2823 LookupCtx = computeDeclContext(ObjectType.get()); 2824 if (LookupCtx) { 2825 // C++0x [temp.names]p5: 2826 // If a name prefixed by the keyword template is not the name of 2827 // a template, the program is ill-formed. [Note: the keyword 2828 // template may not be applied to non-template members of class 2829 // templates. -end note ] [ Note: as is the case with the 2830 // typename prefix, the template prefix is allowed in cases 2831 // where it is not strictly necessary; i.e., when the 2832 // nested-name-specifier or the expression on the left of the -> 2833 // or . is not dependent on a template-parameter, or the use 2834 // does not appear in the scope of a template. -end note] 2835 // 2836 // Note: C++03 was more strict here, because it banned the use of 2837 // the "template" keyword prior to a template-name that was not a 2838 // dependent name. C++ DR468 relaxed this requirement (the 2839 // "template" keyword is now permitted). We follow the C++0x 2840 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2841 bool MemberOfUnknownSpecialization; 2842 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 2843 ObjectType, EnteringContext, Result, 2844 MemberOfUnknownSpecialization); 2845 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2846 isa<CXXRecordDecl>(LookupCtx) && 2847 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2848 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2849 // This is a dependent template. Handle it below. 2850 } else if (TNK == TNK_Non_template) { 2851 Diag(Name.getLocStart(), 2852 diag::err_template_kw_refers_to_non_template) 2853 << GetNameFromUnqualifiedId(Name).getName() 2854 << Name.getSourceRange() 2855 << TemplateKWLoc; 2856 return TNK_Non_template; 2857 } else { 2858 // We found something; return it. 2859 return TNK; 2860 } 2861 } 2862 2863 NestedNameSpecifier *Qualifier 2864 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2865 2866 switch (Name.getKind()) { 2867 case UnqualifiedId::IK_Identifier: 2868 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2869 Name.Identifier)); 2870 return TNK_Dependent_template_name; 2871 2872 case UnqualifiedId::IK_OperatorFunctionId: 2873 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2874 Name.OperatorFunctionId.Operator)); 2875 return TNK_Dependent_template_name; 2876 2877 case UnqualifiedId::IK_LiteralOperatorId: 2878 llvm_unreachable( 2879 "We don't support these; Parse shouldn't have allowed propagation"); 2880 2881 default: 2882 break; 2883 } 2884 2885 Diag(Name.getLocStart(), 2886 diag::err_template_kw_refers_to_non_template) 2887 << GetNameFromUnqualifiedId(Name).getName() 2888 << Name.getSourceRange() 2889 << TemplateKWLoc; 2890 return TNK_Non_template; 2891 } 2892 2893 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2894 const TemplateArgumentLoc &AL, 2895 SmallVectorImpl<TemplateArgument> &Converted) { 2896 const TemplateArgument &Arg = AL.getArgument(); 2897 2898 // Check template type parameter. 2899 switch(Arg.getKind()) { 2900 case TemplateArgument::Type: 2901 // C++ [temp.arg.type]p1: 2902 // A template-argument for a template-parameter which is a 2903 // type shall be a type-id. 2904 break; 2905 case TemplateArgument::Template: { 2906 // We have a template type parameter but the template argument 2907 // is a template without any arguments. 2908 SourceRange SR = AL.getSourceRange(); 2909 TemplateName Name = Arg.getAsTemplate(); 2910 Diag(SR.getBegin(), diag::err_template_missing_args) 2911 << Name << SR; 2912 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2913 Diag(Decl->getLocation(), diag::note_template_decl_here); 2914 2915 return true; 2916 } 2917 case TemplateArgument::Expression: { 2918 // We have a template type parameter but the template argument is an 2919 // expression; see if maybe it is missing the "typename" keyword. 2920 CXXScopeSpec SS; 2921 DeclarationNameInfo NameInfo; 2922 2923 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2924 SS.Adopt(ArgExpr->getQualifierLoc()); 2925 NameInfo = ArgExpr->getNameInfo(); 2926 } else if (DependentScopeDeclRefExpr *ArgExpr = 2927 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2928 SS.Adopt(ArgExpr->getQualifierLoc()); 2929 NameInfo = ArgExpr->getNameInfo(); 2930 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2931 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2932 if (ArgExpr->isImplicitAccess()) { 2933 SS.Adopt(ArgExpr->getQualifierLoc()); 2934 NameInfo = ArgExpr->getMemberNameInfo(); 2935 } 2936 } 2937 2938 if (NameInfo.getName().isIdentifier()) { 2939 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2940 LookupParsedName(Result, CurScope, &SS); 2941 2942 if (Result.getAsSingle<TypeDecl>() || 2943 Result.getResultKind() == 2944 LookupResult::NotFoundInCurrentInstantiation) { 2945 // FIXME: Add a FixIt and fix up the template argument for recovery. 2946 SourceLocation Loc = AL.getSourceRange().getBegin(); 2947 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2948 Diag(Param->getLocation(), diag::note_template_param_here); 2949 return true; 2950 } 2951 } 2952 // fallthrough 2953 } 2954 default: { 2955 // We have a template type parameter but the template argument 2956 // is not a type. 2957 SourceRange SR = AL.getSourceRange(); 2958 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2959 Diag(Param->getLocation(), diag::note_template_param_here); 2960 2961 return true; 2962 } 2963 } 2964 2965 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2966 return true; 2967 2968 // Add the converted template type argument. 2969 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2970 2971 // Objective-C ARC: 2972 // If an explicitly-specified template argument type is a lifetime type 2973 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2974 if (getLangOpts().ObjCAutoRefCount && 2975 ArgType->isObjCLifetimeType() && 2976 !ArgType.getObjCLifetime()) { 2977 Qualifiers Qs; 2978 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2979 ArgType = Context.getQualifiedType(ArgType, Qs); 2980 } 2981 2982 Converted.push_back(TemplateArgument(ArgType)); 2983 return false; 2984 } 2985 2986 /// \brief Substitute template arguments into the default template argument for 2987 /// the given template type parameter. 2988 /// 2989 /// \param SemaRef the semantic analysis object for which we are performing 2990 /// the substitution. 2991 /// 2992 /// \param Template the template that we are synthesizing template arguments 2993 /// for. 2994 /// 2995 /// \param TemplateLoc the location of the template name that started the 2996 /// template-id we are checking. 2997 /// 2998 /// \param RAngleLoc the location of the right angle bracket ('>') that 2999 /// terminates the template-id. 3000 /// 3001 /// \param Param the template template parameter whose default we are 3002 /// substituting into. 3003 /// 3004 /// \param Converted the list of template arguments provided for template 3005 /// parameters that precede \p Param in the template parameter list. 3006 /// \returns the substituted template argument, or NULL if an error occurred. 3007 static TypeSourceInfo * 3008 SubstDefaultTemplateArgument(Sema &SemaRef, 3009 TemplateDecl *Template, 3010 SourceLocation TemplateLoc, 3011 SourceLocation RAngleLoc, 3012 TemplateTypeParmDecl *Param, 3013 SmallVectorImpl<TemplateArgument> &Converted) { 3014 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 3015 3016 // If the argument type is dependent, instantiate it now based 3017 // on the previously-computed template arguments. 3018 if (ArgType->getType()->isDependentType()) { 3019 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3020 Converted.data(), Converted.size()); 3021 3022 MultiLevelTemplateArgumentList AllTemplateArgs 3023 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 3024 3025 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3026 Template, Converted, 3027 SourceRange(TemplateLoc, RAngleLoc)); 3028 if (Inst) 3029 return 0; 3030 3031 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3032 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 3033 Param->getDefaultArgumentLoc(), 3034 Param->getDeclName()); 3035 } 3036 3037 return ArgType; 3038 } 3039 3040 /// \brief Substitute template arguments into the default template argument for 3041 /// the given non-type template parameter. 3042 /// 3043 /// \param SemaRef the semantic analysis object for which we are performing 3044 /// the substitution. 3045 /// 3046 /// \param Template the template that we are synthesizing template arguments 3047 /// for. 3048 /// 3049 /// \param TemplateLoc the location of the template name that started the 3050 /// template-id we are checking. 3051 /// 3052 /// \param RAngleLoc the location of the right angle bracket ('>') that 3053 /// terminates the template-id. 3054 /// 3055 /// \param Param the non-type template parameter whose default we are 3056 /// substituting into. 3057 /// 3058 /// \param Converted the list of template arguments provided for template 3059 /// parameters that precede \p Param in the template parameter list. 3060 /// 3061 /// \returns the substituted template argument, or NULL if an error occurred. 3062 static ExprResult 3063 SubstDefaultTemplateArgument(Sema &SemaRef, 3064 TemplateDecl *Template, 3065 SourceLocation TemplateLoc, 3066 SourceLocation RAngleLoc, 3067 NonTypeTemplateParmDecl *Param, 3068 SmallVectorImpl<TemplateArgument> &Converted) { 3069 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3070 Converted.data(), Converted.size()); 3071 3072 MultiLevelTemplateArgumentList AllTemplateArgs 3073 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 3074 3075 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3076 Template, Converted, 3077 SourceRange(TemplateLoc, RAngleLoc)); 3078 if (Inst) 3079 return ExprError(); 3080 3081 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3082 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 3083 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 3084 } 3085 3086 /// \brief Substitute template arguments into the default template argument for 3087 /// the given template template parameter. 3088 /// 3089 /// \param SemaRef the semantic analysis object for which we are performing 3090 /// the substitution. 3091 /// 3092 /// \param Template the template that we are synthesizing template arguments 3093 /// for. 3094 /// 3095 /// \param TemplateLoc the location of the template name that started the 3096 /// template-id we are checking. 3097 /// 3098 /// \param RAngleLoc the location of the right angle bracket ('>') that 3099 /// terminates the template-id. 3100 /// 3101 /// \param Param the template template parameter whose default we are 3102 /// substituting into. 3103 /// 3104 /// \param Converted the list of template arguments provided for template 3105 /// parameters that precede \p Param in the template parameter list. 3106 /// 3107 /// \param QualifierLoc Will be set to the nested-name-specifier (with 3108 /// source-location information) that precedes the template name. 3109 /// 3110 /// \returns the substituted template argument, or NULL if an error occurred. 3111 static TemplateName 3112 SubstDefaultTemplateArgument(Sema &SemaRef, 3113 TemplateDecl *Template, 3114 SourceLocation TemplateLoc, 3115 SourceLocation RAngleLoc, 3116 TemplateTemplateParmDecl *Param, 3117 SmallVectorImpl<TemplateArgument> &Converted, 3118 NestedNameSpecifierLoc &QualifierLoc) { 3119 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3120 Converted.data(), Converted.size()); 3121 3122 MultiLevelTemplateArgumentList AllTemplateArgs 3123 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 3124 3125 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3126 Template, Converted, 3127 SourceRange(TemplateLoc, RAngleLoc)); 3128 if (Inst) 3129 return TemplateName(); 3130 3131 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3132 // Substitute into the nested-name-specifier first, 3133 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 3134 if (QualifierLoc) { 3135 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 3136 AllTemplateArgs); 3137 if (!QualifierLoc) 3138 return TemplateName(); 3139 } 3140 3141 return SemaRef.SubstTemplateName(QualifierLoc, 3142 Param->getDefaultArgument().getArgument().getAsTemplate(), 3143 Param->getDefaultArgument().getTemplateNameLoc(), 3144 AllTemplateArgs); 3145 } 3146 3147 /// \brief If the given template parameter has a default template 3148 /// argument, substitute into that default template argument and 3149 /// return the corresponding template argument. 3150 TemplateArgumentLoc 3151 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 3152 SourceLocation TemplateLoc, 3153 SourceLocation RAngleLoc, 3154 Decl *Param, 3155 SmallVectorImpl<TemplateArgument> 3156 &Converted, 3157 bool &HasDefaultArg) { 3158 HasDefaultArg = false; 3159 3160 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 3161 if (!TypeParm->hasDefaultArgument()) 3162 return TemplateArgumentLoc(); 3163 3164 HasDefaultArg = true; 3165 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 3166 TemplateLoc, 3167 RAngleLoc, 3168 TypeParm, 3169 Converted); 3170 if (DI) 3171 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 3172 3173 return TemplateArgumentLoc(); 3174 } 3175 3176 if (NonTypeTemplateParmDecl *NonTypeParm 3177 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3178 if (!NonTypeParm->hasDefaultArgument()) 3179 return TemplateArgumentLoc(); 3180 3181 HasDefaultArg = true; 3182 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 3183 TemplateLoc, 3184 RAngleLoc, 3185 NonTypeParm, 3186 Converted); 3187 if (Arg.isInvalid()) 3188 return TemplateArgumentLoc(); 3189 3190 Expr *ArgE = Arg.takeAs<Expr>(); 3191 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 3192 } 3193 3194 TemplateTemplateParmDecl *TempTempParm 3195 = cast<TemplateTemplateParmDecl>(Param); 3196 if (!TempTempParm->hasDefaultArgument()) 3197 return TemplateArgumentLoc(); 3198 3199 HasDefaultArg = true; 3200 NestedNameSpecifierLoc QualifierLoc; 3201 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 3202 TemplateLoc, 3203 RAngleLoc, 3204 TempTempParm, 3205 Converted, 3206 QualifierLoc); 3207 if (TName.isNull()) 3208 return TemplateArgumentLoc(); 3209 3210 return TemplateArgumentLoc(TemplateArgument(TName), 3211 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 3212 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 3213 } 3214 3215 /// \brief Check that the given template argument corresponds to the given 3216 /// template parameter. 3217 /// 3218 /// \param Param The template parameter against which the argument will be 3219 /// checked. 3220 /// 3221 /// \param Arg The template argument. 3222 /// 3223 /// \param Template The template in which the template argument resides. 3224 /// 3225 /// \param TemplateLoc The location of the template name for the template 3226 /// whose argument list we're matching. 3227 /// 3228 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 3229 /// the template argument list. 3230 /// 3231 /// \param ArgumentPackIndex The index into the argument pack where this 3232 /// argument will be placed. Only valid if the parameter is a parameter pack. 3233 /// 3234 /// \param Converted The checked, converted argument will be added to the 3235 /// end of this small vector. 3236 /// 3237 /// \param CTAK Describes how we arrived at this particular template argument: 3238 /// explicitly written, deduced, etc. 3239 /// 3240 /// \returns true on error, false otherwise. 3241 bool Sema::CheckTemplateArgument(NamedDecl *Param, 3242 const TemplateArgumentLoc &Arg, 3243 NamedDecl *Template, 3244 SourceLocation TemplateLoc, 3245 SourceLocation RAngleLoc, 3246 unsigned ArgumentPackIndex, 3247 SmallVectorImpl<TemplateArgument> &Converted, 3248 CheckTemplateArgumentKind CTAK) { 3249 // Check template type parameters. 3250 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 3251 return CheckTemplateTypeArgument(TTP, Arg, Converted); 3252 3253 // Check non-type template parameters. 3254 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3255 // Do substitution on the type of the non-type template parameter 3256 // with the template arguments we've seen thus far. But if the 3257 // template has a dependent context then we cannot substitute yet. 3258 QualType NTTPType = NTTP->getType(); 3259 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 3260 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 3261 3262 if (NTTPType->isDependentType() && 3263 !isa<TemplateTemplateParmDecl>(Template) && 3264 !Template->getDeclContext()->isDependentContext()) { 3265 // Do substitution on the type of the non-type template parameter. 3266 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3267 NTTP, Converted, 3268 SourceRange(TemplateLoc, RAngleLoc)); 3269 if (Inst) 3270 return true; 3271 3272 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3273 Converted.data(), Converted.size()); 3274 NTTPType = SubstType(NTTPType, 3275 MultiLevelTemplateArgumentList(TemplateArgs), 3276 NTTP->getLocation(), 3277 NTTP->getDeclName()); 3278 // If that worked, check the non-type template parameter type 3279 // for validity. 3280 if (!NTTPType.isNull()) 3281 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 3282 NTTP->getLocation()); 3283 if (NTTPType.isNull()) 3284 return true; 3285 } 3286 3287 switch (Arg.getArgument().getKind()) { 3288 case TemplateArgument::Null: 3289 llvm_unreachable("Should never see a NULL template argument here"); 3290 3291 case TemplateArgument::Expression: { 3292 TemplateArgument Result; 3293 ExprResult Res = 3294 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 3295 Result, CTAK); 3296 if (Res.isInvalid()) 3297 return true; 3298 3299 Converted.push_back(Result); 3300 break; 3301 } 3302 3303 case TemplateArgument::Declaration: 3304 case TemplateArgument::Integral: 3305 case TemplateArgument::NullPtr: 3306 // We've already checked this template argument, so just copy 3307 // it to the list of converted arguments. 3308 Converted.push_back(Arg.getArgument()); 3309 break; 3310 3311 case TemplateArgument::Template: 3312 case TemplateArgument::TemplateExpansion: 3313 // We were given a template template argument. It may not be ill-formed; 3314 // see below. 3315 if (DependentTemplateName *DTN 3316 = Arg.getArgument().getAsTemplateOrTemplatePattern() 3317 .getAsDependentTemplateName()) { 3318 // We have a template argument such as \c T::template X, which we 3319 // parsed as a template template argument. However, since we now 3320 // know that we need a non-type template argument, convert this 3321 // template name into an expression. 3322 3323 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 3324 Arg.getTemplateNameLoc()); 3325 3326 CXXScopeSpec SS; 3327 SS.Adopt(Arg.getTemplateQualifierLoc()); 3328 // FIXME: the template-template arg was a DependentTemplateName, 3329 // so it was provided with a template keyword. However, its source 3330 // location is not stored in the template argument structure. 3331 SourceLocation TemplateKWLoc; 3332 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 3333 SS.getWithLocInContext(Context), 3334 TemplateKWLoc, 3335 NameInfo, 0)); 3336 3337 // If we parsed the template argument as a pack expansion, create a 3338 // pack expansion expression. 3339 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 3340 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 3341 if (E.isInvalid()) 3342 return true; 3343 } 3344 3345 TemplateArgument Result; 3346 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 3347 if (E.isInvalid()) 3348 return true; 3349 3350 Converted.push_back(Result); 3351 break; 3352 } 3353 3354 // We have a template argument that actually does refer to a class 3355 // template, alias template, or template template parameter, and 3356 // therefore cannot be a non-type template argument. 3357 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 3358 << Arg.getSourceRange(); 3359 3360 Diag(Param->getLocation(), diag::note_template_param_here); 3361 return true; 3362 3363 case TemplateArgument::Type: { 3364 // We have a non-type template parameter but the template 3365 // argument is a type. 3366 3367 // C++ [temp.arg]p2: 3368 // In a template-argument, an ambiguity between a type-id and 3369 // an expression is resolved to a type-id, regardless of the 3370 // form of the corresponding template-parameter. 3371 // 3372 // We warn specifically about this case, since it can be rather 3373 // confusing for users. 3374 QualType T = Arg.getArgument().getAsType(); 3375 SourceRange SR = Arg.getSourceRange(); 3376 if (T->isFunctionType()) 3377 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 3378 else 3379 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 3380 Diag(Param->getLocation(), diag::note_template_param_here); 3381 return true; 3382 } 3383 3384 case TemplateArgument::Pack: 3385 llvm_unreachable("Caller must expand template argument packs"); 3386 } 3387 3388 return false; 3389 } 3390 3391 3392 // Check template template parameters. 3393 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 3394 3395 // Substitute into the template parameter list of the template 3396 // template parameter, since previously-supplied template arguments 3397 // may appear within the template template parameter. 3398 { 3399 // Set up a template instantiation context. 3400 LocalInstantiationScope Scope(*this); 3401 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3402 TempParm, Converted, 3403 SourceRange(TemplateLoc, RAngleLoc)); 3404 if (Inst) 3405 return true; 3406 3407 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3408 Converted.data(), Converted.size()); 3409 TempParm = cast_or_null<TemplateTemplateParmDecl>( 3410 SubstDecl(TempParm, CurContext, 3411 MultiLevelTemplateArgumentList(TemplateArgs))); 3412 if (!TempParm) 3413 return true; 3414 } 3415 3416 switch (Arg.getArgument().getKind()) { 3417 case TemplateArgument::Null: 3418 llvm_unreachable("Should never see a NULL template argument here"); 3419 3420 case TemplateArgument::Template: 3421 case TemplateArgument::TemplateExpansion: 3422 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 3423 return true; 3424 3425 Converted.push_back(Arg.getArgument()); 3426 break; 3427 3428 case TemplateArgument::Expression: 3429 case TemplateArgument::Type: 3430 // We have a template template parameter but the template 3431 // argument does not refer to a template. 3432 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 3433 << getLangOpts().CPlusPlus11; 3434 return true; 3435 3436 case TemplateArgument::Declaration: 3437 llvm_unreachable("Declaration argument with template template parameter"); 3438 case TemplateArgument::Integral: 3439 llvm_unreachable("Integral argument with template template parameter"); 3440 case TemplateArgument::NullPtr: 3441 llvm_unreachable("Null pointer argument with template template parameter"); 3442 3443 case TemplateArgument::Pack: 3444 llvm_unreachable("Caller must expand template argument packs"); 3445 } 3446 3447 return false; 3448 } 3449 3450 /// \brief Diagnose an arity mismatch in the 3451 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 3452 SourceLocation TemplateLoc, 3453 TemplateArgumentListInfo &TemplateArgs) { 3454 TemplateParameterList *Params = Template->getTemplateParameters(); 3455 unsigned NumParams = Params->size(); 3456 unsigned NumArgs = TemplateArgs.size(); 3457 3458 SourceRange Range; 3459 if (NumArgs > NumParams) 3460 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3461 TemplateArgs.getRAngleLoc()); 3462 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3463 << (NumArgs > NumParams) 3464 << (isa<ClassTemplateDecl>(Template)? 0 : 3465 isa<FunctionTemplateDecl>(Template)? 1 : 3466 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3467 << Template << Range; 3468 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3469 << Params->getSourceRange(); 3470 return true; 3471 } 3472 3473 /// \brief Check whether the template parameter is a pack expansion, and if so, 3474 /// determine the number of parameters produced by that expansion. For instance: 3475 /// 3476 /// \code 3477 /// template<typename ...Ts> struct A { 3478 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3479 /// }; 3480 /// \endcode 3481 /// 3482 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3483 /// is not a pack expansion, so returns an empty Optional. 3484 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3485 if (NonTypeTemplateParmDecl *NTTP 3486 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3487 if (NTTP->isExpandedParameterPack()) 3488 return NTTP->getNumExpansionTypes(); 3489 } 3490 3491 if (TemplateTemplateParmDecl *TTP 3492 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3493 if (TTP->isExpandedParameterPack()) 3494 return TTP->getNumExpansionTemplateParameters(); 3495 } 3496 3497 return None; 3498 } 3499 3500 /// \brief Check that the given template argument list is well-formed 3501 /// for specializing the given template. 3502 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3503 SourceLocation TemplateLoc, 3504 TemplateArgumentListInfo &TemplateArgs, 3505 bool PartialTemplateArgs, 3506 SmallVectorImpl<TemplateArgument> &Converted, 3507 bool *ExpansionIntoFixedList) { 3508 if (ExpansionIntoFixedList) 3509 *ExpansionIntoFixedList = false; 3510 3511 TemplateParameterList *Params = Template->getTemplateParameters(); 3512 3513 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3514 3515 // C++ [temp.arg]p1: 3516 // [...] The type and form of each template-argument specified in 3517 // a template-id shall match the type and form specified for the 3518 // corresponding parameter declared by the template in its 3519 // template-parameter-list. 3520 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3521 SmallVector<TemplateArgument, 2> ArgumentPack; 3522 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3523 LocalInstantiationScope InstScope(*this, true); 3524 for (TemplateParameterList::iterator Param = Params->begin(), 3525 ParamEnd = Params->end(); 3526 Param != ParamEnd; /* increment in loop */) { 3527 // If we have an expanded parameter pack, make sure we don't have too 3528 // many arguments. 3529 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3530 if (*Expansions == ArgumentPack.size()) { 3531 // We're done with this parameter pack. Pack up its arguments and add 3532 // them to the list. 3533 Converted.push_back( 3534 TemplateArgument::CreatePackCopy(Context, 3535 ArgumentPack.data(), 3536 ArgumentPack.size())); 3537 ArgumentPack.clear(); 3538 3539 // This argument is assigned to the next parameter. 3540 ++Param; 3541 continue; 3542 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3543 // Not enough arguments for this parameter pack. 3544 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3545 << false 3546 << (isa<ClassTemplateDecl>(Template)? 0 : 3547 isa<FunctionTemplateDecl>(Template)? 1 : 3548 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3549 << Template; 3550 Diag(Template->getLocation(), diag::note_template_decl_here) 3551 << Params->getSourceRange(); 3552 return true; 3553 } 3554 } 3555 3556 if (ArgIdx < NumArgs) { 3557 // Check the template argument we were given. 3558 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3559 TemplateLoc, RAngleLoc, 3560 ArgumentPack.size(), Converted)) 3561 return true; 3562 3563 // We're now done with this argument. 3564 ++ArgIdx; 3565 3566 if ((*Param)->isTemplateParameterPack()) { 3567 // The template parameter was a template parameter pack, so take the 3568 // deduced argument and place it on the argument pack. Note that we 3569 // stay on the same template parameter so that we can deduce more 3570 // arguments. 3571 ArgumentPack.push_back(Converted.back()); 3572 Converted.pop_back(); 3573 } else { 3574 // Move to the next template parameter. 3575 ++Param; 3576 } 3577 3578 // If we just saw a pack expansion, then directly convert the remaining 3579 // arguments, because we don't know what parameters they'll match up 3580 // with. 3581 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3582 bool InFinalParameterPack = Param != ParamEnd && 3583 Param + 1 == ParamEnd && 3584 (*Param)->isTemplateParameterPack() && 3585 !getExpandedPackSize(*Param); 3586 3587 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3588 // If we were part way through filling in an expanded parameter pack, 3589 // fall back to just producing individual arguments. 3590 Converted.insert(Converted.end(), 3591 ArgumentPack.begin(), ArgumentPack.end()); 3592 ArgumentPack.clear(); 3593 } 3594 3595 while (ArgIdx < NumArgs) { 3596 if (InFinalParameterPack) 3597 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3598 else 3599 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3600 ++ArgIdx; 3601 } 3602 3603 // Push the argument pack onto the list of converted arguments. 3604 if (InFinalParameterPack) { 3605 Converted.push_back( 3606 TemplateArgument::CreatePackCopy(Context, 3607 ArgumentPack.data(), 3608 ArgumentPack.size())); 3609 ArgumentPack.clear(); 3610 } else if (ExpansionIntoFixedList) { 3611 // We have expanded a pack into a fixed list. 3612 *ExpansionIntoFixedList = true; 3613 } 3614 3615 return false; 3616 } 3617 3618 continue; 3619 } 3620 3621 // If we're checking a partial template argument list, we're done. 3622 if (PartialTemplateArgs) { 3623 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3624 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3625 ArgumentPack.data(), 3626 ArgumentPack.size())); 3627 3628 return false; 3629 } 3630 3631 // If we have a template parameter pack with no more corresponding 3632 // arguments, just break out now and we'll fill in the argument pack below. 3633 if ((*Param)->isTemplateParameterPack()) { 3634 assert(!getExpandedPackSize(*Param) && 3635 "Should have dealt with this already"); 3636 3637 // A non-expanded parameter pack before the end of the parameter list 3638 // only occurs for an ill-formed template parameter list, unless we've 3639 // got a partial argument list for a function template, so just bail out. 3640 if (Param + 1 != ParamEnd) 3641 return true; 3642 3643 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3644 ArgumentPack.data(), 3645 ArgumentPack.size())); 3646 ArgumentPack.clear(); 3647 3648 ++Param; 3649 continue; 3650 } 3651 3652 // Check whether we have a default argument. 3653 TemplateArgumentLoc Arg; 3654 3655 // Retrieve the default template argument from the template 3656 // parameter. For each kind of template parameter, we substitute the 3657 // template arguments provided thus far and any "outer" template arguments 3658 // (when the template parameter was part of a nested template) into 3659 // the default argument. 3660 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3661 if (!TTP->hasDefaultArgument()) 3662 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3663 TemplateArgs); 3664 3665 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3666 Template, 3667 TemplateLoc, 3668 RAngleLoc, 3669 TTP, 3670 Converted); 3671 if (!ArgType) 3672 return true; 3673 3674 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3675 ArgType); 3676 } else if (NonTypeTemplateParmDecl *NTTP 3677 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3678 if (!NTTP->hasDefaultArgument()) 3679 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3680 TemplateArgs); 3681 3682 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3683 TemplateLoc, 3684 RAngleLoc, 3685 NTTP, 3686 Converted); 3687 if (E.isInvalid()) 3688 return true; 3689 3690 Expr *Ex = E.takeAs<Expr>(); 3691 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3692 } else { 3693 TemplateTemplateParmDecl *TempParm 3694 = cast<TemplateTemplateParmDecl>(*Param); 3695 3696 if (!TempParm->hasDefaultArgument()) 3697 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3698 TemplateArgs); 3699 3700 NestedNameSpecifierLoc QualifierLoc; 3701 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3702 TemplateLoc, 3703 RAngleLoc, 3704 TempParm, 3705 Converted, 3706 QualifierLoc); 3707 if (Name.isNull()) 3708 return true; 3709 3710 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3711 TempParm->getDefaultArgument().getTemplateNameLoc()); 3712 } 3713 3714 // Introduce an instantiation record that describes where we are using 3715 // the default template argument. 3716 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3717 *Param, Converted, 3718 SourceRange(TemplateLoc, RAngleLoc)); 3719 if (Instantiating) 3720 return true; 3721 3722 // Check the default template argument. 3723 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3724 RAngleLoc, 0, Converted)) 3725 return true; 3726 3727 // Core issue 150 (assumed resolution): if this is a template template 3728 // parameter, keep track of the default template arguments from the 3729 // template definition. 3730 if (isTemplateTemplateParameter) 3731 TemplateArgs.addArgument(Arg); 3732 3733 // Move to the next template parameter and argument. 3734 ++Param; 3735 ++ArgIdx; 3736 } 3737 3738 // If we have any leftover arguments, then there were too many arguments. 3739 // Complain and fail. 3740 if (ArgIdx < NumArgs) 3741 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3742 3743 return false; 3744 } 3745 3746 namespace { 3747 class UnnamedLocalNoLinkageFinder 3748 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3749 { 3750 Sema &S; 3751 SourceRange SR; 3752 3753 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3754 3755 public: 3756 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3757 3758 bool Visit(QualType T) { 3759 return inherited::Visit(T.getTypePtr()); 3760 } 3761 3762 #define TYPE(Class, Parent) \ 3763 bool Visit##Class##Type(const Class##Type *); 3764 #define ABSTRACT_TYPE(Class, Parent) \ 3765 bool Visit##Class##Type(const Class##Type *) { return false; } 3766 #define NON_CANONICAL_TYPE(Class, Parent) \ 3767 bool Visit##Class##Type(const Class##Type *) { return false; } 3768 #include "clang/AST/TypeNodes.def" 3769 3770 bool VisitTagDecl(const TagDecl *Tag); 3771 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3772 }; 3773 } 3774 3775 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3776 return false; 3777 } 3778 3779 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3780 return Visit(T->getElementType()); 3781 } 3782 3783 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3784 return Visit(T->getPointeeType()); 3785 } 3786 3787 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3788 const BlockPointerType* T) { 3789 return Visit(T->getPointeeType()); 3790 } 3791 3792 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3793 const LValueReferenceType* T) { 3794 return Visit(T->getPointeeType()); 3795 } 3796 3797 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3798 const RValueReferenceType* T) { 3799 return Visit(T->getPointeeType()); 3800 } 3801 3802 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3803 const MemberPointerType* T) { 3804 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3805 } 3806 3807 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3808 const ConstantArrayType* T) { 3809 return Visit(T->getElementType()); 3810 } 3811 3812 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3813 const IncompleteArrayType* T) { 3814 return Visit(T->getElementType()); 3815 } 3816 3817 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3818 const VariableArrayType* T) { 3819 return Visit(T->getElementType()); 3820 } 3821 3822 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3823 const DependentSizedArrayType* T) { 3824 return Visit(T->getElementType()); 3825 } 3826 3827 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3828 const DependentSizedExtVectorType* T) { 3829 return Visit(T->getElementType()); 3830 } 3831 3832 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3833 return Visit(T->getElementType()); 3834 } 3835 3836 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3837 return Visit(T->getElementType()); 3838 } 3839 3840 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3841 const FunctionProtoType* T) { 3842 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3843 AEnd = T->arg_type_end(); 3844 A != AEnd; ++A) { 3845 if (Visit(*A)) 3846 return true; 3847 } 3848 3849 return Visit(T->getResultType()); 3850 } 3851 3852 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3853 const FunctionNoProtoType* T) { 3854 return Visit(T->getResultType()); 3855 } 3856 3857 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3858 const UnresolvedUsingType*) { 3859 return false; 3860 } 3861 3862 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3863 return false; 3864 } 3865 3866 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3867 return Visit(T->getUnderlyingType()); 3868 } 3869 3870 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3871 return false; 3872 } 3873 3874 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3875 const UnaryTransformType*) { 3876 return false; 3877 } 3878 3879 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3880 return Visit(T->getDeducedType()); 3881 } 3882 3883 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3884 return VisitTagDecl(T->getDecl()); 3885 } 3886 3887 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3888 return VisitTagDecl(T->getDecl()); 3889 } 3890 3891 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3892 const TemplateTypeParmType*) { 3893 return false; 3894 } 3895 3896 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3897 const SubstTemplateTypeParmPackType *) { 3898 return false; 3899 } 3900 3901 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3902 const TemplateSpecializationType*) { 3903 return false; 3904 } 3905 3906 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3907 const InjectedClassNameType* T) { 3908 return VisitTagDecl(T->getDecl()); 3909 } 3910 3911 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3912 const DependentNameType* T) { 3913 return VisitNestedNameSpecifier(T->getQualifier()); 3914 } 3915 3916 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3917 const DependentTemplateSpecializationType* T) { 3918 return VisitNestedNameSpecifier(T->getQualifier()); 3919 } 3920 3921 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3922 const PackExpansionType* T) { 3923 return Visit(T->getPattern()); 3924 } 3925 3926 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3927 return false; 3928 } 3929 3930 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3931 const ObjCInterfaceType *) { 3932 return false; 3933 } 3934 3935 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3936 const ObjCObjectPointerType *) { 3937 return false; 3938 } 3939 3940 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3941 return Visit(T->getValueType()); 3942 } 3943 3944 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3945 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3946 S.Diag(SR.getBegin(), 3947 S.getLangOpts().CPlusPlus11 ? 3948 diag::warn_cxx98_compat_template_arg_local_type : 3949 diag::ext_template_arg_local_type) 3950 << S.Context.getTypeDeclType(Tag) << SR; 3951 return true; 3952 } 3953 3954 if (!Tag->hasNameForLinkage()) { 3955 S.Diag(SR.getBegin(), 3956 S.getLangOpts().CPlusPlus11 ? 3957 diag::warn_cxx98_compat_template_arg_unnamed_type : 3958 diag::ext_template_arg_unnamed_type) << SR; 3959 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3960 return true; 3961 } 3962 3963 return false; 3964 } 3965 3966 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3967 NestedNameSpecifier *NNS) { 3968 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3969 return true; 3970 3971 switch (NNS->getKind()) { 3972 case NestedNameSpecifier::Identifier: 3973 case NestedNameSpecifier::Namespace: 3974 case NestedNameSpecifier::NamespaceAlias: 3975 case NestedNameSpecifier::Global: 3976 return false; 3977 3978 case NestedNameSpecifier::TypeSpec: 3979 case NestedNameSpecifier::TypeSpecWithTemplate: 3980 return Visit(QualType(NNS->getAsType(), 0)); 3981 } 3982 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3983 } 3984 3985 3986 /// \brief Check a template argument against its corresponding 3987 /// template type parameter. 3988 /// 3989 /// This routine implements the semantics of C++ [temp.arg.type]. It 3990 /// returns true if an error occurred, and false otherwise. 3991 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3992 TypeSourceInfo *ArgInfo) { 3993 assert(ArgInfo && "invalid TypeSourceInfo"); 3994 QualType Arg = ArgInfo->getType(); 3995 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3996 3997 if (Arg->isVariablyModifiedType()) { 3998 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3999 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 4000 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 4001 } 4002 4003 // C++03 [temp.arg.type]p2: 4004 // A local type, a type with no linkage, an unnamed type or a type 4005 // compounded from any of these types shall not be used as a 4006 // template-argument for a template type-parameter. 4007 // 4008 // C++11 allows these, and even in C++03 we allow them as an extension with 4009 // a warning. 4010 if (LangOpts.CPlusPlus11 ? 4011 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 4012 SR.getBegin()) != DiagnosticsEngine::Ignored || 4013 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 4014 SR.getBegin()) != DiagnosticsEngine::Ignored : 4015 Arg->hasUnnamedOrLocalType()) { 4016 UnnamedLocalNoLinkageFinder Finder(*this, SR); 4017 (void)Finder.Visit(Context.getCanonicalType(Arg)); 4018 } 4019 4020 return false; 4021 } 4022 4023 enum NullPointerValueKind { 4024 NPV_NotNullPointer, 4025 NPV_NullPointer, 4026 NPV_Error 4027 }; 4028 4029 /// \brief Determine whether the given template argument is a null pointer 4030 /// value of the appropriate type. 4031 static NullPointerValueKind 4032 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 4033 QualType ParamType, Expr *Arg) { 4034 if (Arg->isValueDependent() || Arg->isTypeDependent()) 4035 return NPV_NotNullPointer; 4036 4037 if (!S.getLangOpts().CPlusPlus11) 4038 return NPV_NotNullPointer; 4039 4040 // Determine whether we have a constant expression. 4041 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 4042 if (ArgRV.isInvalid()) 4043 return NPV_Error; 4044 Arg = ArgRV.take(); 4045 4046 Expr::EvalResult EvalResult; 4047 SmallVector<PartialDiagnosticAt, 8> Notes; 4048 EvalResult.Diag = &Notes; 4049 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 4050 EvalResult.HasSideEffects) { 4051 SourceLocation DiagLoc = Arg->getExprLoc(); 4052 4053 // If our only note is the usual "invalid subexpression" note, just point 4054 // the caret at its location rather than producing an essentially 4055 // redundant note. 4056 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 4057 diag::note_invalid_subexpr_in_const_expr) { 4058 DiagLoc = Notes[0].first; 4059 Notes.clear(); 4060 } 4061 4062 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 4063 << Arg->getType() << Arg->getSourceRange(); 4064 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 4065 S.Diag(Notes[I].first, Notes[I].second); 4066 4067 S.Diag(Param->getLocation(), diag::note_template_param_here); 4068 return NPV_Error; 4069 } 4070 4071 // C++11 [temp.arg.nontype]p1: 4072 // - an address constant expression of type std::nullptr_t 4073 if (Arg->getType()->isNullPtrType()) 4074 return NPV_NullPointer; 4075 4076 // - a constant expression that evaluates to a null pointer value (4.10); or 4077 // - a constant expression that evaluates to a null member pointer value 4078 // (4.11); or 4079 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 4080 (EvalResult.Val.isMemberPointer() && 4081 !EvalResult.Val.getMemberPointerDecl())) { 4082 // If our expression has an appropriate type, we've succeeded. 4083 bool ObjCLifetimeConversion; 4084 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 4085 S.IsQualificationConversion(Arg->getType(), ParamType, false, 4086 ObjCLifetimeConversion)) 4087 return NPV_NullPointer; 4088 4089 // The types didn't match, but we know we got a null pointer; complain, 4090 // then recover as if the types were correct. 4091 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 4092 << Arg->getType() << ParamType << Arg->getSourceRange(); 4093 S.Diag(Param->getLocation(), diag::note_template_param_here); 4094 return NPV_NullPointer; 4095 } 4096 4097 // If we don't have a null pointer value, but we do have a NULL pointer 4098 // constant, suggest a cast to the appropriate type. 4099 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 4100 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 4101 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 4102 << ParamType 4103 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 4104 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 4105 ")"); 4106 S.Diag(Param->getLocation(), diag::note_template_param_here); 4107 return NPV_NullPointer; 4108 } 4109 4110 // FIXME: If we ever want to support general, address-constant expressions 4111 // as non-type template arguments, we should return the ExprResult here to 4112 // be interpreted by the caller. 4113 return NPV_NotNullPointer; 4114 } 4115 4116 /// \brief Checks whether the given template argument is the address 4117 /// of an object or function according to C++ [temp.arg.nontype]p1. 4118 static bool 4119 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 4120 NonTypeTemplateParmDecl *Param, 4121 QualType ParamType, 4122 Expr *ArgIn, 4123 TemplateArgument &Converted) { 4124 bool Invalid = false; 4125 Expr *Arg = ArgIn; 4126 QualType ArgType = Arg->getType(); 4127 4128 // If our parameter has pointer type, check for a null template value. 4129 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 4130 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 4131 case NPV_NullPointer: 4132 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4133 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4134 return false; 4135 4136 case NPV_Error: 4137 return true; 4138 4139 case NPV_NotNullPointer: 4140 break; 4141 } 4142 } 4143 4144 // See through any implicit casts we added to fix the type. 4145 Arg = Arg->IgnoreImpCasts(); 4146 4147 // C++ [temp.arg.nontype]p1: 4148 // 4149 // A template-argument for a non-type, non-template 4150 // template-parameter shall be one of: [...] 4151 // 4152 // -- the address of an object or function with external 4153 // linkage, including function templates and function 4154 // template-ids but excluding non-static class members, 4155 // expressed as & id-expression where the & is optional if 4156 // the name refers to a function or array, or if the 4157 // corresponding template-parameter is a reference; or 4158 4159 // In C++98/03 mode, give an extension warning on any extra parentheses. 4160 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4161 bool ExtraParens = false; 4162 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4163 if (!Invalid && !ExtraParens) { 4164 S.Diag(Arg->getLocStart(), 4165 S.getLangOpts().CPlusPlus11 ? 4166 diag::warn_cxx98_compat_template_arg_extra_parens : 4167 diag::ext_template_arg_extra_parens) 4168 << Arg->getSourceRange(); 4169 ExtraParens = true; 4170 } 4171 4172 Arg = Parens->getSubExpr(); 4173 } 4174 4175 while (SubstNonTypeTemplateParmExpr *subst = 4176 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4177 Arg = subst->getReplacement()->IgnoreImpCasts(); 4178 4179 bool AddressTaken = false; 4180 SourceLocation AddrOpLoc; 4181 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4182 if (UnOp->getOpcode() == UO_AddrOf) { 4183 Arg = UnOp->getSubExpr(); 4184 AddressTaken = true; 4185 AddrOpLoc = UnOp->getOperatorLoc(); 4186 } 4187 } 4188 4189 if (isa<CXXUuidofExpr>(Arg)) { 4190 Converted = TemplateArgument(ArgIn); 4191 return false; 4192 } 4193 4194 while (SubstNonTypeTemplateParmExpr *subst = 4195 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4196 Arg = subst->getReplacement()->IgnoreImpCasts(); 4197 4198 // Stop checking the precise nature of the argument if it is value dependent, 4199 // it should be checked when instantiated. 4200 if (Arg->isValueDependent()) { 4201 Converted = TemplateArgument(ArgIn); 4202 return false; 4203 } 4204 4205 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 4206 if (!DRE) { 4207 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4208 << Arg->getSourceRange(); 4209 S.Diag(Param->getLocation(), diag::note_template_param_here); 4210 return true; 4211 } 4212 4213 if (!isa<ValueDecl>(DRE->getDecl())) { 4214 S.Diag(Arg->getLocStart(), 4215 diag::err_template_arg_not_object_or_func_form) 4216 << Arg->getSourceRange(); 4217 S.Diag(Param->getLocation(), diag::note_template_param_here); 4218 return true; 4219 } 4220 4221 ValueDecl *Entity = DRE->getDecl(); 4222 4223 // Cannot refer to non-static data members 4224 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 4225 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 4226 << Field << Arg->getSourceRange(); 4227 S.Diag(Param->getLocation(), diag::note_template_param_here); 4228 return true; 4229 } 4230 4231 // Cannot refer to non-static member functions 4232 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 4233 if (!Method->isStatic()) { 4234 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 4235 << Method << Arg->getSourceRange(); 4236 S.Diag(Param->getLocation(), diag::note_template_param_here); 4237 return true; 4238 } 4239 } 4240 4241 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 4242 VarDecl *Var = dyn_cast<VarDecl>(Entity); 4243 4244 // A non-type template argument must refer to an object or function. 4245 if (!Func && !Var) { 4246 // We found something, but we don't know specifically what it is. 4247 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 4248 << Arg->getSourceRange(); 4249 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4250 return true; 4251 } 4252 4253 // Address / reference template args must have external linkage in C++98. 4254 if (Entity->getFormalLinkage() == InternalLinkage) { 4255 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 4256 diag::warn_cxx98_compat_template_arg_object_internal : 4257 diag::ext_template_arg_object_internal) 4258 << !Func << Entity << Arg->getSourceRange(); 4259 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4260 << !Func; 4261 } else if (!Entity->hasLinkage()) { 4262 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 4263 << !Func << Entity << Arg->getSourceRange(); 4264 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4265 << !Func; 4266 return true; 4267 } 4268 4269 if (Func) { 4270 // If the template parameter has pointer type, the function decays. 4271 if (ParamType->isPointerType() && !AddressTaken) 4272 ArgType = S.Context.getPointerType(Func->getType()); 4273 else if (AddressTaken && ParamType->isReferenceType()) { 4274 // If we originally had an address-of operator, but the 4275 // parameter has reference type, complain and (if things look 4276 // like they will work) drop the address-of operator. 4277 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 4278 ParamType.getNonReferenceType())) { 4279 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4280 << ParamType; 4281 S.Diag(Param->getLocation(), diag::note_template_param_here); 4282 return true; 4283 } 4284 4285 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4286 << ParamType 4287 << FixItHint::CreateRemoval(AddrOpLoc); 4288 S.Diag(Param->getLocation(), diag::note_template_param_here); 4289 4290 ArgType = Func->getType(); 4291 } 4292 } else { 4293 // A value of reference type is not an object. 4294 if (Var->getType()->isReferenceType()) { 4295 S.Diag(Arg->getLocStart(), 4296 diag::err_template_arg_reference_var) 4297 << Var->getType() << Arg->getSourceRange(); 4298 S.Diag(Param->getLocation(), diag::note_template_param_here); 4299 return true; 4300 } 4301 4302 // A template argument must have static storage duration. 4303 if (Var->getTLSKind()) { 4304 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 4305 << Arg->getSourceRange(); 4306 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 4307 return true; 4308 } 4309 4310 // If the template parameter has pointer type, we must have taken 4311 // the address of this object. 4312 if (ParamType->isReferenceType()) { 4313 if (AddressTaken) { 4314 // If we originally had an address-of operator, but the 4315 // parameter has reference type, complain and (if things look 4316 // like they will work) drop the address-of operator. 4317 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 4318 ParamType.getNonReferenceType())) { 4319 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4320 << ParamType; 4321 S.Diag(Param->getLocation(), diag::note_template_param_here); 4322 return true; 4323 } 4324 4325 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4326 << ParamType 4327 << FixItHint::CreateRemoval(AddrOpLoc); 4328 S.Diag(Param->getLocation(), diag::note_template_param_here); 4329 4330 ArgType = Var->getType(); 4331 } 4332 } else if (!AddressTaken && ParamType->isPointerType()) { 4333 if (Var->getType()->isArrayType()) { 4334 // Array-to-pointer decay. 4335 ArgType = S.Context.getArrayDecayedType(Var->getType()); 4336 } else { 4337 // If the template parameter has pointer type but the address of 4338 // this object was not taken, complain and (possibly) recover by 4339 // taking the address of the entity. 4340 ArgType = S.Context.getPointerType(Var->getType()); 4341 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 4342 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4343 << ParamType; 4344 S.Diag(Param->getLocation(), diag::note_template_param_here); 4345 return true; 4346 } 4347 4348 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4349 << ParamType 4350 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 4351 4352 S.Diag(Param->getLocation(), diag::note_template_param_here); 4353 } 4354 } 4355 } 4356 4357 bool ObjCLifetimeConversion; 4358 if (ParamType->isPointerType() && 4359 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 4360 S.IsQualificationConversion(ArgType, ParamType, false, 4361 ObjCLifetimeConversion)) { 4362 // For pointer-to-object types, qualification conversions are 4363 // permitted. 4364 } else { 4365 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 4366 if (!ParamRef->getPointeeType()->isFunctionType()) { 4367 // C++ [temp.arg.nontype]p5b3: 4368 // For a non-type template-parameter of type reference to 4369 // object, no conversions apply. The type referred to by the 4370 // reference may be more cv-qualified than the (otherwise 4371 // identical) type of the template- argument. The 4372 // template-parameter is bound directly to the 4373 // template-argument, which shall be an lvalue. 4374 4375 // FIXME: Other qualifiers? 4376 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 4377 unsigned ArgQuals = ArgType.getCVRQualifiers(); 4378 4379 if ((ParamQuals | ArgQuals) != ParamQuals) { 4380 S.Diag(Arg->getLocStart(), 4381 diag::err_template_arg_ref_bind_ignores_quals) 4382 << ParamType << Arg->getType() 4383 << Arg->getSourceRange(); 4384 S.Diag(Param->getLocation(), diag::note_template_param_here); 4385 return true; 4386 } 4387 } 4388 } 4389 4390 // At this point, the template argument refers to an object or 4391 // function with external linkage. We now need to check whether the 4392 // argument and parameter types are compatible. 4393 if (!S.Context.hasSameUnqualifiedType(ArgType, 4394 ParamType.getNonReferenceType())) { 4395 // We can't perform this conversion or binding. 4396 if (ParamType->isReferenceType()) 4397 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 4398 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 4399 else 4400 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4401 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 4402 S.Diag(Param->getLocation(), diag::note_template_param_here); 4403 return true; 4404 } 4405 } 4406 4407 // Create the template argument. 4408 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 4409 ParamType->isReferenceType()); 4410 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 4411 return false; 4412 } 4413 4414 /// \brief Checks whether the given template argument is a pointer to 4415 /// member constant according to C++ [temp.arg.nontype]p1. 4416 static bool CheckTemplateArgumentPointerToMember(Sema &S, 4417 NonTypeTemplateParmDecl *Param, 4418 QualType ParamType, 4419 Expr *&ResultArg, 4420 TemplateArgument &Converted) { 4421 bool Invalid = false; 4422 4423 // Check for a null pointer value. 4424 Expr *Arg = ResultArg; 4425 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 4426 case NPV_Error: 4427 return true; 4428 case NPV_NullPointer: 4429 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4430 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4431 return false; 4432 case NPV_NotNullPointer: 4433 break; 4434 } 4435 4436 bool ObjCLifetimeConversion; 4437 if (S.IsQualificationConversion(Arg->getType(), 4438 ParamType.getNonReferenceType(), 4439 false, ObjCLifetimeConversion)) { 4440 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 4441 Arg->getValueKind()).take(); 4442 ResultArg = Arg; 4443 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 4444 ParamType.getNonReferenceType())) { 4445 // We can't perform this conversion. 4446 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4447 << Arg->getType() << ParamType << Arg->getSourceRange(); 4448 S.Diag(Param->getLocation(), diag::note_template_param_here); 4449 return true; 4450 } 4451 4452 // See through any implicit casts we added to fix the type. 4453 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 4454 Arg = Cast->getSubExpr(); 4455 4456 // C++ [temp.arg.nontype]p1: 4457 // 4458 // A template-argument for a non-type, non-template 4459 // template-parameter shall be one of: [...] 4460 // 4461 // -- a pointer to member expressed as described in 5.3.1. 4462 DeclRefExpr *DRE = 0; 4463 4464 // In C++98/03 mode, give an extension warning on any extra parentheses. 4465 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4466 bool ExtraParens = false; 4467 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4468 if (!Invalid && !ExtraParens) { 4469 S.Diag(Arg->getLocStart(), 4470 S.getLangOpts().CPlusPlus11 ? 4471 diag::warn_cxx98_compat_template_arg_extra_parens : 4472 diag::ext_template_arg_extra_parens) 4473 << Arg->getSourceRange(); 4474 ExtraParens = true; 4475 } 4476 4477 Arg = Parens->getSubExpr(); 4478 } 4479 4480 while (SubstNonTypeTemplateParmExpr *subst = 4481 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4482 Arg = subst->getReplacement()->IgnoreImpCasts(); 4483 4484 // A pointer-to-member constant written &Class::member. 4485 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4486 if (UnOp->getOpcode() == UO_AddrOf) { 4487 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4488 if (DRE && !DRE->getQualifier()) 4489 DRE = 0; 4490 } 4491 } 4492 // A constant of pointer-to-member type. 4493 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4494 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4495 if (VD->getType()->isMemberPointerType()) { 4496 if (isa<NonTypeTemplateParmDecl>(VD) || 4497 (isa<VarDecl>(VD) && 4498 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4499 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4500 Converted = TemplateArgument(Arg); 4501 } else { 4502 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4503 Converted = TemplateArgument(VD, /*isReferenceParam*/false); 4504 } 4505 return Invalid; 4506 } 4507 } 4508 } 4509 4510 DRE = 0; 4511 } 4512 4513 if (!DRE) 4514 return S.Diag(Arg->getLocStart(), 4515 diag::err_template_arg_not_pointer_to_member_form) 4516 << Arg->getSourceRange(); 4517 4518 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4519 assert((isa<FieldDecl>(DRE->getDecl()) || 4520 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4521 "Only non-static member pointers can make it here"); 4522 4523 // Okay: this is the address of a non-static member, and therefore 4524 // a member pointer constant. 4525 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4526 Converted = TemplateArgument(Arg); 4527 } else { 4528 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4529 Converted = TemplateArgument(D, /*isReferenceParam*/false); 4530 } 4531 return Invalid; 4532 } 4533 4534 // We found something else, but we don't know specifically what it is. 4535 S.Diag(Arg->getLocStart(), 4536 diag::err_template_arg_not_pointer_to_member_form) 4537 << Arg->getSourceRange(); 4538 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4539 return true; 4540 } 4541 4542 /// \brief Check a template argument against its corresponding 4543 /// non-type template parameter. 4544 /// 4545 /// This routine implements the semantics of C++ [temp.arg.nontype]. 4546 /// If an error occurred, it returns ExprError(); otherwise, it 4547 /// returns the converted template argument. \p 4548 /// InstantiatedParamType is the type of the non-type template 4549 /// parameter after it has been instantiated. 4550 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4551 QualType InstantiatedParamType, Expr *Arg, 4552 TemplateArgument &Converted, 4553 CheckTemplateArgumentKind CTAK) { 4554 SourceLocation StartLoc = Arg->getLocStart(); 4555 4556 // If either the parameter has a dependent type or the argument is 4557 // type-dependent, there's nothing we can check now. 4558 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4559 // FIXME: Produce a cloned, canonical expression? 4560 Converted = TemplateArgument(Arg); 4561 return Owned(Arg); 4562 } 4563 4564 // C++ [temp.arg.nontype]p5: 4565 // The following conversions are performed on each expression used 4566 // as a non-type template-argument. If a non-type 4567 // template-argument cannot be converted to the type of the 4568 // corresponding template-parameter then the program is 4569 // ill-formed. 4570 QualType ParamType = InstantiatedParamType; 4571 if (ParamType->isIntegralOrEnumerationType()) { 4572 // C++11: 4573 // -- for a non-type template-parameter of integral or 4574 // enumeration type, conversions permitted in a converted 4575 // constant expression are applied. 4576 // 4577 // C++98: 4578 // -- for a non-type template-parameter of integral or 4579 // enumeration type, integral promotions (4.5) and integral 4580 // conversions (4.7) are applied. 4581 4582 if (CTAK == CTAK_Deduced && 4583 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4584 // C++ [temp.deduct.type]p17: 4585 // If, in the declaration of a function template with a non-type 4586 // template-parameter, the non-type template-parameter is used 4587 // in an expression in the function parameter-list and, if the 4588 // corresponding template-argument is deduced, the 4589 // template-argument type shall match the type of the 4590 // template-parameter exactly, except that a template-argument 4591 // deduced from an array bound may be of any integral type. 4592 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4593 << Arg->getType().getUnqualifiedType() 4594 << ParamType.getUnqualifiedType(); 4595 Diag(Param->getLocation(), diag::note_template_param_here); 4596 return ExprError(); 4597 } 4598 4599 if (getLangOpts().CPlusPlus11) { 4600 // We can't check arbitrary value-dependent arguments. 4601 // FIXME: If there's no viable conversion to the template parameter type, 4602 // we should be able to diagnose that prior to instantiation. 4603 if (Arg->isValueDependent()) { 4604 Converted = TemplateArgument(Arg); 4605 return Owned(Arg); 4606 } 4607 4608 // C++ [temp.arg.nontype]p1: 4609 // A template-argument for a non-type, non-template template-parameter 4610 // shall be one of: 4611 // 4612 // -- for a non-type template-parameter of integral or enumeration 4613 // type, a converted constant expression of the type of the 4614 // template-parameter; or 4615 llvm::APSInt Value; 4616 ExprResult ArgResult = 4617 CheckConvertedConstantExpression(Arg, ParamType, Value, 4618 CCEK_TemplateArg); 4619 if (ArgResult.isInvalid()) 4620 return ExprError(); 4621 4622 // Widen the argument value to sizeof(parameter type). This is almost 4623 // always a no-op, except when the parameter type is bool. In 4624 // that case, this may extend the argument from 1 bit to 8 bits. 4625 QualType IntegerType = ParamType; 4626 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4627 IntegerType = Enum->getDecl()->getIntegerType(); 4628 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4629 4630 Converted = TemplateArgument(Context, Value, 4631 Context.getCanonicalType(ParamType)); 4632 return ArgResult; 4633 } 4634 4635 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4636 if (ArgResult.isInvalid()) 4637 return ExprError(); 4638 Arg = ArgResult.take(); 4639 4640 QualType ArgType = Arg->getType(); 4641 4642 // C++ [temp.arg.nontype]p1: 4643 // A template-argument for a non-type, non-template 4644 // template-parameter shall be one of: 4645 // 4646 // -- an integral constant-expression of integral or enumeration 4647 // type; or 4648 // -- the name of a non-type template-parameter; or 4649 SourceLocation NonConstantLoc; 4650 llvm::APSInt Value; 4651 if (!ArgType->isIntegralOrEnumerationType()) { 4652 Diag(Arg->getLocStart(), 4653 diag::err_template_arg_not_integral_or_enumeral) 4654 << ArgType << Arg->getSourceRange(); 4655 Diag(Param->getLocation(), diag::note_template_param_here); 4656 return ExprError(); 4657 } else if (!Arg->isValueDependent()) { 4658 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4659 QualType T; 4660 4661 public: 4662 TmplArgICEDiagnoser(QualType T) : T(T) { } 4663 4664 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4665 SourceRange SR) { 4666 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4667 } 4668 } Diagnoser(ArgType); 4669 4670 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4671 false).take(); 4672 if (!Arg) 4673 return ExprError(); 4674 } 4675 4676 // From here on out, all we care about are the unqualified forms 4677 // of the parameter and argument types. 4678 ParamType = ParamType.getUnqualifiedType(); 4679 ArgType = ArgType.getUnqualifiedType(); 4680 4681 // Try to convert the argument to the parameter's type. 4682 if (Context.hasSameType(ParamType, ArgType)) { 4683 // Okay: no conversion necessary 4684 } else if (ParamType->isBooleanType()) { 4685 // This is an integral-to-boolean conversion. 4686 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4687 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4688 !ParamType->isEnumeralType()) { 4689 // This is an integral promotion or conversion. 4690 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4691 } else { 4692 // We can't perform this conversion. 4693 Diag(Arg->getLocStart(), 4694 diag::err_template_arg_not_convertible) 4695 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4696 Diag(Param->getLocation(), diag::note_template_param_here); 4697 return ExprError(); 4698 } 4699 4700 // Add the value of this argument to the list of converted 4701 // arguments. We use the bitwidth and signedness of the template 4702 // parameter. 4703 if (Arg->isValueDependent()) { 4704 // The argument is value-dependent. Create a new 4705 // TemplateArgument with the converted expression. 4706 Converted = TemplateArgument(Arg); 4707 return Owned(Arg); 4708 } 4709 4710 QualType IntegerType = Context.getCanonicalType(ParamType); 4711 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4712 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4713 4714 if (ParamType->isBooleanType()) { 4715 // Value must be zero or one. 4716 Value = Value != 0; 4717 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4718 if (Value.getBitWidth() != AllowedBits) 4719 Value = Value.extOrTrunc(AllowedBits); 4720 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4721 } else { 4722 llvm::APSInt OldValue = Value; 4723 4724 // Coerce the template argument's value to the value it will have 4725 // based on the template parameter's type. 4726 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4727 if (Value.getBitWidth() != AllowedBits) 4728 Value = Value.extOrTrunc(AllowedBits); 4729 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4730 4731 // Complain if an unsigned parameter received a negative value. 4732 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4733 && (OldValue.isSigned() && OldValue.isNegative())) { 4734 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4735 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4736 << Arg->getSourceRange(); 4737 Diag(Param->getLocation(), diag::note_template_param_here); 4738 } 4739 4740 // Complain if we overflowed the template parameter's type. 4741 unsigned RequiredBits; 4742 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4743 RequiredBits = OldValue.getActiveBits(); 4744 else if (OldValue.isUnsigned()) 4745 RequiredBits = OldValue.getActiveBits() + 1; 4746 else 4747 RequiredBits = OldValue.getMinSignedBits(); 4748 if (RequiredBits > AllowedBits) { 4749 Diag(Arg->getLocStart(), 4750 diag::warn_template_arg_too_large) 4751 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4752 << Arg->getSourceRange(); 4753 Diag(Param->getLocation(), diag::note_template_param_here); 4754 } 4755 } 4756 4757 Converted = TemplateArgument(Context, Value, 4758 ParamType->isEnumeralType() 4759 ? Context.getCanonicalType(ParamType) 4760 : IntegerType); 4761 return Owned(Arg); 4762 } 4763 4764 QualType ArgType = Arg->getType(); 4765 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4766 4767 // Handle pointer-to-function, reference-to-function, and 4768 // pointer-to-member-function all in (roughly) the same way. 4769 if (// -- For a non-type template-parameter of type pointer to 4770 // function, only the function-to-pointer conversion (4.3) is 4771 // applied. If the template-argument represents a set of 4772 // overloaded functions (or a pointer to such), the matching 4773 // function is selected from the set (13.4). 4774 (ParamType->isPointerType() && 4775 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4776 // -- For a non-type template-parameter of type reference to 4777 // function, no conversions apply. If the template-argument 4778 // represents a set of overloaded functions, the matching 4779 // function is selected from the set (13.4). 4780 (ParamType->isReferenceType() && 4781 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4782 // -- For a non-type template-parameter of type pointer to 4783 // member function, no conversions apply. If the 4784 // template-argument represents a set of overloaded member 4785 // functions, the matching member function is selected from 4786 // the set (13.4). 4787 (ParamType->isMemberPointerType() && 4788 ParamType->getAs<MemberPointerType>()->getPointeeType() 4789 ->isFunctionType())) { 4790 4791 if (Arg->getType() == Context.OverloadTy) { 4792 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4793 true, 4794 FoundResult)) { 4795 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4796 return ExprError(); 4797 4798 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4799 ArgType = Arg->getType(); 4800 } else 4801 return ExprError(); 4802 } 4803 4804 if (!ParamType->isMemberPointerType()) { 4805 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4806 ParamType, 4807 Arg, Converted)) 4808 return ExprError(); 4809 return Owned(Arg); 4810 } 4811 4812 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4813 Converted)) 4814 return ExprError(); 4815 return Owned(Arg); 4816 } 4817 4818 if (ParamType->isPointerType()) { 4819 // -- for a non-type template-parameter of type pointer to 4820 // object, qualification conversions (4.4) and the 4821 // array-to-pointer conversion (4.2) are applied. 4822 // C++0x also allows a value of std::nullptr_t. 4823 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4824 "Only object pointers allowed here"); 4825 4826 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4827 ParamType, 4828 Arg, Converted)) 4829 return ExprError(); 4830 return Owned(Arg); 4831 } 4832 4833 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4834 // -- For a non-type template-parameter of type reference to 4835 // object, no conversions apply. The type referred to by the 4836 // reference may be more cv-qualified than the (otherwise 4837 // identical) type of the template-argument. The 4838 // template-parameter is bound directly to the 4839 // template-argument, which must be an lvalue. 4840 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4841 "Only object references allowed here"); 4842 4843 if (Arg->getType() == Context.OverloadTy) { 4844 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4845 ParamRefType->getPointeeType(), 4846 true, 4847 FoundResult)) { 4848 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4849 return ExprError(); 4850 4851 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4852 ArgType = Arg->getType(); 4853 } else 4854 return ExprError(); 4855 } 4856 4857 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4858 ParamType, 4859 Arg, Converted)) 4860 return ExprError(); 4861 return Owned(Arg); 4862 } 4863 4864 // Deal with parameters of type std::nullptr_t. 4865 if (ParamType->isNullPtrType()) { 4866 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4867 Converted = TemplateArgument(Arg); 4868 return Owned(Arg); 4869 } 4870 4871 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4872 case NPV_NotNullPointer: 4873 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4874 << Arg->getType() << ParamType; 4875 Diag(Param->getLocation(), diag::note_template_param_here); 4876 return ExprError(); 4877 4878 case NPV_Error: 4879 return ExprError(); 4880 4881 case NPV_NullPointer: 4882 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4883 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4884 return Owned(Arg); 4885 } 4886 } 4887 4888 // -- For a non-type template-parameter of type pointer to data 4889 // member, qualification conversions (4.4) are applied. 4890 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4891 4892 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4893 Converted)) 4894 return ExprError(); 4895 return Owned(Arg); 4896 } 4897 4898 /// \brief Check a template argument against its corresponding 4899 /// template template parameter. 4900 /// 4901 /// This routine implements the semantics of C++ [temp.arg.template]. 4902 /// It returns true if an error occurred, and false otherwise. 4903 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4904 const TemplateArgumentLoc &Arg, 4905 unsigned ArgumentPackIndex) { 4906 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 4907 TemplateDecl *Template = Name.getAsTemplateDecl(); 4908 if (!Template) { 4909 // Any dependent template name is fine. 4910 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4911 return false; 4912 } 4913 4914 // C++0x [temp.arg.template]p1: 4915 // A template-argument for a template template-parameter shall be 4916 // the name of a class template or an alias template, expressed as an 4917 // id-expression. When the template-argument names a class template, only 4918 // primary class templates are considered when matching the 4919 // template template argument with the corresponding parameter; 4920 // partial specializations are not considered even if their 4921 // parameter lists match that of the template template parameter. 4922 // 4923 // Note that we also allow template template parameters here, which 4924 // will happen when we are dealing with, e.g., class template 4925 // partial specializations. 4926 if (!isa<ClassTemplateDecl>(Template) && 4927 !isa<TemplateTemplateParmDecl>(Template) && 4928 !isa<TypeAliasTemplateDecl>(Template)) { 4929 assert(isa<FunctionTemplateDecl>(Template) && 4930 "Only function templates are possible here"); 4931 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4932 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4933 << Template; 4934 } 4935 4936 TemplateParameterList *Params = Param->getTemplateParameters(); 4937 if (Param->isExpandedParameterPack()) 4938 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4939 4940 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4941 Params, 4942 true, 4943 TPL_TemplateTemplateArgumentMatch, 4944 Arg.getLocation()); 4945 } 4946 4947 /// \brief Given a non-type template argument that refers to a 4948 /// declaration and the type of its corresponding non-type template 4949 /// parameter, produce an expression that properly refers to that 4950 /// declaration. 4951 ExprResult 4952 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4953 QualType ParamType, 4954 SourceLocation Loc) { 4955 // C++ [temp.param]p8: 4956 // 4957 // A non-type template-parameter of type "array of T" or 4958 // "function returning T" is adjusted to be of type "pointer to 4959 // T" or "pointer to function returning T", respectively. 4960 if (ParamType->isArrayType()) 4961 ParamType = Context.getArrayDecayedType(ParamType); 4962 else if (ParamType->isFunctionType()) 4963 ParamType = Context.getPointerType(ParamType); 4964 4965 // For a NULL non-type template argument, return nullptr casted to the 4966 // parameter's type. 4967 if (Arg.getKind() == TemplateArgument::NullPtr) { 4968 return ImpCastExprToType( 4969 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4970 ParamType, 4971 ParamType->getAs<MemberPointerType>() 4972 ? CK_NullToMemberPointer 4973 : CK_NullToPointer); 4974 } 4975 assert(Arg.getKind() == TemplateArgument::Declaration && 4976 "Only declaration template arguments permitted here"); 4977 4978 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4979 4980 if (VD->getDeclContext()->isRecord() && 4981 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4982 // If the value is a class member, we might have a pointer-to-member. 4983 // Determine whether the non-type template template parameter is of 4984 // pointer-to-member type. If so, we need to build an appropriate 4985 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4986 // would refer to the member itself. 4987 if (ParamType->isMemberPointerType()) { 4988 QualType ClassType 4989 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4990 NestedNameSpecifier *Qualifier 4991 = NestedNameSpecifier::Create(Context, 0, false, 4992 ClassType.getTypePtr()); 4993 CXXScopeSpec SS; 4994 SS.MakeTrivial(Context, Qualifier, Loc); 4995 4996 // The actual value-ness of this is unimportant, but for 4997 // internal consistency's sake, references to instance methods 4998 // are r-values. 4999 ExprValueKind VK = VK_LValue; 5000 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 5001 VK = VK_RValue; 5002 5003 ExprResult RefExpr = BuildDeclRefExpr(VD, 5004 VD->getType().getNonReferenceType(), 5005 VK, 5006 Loc, 5007 &SS); 5008 if (RefExpr.isInvalid()) 5009 return ExprError(); 5010 5011 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5012 5013 // We might need to perform a trailing qualification conversion, since 5014 // the element type on the parameter could be more qualified than the 5015 // element type in the expression we constructed. 5016 bool ObjCLifetimeConversion; 5017 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 5018 ParamType.getUnqualifiedType(), false, 5019 ObjCLifetimeConversion)) 5020 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 5021 5022 assert(!RefExpr.isInvalid() && 5023 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 5024 ParamType.getUnqualifiedType())); 5025 return RefExpr; 5026 } 5027 } 5028 5029 QualType T = VD->getType().getNonReferenceType(); 5030 5031 if (ParamType->isPointerType()) { 5032 // When the non-type template parameter is a pointer, take the 5033 // address of the declaration. 5034 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 5035 if (RefExpr.isInvalid()) 5036 return ExprError(); 5037 5038 if (T->isFunctionType() || T->isArrayType()) { 5039 // Decay functions and arrays. 5040 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 5041 if (RefExpr.isInvalid()) 5042 return ExprError(); 5043 5044 return RefExpr; 5045 } 5046 5047 // Take the address of everything else 5048 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5049 } 5050 5051 ExprValueKind VK = VK_RValue; 5052 5053 // If the non-type template parameter has reference type, qualify the 5054 // resulting declaration reference with the extra qualifiers on the 5055 // type that the reference refers to. 5056 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 5057 VK = VK_LValue; 5058 T = Context.getQualifiedType(T, 5059 TargetRef->getPointeeType().getQualifiers()); 5060 } else if (isa<FunctionDecl>(VD)) { 5061 // References to functions are always lvalues. 5062 VK = VK_LValue; 5063 } 5064 5065 return BuildDeclRefExpr(VD, T, VK, Loc); 5066 } 5067 5068 /// \brief Construct a new expression that refers to the given 5069 /// integral template argument with the given source-location 5070 /// information. 5071 /// 5072 /// This routine takes care of the mapping from an integral template 5073 /// argument (which may have any integral type) to the appropriate 5074 /// literal value. 5075 ExprResult 5076 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 5077 SourceLocation Loc) { 5078 assert(Arg.getKind() == TemplateArgument::Integral && 5079 "Operation is only valid for integral template arguments"); 5080 QualType OrigT = Arg.getIntegralType(); 5081 5082 // If this is an enum type that we're instantiating, we need to use an integer 5083 // type the same size as the enumerator. We don't want to build an 5084 // IntegerLiteral with enum type. The integer type of an enum type can be of 5085 // any integral type with C++11 enum classes, make sure we create the right 5086 // type of literal for it. 5087 QualType T = OrigT; 5088 if (const EnumType *ET = OrigT->getAs<EnumType>()) 5089 T = ET->getDecl()->getIntegerType(); 5090 5091 Expr *E; 5092 if (T->isAnyCharacterType()) { 5093 CharacterLiteral::CharacterKind Kind; 5094 if (T->isWideCharType()) 5095 Kind = CharacterLiteral::Wide; 5096 else if (T->isChar16Type()) 5097 Kind = CharacterLiteral::UTF16; 5098 else if (T->isChar32Type()) 5099 Kind = CharacterLiteral::UTF32; 5100 else 5101 Kind = CharacterLiteral::Ascii; 5102 5103 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 5104 Kind, T, Loc); 5105 } else if (T->isBooleanType()) { 5106 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 5107 T, Loc); 5108 } else if (T->isNullPtrType()) { 5109 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 5110 } else { 5111 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 5112 } 5113 5114 if (OrigT->isEnumeralType()) { 5115 // FIXME: This is a hack. We need a better way to handle substituted 5116 // non-type template parameters. 5117 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0, 5118 Context.getTrivialTypeSourceInfo(OrigT, Loc), 5119 Loc, Loc); 5120 } 5121 5122 return Owned(E); 5123 } 5124 5125 /// \brief Match two template parameters within template parameter lists. 5126 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 5127 bool Complain, 5128 Sema::TemplateParameterListEqualKind Kind, 5129 SourceLocation TemplateArgLoc) { 5130 // Check the actual kind (type, non-type, template). 5131 if (Old->getKind() != New->getKind()) { 5132 if (Complain) { 5133 unsigned NextDiag = diag::err_template_param_different_kind; 5134 if (TemplateArgLoc.isValid()) { 5135 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5136 NextDiag = diag::note_template_param_different_kind; 5137 } 5138 S.Diag(New->getLocation(), NextDiag) 5139 << (Kind != Sema::TPL_TemplateMatch); 5140 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 5141 << (Kind != Sema::TPL_TemplateMatch); 5142 } 5143 5144 return false; 5145 } 5146 5147 // Check that both are parameter packs are neither are parameter packs. 5148 // However, if we are matching a template template argument to a 5149 // template template parameter, the template template parameter can have 5150 // a parameter pack where the template template argument does not. 5151 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 5152 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5153 Old->isTemplateParameterPack())) { 5154 if (Complain) { 5155 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 5156 if (TemplateArgLoc.isValid()) { 5157 S.Diag(TemplateArgLoc, 5158 diag::err_template_arg_template_params_mismatch); 5159 NextDiag = diag::note_template_parameter_pack_non_pack; 5160 } 5161 5162 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 5163 : isa<NonTypeTemplateParmDecl>(New)? 1 5164 : 2; 5165 S.Diag(New->getLocation(), NextDiag) 5166 << ParamKind << New->isParameterPack(); 5167 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 5168 << ParamKind << Old->isParameterPack(); 5169 } 5170 5171 return false; 5172 } 5173 5174 // For non-type template parameters, check the type of the parameter. 5175 if (NonTypeTemplateParmDecl *OldNTTP 5176 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 5177 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 5178 5179 // If we are matching a template template argument to a template 5180 // template parameter and one of the non-type template parameter types 5181 // is dependent, then we must wait until template instantiation time 5182 // to actually compare the arguments. 5183 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5184 (OldNTTP->getType()->isDependentType() || 5185 NewNTTP->getType()->isDependentType())) 5186 return true; 5187 5188 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 5189 if (Complain) { 5190 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 5191 if (TemplateArgLoc.isValid()) { 5192 S.Diag(TemplateArgLoc, 5193 diag::err_template_arg_template_params_mismatch); 5194 NextDiag = diag::note_template_nontype_parm_different_type; 5195 } 5196 S.Diag(NewNTTP->getLocation(), NextDiag) 5197 << NewNTTP->getType() 5198 << (Kind != Sema::TPL_TemplateMatch); 5199 S.Diag(OldNTTP->getLocation(), 5200 diag::note_template_nontype_parm_prev_declaration) 5201 << OldNTTP->getType(); 5202 } 5203 5204 return false; 5205 } 5206 5207 return true; 5208 } 5209 5210 // For template template parameters, check the template parameter types. 5211 // The template parameter lists of template template 5212 // parameters must agree. 5213 if (TemplateTemplateParmDecl *OldTTP 5214 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 5215 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 5216 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 5217 OldTTP->getTemplateParameters(), 5218 Complain, 5219 (Kind == Sema::TPL_TemplateMatch 5220 ? Sema::TPL_TemplateTemplateParmMatch 5221 : Kind), 5222 TemplateArgLoc); 5223 } 5224 5225 return true; 5226 } 5227 5228 /// \brief Diagnose a known arity mismatch when comparing template argument 5229 /// lists. 5230 static 5231 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 5232 TemplateParameterList *New, 5233 TemplateParameterList *Old, 5234 Sema::TemplateParameterListEqualKind Kind, 5235 SourceLocation TemplateArgLoc) { 5236 unsigned NextDiag = diag::err_template_param_list_different_arity; 5237 if (TemplateArgLoc.isValid()) { 5238 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5239 NextDiag = diag::note_template_param_list_different_arity; 5240 } 5241 S.Diag(New->getTemplateLoc(), NextDiag) 5242 << (New->size() > Old->size()) 5243 << (Kind != Sema::TPL_TemplateMatch) 5244 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 5245 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 5246 << (Kind != Sema::TPL_TemplateMatch) 5247 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 5248 } 5249 5250 /// \brief Determine whether the given template parameter lists are 5251 /// equivalent. 5252 /// 5253 /// \param New The new template parameter list, typically written in the 5254 /// source code as part of a new template declaration. 5255 /// 5256 /// \param Old The old template parameter list, typically found via 5257 /// name lookup of the template declared with this template parameter 5258 /// list. 5259 /// 5260 /// \param Complain If true, this routine will produce a diagnostic if 5261 /// the template parameter lists are not equivalent. 5262 /// 5263 /// \param Kind describes how we are to match the template parameter lists. 5264 /// 5265 /// \param TemplateArgLoc If this source location is valid, then we 5266 /// are actually checking the template parameter list of a template 5267 /// argument (New) against the template parameter list of its 5268 /// corresponding template template parameter (Old). We produce 5269 /// slightly different diagnostics in this scenario. 5270 /// 5271 /// \returns True if the template parameter lists are equal, false 5272 /// otherwise. 5273 bool 5274 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 5275 TemplateParameterList *Old, 5276 bool Complain, 5277 TemplateParameterListEqualKind Kind, 5278 SourceLocation TemplateArgLoc) { 5279 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 5280 if (Complain) 5281 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5282 TemplateArgLoc); 5283 5284 return false; 5285 } 5286 5287 // C++0x [temp.arg.template]p3: 5288 // A template-argument matches a template template-parameter (call it P) 5289 // when each of the template parameters in the template-parameter-list of 5290 // the template-argument's corresponding class template or alias template 5291 // (call it A) matches the corresponding template parameter in the 5292 // template-parameter-list of P. [...] 5293 TemplateParameterList::iterator NewParm = New->begin(); 5294 TemplateParameterList::iterator NewParmEnd = New->end(); 5295 for (TemplateParameterList::iterator OldParm = Old->begin(), 5296 OldParmEnd = Old->end(); 5297 OldParm != OldParmEnd; ++OldParm) { 5298 if (Kind != TPL_TemplateTemplateArgumentMatch || 5299 !(*OldParm)->isTemplateParameterPack()) { 5300 if (NewParm == NewParmEnd) { 5301 if (Complain) 5302 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5303 TemplateArgLoc); 5304 5305 return false; 5306 } 5307 5308 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5309 Kind, TemplateArgLoc)) 5310 return false; 5311 5312 ++NewParm; 5313 continue; 5314 } 5315 5316 // C++0x [temp.arg.template]p3: 5317 // [...] When P's template- parameter-list contains a template parameter 5318 // pack (14.5.3), the template parameter pack will match zero or more 5319 // template parameters or template parameter packs in the 5320 // template-parameter-list of A with the same type and form as the 5321 // template parameter pack in P (ignoring whether those template 5322 // parameters are template parameter packs). 5323 for (; NewParm != NewParmEnd; ++NewParm) { 5324 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5325 Kind, TemplateArgLoc)) 5326 return false; 5327 } 5328 } 5329 5330 // Make sure we exhausted all of the arguments. 5331 if (NewParm != NewParmEnd) { 5332 if (Complain) 5333 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5334 TemplateArgLoc); 5335 5336 return false; 5337 } 5338 5339 return true; 5340 } 5341 5342 /// \brief Check whether a template can be declared within this scope. 5343 /// 5344 /// If the template declaration is valid in this scope, returns 5345 /// false. Otherwise, issues a diagnostic and returns true. 5346 bool 5347 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 5348 if (!S) 5349 return false; 5350 5351 // Find the nearest enclosing declaration scope. 5352 while ((S->getFlags() & Scope::DeclScope) == 0 || 5353 (S->getFlags() & Scope::TemplateParamScope) != 0) 5354 S = S->getParent(); 5355 5356 // C++ [temp]p2: 5357 // A template-declaration can appear only as a namespace scope or 5358 // class scope declaration. 5359 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 5360 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 5361 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 5362 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 5363 << TemplateParams->getSourceRange(); 5364 5365 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 5366 Ctx = Ctx->getParent(); 5367 5368 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 5369 return false; 5370 5371 return Diag(TemplateParams->getTemplateLoc(), 5372 diag::err_template_outside_namespace_or_class_scope) 5373 << TemplateParams->getSourceRange(); 5374 } 5375 5376 /// \brief Determine what kind of template specialization the given declaration 5377 /// is. 5378 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 5379 if (!D) 5380 return TSK_Undeclared; 5381 5382 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 5383 return Record->getTemplateSpecializationKind(); 5384 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 5385 return Function->getTemplateSpecializationKind(); 5386 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 5387 return Var->getTemplateSpecializationKind(); 5388 5389 return TSK_Undeclared; 5390 } 5391 5392 /// \brief Check whether a specialization is well-formed in the current 5393 /// context. 5394 /// 5395 /// This routine determines whether a template specialization can be declared 5396 /// in the current context (C++ [temp.expl.spec]p2). 5397 /// 5398 /// \param S the semantic analysis object for which this check is being 5399 /// performed. 5400 /// 5401 /// \param Specialized the entity being specialized or instantiated, which 5402 /// may be a kind of template (class template, function template, etc.) or 5403 /// a member of a class template (member function, static data member, 5404 /// member class). 5405 /// 5406 /// \param PrevDecl the previous declaration of this entity, if any. 5407 /// 5408 /// \param Loc the location of the explicit specialization or instantiation of 5409 /// this entity. 5410 /// 5411 /// \param IsPartialSpecialization whether this is a partial specialization of 5412 /// a class template. 5413 /// 5414 /// \returns true if there was an error that we cannot recover from, false 5415 /// otherwise. 5416 static bool CheckTemplateSpecializationScope(Sema &S, 5417 NamedDecl *Specialized, 5418 NamedDecl *PrevDecl, 5419 SourceLocation Loc, 5420 bool IsPartialSpecialization) { 5421 // Keep these "kind" numbers in sync with the %select statements in the 5422 // various diagnostics emitted by this routine. 5423 int EntityKind = 0; 5424 if (isa<ClassTemplateDecl>(Specialized)) 5425 EntityKind = IsPartialSpecialization? 1 : 0; 5426 else if (isa<VarTemplateDecl>(Specialized)) 5427 EntityKind = IsPartialSpecialization ? 3 : 2; 5428 else if (isa<FunctionTemplateDecl>(Specialized)) 5429 EntityKind = 4; 5430 else if (isa<CXXMethodDecl>(Specialized)) 5431 EntityKind = 5; 5432 else if (isa<VarDecl>(Specialized)) 5433 EntityKind = 6; 5434 else if (isa<RecordDecl>(Specialized)) 5435 EntityKind = 7; 5436 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 5437 EntityKind = 8; 5438 else { 5439 S.Diag(Loc, diag::err_template_spec_unknown_kind) 5440 << S.getLangOpts().CPlusPlus11; 5441 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5442 return true; 5443 } 5444 5445 // C++ [temp.expl.spec]p2: 5446 // An explicit specialization shall be declared in the namespace 5447 // of which the template is a member, or, for member templates, in 5448 // the namespace of which the enclosing class or enclosing class 5449 // template is a member. An explicit specialization of a member 5450 // function, member class or static data member of a class 5451 // template shall be declared in the namespace of which the class 5452 // template is a member. Such a declaration may also be a 5453 // definition. If the declaration is not a definition, the 5454 // specialization may be defined later in the name- space in which 5455 // the explicit specialization was declared, or in a namespace 5456 // that encloses the one in which the explicit specialization was 5457 // declared. 5458 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 5459 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5460 << Specialized; 5461 return true; 5462 } 5463 5464 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5465 if (S.getLangOpts().MicrosoftExt) { 5466 // Do not warn for class scope explicit specialization during 5467 // instantiation, warning was already emitted during pattern 5468 // semantic analysis. 5469 if (!S.ActiveTemplateInstantiations.size()) 5470 S.Diag(Loc, diag::ext_function_specialization_in_class) 5471 << Specialized; 5472 } else { 5473 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5474 << Specialized; 5475 return true; 5476 } 5477 } 5478 5479 if (S.CurContext->isRecord() && 5480 !S.CurContext->Equals(Specialized->getDeclContext())) { 5481 // Make sure that we're specializing in the right record context. 5482 // Otherwise, things can go horribly wrong. 5483 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5484 << Specialized; 5485 return true; 5486 } 5487 5488 // C++ [temp.class.spec]p6: 5489 // A class template partial specialization may be declared or redeclared 5490 // in any namespace scope in which its definition may be defined (14.5.1 5491 // and 14.5.2). 5492 bool ComplainedAboutScope = false; 5493 DeclContext *SpecializedContext 5494 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5495 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5496 if ((!PrevDecl || 5497 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5498 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5499 // C++ [temp.exp.spec]p2: 5500 // An explicit specialization shall be declared in the namespace of which 5501 // the template is a member, or, for member templates, in the namespace 5502 // of which the enclosing class or enclosing class template is a member. 5503 // An explicit specialization of a member function, member class or 5504 // static data member of a class template shall be declared in the 5505 // namespace of which the class template is a member. 5506 // 5507 // C++0x [temp.expl.spec]p2: 5508 // An explicit specialization shall be declared in a namespace enclosing 5509 // the specialized template. 5510 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5511 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5512 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5513 assert(!IsCPlusPlus11Extension && 5514 "DC encloses TU but isn't in enclosing namespace set"); 5515 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5516 << EntityKind << Specialized; 5517 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5518 int Diag; 5519 if (!IsCPlusPlus11Extension) 5520 Diag = diag::err_template_spec_decl_out_of_scope; 5521 else if (!S.getLangOpts().CPlusPlus11) 5522 Diag = diag::ext_template_spec_decl_out_of_scope; 5523 else 5524 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5525 S.Diag(Loc, Diag) 5526 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5527 } 5528 5529 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5530 ComplainedAboutScope = 5531 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11); 5532 } 5533 } 5534 5535 // Make sure that this redeclaration (or definition) occurs in an enclosing 5536 // namespace. 5537 // Note that HandleDeclarator() performs this check for explicit 5538 // specializations of function templates, static data members, and member 5539 // functions, so we skip the check here for those kinds of entities. 5540 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5541 // Should we refactor that check, so that it occurs later? 5542 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5543 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5544 isa<FunctionDecl>(Specialized))) { 5545 if (isa<TranslationUnitDecl>(SpecializedContext)) 5546 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5547 << EntityKind << Specialized; 5548 else if (isa<NamespaceDecl>(SpecializedContext)) 5549 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5550 << EntityKind << Specialized 5551 << cast<NamedDecl>(SpecializedContext); 5552 5553 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5554 } 5555 5556 // FIXME: check for specialization-after-instantiation errors and such. 5557 5558 return false; 5559 } 5560 5561 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs 5562 /// that checks non-type template partial specialization arguments. 5563 static bool CheckNonTypeTemplatePartialSpecializationArgs( 5564 Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args, 5565 unsigned NumArgs) { 5566 for (unsigned I = 0; I != NumArgs; ++I) { 5567 if (Args[I].getKind() == TemplateArgument::Pack) { 5568 if (CheckNonTypeTemplatePartialSpecializationArgs( 5569 S, Param, Args[I].pack_begin(), Args[I].pack_size())) 5570 return true; 5571 5572 continue; 5573 } 5574 5575 if (Args[I].getKind() != TemplateArgument::Expression) 5576 continue; 5577 5578 Expr *ArgExpr = Args[I].getAsExpr(); 5579 5580 // We can have a pack expansion of any of the bullets below. 5581 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5582 ArgExpr = Expansion->getPattern(); 5583 5584 // Strip off any implicit casts we added as part of type checking. 5585 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5586 ArgExpr = ICE->getSubExpr(); 5587 5588 // C++ [temp.class.spec]p8: 5589 // A non-type argument is non-specialized if it is the name of a 5590 // non-type parameter. All other non-type arguments are 5591 // specialized. 5592 // 5593 // Below, we check the two conditions that only apply to 5594 // specialized non-type arguments, so skip any non-specialized 5595 // arguments. 5596 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5597 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5598 continue; 5599 5600 // C++ [temp.class.spec]p9: 5601 // Within the argument list of a class template partial 5602 // specialization, the following restrictions apply: 5603 // -- A partially specialized non-type argument expression 5604 // shall not involve a template parameter of the partial 5605 // specialization except when the argument expression is a 5606 // simple identifier. 5607 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5608 S.Diag(ArgExpr->getLocStart(), 5609 diag::err_dependent_non_type_arg_in_partial_spec) 5610 << ArgExpr->getSourceRange(); 5611 return true; 5612 } 5613 5614 // -- The type of a template parameter corresponding to a 5615 // specialized non-type argument shall not be dependent on a 5616 // parameter of the specialization. 5617 if (Param->getType()->isDependentType()) { 5618 S.Diag(ArgExpr->getLocStart(), 5619 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5620 << Param->getType() 5621 << ArgExpr->getSourceRange(); 5622 S.Diag(Param->getLocation(), diag::note_template_param_here); 5623 return true; 5624 } 5625 } 5626 5627 return false; 5628 } 5629 5630 /// \brief Check the non-type template arguments of a class template 5631 /// partial specialization according to C++ [temp.class.spec]p9. 5632 /// 5633 /// \param TemplateParams the template parameters of the primary class 5634 /// template. 5635 /// 5636 /// \param TemplateArgs the template arguments of the class template 5637 /// partial specialization. 5638 /// 5639 /// \returns true if there was an error, false otherwise. 5640 static bool CheckTemplatePartialSpecializationArgs( 5641 Sema &S, TemplateParameterList *TemplateParams, 5642 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5643 const TemplateArgument *ArgList = TemplateArgs.data(); 5644 5645 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5646 NonTypeTemplateParmDecl *Param 5647 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5648 if (!Param) 5649 continue; 5650 5651 if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1)) 5652 return true; 5653 } 5654 5655 return false; 5656 } 5657 5658 DeclResult 5659 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5660 TagUseKind TUK, 5661 SourceLocation KWLoc, 5662 SourceLocation ModulePrivateLoc, 5663 CXXScopeSpec &SS, 5664 TemplateTy TemplateD, 5665 SourceLocation TemplateNameLoc, 5666 SourceLocation LAngleLoc, 5667 ASTTemplateArgsPtr TemplateArgsIn, 5668 SourceLocation RAngleLoc, 5669 AttributeList *Attr, 5670 MultiTemplateParamsArg TemplateParameterLists) { 5671 assert(TUK != TUK_Reference && "References are not specializations"); 5672 5673 // NOTE: KWLoc is the location of the tag keyword. This will instead 5674 // store the location of the outermost template keyword in the declaration. 5675 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5676 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5677 5678 // Find the class template we're specializing 5679 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5680 ClassTemplateDecl *ClassTemplate 5681 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5682 5683 if (!ClassTemplate) { 5684 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5685 << (Name.getAsTemplateDecl() && 5686 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5687 return true; 5688 } 5689 5690 bool isExplicitSpecialization = false; 5691 bool isPartialSpecialization = false; 5692 5693 // Check the validity of the template headers that introduce this 5694 // template. 5695 // FIXME: We probably shouldn't complain about these headers for 5696 // friend declarations. 5697 bool Invalid = false; 5698 TemplateParameterList *TemplateParams = 5699 MatchTemplateParametersToScopeSpecifier( 5700 TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists, 5701 TUK == TUK_Friend, isExplicitSpecialization, Invalid); 5702 if (Invalid) 5703 return true; 5704 5705 if (TemplateParams && TemplateParams->size() > 0) { 5706 isPartialSpecialization = true; 5707 5708 if (TUK == TUK_Friend) { 5709 Diag(KWLoc, diag::err_partial_specialization_friend) 5710 << SourceRange(LAngleLoc, RAngleLoc); 5711 return true; 5712 } 5713 5714 // C++ [temp.class.spec]p10: 5715 // The template parameter list of a specialization shall not 5716 // contain default template argument values. 5717 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5718 Decl *Param = TemplateParams->getParam(I); 5719 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5720 if (TTP->hasDefaultArgument()) { 5721 Diag(TTP->getDefaultArgumentLoc(), 5722 diag::err_default_arg_in_partial_spec); 5723 TTP->removeDefaultArgument(); 5724 } 5725 } else if (NonTypeTemplateParmDecl *NTTP 5726 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5727 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5728 Diag(NTTP->getDefaultArgumentLoc(), 5729 diag::err_default_arg_in_partial_spec) 5730 << DefArg->getSourceRange(); 5731 NTTP->removeDefaultArgument(); 5732 } 5733 } else { 5734 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5735 if (TTP->hasDefaultArgument()) { 5736 Diag(TTP->getDefaultArgument().getLocation(), 5737 diag::err_default_arg_in_partial_spec) 5738 << TTP->getDefaultArgument().getSourceRange(); 5739 TTP->removeDefaultArgument(); 5740 } 5741 } 5742 } 5743 } else if (TemplateParams) { 5744 if (TUK == TUK_Friend) 5745 Diag(KWLoc, diag::err_template_spec_friend) 5746 << FixItHint::CreateRemoval( 5747 SourceRange(TemplateParams->getTemplateLoc(), 5748 TemplateParams->getRAngleLoc())) 5749 << SourceRange(LAngleLoc, RAngleLoc); 5750 else 5751 isExplicitSpecialization = true; 5752 } else if (TUK != TUK_Friend) { 5753 Diag(KWLoc, diag::err_template_spec_needs_header) 5754 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5755 TemplateKWLoc = KWLoc; 5756 isExplicitSpecialization = true; 5757 } 5758 5759 // Check that the specialization uses the same tag kind as the 5760 // original template. 5761 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5762 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5763 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5764 Kind, TUK == TUK_Definition, KWLoc, 5765 *ClassTemplate->getIdentifier())) { 5766 Diag(KWLoc, diag::err_use_with_wrong_tag) 5767 << ClassTemplate 5768 << FixItHint::CreateReplacement(KWLoc, 5769 ClassTemplate->getTemplatedDecl()->getKindName()); 5770 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5771 diag::note_previous_use); 5772 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5773 } 5774 5775 // Translate the parser's template argument list in our AST format. 5776 TemplateArgumentListInfo TemplateArgs; 5777 TemplateArgs.setLAngleLoc(LAngleLoc); 5778 TemplateArgs.setRAngleLoc(RAngleLoc); 5779 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5780 5781 // Check for unexpanded parameter packs in any of the template arguments. 5782 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5783 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5784 UPPC_PartialSpecialization)) 5785 return true; 5786 5787 // Check that the template argument list is well-formed for this 5788 // template. 5789 SmallVector<TemplateArgument, 4> Converted; 5790 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5791 TemplateArgs, false, Converted)) 5792 return true; 5793 5794 // Find the class template (partial) specialization declaration that 5795 // corresponds to these arguments. 5796 if (isPartialSpecialization) { 5797 if (CheckTemplatePartialSpecializationArgs( 5798 *this, ClassTemplate->getTemplateParameters(), Converted)) 5799 return true; 5800 5801 bool InstantiationDependent; 5802 if (!Name.isDependent() && 5803 !TemplateSpecializationType::anyDependentTemplateArguments( 5804 TemplateArgs.getArgumentArray(), 5805 TemplateArgs.size(), 5806 InstantiationDependent)) { 5807 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5808 << ClassTemplate->getDeclName(); 5809 isPartialSpecialization = false; 5810 } 5811 } 5812 5813 void *InsertPos = 0; 5814 ClassTemplateSpecializationDecl *PrevDecl = 0; 5815 5816 if (isPartialSpecialization) 5817 // FIXME: Template parameter list matters, too 5818 PrevDecl 5819 = ClassTemplate->findPartialSpecialization(Converted.data(), 5820 Converted.size(), 5821 InsertPos); 5822 else 5823 PrevDecl 5824 = ClassTemplate->findSpecialization(Converted.data(), 5825 Converted.size(), InsertPos); 5826 5827 ClassTemplateSpecializationDecl *Specialization = 0; 5828 5829 // Check whether we can declare a class template specialization in 5830 // the current scope. 5831 if (TUK != TUK_Friend && 5832 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5833 TemplateNameLoc, 5834 isPartialSpecialization)) 5835 return true; 5836 5837 // The canonical type 5838 QualType CanonType; 5839 if (PrevDecl && 5840 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5841 TUK == TUK_Friend)) { 5842 // Since the only prior class template specialization with these 5843 // arguments was referenced but not declared, or we're only 5844 // referencing this specialization as a friend, reuse that 5845 // declaration node as our own, updating its source location and 5846 // the list of outer template parameters to reflect our new declaration. 5847 Specialization = PrevDecl; 5848 Specialization->setLocation(TemplateNameLoc); 5849 if (TemplateParameterLists.size() > 0) { 5850 Specialization->setTemplateParameterListsInfo(Context, 5851 TemplateParameterLists.size(), 5852 TemplateParameterLists.data()); 5853 } 5854 PrevDecl = 0; 5855 CanonType = Context.getTypeDeclType(Specialization); 5856 } else if (isPartialSpecialization) { 5857 // Build the canonical type that describes the converted template 5858 // arguments of the class template partial specialization. 5859 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5860 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5861 Converted.data(), 5862 Converted.size()); 5863 5864 if (Context.hasSameType(CanonType, 5865 ClassTemplate->getInjectedClassNameSpecialization())) { 5866 // C++ [temp.class.spec]p9b3: 5867 // 5868 // -- The argument list of the specialization shall not be identical 5869 // to the implicit argument list of the primary template. 5870 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5871 << (TUK == TUK_Definition) 5872 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5873 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5874 ClassTemplate->getIdentifier(), 5875 TemplateNameLoc, 5876 Attr, 5877 TemplateParams, 5878 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5879 TemplateParameterLists.size() - 1, 5880 TemplateParameterLists.data()); 5881 } 5882 5883 // Create a new class template partial specialization declaration node. 5884 ClassTemplatePartialSpecializationDecl *PrevPartial 5885 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5886 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5887 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5888 ClassTemplatePartialSpecializationDecl *Partial 5889 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5890 ClassTemplate->getDeclContext(), 5891 KWLoc, TemplateNameLoc, 5892 TemplateParams, 5893 ClassTemplate, 5894 Converted.data(), 5895 Converted.size(), 5896 TemplateArgs, 5897 CanonType, 5898 PrevPartial, 5899 SequenceNumber); 5900 SetNestedNameSpecifier(Partial, SS); 5901 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5902 Partial->setTemplateParameterListsInfo(Context, 5903 TemplateParameterLists.size() - 1, 5904 TemplateParameterLists.data()); 5905 } 5906 5907 if (!PrevPartial) 5908 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5909 Specialization = Partial; 5910 5911 // If we are providing an explicit specialization of a member class 5912 // template specialization, make a note of that. 5913 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5914 PrevPartial->setMemberSpecialization(); 5915 5916 // Check that all of the template parameters of the class template 5917 // partial specialization are deducible from the template 5918 // arguments. If not, this class template partial specialization 5919 // will never be used. 5920 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5921 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5922 TemplateParams->getDepth(), 5923 DeducibleParams); 5924 5925 if (!DeducibleParams.all()) { 5926 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5927 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5928 << (NumNonDeducible > 1) 5929 << SourceRange(TemplateNameLoc, RAngleLoc); 5930 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5931 if (!DeducibleParams[I]) { 5932 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5933 if (Param->getDeclName()) 5934 Diag(Param->getLocation(), 5935 diag::note_partial_spec_unused_parameter) 5936 << Param->getDeclName(); 5937 else 5938 Diag(Param->getLocation(), 5939 diag::note_partial_spec_unused_parameter) 5940 << "<anonymous>"; 5941 } 5942 } 5943 } 5944 } else { 5945 // Create a new class template specialization declaration node for 5946 // this explicit specialization or friend declaration. 5947 Specialization 5948 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5949 ClassTemplate->getDeclContext(), 5950 KWLoc, TemplateNameLoc, 5951 ClassTemplate, 5952 Converted.data(), 5953 Converted.size(), 5954 PrevDecl); 5955 SetNestedNameSpecifier(Specialization, SS); 5956 if (TemplateParameterLists.size() > 0) { 5957 Specialization->setTemplateParameterListsInfo(Context, 5958 TemplateParameterLists.size(), 5959 TemplateParameterLists.data()); 5960 } 5961 5962 if (!PrevDecl) 5963 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5964 5965 CanonType = Context.getTypeDeclType(Specialization); 5966 } 5967 5968 // C++ [temp.expl.spec]p6: 5969 // If a template, a member template or the member of a class template is 5970 // explicitly specialized then that specialization shall be declared 5971 // before the first use of that specialization that would cause an implicit 5972 // instantiation to take place, in every translation unit in which such a 5973 // use occurs; no diagnostic is required. 5974 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5975 bool Okay = false; 5976 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5977 // Is there any previous explicit specialization declaration? 5978 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5979 Okay = true; 5980 break; 5981 } 5982 } 5983 5984 if (!Okay) { 5985 SourceRange Range(TemplateNameLoc, RAngleLoc); 5986 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5987 << Context.getTypeDeclType(Specialization) << Range; 5988 5989 Diag(PrevDecl->getPointOfInstantiation(), 5990 diag::note_instantiation_required_here) 5991 << (PrevDecl->getTemplateSpecializationKind() 5992 != TSK_ImplicitInstantiation); 5993 return true; 5994 } 5995 } 5996 5997 // If this is not a friend, note that this is an explicit specialization. 5998 if (TUK != TUK_Friend) 5999 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 6000 6001 // Check that this isn't a redefinition of this specialization. 6002 if (TUK == TUK_Definition) { 6003 if (RecordDecl *Def = Specialization->getDefinition()) { 6004 SourceRange Range(TemplateNameLoc, RAngleLoc); 6005 Diag(TemplateNameLoc, diag::err_redefinition) 6006 << Context.getTypeDeclType(Specialization) << Range; 6007 Diag(Def->getLocation(), diag::note_previous_definition); 6008 Specialization->setInvalidDecl(); 6009 return true; 6010 } 6011 } 6012 6013 if (Attr) 6014 ProcessDeclAttributeList(S, Specialization, Attr); 6015 6016 // Add alignment attributes if necessary; these attributes are checked when 6017 // the ASTContext lays out the structure. 6018 if (TUK == TUK_Definition) { 6019 AddAlignmentAttributesForRecord(Specialization); 6020 AddMsStructLayoutForRecord(Specialization); 6021 } 6022 6023 if (ModulePrivateLoc.isValid()) 6024 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 6025 << (isPartialSpecialization? 1 : 0) 6026 << FixItHint::CreateRemoval(ModulePrivateLoc); 6027 6028 // Build the fully-sugared type for this class template 6029 // specialization as the user wrote in the specialization 6030 // itself. This means that we'll pretty-print the type retrieved 6031 // from the specialization's declaration the way that the user 6032 // actually wrote the specialization, rather than formatting the 6033 // name based on the "canonical" representation used to store the 6034 // template arguments in the specialization. 6035 TypeSourceInfo *WrittenTy 6036 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6037 TemplateArgs, CanonType); 6038 if (TUK != TUK_Friend) { 6039 Specialization->setTypeAsWritten(WrittenTy); 6040 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 6041 } 6042 6043 // C++ [temp.expl.spec]p9: 6044 // A template explicit specialization is in the scope of the 6045 // namespace in which the template was defined. 6046 // 6047 // We actually implement this paragraph where we set the semantic 6048 // context (in the creation of the ClassTemplateSpecializationDecl), 6049 // but we also maintain the lexical context where the actual 6050 // definition occurs. 6051 Specialization->setLexicalDeclContext(CurContext); 6052 6053 // We may be starting the definition of this specialization. 6054 if (TUK == TUK_Definition) 6055 Specialization->startDefinition(); 6056 6057 if (TUK == TUK_Friend) { 6058 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 6059 TemplateNameLoc, 6060 WrittenTy, 6061 /*FIXME:*/KWLoc); 6062 Friend->setAccess(AS_public); 6063 CurContext->addDecl(Friend); 6064 } else { 6065 // Add the specialization into its lexical context, so that it can 6066 // be seen when iterating through the list of declarations in that 6067 // context. However, specializations are not found by name lookup. 6068 CurContext->addDecl(Specialization); 6069 } 6070 return Specialization; 6071 } 6072 6073 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 6074 MultiTemplateParamsArg TemplateParameterLists, 6075 Declarator &D) { 6076 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 6077 ActOnDocumentableDecl(NewDecl); 6078 return NewDecl; 6079 } 6080 6081 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 6082 MultiTemplateParamsArg TemplateParameterLists, 6083 Declarator &D) { 6084 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 6085 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 6086 6087 if (FTI.hasPrototype) { 6088 // FIXME: Diagnose arguments without names in C. 6089 } 6090 6091 Scope *ParentScope = FnBodyScope->getParent(); 6092 6093 D.setFunctionDefinitionKind(FDK_Definition); 6094 Decl *DP = HandleDeclarator(ParentScope, D, 6095 TemplateParameterLists); 6096 return ActOnStartOfFunctionDef(FnBodyScope, DP); 6097 } 6098 6099 /// \brief Strips various properties off an implicit instantiation 6100 /// that has just been explicitly specialized. 6101 static void StripImplicitInstantiation(NamedDecl *D) { 6102 D->dropAttrs(); 6103 6104 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6105 FD->setInlineSpecified(false); 6106 6107 for (FunctionDecl::param_iterator I = FD->param_begin(), 6108 E = FD->param_end(); 6109 I != E; ++I) 6110 (*I)->dropAttrs(); 6111 } 6112 } 6113 6114 /// \brief Compute the diagnostic location for an explicit instantiation 6115 // declaration or definition. 6116 static SourceLocation DiagLocForExplicitInstantiation( 6117 NamedDecl* D, SourceLocation PointOfInstantiation) { 6118 // Explicit instantiations following a specialization have no effect and 6119 // hence no PointOfInstantiation. In that case, walk decl backwards 6120 // until a valid name loc is found. 6121 SourceLocation PrevDiagLoc = PointOfInstantiation; 6122 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 6123 Prev = Prev->getPreviousDecl()) { 6124 PrevDiagLoc = Prev->getLocation(); 6125 } 6126 assert(PrevDiagLoc.isValid() && 6127 "Explicit instantiation without point of instantiation?"); 6128 return PrevDiagLoc; 6129 } 6130 6131 /// \brief Diagnose cases where we have an explicit template specialization 6132 /// before/after an explicit template instantiation, producing diagnostics 6133 /// for those cases where they are required and determining whether the 6134 /// new specialization/instantiation will have any effect. 6135 /// 6136 /// \param NewLoc the location of the new explicit specialization or 6137 /// instantiation. 6138 /// 6139 /// \param NewTSK the kind of the new explicit specialization or instantiation. 6140 /// 6141 /// \param PrevDecl the previous declaration of the entity. 6142 /// 6143 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 6144 /// 6145 /// \param PrevPointOfInstantiation if valid, indicates where the previus 6146 /// declaration was instantiated (either implicitly or explicitly). 6147 /// 6148 /// \param HasNoEffect will be set to true to indicate that the new 6149 /// specialization or instantiation has no effect and should be ignored. 6150 /// 6151 /// \returns true if there was an error that should prevent the introduction of 6152 /// the new declaration into the AST, false otherwise. 6153 bool 6154 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 6155 TemplateSpecializationKind NewTSK, 6156 NamedDecl *PrevDecl, 6157 TemplateSpecializationKind PrevTSK, 6158 SourceLocation PrevPointOfInstantiation, 6159 bool &HasNoEffect) { 6160 HasNoEffect = false; 6161 6162 switch (NewTSK) { 6163 case TSK_Undeclared: 6164 case TSK_ImplicitInstantiation: 6165 llvm_unreachable("Don't check implicit instantiations here"); 6166 6167 case TSK_ExplicitSpecialization: 6168 switch (PrevTSK) { 6169 case TSK_Undeclared: 6170 case TSK_ExplicitSpecialization: 6171 // Okay, we're just specializing something that is either already 6172 // explicitly specialized or has merely been mentioned without any 6173 // instantiation. 6174 return false; 6175 6176 case TSK_ImplicitInstantiation: 6177 if (PrevPointOfInstantiation.isInvalid()) { 6178 // The declaration itself has not actually been instantiated, so it is 6179 // still okay to specialize it. 6180 StripImplicitInstantiation(PrevDecl); 6181 return false; 6182 } 6183 // Fall through 6184 6185 case TSK_ExplicitInstantiationDeclaration: 6186 case TSK_ExplicitInstantiationDefinition: 6187 assert((PrevTSK == TSK_ImplicitInstantiation || 6188 PrevPointOfInstantiation.isValid()) && 6189 "Explicit instantiation without point of instantiation?"); 6190 6191 // C++ [temp.expl.spec]p6: 6192 // If a template, a member template or the member of a class template 6193 // is explicitly specialized then that specialization shall be declared 6194 // before the first use of that specialization that would cause an 6195 // implicit instantiation to take place, in every translation unit in 6196 // which such a use occurs; no diagnostic is required. 6197 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6198 // Is there any previous explicit specialization declaration? 6199 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 6200 return false; 6201 } 6202 6203 Diag(NewLoc, diag::err_specialization_after_instantiation) 6204 << PrevDecl; 6205 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 6206 << (PrevTSK != TSK_ImplicitInstantiation); 6207 6208 return true; 6209 } 6210 6211 case TSK_ExplicitInstantiationDeclaration: 6212 switch (PrevTSK) { 6213 case TSK_ExplicitInstantiationDeclaration: 6214 // This explicit instantiation declaration is redundant (that's okay). 6215 HasNoEffect = true; 6216 return false; 6217 6218 case TSK_Undeclared: 6219 case TSK_ImplicitInstantiation: 6220 // We're explicitly instantiating something that may have already been 6221 // implicitly instantiated; that's fine. 6222 return false; 6223 6224 case TSK_ExplicitSpecialization: 6225 // C++0x [temp.explicit]p4: 6226 // For a given set of template parameters, if an explicit instantiation 6227 // of a template appears after a declaration of an explicit 6228 // specialization for that template, the explicit instantiation has no 6229 // effect. 6230 HasNoEffect = true; 6231 return false; 6232 6233 case TSK_ExplicitInstantiationDefinition: 6234 // C++0x [temp.explicit]p10: 6235 // If an entity is the subject of both an explicit instantiation 6236 // declaration and an explicit instantiation definition in the same 6237 // translation unit, the definition shall follow the declaration. 6238 Diag(NewLoc, 6239 diag::err_explicit_instantiation_declaration_after_definition); 6240 6241 // Explicit instantiations following a specialization have no effect and 6242 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 6243 // until a valid name loc is found. 6244 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6245 diag::note_explicit_instantiation_definition_here); 6246 HasNoEffect = true; 6247 return false; 6248 } 6249 6250 case TSK_ExplicitInstantiationDefinition: 6251 switch (PrevTSK) { 6252 case TSK_Undeclared: 6253 case TSK_ImplicitInstantiation: 6254 // We're explicitly instantiating something that may have already been 6255 // implicitly instantiated; that's fine. 6256 return false; 6257 6258 case TSK_ExplicitSpecialization: 6259 // C++ DR 259, C++0x [temp.explicit]p4: 6260 // For a given set of template parameters, if an explicit 6261 // instantiation of a template appears after a declaration of 6262 // an explicit specialization for that template, the explicit 6263 // instantiation has no effect. 6264 // 6265 // In C++98/03 mode, we only give an extension warning here, because it 6266 // is not harmful to try to explicitly instantiate something that 6267 // has been explicitly specialized. 6268 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 6269 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 6270 diag::ext_explicit_instantiation_after_specialization) 6271 << PrevDecl; 6272 Diag(PrevDecl->getLocation(), 6273 diag::note_previous_template_specialization); 6274 HasNoEffect = true; 6275 return false; 6276 6277 case TSK_ExplicitInstantiationDeclaration: 6278 // We're explicity instantiating a definition for something for which we 6279 // were previously asked to suppress instantiations. That's fine. 6280 6281 // C++0x [temp.explicit]p4: 6282 // For a given set of template parameters, if an explicit instantiation 6283 // of a template appears after a declaration of an explicit 6284 // specialization for that template, the explicit instantiation has no 6285 // effect. 6286 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6287 // Is there any previous explicit specialization declaration? 6288 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 6289 HasNoEffect = true; 6290 break; 6291 } 6292 } 6293 6294 return false; 6295 6296 case TSK_ExplicitInstantiationDefinition: 6297 // C++0x [temp.spec]p5: 6298 // For a given template and a given set of template-arguments, 6299 // - an explicit instantiation definition shall appear at most once 6300 // in a program, 6301 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 6302 << PrevDecl; 6303 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6304 diag::note_previous_explicit_instantiation); 6305 HasNoEffect = true; 6306 return false; 6307 } 6308 } 6309 6310 llvm_unreachable("Missing specialization/instantiation case?"); 6311 } 6312 6313 /// \brief Perform semantic analysis for the given dependent function 6314 /// template specialization. 6315 /// 6316 /// The only possible way to get a dependent function template specialization 6317 /// is with a friend declaration, like so: 6318 /// 6319 /// \code 6320 /// template \<class T> void foo(T); 6321 /// template \<class T> class A { 6322 /// friend void foo<>(T); 6323 /// }; 6324 /// \endcode 6325 /// 6326 /// There really isn't any useful analysis we can do here, so we 6327 /// just store the information. 6328 bool 6329 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 6330 const TemplateArgumentListInfo &ExplicitTemplateArgs, 6331 LookupResult &Previous) { 6332 // Remove anything from Previous that isn't a function template in 6333 // the correct context. 6334 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6335 LookupResult::Filter F = Previous.makeFilter(); 6336 while (F.hasNext()) { 6337 NamedDecl *D = F.next()->getUnderlyingDecl(); 6338 if (!isa<FunctionTemplateDecl>(D) || 6339 !FDLookupContext->InEnclosingNamespaceSetOf( 6340 D->getDeclContext()->getRedeclContext())) 6341 F.erase(); 6342 } 6343 F.done(); 6344 6345 // Should this be diagnosed here? 6346 if (Previous.empty()) return true; 6347 6348 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 6349 ExplicitTemplateArgs); 6350 return false; 6351 } 6352 6353 /// \brief Perform semantic analysis for the given function template 6354 /// specialization. 6355 /// 6356 /// This routine performs all of the semantic analysis required for an 6357 /// explicit function template specialization. On successful completion, 6358 /// the function declaration \p FD will become a function template 6359 /// specialization. 6360 /// 6361 /// \param FD the function declaration, which will be updated to become a 6362 /// function template specialization. 6363 /// 6364 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 6365 /// if any. Note that this may be valid info even when 0 arguments are 6366 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 6367 /// as it anyway contains info on the angle brackets locations. 6368 /// 6369 /// \param Previous the set of declarations that may be specialized by 6370 /// this function specialization. 6371 bool Sema::CheckFunctionTemplateSpecialization( 6372 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 6373 LookupResult &Previous) { 6374 // The set of function template specializations that could match this 6375 // explicit function template specialization. 6376 UnresolvedSet<8> Candidates; 6377 TemplateSpecCandidateSet FailedCandidates(FD->getLocation()); 6378 6379 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6380 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6381 I != E; ++I) { 6382 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 6383 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 6384 // Only consider templates found within the same semantic lookup scope as 6385 // FD. 6386 if (!FDLookupContext->InEnclosingNamespaceSetOf( 6387 Ovl->getDeclContext()->getRedeclContext())) 6388 continue; 6389 6390 // When matching a constexpr member function template specialization 6391 // against the primary template, we don't yet know whether the 6392 // specialization has an implicit 'const' (because we don't know whether 6393 // it will be a static member function until we know which template it 6394 // specializes), so adjust it now assuming it specializes this template. 6395 QualType FT = FD->getType(); 6396 if (FD->isConstexpr()) { 6397 CXXMethodDecl *OldMD = 6398 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 6399 if (OldMD && OldMD->isConst()) { 6400 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 6401 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 6402 EPI.TypeQuals |= Qualifiers::Const; 6403 FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), 6404 EPI); 6405 } 6406 } 6407 6408 // C++ [temp.expl.spec]p11: 6409 // A trailing template-argument can be left unspecified in the 6410 // template-id naming an explicit function template specialization 6411 // provided it can be deduced from the function argument type. 6412 // Perform template argument deduction to determine whether we may be 6413 // specializing this template. 6414 // FIXME: It is somewhat wasteful to build 6415 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 6416 FunctionDecl *Specialization = 0; 6417 if (TemplateDeductionResult TDK 6418 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT, 6419 Specialization, Info)) { 6420 // Template argument deduction failed; record why it failed, so 6421 // that we can provide nifty diagnostics. 6422 FailedCandidates.addCandidate() 6423 .set(FunTmpl->getTemplatedDecl(), 6424 MakeDeductionFailureInfo(Context, TDK, Info)); 6425 (void)TDK; 6426 continue; 6427 } 6428 6429 // Record this candidate. 6430 Candidates.addDecl(Specialization, I.getAccess()); 6431 } 6432 } 6433 6434 // Find the most specialized function template. 6435 UnresolvedSetIterator Result = getMostSpecialized( 6436 Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0, 6437 FD->getLocation(), 6438 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 6439 PDiag(diag::err_function_template_spec_ambiguous) 6440 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 6441 PDiag(diag::note_function_template_spec_matched)); 6442 6443 if (Result == Candidates.end()) 6444 return true; 6445 6446 // Ignore access information; it doesn't figure into redeclaration checking. 6447 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6448 6449 FunctionTemplateSpecializationInfo *SpecInfo 6450 = Specialization->getTemplateSpecializationInfo(); 6451 assert(SpecInfo && "Function template specialization info missing?"); 6452 6453 // Note: do not overwrite location info if previous template 6454 // specialization kind was explicit. 6455 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 6456 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 6457 Specialization->setLocation(FD->getLocation()); 6458 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6459 // function can differ from the template declaration with respect to 6460 // the constexpr specifier. 6461 Specialization->setConstexpr(FD->isConstexpr()); 6462 } 6463 6464 // FIXME: Check if the prior specialization has a point of instantiation. 6465 // If so, we have run afoul of . 6466 6467 // If this is a friend declaration, then we're not really declaring 6468 // an explicit specialization. 6469 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6470 6471 // Check the scope of this explicit specialization. 6472 if (!isFriend && 6473 CheckTemplateSpecializationScope(*this, 6474 Specialization->getPrimaryTemplate(), 6475 Specialization, FD->getLocation(), 6476 false)) 6477 return true; 6478 6479 // C++ [temp.expl.spec]p6: 6480 // If a template, a member template or the member of a class template is 6481 // explicitly specialized then that specialization shall be declared 6482 // before the first use of that specialization that would cause an implicit 6483 // instantiation to take place, in every translation unit in which such a 6484 // use occurs; no diagnostic is required. 6485 bool HasNoEffect = false; 6486 if (!isFriend && 6487 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6488 TSK_ExplicitSpecialization, 6489 Specialization, 6490 SpecInfo->getTemplateSpecializationKind(), 6491 SpecInfo->getPointOfInstantiation(), 6492 HasNoEffect)) 6493 return true; 6494 6495 // Mark the prior declaration as an explicit specialization, so that later 6496 // clients know that this is an explicit specialization. 6497 if (!isFriend) { 6498 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6499 MarkUnusedFileScopedDecl(Specialization); 6500 } 6501 6502 // Turn the given function declaration into a function template 6503 // specialization, with the template arguments from the previous 6504 // specialization. 6505 // Take copies of (semantic and syntactic) template argument lists. 6506 const TemplateArgumentList* TemplArgs = new (Context) 6507 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6508 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6509 TemplArgs, /*InsertPos=*/0, 6510 SpecInfo->getTemplateSpecializationKind(), 6511 ExplicitTemplateArgs); 6512 6513 // The "previous declaration" for this function template specialization is 6514 // the prior function template specialization. 6515 Previous.clear(); 6516 Previous.addDecl(Specialization); 6517 return false; 6518 } 6519 6520 /// \brief Perform semantic analysis for the given non-template member 6521 /// specialization. 6522 /// 6523 /// This routine performs all of the semantic analysis required for an 6524 /// explicit member function specialization. On successful completion, 6525 /// the function declaration \p FD will become a member function 6526 /// specialization. 6527 /// 6528 /// \param Member the member declaration, which will be updated to become a 6529 /// specialization. 6530 /// 6531 /// \param Previous the set of declarations, one of which may be specialized 6532 /// by this function specialization; the set will be modified to contain the 6533 /// redeclared member. 6534 bool 6535 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6536 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6537 6538 // Try to find the member we are instantiating. 6539 NamedDecl *Instantiation = 0; 6540 NamedDecl *InstantiatedFrom = 0; 6541 MemberSpecializationInfo *MSInfo = 0; 6542 6543 if (Previous.empty()) { 6544 // Nowhere to look anyway. 6545 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6546 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6547 I != E; ++I) { 6548 NamedDecl *D = (*I)->getUnderlyingDecl(); 6549 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6550 if (Context.hasSameType(Function->getType(), Method->getType())) { 6551 Instantiation = Method; 6552 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6553 MSInfo = Method->getMemberSpecializationInfo(); 6554 break; 6555 } 6556 } 6557 } 6558 } else if (isa<VarDecl>(Member)) { 6559 VarDecl *PrevVar; 6560 if (Previous.isSingleResult() && 6561 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6562 if (PrevVar->isStaticDataMember()) { 6563 Instantiation = PrevVar; 6564 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6565 MSInfo = PrevVar->getMemberSpecializationInfo(); 6566 } 6567 } else if (isa<RecordDecl>(Member)) { 6568 CXXRecordDecl *PrevRecord; 6569 if (Previous.isSingleResult() && 6570 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6571 Instantiation = PrevRecord; 6572 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6573 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6574 } 6575 } else if (isa<EnumDecl>(Member)) { 6576 EnumDecl *PrevEnum; 6577 if (Previous.isSingleResult() && 6578 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6579 Instantiation = PrevEnum; 6580 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6581 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6582 } 6583 } 6584 6585 if (!Instantiation) { 6586 // There is no previous declaration that matches. Since member 6587 // specializations are always out-of-line, the caller will complain about 6588 // this mismatch later. 6589 return false; 6590 } 6591 6592 // If this is a friend, just bail out here before we start turning 6593 // things into explicit specializations. 6594 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6595 // Preserve instantiation information. 6596 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6597 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6598 cast<CXXMethodDecl>(InstantiatedFrom), 6599 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6600 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6601 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6602 cast<CXXRecordDecl>(InstantiatedFrom), 6603 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6604 } 6605 6606 Previous.clear(); 6607 Previous.addDecl(Instantiation); 6608 return false; 6609 } 6610 6611 // Make sure that this is a specialization of a member. 6612 if (!InstantiatedFrom) { 6613 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6614 << Member; 6615 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6616 return true; 6617 } 6618 6619 // C++ [temp.expl.spec]p6: 6620 // If a template, a member template or the member of a class template is 6621 // explicitly specialized then that specialization shall be declared 6622 // before the first use of that specialization that would cause an implicit 6623 // instantiation to take place, in every translation unit in which such a 6624 // use occurs; no diagnostic is required. 6625 assert(MSInfo && "Member specialization info missing?"); 6626 6627 bool HasNoEffect = false; 6628 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6629 TSK_ExplicitSpecialization, 6630 Instantiation, 6631 MSInfo->getTemplateSpecializationKind(), 6632 MSInfo->getPointOfInstantiation(), 6633 HasNoEffect)) 6634 return true; 6635 6636 // Check the scope of this explicit specialization. 6637 if (CheckTemplateSpecializationScope(*this, 6638 InstantiatedFrom, 6639 Instantiation, Member->getLocation(), 6640 false)) 6641 return true; 6642 6643 // Note that this is an explicit instantiation of a member. 6644 // the original declaration to note that it is an explicit specialization 6645 // (if it was previously an implicit instantiation). This latter step 6646 // makes bookkeeping easier. 6647 if (isa<FunctionDecl>(Member)) { 6648 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6649 if (InstantiationFunction->getTemplateSpecializationKind() == 6650 TSK_ImplicitInstantiation) { 6651 InstantiationFunction->setTemplateSpecializationKind( 6652 TSK_ExplicitSpecialization); 6653 InstantiationFunction->setLocation(Member->getLocation()); 6654 } 6655 6656 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6657 cast<CXXMethodDecl>(InstantiatedFrom), 6658 TSK_ExplicitSpecialization); 6659 MarkUnusedFileScopedDecl(InstantiationFunction); 6660 } else if (isa<VarDecl>(Member)) { 6661 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6662 if (InstantiationVar->getTemplateSpecializationKind() == 6663 TSK_ImplicitInstantiation) { 6664 InstantiationVar->setTemplateSpecializationKind( 6665 TSK_ExplicitSpecialization); 6666 InstantiationVar->setLocation(Member->getLocation()); 6667 } 6668 6669 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember( 6670 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6671 MarkUnusedFileScopedDecl(InstantiationVar); 6672 } else if (isa<CXXRecordDecl>(Member)) { 6673 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6674 if (InstantiationClass->getTemplateSpecializationKind() == 6675 TSK_ImplicitInstantiation) { 6676 InstantiationClass->setTemplateSpecializationKind( 6677 TSK_ExplicitSpecialization); 6678 InstantiationClass->setLocation(Member->getLocation()); 6679 } 6680 6681 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6682 cast<CXXRecordDecl>(InstantiatedFrom), 6683 TSK_ExplicitSpecialization); 6684 } else { 6685 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6686 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6687 if (InstantiationEnum->getTemplateSpecializationKind() == 6688 TSK_ImplicitInstantiation) { 6689 InstantiationEnum->setTemplateSpecializationKind( 6690 TSK_ExplicitSpecialization); 6691 InstantiationEnum->setLocation(Member->getLocation()); 6692 } 6693 6694 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6695 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6696 } 6697 6698 // Save the caller the trouble of having to figure out which declaration 6699 // this specialization matches. 6700 Previous.clear(); 6701 Previous.addDecl(Instantiation); 6702 return false; 6703 } 6704 6705 /// \brief Check the scope of an explicit instantiation. 6706 /// 6707 /// \returns true if a serious error occurs, false otherwise. 6708 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6709 SourceLocation InstLoc, 6710 bool WasQualifiedName) { 6711 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6712 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6713 6714 if (CurContext->isRecord()) { 6715 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6716 << D; 6717 return true; 6718 } 6719 6720 // C++11 [temp.explicit]p3: 6721 // An explicit instantiation shall appear in an enclosing namespace of its 6722 // template. If the name declared in the explicit instantiation is an 6723 // unqualified name, the explicit instantiation shall appear in the 6724 // namespace where its template is declared or, if that namespace is inline 6725 // (7.3.1), any namespace from its enclosing namespace set. 6726 // 6727 // This is DR275, which we do not retroactively apply to C++98/03. 6728 if (WasQualifiedName) { 6729 if (CurContext->Encloses(OrigContext)) 6730 return false; 6731 } else { 6732 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6733 return false; 6734 } 6735 6736 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6737 if (WasQualifiedName) 6738 S.Diag(InstLoc, 6739 S.getLangOpts().CPlusPlus11? 6740 diag::err_explicit_instantiation_out_of_scope : 6741 diag::warn_explicit_instantiation_out_of_scope_0x) 6742 << D << NS; 6743 else 6744 S.Diag(InstLoc, 6745 S.getLangOpts().CPlusPlus11? 6746 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6747 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6748 << D << NS; 6749 } else 6750 S.Diag(InstLoc, 6751 S.getLangOpts().CPlusPlus11? 6752 diag::err_explicit_instantiation_must_be_global : 6753 diag::warn_explicit_instantiation_must_be_global_0x) 6754 << D; 6755 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6756 return false; 6757 } 6758 6759 /// \brief Determine whether the given scope specifier has a template-id in it. 6760 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6761 if (!SS.isSet()) 6762 return false; 6763 6764 // C++11 [temp.explicit]p3: 6765 // If the explicit instantiation is for a member function, a member class 6766 // or a static data member of a class template specialization, the name of 6767 // the class template specialization in the qualified-id for the member 6768 // name shall be a simple-template-id. 6769 // 6770 // C++98 has the same restriction, just worded differently. 6771 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6772 NNS; NNS = NNS->getPrefix()) 6773 if (const Type *T = NNS->getAsType()) 6774 if (isa<TemplateSpecializationType>(T)) 6775 return true; 6776 6777 return false; 6778 } 6779 6780 // Explicit instantiation of a class template specialization 6781 DeclResult 6782 Sema::ActOnExplicitInstantiation(Scope *S, 6783 SourceLocation ExternLoc, 6784 SourceLocation TemplateLoc, 6785 unsigned TagSpec, 6786 SourceLocation KWLoc, 6787 const CXXScopeSpec &SS, 6788 TemplateTy TemplateD, 6789 SourceLocation TemplateNameLoc, 6790 SourceLocation LAngleLoc, 6791 ASTTemplateArgsPtr TemplateArgsIn, 6792 SourceLocation RAngleLoc, 6793 AttributeList *Attr) { 6794 // Find the class template we're specializing 6795 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6796 TemplateDecl *TD = Name.getAsTemplateDecl(); 6797 // Check that the specialization uses the same tag kind as the 6798 // original template. 6799 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6800 assert(Kind != TTK_Enum && 6801 "Invalid enum tag in class template explicit instantiation!"); 6802 6803 if (isa<TypeAliasTemplateDecl>(TD)) { 6804 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind; 6805 Diag(TD->getTemplatedDecl()->getLocation(), 6806 diag::note_previous_use); 6807 return true; 6808 } 6809 6810 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD); 6811 6812 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6813 Kind, /*isDefinition*/false, KWLoc, 6814 *ClassTemplate->getIdentifier())) { 6815 Diag(KWLoc, diag::err_use_with_wrong_tag) 6816 << ClassTemplate 6817 << FixItHint::CreateReplacement(KWLoc, 6818 ClassTemplate->getTemplatedDecl()->getKindName()); 6819 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6820 diag::note_previous_use); 6821 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6822 } 6823 6824 // C++0x [temp.explicit]p2: 6825 // There are two forms of explicit instantiation: an explicit instantiation 6826 // definition and an explicit instantiation declaration. An explicit 6827 // instantiation declaration begins with the extern keyword. [...] 6828 TemplateSpecializationKind TSK 6829 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6830 : TSK_ExplicitInstantiationDeclaration; 6831 6832 // Translate the parser's template argument list in our AST format. 6833 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6834 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6835 6836 // Check that the template argument list is well-formed for this 6837 // template. 6838 SmallVector<TemplateArgument, 4> Converted; 6839 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6840 TemplateArgs, false, Converted)) 6841 return true; 6842 6843 // Find the class template specialization declaration that 6844 // corresponds to these arguments. 6845 void *InsertPos = 0; 6846 ClassTemplateSpecializationDecl *PrevDecl 6847 = ClassTemplate->findSpecialization(Converted.data(), 6848 Converted.size(), InsertPos); 6849 6850 TemplateSpecializationKind PrevDecl_TSK 6851 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6852 6853 // C++0x [temp.explicit]p2: 6854 // [...] An explicit instantiation shall appear in an enclosing 6855 // namespace of its template. [...] 6856 // 6857 // This is C++ DR 275. 6858 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6859 SS.isSet())) 6860 return true; 6861 6862 ClassTemplateSpecializationDecl *Specialization = 0; 6863 6864 bool HasNoEffect = false; 6865 if (PrevDecl) { 6866 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6867 PrevDecl, PrevDecl_TSK, 6868 PrevDecl->getPointOfInstantiation(), 6869 HasNoEffect)) 6870 return PrevDecl; 6871 6872 // Even though HasNoEffect == true means that this explicit instantiation 6873 // has no effect on semantics, we go on to put its syntax in the AST. 6874 6875 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6876 PrevDecl_TSK == TSK_Undeclared) { 6877 // Since the only prior class template specialization with these 6878 // arguments was referenced but not declared, reuse that 6879 // declaration node as our own, updating the source location 6880 // for the template name to reflect our new declaration. 6881 // (Other source locations will be updated later.) 6882 Specialization = PrevDecl; 6883 Specialization->setLocation(TemplateNameLoc); 6884 PrevDecl = 0; 6885 } 6886 } 6887 6888 if (!Specialization) { 6889 // Create a new class template specialization declaration node for 6890 // this explicit specialization. 6891 Specialization 6892 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6893 ClassTemplate->getDeclContext(), 6894 KWLoc, TemplateNameLoc, 6895 ClassTemplate, 6896 Converted.data(), 6897 Converted.size(), 6898 PrevDecl); 6899 SetNestedNameSpecifier(Specialization, SS); 6900 6901 if (!HasNoEffect && !PrevDecl) { 6902 // Insert the new specialization. 6903 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6904 } 6905 } 6906 6907 // Build the fully-sugared type for this explicit instantiation as 6908 // the user wrote in the explicit instantiation itself. This means 6909 // that we'll pretty-print the type retrieved from the 6910 // specialization's declaration the way that the user actually wrote 6911 // the explicit instantiation, rather than formatting the name based 6912 // on the "canonical" representation used to store the template 6913 // arguments in the specialization. 6914 TypeSourceInfo *WrittenTy 6915 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6916 TemplateArgs, 6917 Context.getTypeDeclType(Specialization)); 6918 Specialization->setTypeAsWritten(WrittenTy); 6919 6920 // Set source locations for keywords. 6921 Specialization->setExternLoc(ExternLoc); 6922 Specialization->setTemplateKeywordLoc(TemplateLoc); 6923 Specialization->setRBraceLoc(SourceLocation()); 6924 6925 if (Attr) 6926 ProcessDeclAttributeList(S, Specialization, Attr); 6927 6928 // Add the explicit instantiation into its lexical context. However, 6929 // since explicit instantiations are never found by name lookup, we 6930 // just put it into the declaration context directly. 6931 Specialization->setLexicalDeclContext(CurContext); 6932 CurContext->addDecl(Specialization); 6933 6934 // Syntax is now OK, so return if it has no other effect on semantics. 6935 if (HasNoEffect) { 6936 // Set the template specialization kind. 6937 Specialization->setTemplateSpecializationKind(TSK); 6938 return Specialization; 6939 } 6940 6941 // C++ [temp.explicit]p3: 6942 // A definition of a class template or class member template 6943 // shall be in scope at the point of the explicit instantiation of 6944 // the class template or class member template. 6945 // 6946 // This check comes when we actually try to perform the 6947 // instantiation. 6948 ClassTemplateSpecializationDecl *Def 6949 = cast_or_null<ClassTemplateSpecializationDecl>( 6950 Specialization->getDefinition()); 6951 if (!Def) 6952 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6953 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6954 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6955 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6956 } 6957 6958 // Instantiate the members of this class template specialization. 6959 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6960 Specialization->getDefinition()); 6961 if (Def) { 6962 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6963 6964 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6965 // TSK_ExplicitInstantiationDefinition 6966 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6967 TSK == TSK_ExplicitInstantiationDefinition) 6968 Def->setTemplateSpecializationKind(TSK); 6969 6970 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6971 } 6972 6973 // Set the template specialization kind. 6974 Specialization->setTemplateSpecializationKind(TSK); 6975 return Specialization; 6976 } 6977 6978 // Explicit instantiation of a member class of a class template. 6979 DeclResult 6980 Sema::ActOnExplicitInstantiation(Scope *S, 6981 SourceLocation ExternLoc, 6982 SourceLocation TemplateLoc, 6983 unsigned TagSpec, 6984 SourceLocation KWLoc, 6985 CXXScopeSpec &SS, 6986 IdentifierInfo *Name, 6987 SourceLocation NameLoc, 6988 AttributeList *Attr) { 6989 6990 bool Owned = false; 6991 bool IsDependent = false; 6992 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6993 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6994 /*ModulePrivateLoc=*/SourceLocation(), 6995 MultiTemplateParamsArg(), Owned, IsDependent, 6996 SourceLocation(), false, TypeResult()); 6997 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6998 6999 if (!TagD) 7000 return true; 7001 7002 TagDecl *Tag = cast<TagDecl>(TagD); 7003 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 7004 7005 if (Tag->isInvalidDecl()) 7006 return true; 7007 7008 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 7009 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 7010 if (!Pattern) { 7011 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 7012 << Context.getTypeDeclType(Record); 7013 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 7014 return true; 7015 } 7016 7017 // C++0x [temp.explicit]p2: 7018 // If the explicit instantiation is for a class or member class, the 7019 // elaborated-type-specifier in the declaration shall include a 7020 // simple-template-id. 7021 // 7022 // C++98 has the same restriction, just worded differently. 7023 if (!ScopeSpecifierHasTemplateId(SS)) 7024 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 7025 << Record << SS.getRange(); 7026 7027 // C++0x [temp.explicit]p2: 7028 // There are two forms of explicit instantiation: an explicit instantiation 7029 // definition and an explicit instantiation declaration. An explicit 7030 // instantiation declaration begins with the extern keyword. [...] 7031 TemplateSpecializationKind TSK 7032 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7033 : TSK_ExplicitInstantiationDeclaration; 7034 7035 // C++0x [temp.explicit]p2: 7036 // [...] An explicit instantiation shall appear in an enclosing 7037 // namespace of its template. [...] 7038 // 7039 // This is C++ DR 275. 7040 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 7041 7042 // Verify that it is okay to explicitly instantiate here. 7043 CXXRecordDecl *PrevDecl 7044 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 7045 if (!PrevDecl && Record->getDefinition()) 7046 PrevDecl = Record; 7047 if (PrevDecl) { 7048 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 7049 bool HasNoEffect = false; 7050 assert(MSInfo && "No member specialization information?"); 7051 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 7052 PrevDecl, 7053 MSInfo->getTemplateSpecializationKind(), 7054 MSInfo->getPointOfInstantiation(), 7055 HasNoEffect)) 7056 return true; 7057 if (HasNoEffect) 7058 return TagD; 7059 } 7060 7061 CXXRecordDecl *RecordDef 7062 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7063 if (!RecordDef) { 7064 // C++ [temp.explicit]p3: 7065 // A definition of a member class of a class template shall be in scope 7066 // at the point of an explicit instantiation of the member class. 7067 CXXRecordDecl *Def 7068 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 7069 if (!Def) { 7070 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 7071 << 0 << Record->getDeclName() << Record->getDeclContext(); 7072 Diag(Pattern->getLocation(), diag::note_forward_declaration) 7073 << Pattern; 7074 return true; 7075 } else { 7076 if (InstantiateClass(NameLoc, Record, Def, 7077 getTemplateInstantiationArgs(Record), 7078 TSK)) 7079 return true; 7080 7081 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7082 if (!RecordDef) 7083 return true; 7084 } 7085 } 7086 7087 // Instantiate all of the members of the class. 7088 InstantiateClassMembers(NameLoc, RecordDef, 7089 getTemplateInstantiationArgs(Record), TSK); 7090 7091 if (TSK == TSK_ExplicitInstantiationDefinition) 7092 MarkVTableUsed(NameLoc, RecordDef, true); 7093 7094 // FIXME: We don't have any representation for explicit instantiations of 7095 // member classes. Such a representation is not needed for compilation, but it 7096 // should be available for clients that want to see all of the declarations in 7097 // the source code. 7098 return TagD; 7099 } 7100 7101 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 7102 SourceLocation ExternLoc, 7103 SourceLocation TemplateLoc, 7104 Declarator &D) { 7105 // Explicit instantiations always require a name. 7106 // TODO: check if/when DNInfo should replace Name. 7107 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 7108 DeclarationName Name = NameInfo.getName(); 7109 if (!Name) { 7110 if (!D.isInvalidType()) 7111 Diag(D.getDeclSpec().getLocStart(), 7112 diag::err_explicit_instantiation_requires_name) 7113 << D.getDeclSpec().getSourceRange() 7114 << D.getSourceRange(); 7115 7116 return true; 7117 } 7118 7119 // The scope passed in may not be a decl scope. Zip up the scope tree until 7120 // we find one that is. 7121 while ((S->getFlags() & Scope::DeclScope) == 0 || 7122 (S->getFlags() & Scope::TemplateParamScope) != 0) 7123 S = S->getParent(); 7124 7125 // Determine the type of the declaration. 7126 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 7127 QualType R = T->getType(); 7128 if (R.isNull()) 7129 return true; 7130 7131 // C++ [dcl.stc]p1: 7132 // A storage-class-specifier shall not be specified in [...] an explicit 7133 // instantiation (14.7.2) directive. 7134 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 7135 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 7136 << Name; 7137 return true; 7138 } else if (D.getDeclSpec().getStorageClassSpec() 7139 != DeclSpec::SCS_unspecified) { 7140 // Complain about then remove the storage class specifier. 7141 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 7142 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7143 7144 D.getMutableDeclSpec().ClearStorageClassSpecs(); 7145 } 7146 7147 // C++0x [temp.explicit]p1: 7148 // [...] An explicit instantiation of a function template shall not use the 7149 // inline or constexpr specifiers. 7150 // Presumably, this also applies to member functions of class templates as 7151 // well. 7152 if (D.getDeclSpec().isInlineSpecified()) 7153 Diag(D.getDeclSpec().getInlineSpecLoc(), 7154 getLangOpts().CPlusPlus11 ? 7155 diag::err_explicit_instantiation_inline : 7156 diag::warn_explicit_instantiation_inline_0x) 7157 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7158 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) 7159 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 7160 // not already specified. 7161 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7162 diag::err_explicit_instantiation_constexpr); 7163 7164 // C++0x [temp.explicit]p2: 7165 // There are two forms of explicit instantiation: an explicit instantiation 7166 // definition and an explicit instantiation declaration. An explicit 7167 // instantiation declaration begins with the extern keyword. [...] 7168 TemplateSpecializationKind TSK 7169 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7170 : TSK_ExplicitInstantiationDeclaration; 7171 7172 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 7173 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 7174 7175 if (!R->isFunctionType()) { 7176 // C++ [temp.explicit]p1: 7177 // A [...] static data member of a class template can be explicitly 7178 // instantiated from the member definition associated with its class 7179 // template. 7180 // C++1y [temp.explicit]p1: 7181 // A [...] variable [...] template specialization can be explicitly 7182 // instantiated from its template. 7183 if (Previous.isAmbiguous()) 7184 return true; 7185 7186 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 7187 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 7188 7189 if (!PrevTemplate) { 7190 if (!Prev || !Prev->isStaticDataMember()) { 7191 // We expect to see a data data member here. 7192 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 7193 << Name; 7194 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7195 P != PEnd; ++P) 7196 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 7197 return true; 7198 } 7199 7200 if (!Prev->getInstantiatedFromStaticDataMember()) { 7201 // FIXME: Check for explicit specialization? 7202 Diag(D.getIdentifierLoc(), 7203 diag::err_explicit_instantiation_data_member_not_instantiated) 7204 << Prev; 7205 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 7206 // FIXME: Can we provide a note showing where this was declared? 7207 return true; 7208 } 7209 } else { 7210 // Explicitly instantiate a variable template. 7211 7212 // C++1y [dcl.spec.auto]p6: 7213 // ... A program that uses auto or decltype(auto) in a context not 7214 // explicitly allowed in this section is ill-formed. 7215 // 7216 // This includes auto-typed variable template instantiations. 7217 if (R->isUndeducedType()) { 7218 Diag(T->getTypeLoc().getLocStart(), 7219 diag::err_auto_not_allowed_var_inst); 7220 return true; 7221 } 7222 7223 TemplateArgumentListInfo TemplateArgs; 7224 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7225 // Translate the parser's template argument list into our AST format. 7226 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7227 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7228 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7229 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7230 TemplateId->NumArgs); 7231 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 7232 } 7233 7234 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 7235 D.getIdentifierLoc(), TemplateArgs); 7236 if (Res.isInvalid()) 7237 return true; 7238 7239 // Ignore access control bits, we don't need them for redeclaration 7240 // checking. 7241 Prev = cast<VarDecl>(Res.get()); 7242 } 7243 7244 // C++0x [temp.explicit]p2: 7245 // If the explicit instantiation is for a member function, a member class 7246 // or a static data member of a class template specialization, the name of 7247 // the class template specialization in the qualified-id for the member 7248 // name shall be a simple-template-id. 7249 // 7250 // C++98 has the same restriction, just worded differently. 7251 // 7252 // C++1y If the explicit instantiation is for a variable, the 7253 // unqualified-id in the declaration shall be a template-id. 7254 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && 7255 (!PrevTemplate || 7256 (D.getName().getKind() != UnqualifiedId::IK_TemplateId && 7257 D.getCXXScopeSpec().isSet()))) 7258 Diag(D.getIdentifierLoc(), 7259 diag::ext_explicit_instantiation_without_qualified_id) 7260 << Prev << D.getCXXScopeSpec().getRange(); 7261 7262 // Check the scope of this explicit instantiation. 7263 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 7264 7265 // Verify that it is okay to explicitly instantiate here. 7266 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 7267 TemplateSpecializationKind PrevTSK = 7268 MSInfo ? MSInfo->getTemplateSpecializationKind() 7269 : Prev->getTemplateSpecializationKind(); 7270 SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation() 7271 : cast<VarTemplateSpecializationDecl>(Prev) 7272 ->getPointOfInstantiation(); 7273 bool HasNoEffect = false; 7274 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 7275 PrevTSK, POI, HasNoEffect)) 7276 return true; 7277 7278 if (!HasNoEffect) { 7279 // Instantiate static data member or variable template. 7280 7281 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7282 if (PrevTemplate) { 7283 // Merge attributes. 7284 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList()) 7285 ProcessDeclAttributeList(S, Prev, Attr); 7286 } 7287 if (TSK == TSK_ExplicitInstantiationDefinition) 7288 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 7289 } 7290 7291 // Check the new variable specialization against the parsed input. 7292 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 7293 Diag(T->getTypeLoc().getLocStart(), 7294 diag::err_invalid_var_template_spec_type) 7295 << 0 << PrevTemplate << R << Prev->getType(); 7296 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 7297 << 2 << PrevTemplate->getDeclName(); 7298 return true; 7299 } 7300 7301 // FIXME: Create an ExplicitInstantiation node? 7302 return (Decl*) 0; 7303 } 7304 7305 // If the declarator is a template-id, translate the parser's template 7306 // argument list into our AST format. 7307 bool HasExplicitTemplateArgs = false; 7308 TemplateArgumentListInfo TemplateArgs; 7309 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7310 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7311 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7312 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7313 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7314 TemplateId->NumArgs); 7315 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 7316 HasExplicitTemplateArgs = true; 7317 } 7318 7319 // C++ [temp.explicit]p1: 7320 // A [...] function [...] can be explicitly instantiated from its template. 7321 // A member function [...] of a class template can be explicitly 7322 // instantiated from the member definition associated with its class 7323 // template. 7324 UnresolvedSet<8> Matches; 7325 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 7326 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7327 P != PEnd; ++P) { 7328 NamedDecl *Prev = *P; 7329 if (!HasExplicitTemplateArgs) { 7330 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 7331 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 7332 Matches.clear(); 7333 7334 Matches.addDecl(Method, P.getAccess()); 7335 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 7336 break; 7337 } 7338 } 7339 } 7340 7341 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 7342 if (!FunTmpl) 7343 continue; 7344 7345 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 7346 FunctionDecl *Specialization = 0; 7347 if (TemplateDeductionResult TDK 7348 = DeduceTemplateArguments(FunTmpl, 7349 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 7350 R, Specialization, Info)) { 7351 // Keep track of almost-matches. 7352 FailedCandidates.addCandidate() 7353 .set(FunTmpl->getTemplatedDecl(), 7354 MakeDeductionFailureInfo(Context, TDK, Info)); 7355 (void)TDK; 7356 continue; 7357 } 7358 7359 Matches.addDecl(Specialization, P.getAccess()); 7360 } 7361 7362 // Find the most specialized function template specialization. 7363 UnresolvedSetIterator Result = getMostSpecialized( 7364 Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0, 7365 D.getIdentifierLoc(), 7366 PDiag(diag::err_explicit_instantiation_not_known) << Name, 7367 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 7368 PDiag(diag::note_explicit_instantiation_candidate)); 7369 7370 if (Result == Matches.end()) 7371 return true; 7372 7373 // Ignore access control bits, we don't need them for redeclaration checking. 7374 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 7375 7376 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 7377 Diag(D.getIdentifierLoc(), 7378 diag::err_explicit_instantiation_member_function_not_instantiated) 7379 << Specialization 7380 << (Specialization->getTemplateSpecializationKind() == 7381 TSK_ExplicitSpecialization); 7382 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 7383 return true; 7384 } 7385 7386 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 7387 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 7388 PrevDecl = Specialization; 7389 7390 if (PrevDecl) { 7391 bool HasNoEffect = false; 7392 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 7393 PrevDecl, 7394 PrevDecl->getTemplateSpecializationKind(), 7395 PrevDecl->getPointOfInstantiation(), 7396 HasNoEffect)) 7397 return true; 7398 7399 // FIXME: We may still want to build some representation of this 7400 // explicit specialization. 7401 if (HasNoEffect) 7402 return (Decl*) 0; 7403 } 7404 7405 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7406 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 7407 if (Attr) 7408 ProcessDeclAttributeList(S, Specialization, Attr); 7409 7410 if (TSK == TSK_ExplicitInstantiationDefinition) 7411 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 7412 7413 // C++0x [temp.explicit]p2: 7414 // If the explicit instantiation is for a member function, a member class 7415 // or a static data member of a class template specialization, the name of 7416 // the class template specialization in the qualified-id for the member 7417 // name shall be a simple-template-id. 7418 // 7419 // C++98 has the same restriction, just worded differently. 7420 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 7421 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 7422 D.getCXXScopeSpec().isSet() && 7423 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 7424 Diag(D.getIdentifierLoc(), 7425 diag::ext_explicit_instantiation_without_qualified_id) 7426 << Specialization << D.getCXXScopeSpec().getRange(); 7427 7428 CheckExplicitInstantiationScope(*this, 7429 FunTmpl? (NamedDecl *)FunTmpl 7430 : Specialization->getInstantiatedFromMemberFunction(), 7431 D.getIdentifierLoc(), 7432 D.getCXXScopeSpec().isSet()); 7433 7434 // FIXME: Create some kind of ExplicitInstantiationDecl here. 7435 return (Decl*) 0; 7436 } 7437 7438 TypeResult 7439 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 7440 const CXXScopeSpec &SS, IdentifierInfo *Name, 7441 SourceLocation TagLoc, SourceLocation NameLoc) { 7442 // This has to hold, because SS is expected to be defined. 7443 assert(Name && "Expected a name in a dependent tag"); 7444 7445 NestedNameSpecifier *NNS 7446 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 7447 if (!NNS) 7448 return true; 7449 7450 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 7451 7452 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 7453 Diag(NameLoc, diag::err_dependent_tag_decl) 7454 << (TUK == TUK_Definition) << Kind << SS.getRange(); 7455 return true; 7456 } 7457 7458 // Create the resulting type. 7459 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 7460 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 7461 7462 // Create type-source location information for this type. 7463 TypeLocBuilder TLB; 7464 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 7465 TL.setElaboratedKeywordLoc(TagLoc); 7466 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7467 TL.setNameLoc(NameLoc); 7468 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 7469 } 7470 7471 TypeResult 7472 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 7473 const CXXScopeSpec &SS, const IdentifierInfo &II, 7474 SourceLocation IdLoc) { 7475 if (SS.isInvalid()) 7476 return true; 7477 7478 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 7479 Diag(TypenameLoc, 7480 getLangOpts().CPlusPlus11 ? 7481 diag::warn_cxx98_compat_typename_outside_of_template : 7482 diag::ext_typename_outside_of_template) 7483 << FixItHint::CreateRemoval(TypenameLoc); 7484 7485 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7486 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 7487 TypenameLoc, QualifierLoc, II, IdLoc); 7488 if (T.isNull()) 7489 return true; 7490 7491 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 7492 if (isa<DependentNameType>(T)) { 7493 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 7494 TL.setElaboratedKeywordLoc(TypenameLoc); 7495 TL.setQualifierLoc(QualifierLoc); 7496 TL.setNameLoc(IdLoc); 7497 } else { 7498 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 7499 TL.setElaboratedKeywordLoc(TypenameLoc); 7500 TL.setQualifierLoc(QualifierLoc); 7501 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 7502 } 7503 7504 return CreateParsedType(T, TSI); 7505 } 7506 7507 TypeResult 7508 Sema::ActOnTypenameType(Scope *S, 7509 SourceLocation TypenameLoc, 7510 const CXXScopeSpec &SS, 7511 SourceLocation TemplateKWLoc, 7512 TemplateTy TemplateIn, 7513 SourceLocation TemplateNameLoc, 7514 SourceLocation LAngleLoc, 7515 ASTTemplateArgsPtr TemplateArgsIn, 7516 SourceLocation RAngleLoc) { 7517 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 7518 Diag(TypenameLoc, 7519 getLangOpts().CPlusPlus11 ? 7520 diag::warn_cxx98_compat_typename_outside_of_template : 7521 diag::ext_typename_outside_of_template) 7522 << FixItHint::CreateRemoval(TypenameLoc); 7523 7524 // Translate the parser's template argument list in our AST format. 7525 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 7526 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 7527 7528 TemplateName Template = TemplateIn.get(); 7529 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 7530 // Construct a dependent template specialization type. 7531 assert(DTN && "dependent template has non-dependent name?"); 7532 assert(DTN->getQualifier() 7533 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 7534 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 7535 DTN->getQualifier(), 7536 DTN->getIdentifier(), 7537 TemplateArgs); 7538 7539 // Create source-location information for this type. 7540 TypeLocBuilder Builder; 7541 DependentTemplateSpecializationTypeLoc SpecTL 7542 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 7543 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 7544 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 7545 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7546 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7547 SpecTL.setLAngleLoc(LAngleLoc); 7548 SpecTL.setRAngleLoc(RAngleLoc); 7549 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7550 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7551 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 7552 } 7553 7554 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7555 if (T.isNull()) 7556 return true; 7557 7558 // Provide source-location information for the template specialization type. 7559 TypeLocBuilder Builder; 7560 TemplateSpecializationTypeLoc SpecTL 7561 = Builder.push<TemplateSpecializationTypeLoc>(T); 7562 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7563 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7564 SpecTL.setLAngleLoc(LAngleLoc); 7565 SpecTL.setRAngleLoc(RAngleLoc); 7566 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7567 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7568 7569 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7570 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7571 TL.setElaboratedKeywordLoc(TypenameLoc); 7572 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7573 7574 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7575 return CreateParsedType(T, TSI); 7576 } 7577 7578 7579 /// Determine whether this failed name lookup should be treated as being 7580 /// disabled by a usage of std::enable_if. 7581 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7582 SourceRange &CondRange) { 7583 // We must be looking for a ::type... 7584 if (!II.isStr("type")) 7585 return false; 7586 7587 // ... within an explicitly-written template specialization... 7588 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7589 return false; 7590 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7591 TemplateSpecializationTypeLoc EnableIfTSTLoc = 7592 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 7593 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 7594 return false; 7595 const TemplateSpecializationType *EnableIfTST = 7596 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 7597 7598 // ... which names a complete class template declaration... 7599 const TemplateDecl *EnableIfDecl = 7600 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7601 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7602 return false; 7603 7604 // ... called "enable_if". 7605 const IdentifierInfo *EnableIfII = 7606 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7607 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7608 return false; 7609 7610 // Assume the first template argument is the condition. 7611 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 7612 return true; 7613 } 7614 7615 /// \brief Build the type that describes a C++ typename specifier, 7616 /// e.g., "typename T::type". 7617 QualType 7618 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7619 SourceLocation KeywordLoc, 7620 NestedNameSpecifierLoc QualifierLoc, 7621 const IdentifierInfo &II, 7622 SourceLocation IILoc) { 7623 CXXScopeSpec SS; 7624 SS.Adopt(QualifierLoc); 7625 7626 DeclContext *Ctx = computeDeclContext(SS); 7627 if (!Ctx) { 7628 // If the nested-name-specifier is dependent and couldn't be 7629 // resolved to a type, build a typename type. 7630 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7631 return Context.getDependentNameType(Keyword, 7632 QualifierLoc.getNestedNameSpecifier(), 7633 &II); 7634 } 7635 7636 // If the nested-name-specifier refers to the current instantiation, 7637 // the "typename" keyword itself is superfluous. In C++03, the 7638 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7639 // allows such extraneous "typename" keywords, and we retroactively 7640 // apply this DR to C++03 code with only a warning. In any case we continue. 7641 7642 if (RequireCompleteDeclContext(SS, Ctx)) 7643 return QualType(); 7644 7645 DeclarationName Name(&II); 7646 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7647 LookupQualifiedName(Result, Ctx); 7648 unsigned DiagID = 0; 7649 Decl *Referenced = 0; 7650 switch (Result.getResultKind()) { 7651 case LookupResult::NotFound: { 7652 // If we're looking up 'type' within a template named 'enable_if', produce 7653 // a more specific diagnostic. 7654 SourceRange CondRange; 7655 if (isEnableIf(QualifierLoc, II, CondRange)) { 7656 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7657 << Ctx << CondRange; 7658 return QualType(); 7659 } 7660 7661 DiagID = diag::err_typename_nested_not_found; 7662 break; 7663 } 7664 7665 case LookupResult::FoundUnresolvedValue: { 7666 // We found a using declaration that is a value. Most likely, the using 7667 // declaration itself is meant to have the 'typename' keyword. 7668 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7669 IILoc); 7670 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7671 << Name << Ctx << FullRange; 7672 if (UnresolvedUsingValueDecl *Using 7673 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7674 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7675 Diag(Loc, diag::note_using_value_decl_missing_typename) 7676 << FixItHint::CreateInsertion(Loc, "typename "); 7677 } 7678 } 7679 // Fall through to create a dependent typename type, from which we can recover 7680 // better. 7681 7682 case LookupResult::NotFoundInCurrentInstantiation: 7683 // Okay, it's a member of an unknown instantiation. 7684 return Context.getDependentNameType(Keyword, 7685 QualifierLoc.getNestedNameSpecifier(), 7686 &II); 7687 7688 case LookupResult::Found: 7689 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7690 // We found a type. Build an ElaboratedType, since the 7691 // typename-specifier was just sugar. 7692 return Context.getElaboratedType(ETK_Typename, 7693 QualifierLoc.getNestedNameSpecifier(), 7694 Context.getTypeDeclType(Type)); 7695 } 7696 7697 DiagID = diag::err_typename_nested_not_type; 7698 Referenced = Result.getFoundDecl(); 7699 break; 7700 7701 case LookupResult::FoundOverloaded: 7702 DiagID = diag::err_typename_nested_not_type; 7703 Referenced = *Result.begin(); 7704 break; 7705 7706 case LookupResult::Ambiguous: 7707 return QualType(); 7708 } 7709 7710 // If we get here, it's because name lookup did not find a 7711 // type. Emit an appropriate diagnostic and return an error. 7712 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7713 IILoc); 7714 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7715 if (Referenced) 7716 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7717 << Name; 7718 return QualType(); 7719 } 7720 7721 namespace { 7722 // See Sema::RebuildTypeInCurrentInstantiation 7723 class CurrentInstantiationRebuilder 7724 : public TreeTransform<CurrentInstantiationRebuilder> { 7725 SourceLocation Loc; 7726 DeclarationName Entity; 7727 7728 public: 7729 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7730 7731 CurrentInstantiationRebuilder(Sema &SemaRef, 7732 SourceLocation Loc, 7733 DeclarationName Entity) 7734 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7735 Loc(Loc), Entity(Entity) { } 7736 7737 /// \brief Determine whether the given type \p T has already been 7738 /// transformed. 7739 /// 7740 /// For the purposes of type reconstruction, a type has already been 7741 /// transformed if it is NULL or if it is not dependent. 7742 bool AlreadyTransformed(QualType T) { 7743 return T.isNull() || !T->isDependentType(); 7744 } 7745 7746 /// \brief Returns the location of the entity whose type is being 7747 /// rebuilt. 7748 SourceLocation getBaseLocation() { return Loc; } 7749 7750 /// \brief Returns the name of the entity whose type is being rebuilt. 7751 DeclarationName getBaseEntity() { return Entity; } 7752 7753 /// \brief Sets the "base" location and entity when that 7754 /// information is known based on another transformation. 7755 void setBase(SourceLocation Loc, DeclarationName Entity) { 7756 this->Loc = Loc; 7757 this->Entity = Entity; 7758 } 7759 7760 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7761 // Lambdas never need to be transformed. 7762 return E; 7763 } 7764 }; 7765 } 7766 7767 /// \brief Rebuilds a type within the context of the current instantiation. 7768 /// 7769 /// The type \p T is part of the type of an out-of-line member definition of 7770 /// a class template (or class template partial specialization) that was parsed 7771 /// and constructed before we entered the scope of the class template (or 7772 /// partial specialization thereof). This routine will rebuild that type now 7773 /// that we have entered the declarator's scope, which may produce different 7774 /// canonical types, e.g., 7775 /// 7776 /// \code 7777 /// template<typename T> 7778 /// struct X { 7779 /// typedef T* pointer; 7780 /// pointer data(); 7781 /// }; 7782 /// 7783 /// template<typename T> 7784 /// typename X<T>::pointer X<T>::data() { ... } 7785 /// \endcode 7786 /// 7787 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7788 /// since we do not know that we can look into X<T> when we parsed the type. 7789 /// This function will rebuild the type, performing the lookup of "pointer" 7790 /// in X<T> and returning an ElaboratedType whose canonical type is the same 7791 /// as the canonical type of T*, allowing the return types of the out-of-line 7792 /// definition and the declaration to match. 7793 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7794 SourceLocation Loc, 7795 DeclarationName Name) { 7796 if (!T || !T->getType()->isDependentType()) 7797 return T; 7798 7799 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7800 return Rebuilder.TransformType(T); 7801 } 7802 7803 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7804 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7805 DeclarationName()); 7806 return Rebuilder.TransformExpr(E); 7807 } 7808 7809 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7810 if (SS.isInvalid()) 7811 return true; 7812 7813 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7814 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7815 DeclarationName()); 7816 NestedNameSpecifierLoc Rebuilt 7817 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7818 if (!Rebuilt) 7819 return true; 7820 7821 SS.Adopt(Rebuilt); 7822 return false; 7823 } 7824 7825 /// \brief Rebuild the template parameters now that we know we're in a current 7826 /// instantiation. 7827 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7828 TemplateParameterList *Params) { 7829 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7830 Decl *Param = Params->getParam(I); 7831 7832 // There is nothing to rebuild in a type parameter. 7833 if (isa<TemplateTypeParmDecl>(Param)) 7834 continue; 7835 7836 // Rebuild the template parameter list of a template template parameter. 7837 if (TemplateTemplateParmDecl *TTP 7838 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7839 if (RebuildTemplateParamsInCurrentInstantiation( 7840 TTP->getTemplateParameters())) 7841 return true; 7842 7843 continue; 7844 } 7845 7846 // Rebuild the type of a non-type template parameter. 7847 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7848 TypeSourceInfo *NewTSI 7849 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7850 NTTP->getLocation(), 7851 NTTP->getDeclName()); 7852 if (!NewTSI) 7853 return true; 7854 7855 if (NewTSI != NTTP->getTypeSourceInfo()) { 7856 NTTP->setTypeSourceInfo(NewTSI); 7857 NTTP->setType(NewTSI->getType()); 7858 } 7859 } 7860 7861 return false; 7862 } 7863 7864 /// \brief Produces a formatted string that describes the binding of 7865 /// template parameters to template arguments. 7866 std::string 7867 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7868 const TemplateArgumentList &Args) { 7869 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7870 } 7871 7872 std::string 7873 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7874 const TemplateArgument *Args, 7875 unsigned NumArgs) { 7876 SmallString<128> Str; 7877 llvm::raw_svector_ostream Out(Str); 7878 7879 if (!Params || Params->size() == 0 || NumArgs == 0) 7880 return std::string(); 7881 7882 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7883 if (I >= NumArgs) 7884 break; 7885 7886 if (I == 0) 7887 Out << "[with "; 7888 else 7889 Out << ", "; 7890 7891 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7892 Out << Id->getName(); 7893 } else { 7894 Out << '$' << I; 7895 } 7896 7897 Out << " = "; 7898 Args[I].print(getPrintingPolicy(), Out); 7899 } 7900 7901 Out << ']'; 7902 return Out.str(); 7903 } 7904 7905 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7906 if (!FD) 7907 return; 7908 FD->setLateTemplateParsed(Flag); 7909 } 7910 7911 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7912 DeclContext *DC = CurContext; 7913 7914 while (DC) { 7915 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7916 const FunctionDecl *FD = RD->isLocalClass(); 7917 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7918 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7919 return false; 7920 7921 DC = DC->getParent(); 7922 } 7923 return false; 7924 } 7925