1 /* 2 * Copyright 2012, The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "bcc/Assert.h" 18 #include "bcc/Renderscript/RSTransforms.h" 19 20 #include <cstdlib> 21 22 #include <llvm/IR/DerivedTypes.h> 23 #include <llvm/IR/Function.h> 24 #include <llvm/IR/Instructions.h> 25 #include <llvm/IR/IRBuilder.h> 26 #include <llvm/IR/MDBuilder.h> 27 #include <llvm/IR/Module.h> 28 #include <llvm/Pass.h> 29 #include <llvm/Support/raw_ostream.h> 30 #include <llvm/IR/DataLayout.h> 31 #include <llvm/IR/Function.h> 32 #include <llvm/IR/Type.h> 33 #include <llvm/Transforms/Utils/BasicBlockUtils.h> 34 35 #include "bcc/Config/Config.h" 36 #include "bcc/Renderscript/RSInfo.h" 37 #include "bcc/Support/Log.h" 38 39 #include "bcinfo/MetadataExtractor.h" 40 41 using namespace bcc; 42 43 namespace { 44 45 /* RSForEachExpandPass - This pass operates on functions that are able to be 46 * called via rsForEach() or "foreach_<NAME>". We create an inner loop for the 47 * ForEach-able function to be invoked over the appropriate data cells of the 48 * input/output allocations (adjusting other relevant parameters as we go). We 49 * support doing this for any ForEach-able compute kernels. The new function 50 * name is the original function name followed by ".expand". Note that we 51 * still generate code for the original function. 52 */ 53 class RSForEachExpandPass : public llvm::ModulePass { 54 private: 55 static char ID; 56 57 llvm::Module *M; 58 llvm::LLVMContext *C; 59 60 const RSInfo::ExportForeachFuncListTy &mFuncs; 61 62 // Turns on optimization of allocation stride values. 63 bool mEnableStepOpt; 64 65 uint32_t getRootSignature(llvm::Function *F) { 66 const llvm::NamedMDNode *ExportForEachMetadata = 67 M->getNamedMetadata("#rs_export_foreach"); 68 69 if (!ExportForEachMetadata) { 70 llvm::SmallVector<llvm::Type*, 8> RootArgTys; 71 for (llvm::Function::arg_iterator B = F->arg_begin(), 72 E = F->arg_end(); 73 B != E; 74 ++B) { 75 RootArgTys.push_back(B->getType()); 76 } 77 78 // For pre-ICS bitcode, we may not have signature information. In that 79 // case, we use the size of the RootArgTys to select the number of 80 // arguments. 81 return (1 << RootArgTys.size()) - 1; 82 } 83 84 if (ExportForEachMetadata->getNumOperands() == 0) { 85 return 0; 86 } 87 88 bccAssert(ExportForEachMetadata->getNumOperands() > 0); 89 90 // We only handle the case for legacy root() functions here, so this is 91 // hard-coded to look at only the first such function. 92 llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0); 93 if (SigNode != NULL && SigNode->getNumOperands() == 1) { 94 llvm::Value *SigVal = SigNode->getOperand(0); 95 if (SigVal->getValueID() == llvm::Value::MDStringVal) { 96 llvm::StringRef SigString = 97 static_cast<llvm::MDString*>(SigVal)->getString(); 98 uint32_t Signature = 0; 99 if (SigString.getAsInteger(10, Signature)) { 100 ALOGE("Non-integer signature value '%s'", SigString.str().c_str()); 101 return 0; 102 } 103 return Signature; 104 } 105 } 106 107 return 0; 108 } 109 110 // Get the actual value we should use to step through an allocation. 111 // 112 // Normally the value we use to step through an allocation is given to us by 113 // the driver. However, for certain primitive data types, we can derive an 114 // integer constant for the step value. We use this integer constant whenever 115 // possible to allow further compiler optimizations to take place. 116 // 117 // DL - Target Data size/layout information. 118 // T - Type of allocation (should be a pointer). 119 // OrigStep - Original step increment (root.expand() input from driver). 120 llvm::Value *getStepValue(llvm::DataLayout *DL, llvm::Type *T, 121 llvm::Value *OrigStep) { 122 bccAssert(DL); 123 bccAssert(T); 124 bccAssert(OrigStep); 125 llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(T); 126 llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C); 127 if (mEnableStepOpt && T != VoidPtrTy && PT) { 128 llvm::Type *ET = PT->getElementType(); 129 uint64_t ETSize = DL->getTypeAllocSize(ET); 130 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C); 131 return llvm::ConstantInt::get(Int32Ty, ETSize); 132 } else { 133 return OrigStep; 134 } 135 } 136 137 /// @brief Returns the type of the ForEach stub parameter structure. 138 /// 139 /// Renderscript uses a single structure in which all parameters are passed 140 /// to keep the signature of the expanded function independent of the 141 /// parameters passed to it. 142 llvm::Type *getForeachStubTy() { 143 llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C); 144 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C); 145 llvm::Type *SizeTy = Int32Ty; 146 /* Defined in frameworks/base/libs/rs/rs_hal.h: 147 * 148 * struct RsForEachStubParamStruct { 149 * const void *in; 150 * void *out; 151 * const void *usr; 152 * size_t usr_len; 153 * uint32_t x; 154 * uint32_t y; 155 * uint32_t z; 156 * uint32_t lod; 157 * enum RsAllocationCubemapFace face; 158 * uint32_t ar[16]; 159 * }; 160 */ 161 llvm::SmallVector<llvm::Type*, 9> StructTys; 162 StructTys.push_back(VoidPtrTy); // const void *in 163 StructTys.push_back(VoidPtrTy); // void *out 164 StructTys.push_back(VoidPtrTy); // const void *usr 165 StructTys.push_back(SizeTy); // size_t usr_len 166 StructTys.push_back(Int32Ty); // uint32_t x 167 StructTys.push_back(Int32Ty); // uint32_t y 168 StructTys.push_back(Int32Ty); // uint32_t z 169 StructTys.push_back(Int32Ty); // uint32_t lod 170 StructTys.push_back(Int32Ty); // enum RsAllocationCubemapFace 171 StructTys.push_back(llvm::ArrayType::get(Int32Ty, 16)); // uint32_t ar[16] 172 173 return llvm::StructType::create(StructTys, "RsForEachStubParamStruct"); 174 } 175 176 /// @brief Create skeleton of the expanded function. 177 /// 178 /// This creates a function with the following signature: 179 /// 180 /// void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2, 181 /// uint32_t instep, uint32_t outstep) 182 /// 183 llvm::Function *createEmptyExpandedFunction(llvm::StringRef OldName) { 184 llvm::Type *ForEachStubPtrTy = getForeachStubTy()->getPointerTo(); 185 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C); 186 187 llvm::SmallVector<llvm::Type*, 8> ParamTys; 188 ParamTys.push_back(ForEachStubPtrTy); // const RsForEachStubParamStruct *p 189 ParamTys.push_back(Int32Ty); // uint32_t x1 190 ParamTys.push_back(Int32Ty); // uint32_t x2 191 ParamTys.push_back(Int32Ty); // uint32_t instep 192 ParamTys.push_back(Int32Ty); // uint32_t outstep 193 194 llvm::FunctionType *FT = 195 llvm::FunctionType::get(llvm::Type::getVoidTy(*C), ParamTys, false); 196 llvm::Function *F = 197 llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, 198 OldName + ".expand", M); 199 200 llvm::Function::arg_iterator AI = F->arg_begin(); 201 202 AI->setName("p"); 203 AI++; 204 AI->setName("x1"); 205 AI++; 206 AI->setName("x2"); 207 AI++; 208 AI->setName("arg_instep"); 209 AI++; 210 AI->setName("arg_outstep"); 211 AI++; 212 213 assert(AI == F->arg_end()); 214 215 llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*C, "Begin", F); 216 llvm::IRBuilder<> Builder(Begin); 217 Builder.CreateRetVoid(); 218 219 return F; 220 } 221 222 /// @brief Create an empty loop 223 /// 224 /// Create a loop of the form: 225 /// 226 /// for (i = LowerBound; i < UpperBound; i++) 227 /// ; 228 /// 229 /// After the loop has been created, the builder is set such that 230 /// instructions can be added to the loop body. 231 /// 232 /// @param Builder The builder to use to build this loop. The current 233 /// position of the builder is the position the loop 234 /// will be inserted. 235 /// @param LowerBound The first value of the loop iterator 236 /// @param UpperBound The maximal value of the loop iterator 237 /// @param LoopIV A reference that will be set to the loop iterator. 238 /// @return The BasicBlock that will be executed after the loop. 239 llvm::BasicBlock *createLoop(llvm::IRBuilder<> &Builder, 240 llvm::Value *LowerBound, 241 llvm::Value *UpperBound, 242 llvm::PHINode **LoopIV) { 243 assert(LowerBound->getType() == UpperBound->getType()); 244 245 llvm::BasicBlock *CondBB, *AfterBB, *HeaderBB; 246 llvm::Value *Cond, *IVNext; 247 llvm::PHINode *IV; 248 249 CondBB = Builder.GetInsertBlock(); 250 AfterBB = llvm::SplitBlock(CondBB, Builder.GetInsertPoint(), this); 251 HeaderBB = llvm::BasicBlock::Create(*C, "Loop", CondBB->getParent()); 252 253 // if (LowerBound < Upperbound) 254 // goto LoopHeader 255 // else 256 // goto AfterBB 257 CondBB->getTerminator()->eraseFromParent(); 258 Builder.SetInsertPoint(CondBB); 259 Cond = Builder.CreateICmpULT(LowerBound, UpperBound); 260 Builder.CreateCondBr(Cond, HeaderBB, AfterBB); 261 262 // iv = PHI [CondBB -> LowerBound], [LoopHeader -> NextIV ] 263 // iv.next = iv + 1 264 // if (iv.next < Upperbound) 265 // goto LoopHeader 266 // else 267 // goto AfterBB 268 Builder.SetInsertPoint(HeaderBB); 269 IV = Builder.CreatePHI(LowerBound->getType(), 2, "X"); 270 IV->addIncoming(LowerBound, CondBB); 271 IVNext = Builder.CreateNUWAdd(IV, Builder.getInt32(1)); 272 IV->addIncoming(IVNext, HeaderBB); 273 Cond = Builder.CreateICmpULT(IVNext, UpperBound); 274 Builder.CreateCondBr(Cond, HeaderBB, AfterBB); 275 AfterBB->setName("Exit"); 276 Builder.SetInsertPoint(HeaderBB->getFirstNonPHI()); 277 *LoopIV = IV; 278 return AfterBB; 279 } 280 281 public: 282 RSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs, 283 bool pEnableStepOpt) 284 : ModulePass(ID), M(NULL), C(NULL), mFuncs(pForeachFuncs), 285 mEnableStepOpt(pEnableStepOpt) { 286 } 287 288 /* Performs the actual optimization on a selected function. On success, the 289 * Module will contain a new function of the name "<NAME>.expand" that 290 * invokes <NAME>() in a loop with the appropriate parameters. 291 */ 292 bool ExpandFunction(llvm::Function *F, uint32_t Signature) { 293 ALOGV("Expanding ForEach-able Function %s", F->getName().str().c_str()); 294 295 if (!Signature) { 296 Signature = getRootSignature(F); 297 if (!Signature) { 298 // We couldn't determine how to expand this function based on its 299 // function signature. 300 return false; 301 } 302 } 303 304 llvm::DataLayout DL(M); 305 306 llvm::Function *ExpandedFunc = createEmptyExpandedFunction(F->getName()); 307 308 // Create and name the actual arguments to this expanded function. 309 llvm::SmallVector<llvm::Argument*, 8> ArgVec; 310 for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(), 311 E = ExpandedFunc->arg_end(); 312 B != E; 313 ++B) { 314 ArgVec.push_back(B); 315 } 316 317 if (ArgVec.size() != 5) { 318 ALOGE("Incorrect number of arguments to function: %zu", 319 ArgVec.size()); 320 return false; 321 } 322 llvm::Value *Arg_p = ArgVec[0]; 323 llvm::Value *Arg_x1 = ArgVec[1]; 324 llvm::Value *Arg_x2 = ArgVec[2]; 325 llvm::Value *Arg_instep = ArgVec[3]; 326 llvm::Value *Arg_outstep = ArgVec[4]; 327 328 llvm::Value *InStep = NULL; 329 llvm::Value *OutStep = NULL; 330 331 // Construct the actual function body. 332 llvm::IRBuilder<> Builder(ExpandedFunc->getEntryBlock().begin()); 333 334 // Collect and construct the arguments for the kernel(). 335 // Note that we load any loop-invariant arguments before entering the Loop. 336 llvm::Function::arg_iterator Args = F->arg_begin(); 337 338 llvm::Type *InTy = NULL; 339 llvm::Value *InBasePtr = NULL; 340 if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) { 341 InTy = Args->getType(); 342 InStep = getStepValue(&DL, InTy, Arg_instep); 343 InStep->setName("instep"); 344 InBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 0)); 345 Args++; 346 } 347 348 llvm::Type *OutTy = NULL; 349 llvm::Value *OutBasePtr = NULL; 350 if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { 351 OutTy = Args->getType(); 352 OutStep = getStepValue(&DL, OutTy, Arg_outstep); 353 OutStep->setName("outstep"); 354 OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1)); 355 Args++; 356 } 357 358 llvm::Value *UsrData = NULL; 359 if (bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)) { 360 llvm::Type *UsrDataTy = Args->getType(); 361 UsrData = Builder.CreatePointerCast(Builder.CreateLoad( 362 Builder.CreateStructGEP(Arg_p, 2)), UsrDataTy); 363 UsrData->setName("UsrData"); 364 Args++; 365 } 366 367 if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { 368 Args++; 369 } 370 371 llvm::Value *Y = NULL; 372 if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) { 373 Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y"); 374 Args++; 375 } 376 377 bccAssert(Args == F->arg_end()); 378 379 llvm::PHINode *IV; 380 createLoop(Builder, Arg_x1, Arg_x2, &IV); 381 382 // Populate the actual call to kernel(). 383 llvm::SmallVector<llvm::Value*, 8> RootArgs; 384 385 llvm::Value *InPtr = NULL; 386 llvm::Value *OutPtr = NULL; 387 388 // Calculate the current input and output pointers 389 // 390 // We always calculate the input/output pointers with a GEP operating on i8 391 // values and only cast at the very end to OutTy. This is because the step 392 // between two values is given in bytes. 393 // 394 // TODO: We could further optimize the output by using a GEP operation of 395 // type 'OutTy' in cases where the element type of the allocation allows. 396 if (OutBasePtr) { 397 llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); 398 OutOffset = Builder.CreateMul(OutOffset, OutStep); 399 OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset); 400 OutPtr = Builder.CreatePointerCast(OutPtr, OutTy); 401 } 402 if (InBasePtr) { 403 llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1); 404 InOffset = Builder.CreateMul(InOffset, InStep); 405 InPtr = Builder.CreateGEP(InBasePtr, InOffset); 406 InPtr = Builder.CreatePointerCast(InPtr, InTy); 407 } 408 409 if (InPtr) { 410 RootArgs.push_back(InPtr); 411 } 412 413 if (OutPtr) { 414 RootArgs.push_back(OutPtr); 415 } 416 417 if (UsrData) { 418 RootArgs.push_back(UsrData); 419 } 420 421 llvm::Value *X = IV; 422 if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { 423 RootArgs.push_back(X); 424 } 425 426 if (Y) { 427 RootArgs.push_back(Y); 428 } 429 430 Builder.CreateCall(F, RootArgs); 431 432 return true; 433 } 434 435 /* Expand a pass-by-value kernel. 436 */ 437 bool ExpandKernel(llvm::Function *F, uint32_t Signature) { 438 bccAssert(bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)); 439 ALOGV("Expanding kernel Function %s", F->getName().str().c_str()); 440 441 // TODO: Refactor this to share functionality with ExpandFunction. 442 llvm::DataLayout DL(M); 443 444 llvm::Function *ExpandedFunc = createEmptyExpandedFunction(F->getName()); 445 446 // Create and name the actual arguments to this expanded function. 447 llvm::SmallVector<llvm::Argument*, 8> ArgVec; 448 for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(), 449 E = ExpandedFunc->arg_end(); 450 B != E; 451 ++B) { 452 ArgVec.push_back(B); 453 } 454 455 if (ArgVec.size() != 5) { 456 ALOGE("Incorrect number of arguments to function: %zu", 457 ArgVec.size()); 458 return false; 459 } 460 llvm::Value *Arg_p = ArgVec[0]; 461 llvm::Value *Arg_x1 = ArgVec[1]; 462 llvm::Value *Arg_x2 = ArgVec[2]; 463 llvm::Value *Arg_instep = ArgVec[3]; 464 llvm::Value *Arg_outstep = ArgVec[4]; 465 466 llvm::Value *InStep = NULL; 467 llvm::Value *OutStep = NULL; 468 469 // Construct the actual function body. 470 llvm::IRBuilder<> Builder(ExpandedFunc->getEntryBlock().begin()); 471 472 // Create TBAA meta-data. 473 llvm::MDNode *TBAARenderScript, *TBAAAllocation, *TBAAPointer; 474 475 llvm::MDBuilder MDHelper(*C); 476 TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA"); 477 TBAAAllocation = MDHelper.createTBAANode("allocation", TBAARenderScript); 478 TBAAPointer = MDHelper.createTBAANode("pointer", TBAARenderScript); 479 480 // Collect and construct the arguments for the kernel(). 481 // Note that we load any loop-invariant arguments before entering the Loop. 482 llvm::Function::arg_iterator Args = F->arg_begin(); 483 484 llvm::Type *OutTy = NULL; 485 bool PassOutByReference = false; 486 llvm::LoadInst *OutBasePtr = NULL; 487 if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { 488 llvm::Type *OutBaseTy = F->getReturnType(); 489 if (OutBaseTy->isVoidTy()) { 490 PassOutByReference = true; 491 OutTy = Args->getType(); 492 Args++; 493 } else { 494 OutTy = OutBaseTy->getPointerTo(); 495 // We don't increment Args, since we are using the actual return type. 496 } 497 OutStep = getStepValue(&DL, OutTy, Arg_outstep); 498 OutStep->setName("outstep"); 499 OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1)); 500 OutBasePtr->setMetadata("tbaa", TBAAPointer); 501 } 502 503 llvm::Type *InBaseTy = NULL; 504 llvm::Type *InTy = NULL; 505 llvm::LoadInst *InBasePtr = NULL; 506 if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) { 507 InBaseTy = Args->getType(); 508 InTy =InBaseTy->getPointerTo(); 509 InStep = getStepValue(&DL, InTy, Arg_instep); 510 InStep->setName("instep"); 511 InBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 0)); 512 InBasePtr->setMetadata("tbaa", TBAAPointer); 513 Args++; 514 } 515 516 // No usrData parameter on kernels. 517 bccAssert( 518 !bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)); 519 520 if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { 521 Args++; 522 } 523 524 llvm::Value *Y = NULL; 525 if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) { 526 Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y"); 527 Args++; 528 } 529 530 bccAssert(Args == F->arg_end()); 531 532 llvm::PHINode *IV; 533 createLoop(Builder, Arg_x1, Arg_x2, &IV); 534 535 // Populate the actual call to kernel(). 536 llvm::SmallVector<llvm::Value*, 8> RootArgs; 537 538 llvm::Value *InPtr = NULL; 539 llvm::Value *OutPtr = NULL; 540 541 // Calculate the current input and output pointers 542 // 543 // We always calculate the input/output pointers with a GEP operating on i8 544 // values and only cast at the very end to OutTy. This is because the step 545 // between two values is given in bytes. 546 // 547 // TODO: We could further optimize the output by using a GEP operation of 548 // type 'OutTy' in cases where the element type of the allocation allows. 549 if (OutBasePtr) { 550 llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); 551 OutOffset = Builder.CreateMul(OutOffset, OutStep); 552 OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset); 553 OutPtr = Builder.CreatePointerCast(OutPtr, OutTy); 554 } 555 if (InBasePtr) { 556 llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1); 557 InOffset = Builder.CreateMul(InOffset, InStep); 558 InPtr = Builder.CreateGEP(InBasePtr, InOffset); 559 InPtr = Builder.CreatePointerCast(InPtr, InTy); 560 } 561 562 if (PassOutByReference) { 563 RootArgs.push_back(OutPtr); 564 } 565 566 if (InPtr) { 567 llvm::LoadInst *In = Builder.CreateLoad(InPtr, "In"); 568 In->setMetadata("tbaa", TBAAAllocation); 569 RootArgs.push_back(In); 570 } 571 572 llvm::Value *X = IV; 573 if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { 574 RootArgs.push_back(X); 575 } 576 577 if (Y) { 578 RootArgs.push_back(Y); 579 } 580 581 llvm::Value *RetVal = Builder.CreateCall(F, RootArgs); 582 583 if (OutPtr && !PassOutByReference) { 584 llvm::StoreInst *Store = Builder.CreateStore(RetVal, OutPtr); 585 Store->setMetadata("tbaa", TBAAAllocation); 586 } 587 588 return true; 589 } 590 591 /// @brief Checks if pointers to allocation internals are exposed 592 /// 593 /// This function verifies if through the parameters passed to the kernel 594 /// or through calls to the runtime library the script gains access to 595 /// pointers pointing to data within a RenderScript Allocation. 596 /// If we know we control all loads from and stores to data within 597 /// RenderScript allocations and if we know the run-time internal accesses 598 /// are all annotated with RenderScript TBAA metadata, only then we 599 /// can safely use TBAA to distinguish between generic and from-allocation 600 /// pointers. 601 bool allocPointersExposed(llvm::Module &M) { 602 // Old style kernel function can expose pointers to elements within 603 // allocations. 604 // TODO: Extend analysis to allow simple cases of old-style kernels. 605 for (RSInfo::ExportForeachFuncListTy::const_iterator 606 func_iter = mFuncs.begin(), func_end = mFuncs.end(); 607 func_iter != func_end; func_iter++) { 608 const char *Name = func_iter->first; 609 uint32_t Signature = func_iter->second; 610 if (M.getFunction(Name) && 611 !bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)) { 612 return true; 613 } 614 } 615 616 // Check for library functions that expose a pointer to an Allocation or 617 // that are not yet annotated with RenderScript-specific tbaa information. 618 static std::vector<std::string> Funcs; 619 620 // rsGetElementAt(...) 621 Funcs.push_back("_Z14rsGetElementAt13rs_allocationj"); 622 Funcs.push_back("_Z14rsGetElementAt13rs_allocationjj"); 623 Funcs.push_back("_Z14rsGetElementAt13rs_allocationjjj"); 624 // rsSetElementAt() 625 Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvj"); 626 Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjj"); 627 Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjjj"); 628 // rsGetElementAtYuv_uchar_Y() 629 Funcs.push_back("_Z25rsGetElementAtYuv_uchar_Y13rs_allocationjj"); 630 // rsGetElementAtYuv_uchar_U() 631 Funcs.push_back("_Z25rsGetElementAtYuv_uchar_U13rs_allocationjj"); 632 // rsGetElementAtYuv_uchar_V() 633 Funcs.push_back("_Z25rsGetElementAtYuv_uchar_V13rs_allocationjj"); 634 635 for (std::vector<std::string>::iterator FI = Funcs.begin(), 636 FE = Funcs.end(); 637 FI != FE; ++FI) { 638 llvm::Function *F = M.getFunction(*FI); 639 640 if (!F) { 641 ALOGE("Missing run-time function '%s'", FI->c_str()); 642 return true; 643 } 644 645 if (F->getNumUses() > 0) { 646 return true; 647 } 648 } 649 650 return false; 651 } 652 653 /// @brief Connect RenderScript TBAA metadata to C/C++ metadata 654 /// 655 /// The TBAA metadata used to annotate loads/stores from RenderScript 656 /// Allocations is generated in a separate TBAA tree with a "RenderScript TBAA" 657 /// root node. LLVM does assume may-alias for all nodes in unrelated alias 658 /// analysis trees. This function makes the RenderScript TBAA a subtree of the 659 /// normal C/C++ TBAA tree aside of normal C/C++ types. With the connected trees 660 /// every access to an Allocation is resolved to must-alias if compared to 661 /// a normal C/C++ access. 662 void connectRenderScriptTBAAMetadata(llvm::Module &M) { 663 llvm::MDBuilder MDHelper(*C); 664 llvm::MDNode *TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA"); 665 666 llvm::MDNode *TBAARoot = MDHelper.createTBAARoot("Simple C/C++ TBAA"); 667 llvm::MDNode *TBAAMergedRS = MDHelper.createTBAANode("RenderScript", TBAARoot); 668 669 TBAARenderScript->replaceAllUsesWith(TBAAMergedRS); 670 } 671 672 virtual bool runOnModule(llvm::Module &M) { 673 bool Changed = false; 674 this->M = &M; 675 C = &M.getContext(); 676 677 bool AllocsExposed = allocPointersExposed(M); 678 679 for (RSInfo::ExportForeachFuncListTy::const_iterator 680 func_iter = mFuncs.begin(), func_end = mFuncs.end(); 681 func_iter != func_end; func_iter++) { 682 const char *name = func_iter->first; 683 uint32_t signature = func_iter->second; 684 llvm::Function *kernel = M.getFunction(name); 685 if (kernel) { 686 if (bcinfo::MetadataExtractor::hasForEachSignatureKernel(signature)) { 687 Changed |= ExpandKernel(kernel, signature); 688 kernel->setLinkage(llvm::GlobalValue::InternalLinkage); 689 } else if (kernel->getReturnType()->isVoidTy()) { 690 Changed |= ExpandFunction(kernel, signature); 691 kernel->setLinkage(llvm::GlobalValue::InternalLinkage); 692 } else { 693 // There are some graphics root functions that are not 694 // expanded, but that will be called directly. For those 695 // functions, we can not set the linkage to internal. 696 } 697 } 698 } 699 700 if (!AllocsExposed) { 701 connectRenderScriptTBAAMetadata(M); 702 } 703 704 return Changed; 705 } 706 707 virtual const char *getPassName() const { 708 return "ForEach-able Function Expansion"; 709 } 710 711 }; // end RSForEachExpandPass 712 713 } // end anonymous namespace 714 715 char RSForEachExpandPass::ID = 0; 716 717 namespace bcc { 718 719 llvm::ModulePass * 720 createRSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs, 721 bool pEnableStepOpt){ 722 return new RSForEachExpandPass(pForeachFuncs, pEnableStepOpt); 723 } 724 725 } // end namespace bcc 726