Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Implements semantic analysis for C++ expressions.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "TypeLocBuilder.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/TypeLoc.h"
     25 #include "clang/Basic/PartialDiagnostic.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "clang/Sema/DeclSpec.h"
     29 #include "clang/Sema/Initialization.h"
     30 #include "clang/Sema/Lookup.h"
     31 #include "clang/Sema/ParsedTemplate.h"
     32 #include "clang/Sema/Scope.h"
     33 #include "clang/Sema/ScopeInfo.h"
     34 #include "clang/Sema/TemplateDeduction.h"
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 using namespace clang;
     39 using namespace sema;
     40 
     41 /// \brief Handle the result of the special case name lookup for inheriting
     42 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
     43 /// constructor names in member using declarations, even if 'X' is not the
     44 /// name of the corresponding type.
     45 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
     46                                               SourceLocation NameLoc,
     47                                               IdentifierInfo &Name) {
     48   NestedNameSpecifier *NNS = SS.getScopeRep();
     49 
     50   // Convert the nested-name-specifier into a type.
     51   QualType Type;
     52   switch (NNS->getKind()) {
     53   case NestedNameSpecifier::TypeSpec:
     54   case NestedNameSpecifier::TypeSpecWithTemplate:
     55     Type = QualType(NNS->getAsType(), 0);
     56     break;
     57 
     58   case NestedNameSpecifier::Identifier:
     59     // Strip off the last layer of the nested-name-specifier and build a
     60     // typename type for it.
     61     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
     62     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
     63                                         NNS->getAsIdentifier());
     64     break;
     65 
     66   case NestedNameSpecifier::Global:
     67   case NestedNameSpecifier::Namespace:
     68   case NestedNameSpecifier::NamespaceAlias:
     69     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
     70   }
     71 
     72   // This reference to the type is located entirely at the location of the
     73   // final identifier in the qualified-id.
     74   return CreateParsedType(Type,
     75                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
     76 }
     77 
     78 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     79                                    IdentifierInfo &II,
     80                                    SourceLocation NameLoc,
     81                                    Scope *S, CXXScopeSpec &SS,
     82                                    ParsedType ObjectTypePtr,
     83                                    bool EnteringContext) {
     84   // Determine where to perform name lookup.
     85 
     86   // FIXME: This area of the standard is very messy, and the current
     87   // wording is rather unclear about which scopes we search for the
     88   // destructor name; see core issues 399 and 555. Issue 399 in
     89   // particular shows where the current description of destructor name
     90   // lookup is completely out of line with existing practice, e.g.,
     91   // this appears to be ill-formed:
     92   //
     93   //   namespace N {
     94   //     template <typename T> struct S {
     95   //       ~S();
     96   //     };
     97   //   }
     98   //
     99   //   void f(N::S<int>* s) {
    100   //     s->N::S<int>::~S();
    101   //   }
    102   //
    103   // See also PR6358 and PR6359.
    104   // For this reason, we're currently only doing the C++03 version of this
    105   // code; the C++0x version has to wait until we get a proper spec.
    106   QualType SearchType;
    107   DeclContext *LookupCtx = 0;
    108   bool isDependent = false;
    109   bool LookInScope = false;
    110 
    111   // If we have an object type, it's because we are in a
    112   // pseudo-destructor-expression or a member access expression, and
    113   // we know what type we're looking for.
    114   if (ObjectTypePtr)
    115     SearchType = GetTypeFromParser(ObjectTypePtr);
    116 
    117   if (SS.isSet()) {
    118     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
    119 
    120     bool AlreadySearched = false;
    121     bool LookAtPrefix = true;
    122     // C++ [basic.lookup.qual]p6:
    123     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
    124     //   the type-names are looked up as types in the scope designated by the
    125     //   nested-name-specifier. In a qualified-id of the form:
    126     //
    127     //     ::[opt] nested-name-specifier  ~ class-name
    128     //
    129     //   where the nested-name-specifier designates a namespace scope, and in
    130     //   a qualified-id of the form:
    131     //
    132     //     ::opt nested-name-specifier class-name ::  ~ class-name
    133     //
    134     //   the class-names are looked up as types in the scope designated by
    135     //   the nested-name-specifier.
    136     //
    137     // Here, we check the first case (completely) and determine whether the
    138     // code below is permitted to look at the prefix of the
    139     // nested-name-specifier.
    140     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    141     if (DC && DC->isFileContext()) {
    142       AlreadySearched = true;
    143       LookupCtx = DC;
    144       isDependent = false;
    145     } else if (DC && isa<CXXRecordDecl>(DC))
    146       LookAtPrefix = false;
    147 
    148     // The second case from the C++03 rules quoted further above.
    149     NestedNameSpecifier *Prefix = 0;
    150     if (AlreadySearched) {
    151       // Nothing left to do.
    152     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    153       CXXScopeSpec PrefixSS;
    154       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    155       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    156       isDependent = isDependentScopeSpecifier(PrefixSS);
    157     } else if (ObjectTypePtr) {
    158       LookupCtx = computeDeclContext(SearchType);
    159       isDependent = SearchType->isDependentType();
    160     } else {
    161       LookupCtx = computeDeclContext(SS, EnteringContext);
    162       isDependent = LookupCtx && LookupCtx->isDependentContext();
    163     }
    164 
    165     LookInScope = false;
    166   } else if (ObjectTypePtr) {
    167     // C++ [basic.lookup.classref]p3:
    168     //   If the unqualified-id is ~type-name, the type-name is looked up
    169     //   in the context of the entire postfix-expression. If the type T
    170     //   of the object expression is of a class type C, the type-name is
    171     //   also looked up in the scope of class C. At least one of the
    172     //   lookups shall find a name that refers to (possibly
    173     //   cv-qualified) T.
    174     LookupCtx = computeDeclContext(SearchType);
    175     isDependent = SearchType->isDependentType();
    176     assert((isDependent || !SearchType->isIncompleteType()) &&
    177            "Caller should have completed object type");
    178 
    179     LookInScope = true;
    180   } else {
    181     // Perform lookup into the current scope (only).
    182     LookInScope = true;
    183   }
    184 
    185   TypeDecl *NonMatchingTypeDecl = 0;
    186   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    187   for (unsigned Step = 0; Step != 2; ++Step) {
    188     // Look for the name first in the computed lookup context (if we
    189     // have one) and, if that fails to find a match, in the scope (if
    190     // we're allowed to look there).
    191     Found.clear();
    192     if (Step == 0 && LookupCtx)
    193       LookupQualifiedName(Found, LookupCtx);
    194     else if (Step == 1 && LookInScope && S)
    195       LookupName(Found, S);
    196     else
    197       continue;
    198 
    199     // FIXME: Should we be suppressing ambiguities here?
    200     if (Found.isAmbiguous())
    201       return ParsedType();
    202 
    203     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    204       QualType T = Context.getTypeDeclType(Type);
    205 
    206       if (SearchType.isNull() || SearchType->isDependentType() ||
    207           Context.hasSameUnqualifiedType(T, SearchType)) {
    208         // We found our type!
    209 
    210         return ParsedType::make(T);
    211       }
    212 
    213       if (!SearchType.isNull())
    214         NonMatchingTypeDecl = Type;
    215     }
    216 
    217     // If the name that we found is a class template name, and it is
    218     // the same name as the template name in the last part of the
    219     // nested-name-specifier (if present) or the object type, then
    220     // this is the destructor for that class.
    221     // FIXME: This is a workaround until we get real drafting for core
    222     // issue 399, for which there isn't even an obvious direction.
    223     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    224       QualType MemberOfType;
    225       if (SS.isSet()) {
    226         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    227           // Figure out the type of the context, if it has one.
    228           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    229             MemberOfType = Context.getTypeDeclType(Record);
    230         }
    231       }
    232       if (MemberOfType.isNull())
    233         MemberOfType = SearchType;
    234 
    235       if (MemberOfType.isNull())
    236         continue;
    237 
    238       // We're referring into a class template specialization. If the
    239       // class template we found is the same as the template being
    240       // specialized, we found what we are looking for.
    241       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    242         if (ClassTemplateSpecializationDecl *Spec
    243               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    244           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    245                 Template->getCanonicalDecl())
    246             return ParsedType::make(MemberOfType);
    247         }
    248 
    249         continue;
    250       }
    251 
    252       // We're referring to an unresolved class template
    253       // specialization. Determine whether we class template we found
    254       // is the same as the template being specialized or, if we don't
    255       // know which template is being specialized, that it at least
    256       // has the same name.
    257       if (const TemplateSpecializationType *SpecType
    258             = MemberOfType->getAs<TemplateSpecializationType>()) {
    259         TemplateName SpecName = SpecType->getTemplateName();
    260 
    261         // The class template we found is the same template being
    262         // specialized.
    263         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    264           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    265             return ParsedType::make(MemberOfType);
    266 
    267           continue;
    268         }
    269 
    270         // The class template we found has the same name as the
    271         // (dependent) template name being specialized.
    272         if (DependentTemplateName *DepTemplate
    273                                     = SpecName.getAsDependentTemplateName()) {
    274           if (DepTemplate->isIdentifier() &&
    275               DepTemplate->getIdentifier() == Template->getIdentifier())
    276             return ParsedType::make(MemberOfType);
    277 
    278           continue;
    279         }
    280       }
    281     }
    282   }
    283 
    284   if (isDependent) {
    285     // We didn't find our type, but that's okay: it's dependent
    286     // anyway.
    287 
    288     // FIXME: What if we have no nested-name-specifier?
    289     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    290                                    SS.getWithLocInContext(Context),
    291                                    II, NameLoc);
    292     return ParsedType::make(T);
    293   }
    294 
    295   if (NonMatchingTypeDecl) {
    296     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    297     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    298       << T << SearchType;
    299     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    300       << T;
    301   } else if (ObjectTypePtr)
    302     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    303       << &II;
    304   else {
    305     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
    306                                           diag::err_destructor_class_name);
    307     if (S) {
    308       const DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
    309       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    310         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
    311                                                  Class->getNameAsString());
    312     }
    313   }
    314 
    315   return ParsedType();
    316 }
    317 
    318 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    319     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    320       return ParsedType();
    321     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    322            && "only get destructor types from declspecs");
    323     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    324     QualType SearchType = GetTypeFromParser(ObjectType);
    325     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    326       return ParsedType::make(T);
    327     }
    328 
    329     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    330       << T << SearchType;
    331     return ParsedType();
    332 }
    333 
    334 /// \brief Build a C++ typeid expression with a type operand.
    335 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    336                                 SourceLocation TypeidLoc,
    337                                 TypeSourceInfo *Operand,
    338                                 SourceLocation RParenLoc) {
    339   // C++ [expr.typeid]p4:
    340   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    341   //   that is the operand of typeid are always ignored.
    342   //   If the type of the type-id is a class type or a reference to a class
    343   //   type, the class shall be completely-defined.
    344   Qualifiers Quals;
    345   QualType T
    346     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    347                                       Quals);
    348   if (T->getAs<RecordType>() &&
    349       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    350     return ExprError();
    351 
    352   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    353                                            Operand,
    354                                            SourceRange(TypeidLoc, RParenLoc)));
    355 }
    356 
    357 /// \brief Build a C++ typeid expression with an expression operand.
    358 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    359                                 SourceLocation TypeidLoc,
    360                                 Expr *E,
    361                                 SourceLocation RParenLoc) {
    362   if (E && !E->isTypeDependent()) {
    363     if (E->getType()->isPlaceholderType()) {
    364       ExprResult result = CheckPlaceholderExpr(E);
    365       if (result.isInvalid()) return ExprError();
    366       E = result.take();
    367     }
    368 
    369     QualType T = E->getType();
    370     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    371       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    372       // C++ [expr.typeid]p3:
    373       //   [...] If the type of the expression is a class type, the class
    374       //   shall be completely-defined.
    375       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    376         return ExprError();
    377 
    378       // C++ [expr.typeid]p3:
    379       //   When typeid is applied to an expression other than an glvalue of a
    380       //   polymorphic class type [...] [the] expression is an unevaluated
    381       //   operand. [...]
    382       if (RecordD->isPolymorphic() && E->isGLValue()) {
    383         // The subexpression is potentially evaluated; switch the context
    384         // and recheck the subexpression.
    385         ExprResult Result = TransformToPotentiallyEvaluated(E);
    386         if (Result.isInvalid()) return ExprError();
    387         E = Result.take();
    388 
    389         // We require a vtable to query the type at run time.
    390         MarkVTableUsed(TypeidLoc, RecordD);
    391       }
    392     }
    393 
    394     // C++ [expr.typeid]p4:
    395     //   [...] If the type of the type-id is a reference to a possibly
    396     //   cv-qualified type, the result of the typeid expression refers to a
    397     //   std::type_info object representing the cv-unqualified referenced
    398     //   type.
    399     Qualifiers Quals;
    400     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    401     if (!Context.hasSameType(T, UnqualT)) {
    402       T = UnqualT;
    403       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
    404     }
    405   }
    406 
    407   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    408                                            E,
    409                                            SourceRange(TypeidLoc, RParenLoc)));
    410 }
    411 
    412 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    413 ExprResult
    414 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    415                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    416   // Find the std::type_info type.
    417   if (!getStdNamespace())
    418     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    419 
    420   if (!CXXTypeInfoDecl) {
    421     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    422     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    423     LookupQualifiedName(R, getStdNamespace());
    424     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    425     // Microsoft's typeinfo doesn't have type_info in std but in the global
    426     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    427     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
    428       LookupQualifiedName(R, Context.getTranslationUnitDecl());
    429       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    430     }
    431     if (!CXXTypeInfoDecl)
    432       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    433   }
    434 
    435   if (!getLangOpts().RTTI) {
    436     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
    437   }
    438 
    439   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    440 
    441   if (isType) {
    442     // The operand is a type; handle it as such.
    443     TypeSourceInfo *TInfo = 0;
    444     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    445                                    &TInfo);
    446     if (T.isNull())
    447       return ExprError();
    448 
    449     if (!TInfo)
    450       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    451 
    452     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    453   }
    454 
    455   // The operand is an expression.
    456   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    457 }
    458 
    459 /// \brief Build a Microsoft __uuidof expression with a type operand.
    460 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    461                                 SourceLocation TypeidLoc,
    462                                 TypeSourceInfo *Operand,
    463                                 SourceLocation RParenLoc) {
    464   if (!Operand->getType()->isDependentType()) {
    465     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
    466       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    467   }
    468 
    469   // FIXME: add __uuidof semantic analysis for type operand.
    470   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    471                                            Operand,
    472                                            SourceRange(TypeidLoc, RParenLoc)));
    473 }
    474 
    475 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    476 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    477                                 SourceLocation TypeidLoc,
    478                                 Expr *E,
    479                                 SourceLocation RParenLoc) {
    480   if (!E->getType()->isDependentType()) {
    481     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
    482         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    483       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    484   }
    485   // FIXME: add __uuidof semantic analysis for type operand.
    486   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    487                                            E,
    488                                            SourceRange(TypeidLoc, RParenLoc)));
    489 }
    490 
    491 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    492 ExprResult
    493 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    494                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    495   // If MSVCGuidDecl has not been cached, do the lookup.
    496   if (!MSVCGuidDecl) {
    497     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    498     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    499     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    500     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    501     if (!MSVCGuidDecl)
    502       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    503   }
    504 
    505   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    506 
    507   if (isType) {
    508     // The operand is a type; handle it as such.
    509     TypeSourceInfo *TInfo = 0;
    510     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    511                                    &TInfo);
    512     if (T.isNull())
    513       return ExprError();
    514 
    515     if (!TInfo)
    516       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    517 
    518     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    519   }
    520 
    521   // The operand is an expression.
    522   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    523 }
    524 
    525 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    526 ExprResult
    527 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    528   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    529          "Unknown C++ Boolean value!");
    530   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
    531                                                 Context.BoolTy, OpLoc));
    532 }
    533 
    534 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    535 ExprResult
    536 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    537   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
    538 }
    539 
    540 /// ActOnCXXThrow - Parse throw expressions.
    541 ExprResult
    542 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    543   bool IsThrownVarInScope = false;
    544   if (Ex) {
    545     // C++0x [class.copymove]p31:
    546     //   When certain criteria are met, an implementation is allowed to omit the
    547     //   copy/move construction of a class object [...]
    548     //
    549     //     - in a throw-expression, when the operand is the name of a
    550     //       non-volatile automatic object (other than a function or catch-
    551     //       clause parameter) whose scope does not extend beyond the end of the
    552     //       innermost enclosing try-block (if there is one), the copy/move
    553     //       operation from the operand to the exception object (15.1) can be
    554     //       omitted by constructing the automatic object directly into the
    555     //       exception object
    556     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    557       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    558         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    559           for( ; S; S = S->getParent()) {
    560             if (S->isDeclScope(Var)) {
    561               IsThrownVarInScope = true;
    562               break;
    563             }
    564 
    565             if (S->getFlags() &
    566                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    567                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    568                  Scope::TryScope))
    569               break;
    570           }
    571         }
    572       }
    573   }
    574 
    575   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    576 }
    577 
    578 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    579                                bool IsThrownVarInScope) {
    580   // Don't report an error if 'throw' is used in system headers.
    581   if (!getLangOpts().CXXExceptions &&
    582       !getSourceManager().isInSystemHeader(OpLoc))
    583     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    584 
    585   if (Ex && !Ex->isTypeDependent()) {
    586     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    587     if (ExRes.isInvalid())
    588       return ExprError();
    589     Ex = ExRes.take();
    590   }
    591 
    592   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
    593                                           IsThrownVarInScope));
    594 }
    595 
    596 /// CheckCXXThrowOperand - Validate the operand of a throw.
    597 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    598                                       bool IsThrownVarInScope) {
    599   // C++ [except.throw]p3:
    600   //   A throw-expression initializes a temporary object, called the exception
    601   //   object, the type of which is determined by removing any top-level
    602   //   cv-qualifiers from the static type of the operand of throw and adjusting
    603   //   the type from "array of T" or "function returning T" to "pointer to T"
    604   //   or "pointer to function returning T", [...]
    605   if (E->getType().hasQualifiers())
    606     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    607                           E->getValueKind()).take();
    608 
    609   ExprResult Res = DefaultFunctionArrayConversion(E);
    610   if (Res.isInvalid())
    611     return ExprError();
    612   E = Res.take();
    613 
    614   //   If the type of the exception would be an incomplete type or a pointer
    615   //   to an incomplete type other than (cv) void the program is ill-formed.
    616   QualType Ty = E->getType();
    617   bool isPointer = false;
    618   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    619     Ty = Ptr->getPointeeType();
    620     isPointer = true;
    621   }
    622   if (!isPointer || !Ty->isVoidType()) {
    623     if (RequireCompleteType(ThrowLoc, Ty,
    624                             isPointer? diag::err_throw_incomplete_ptr
    625                                      : diag::err_throw_incomplete,
    626                             E->getSourceRange()))
    627       return ExprError();
    628 
    629     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    630                                diag::err_throw_abstract_type, E))
    631       return ExprError();
    632   }
    633 
    634   // Initialize the exception result.  This implicitly weeds out
    635   // abstract types or types with inaccessible copy constructors.
    636 
    637   // C++0x [class.copymove]p31:
    638   //   When certain criteria are met, an implementation is allowed to omit the
    639   //   copy/move construction of a class object [...]
    640   //
    641   //     - in a throw-expression, when the operand is the name of a
    642   //       non-volatile automatic object (other than a function or catch-clause
    643   //       parameter) whose scope does not extend beyond the end of the
    644   //       innermost enclosing try-block (if there is one), the copy/move
    645   //       operation from the operand to the exception object (15.1) can be
    646   //       omitted by constructing the automatic object directly into the
    647   //       exception object
    648   const VarDecl *NRVOVariable = 0;
    649   if (IsThrownVarInScope)
    650     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    651 
    652   InitializedEntity Entity =
    653       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    654                                              /*NRVO=*/NRVOVariable != 0);
    655   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    656                                         QualType(), E,
    657                                         IsThrownVarInScope);
    658   if (Res.isInvalid())
    659     return ExprError();
    660   E = Res.take();
    661 
    662   // If the exception has class type, we need additional handling.
    663   const RecordType *RecordTy = Ty->getAs<RecordType>();
    664   if (!RecordTy)
    665     return Owned(E);
    666   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    667 
    668   // If we are throwing a polymorphic class type or pointer thereof,
    669   // exception handling will make use of the vtable.
    670   MarkVTableUsed(ThrowLoc, RD);
    671 
    672   // If a pointer is thrown, the referenced object will not be destroyed.
    673   if (isPointer)
    674     return Owned(E);
    675 
    676   // If the class has a destructor, we must be able to call it.
    677   if (RD->hasIrrelevantDestructor())
    678     return Owned(E);
    679 
    680   CXXDestructorDecl *Destructor = LookupDestructor(RD);
    681   if (!Destructor)
    682     return Owned(E);
    683 
    684   MarkFunctionReferenced(E->getExprLoc(), Destructor);
    685   CheckDestructorAccess(E->getExprLoc(), Destructor,
    686                         PDiag(diag::err_access_dtor_exception) << Ty);
    687   if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
    688     return ExprError();
    689   return Owned(E);
    690 }
    691 
    692 QualType Sema::getCurrentThisType() {
    693   DeclContext *DC = getFunctionLevelDeclContext();
    694   QualType ThisTy = CXXThisTypeOverride;
    695   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    696     if (method && method->isInstance())
    697       ThisTy = method->getThisType(Context);
    698   }
    699 
    700   return ThisTy;
    701 }
    702 
    703 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    704                                          Decl *ContextDecl,
    705                                          unsigned CXXThisTypeQuals,
    706                                          bool Enabled)
    707   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    708 {
    709   if (!Enabled || !ContextDecl)
    710     return;
    711 
    712   CXXRecordDecl *Record = 0;
    713   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    714     Record = Template->getTemplatedDecl();
    715   else
    716     Record = cast<CXXRecordDecl>(ContextDecl);
    717 
    718   S.CXXThisTypeOverride
    719     = S.Context.getPointerType(
    720         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    721 
    722   this->Enabled = true;
    723 }
    724 
    725 
    726 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    727   if (Enabled) {
    728     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    729   }
    730 }
    731 
    732 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
    733                          QualType ThisTy, SourceLocation Loc) {
    734   FieldDecl *Field
    735     = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
    736                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    737                         0, false, ICIS_NoInit);
    738   Field->setImplicit(true);
    739   Field->setAccess(AS_private);
    740   RD->addDecl(Field);
    741   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
    742 }
    743 
    744 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
    745   // We don't need to capture this in an unevaluated context.
    746   if (isUnevaluatedContext() && !Explicit)
    747     return;
    748 
    749   // Otherwise, check that we can capture 'this'.
    750   unsigned NumClosures = 0;
    751   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
    752     if (CapturingScopeInfo *CSI =
    753             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    754       if (CSI->CXXThisCaptureIndex != 0) {
    755         // 'this' is already being captured; there isn't anything more to do.
    756         break;
    757       }
    758 
    759       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    760           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    761           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    762           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
    763           Explicit) {
    764         // This closure can capture 'this'; continue looking upwards.
    765         NumClosures++;
    766         Explicit = false;
    767         continue;
    768       }
    769       // This context can't implicitly capture 'this'; fail out.
    770       Diag(Loc, diag::err_this_capture) << Explicit;
    771       return;
    772     }
    773     break;
    774   }
    775 
    776   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    777   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    778   // contexts.
    779   for (unsigned idx = FunctionScopes.size() - 1;
    780        NumClosures; --idx, --NumClosures) {
    781     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    782     Expr *ThisExpr = 0;
    783     QualType ThisTy = getCurrentThisType();
    784     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
    785       // For lambda expressions, build a field and an initializing expression.
    786       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
    787     else if (CapturedRegionScopeInfo *RSI
    788         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
    789       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
    790 
    791     bool isNested = NumClosures > 1;
    792     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    793   }
    794 }
    795 
    796 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    797   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    798   /// is a non-lvalue expression whose value is the address of the object for
    799   /// which the function is called.
    800 
    801   QualType ThisTy = getCurrentThisType();
    802   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    803 
    804   CheckCXXThisCapture(Loc);
    805   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
    806 }
    807 
    808 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    809   // If we're outside the body of a member function, then we'll have a specified
    810   // type for 'this'.
    811   if (CXXThisTypeOverride.isNull())
    812     return false;
    813 
    814   // Determine whether we're looking into a class that's currently being
    815   // defined.
    816   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    817   return Class && Class->isBeingDefined();
    818 }
    819 
    820 ExprResult
    821 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    822                                 SourceLocation LParenLoc,
    823                                 MultiExprArg exprs,
    824                                 SourceLocation RParenLoc) {
    825   if (!TypeRep)
    826     return ExprError();
    827 
    828   TypeSourceInfo *TInfo;
    829   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    830   if (!TInfo)
    831     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    832 
    833   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    834 }
    835 
    836 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    837 /// Can be interpreted either as function-style casting ("int(x)")
    838 /// or class type construction ("ClassType(x,y,z)")
    839 /// or creation of a value-initialized type ("int()").
    840 ExprResult
    841 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    842                                 SourceLocation LParenLoc,
    843                                 MultiExprArg Exprs,
    844                                 SourceLocation RParenLoc) {
    845   QualType Ty = TInfo->getType();
    846   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    847 
    848   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
    849     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
    850                                                     LParenLoc,
    851                                                     Exprs,
    852                                                     RParenLoc));
    853   }
    854 
    855   bool ListInitialization = LParenLoc.isInvalid();
    856   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
    857          && "List initialization must have initializer list as expression.");
    858   SourceRange FullRange = SourceRange(TyBeginLoc,
    859       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
    860 
    861   // C++ [expr.type.conv]p1:
    862   // If the expression list is a single expression, the type conversion
    863   // expression is equivalent (in definedness, and if defined in meaning) to the
    864   // corresponding cast expression.
    865   if (Exprs.size() == 1 && !ListInitialization) {
    866     Expr *Arg = Exprs[0];
    867     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
    868   }
    869 
    870   QualType ElemTy = Ty;
    871   if (Ty->isArrayType()) {
    872     if (!ListInitialization)
    873       return ExprError(Diag(TyBeginLoc,
    874                             diag::err_value_init_for_array_type) << FullRange);
    875     ElemTy = Context.getBaseElementType(Ty);
    876   }
    877 
    878   if (!Ty->isVoidType() &&
    879       RequireCompleteType(TyBeginLoc, ElemTy,
    880                           diag::err_invalid_incomplete_type_use, FullRange))
    881     return ExprError();
    882 
    883   if (RequireNonAbstractType(TyBeginLoc, Ty,
    884                              diag::err_allocation_of_abstract_type))
    885     return ExprError();
    886 
    887   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    888   InitializationKind Kind =
    889       Exprs.size() ? ListInitialization
    890       ? InitializationKind::CreateDirectList(TyBeginLoc)
    891       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
    892       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
    893   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
    894   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
    895 
    896   if (!Result.isInvalid() && ListInitialization &&
    897       isa<InitListExpr>(Result.get())) {
    898     // If the list-initialization doesn't involve a constructor call, we'll get
    899     // the initializer-list (with corrected type) back, but that's not what we
    900     // want, since it will be treated as an initializer list in further
    901     // processing. Explicitly insert a cast here.
    902     InitListExpr *List = cast<InitListExpr>(Result.take());
    903     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
    904                                     Expr::getValueKindForType(TInfo->getType()),
    905                                                  TInfo, TyBeginLoc, CK_NoOp,
    906                                                  List, /*Path=*/0, RParenLoc));
    907   }
    908 
    909   // FIXME: Improve AST representation?
    910   return Result;
    911 }
    912 
    913 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    914 /// operator delete[] for the given type has a size_t parameter.
    915 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    916                                          QualType allocType) {
    917   const RecordType *record =
    918     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    919   if (!record) return false;
    920 
    921   // Try to find an operator delete[] in class scope.
    922 
    923   DeclarationName deleteName =
    924     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    925   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    926   S.LookupQualifiedName(ops, record->getDecl());
    927 
    928   // We're just doing this for information.
    929   ops.suppressDiagnostics();
    930 
    931   // Very likely: there's no operator delete[].
    932   if (ops.empty()) return false;
    933 
    934   // If it's ambiguous, it should be illegal to call operator delete[]
    935   // on this thing, so it doesn't matter if we allocate extra space or not.
    936   if (ops.isAmbiguous()) return false;
    937 
    938   LookupResult::Filter filter = ops.makeFilter();
    939   while (filter.hasNext()) {
    940     NamedDecl *del = filter.next()->getUnderlyingDecl();
    941 
    942     // C++0x [basic.stc.dynamic.deallocation]p2:
    943     //   A template instance is never a usual deallocation function,
    944     //   regardless of its signature.
    945     if (isa<FunctionTemplateDecl>(del)) {
    946       filter.erase();
    947       continue;
    948     }
    949 
    950     // C++0x [basic.stc.dynamic.deallocation]p2:
    951     //   If class T does not declare [an operator delete[] with one
    952     //   parameter] but does declare a member deallocation function
    953     //   named operator delete[] with exactly two parameters, the
    954     //   second of which has type std::size_t, then this function
    955     //   is a usual deallocation function.
    956     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
    957       filter.erase();
    958       continue;
    959     }
    960   }
    961   filter.done();
    962 
    963   if (!ops.isSingleResult()) return false;
    964 
    965   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
    966   return (del->getNumParams() == 2);
    967 }
    968 
    969 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
    970 ///
    971 /// E.g.:
    972 /// @code new (memory) int[size][4] @endcode
    973 /// or
    974 /// @code ::new Foo(23, "hello") @endcode
    975 ///
    976 /// \param StartLoc The first location of the expression.
    977 /// \param UseGlobal True if 'new' was prefixed with '::'.
    978 /// \param PlacementLParen Opening paren of the placement arguments.
    979 /// \param PlacementArgs Placement new arguments.
    980 /// \param PlacementRParen Closing paren of the placement arguments.
    981 /// \param TypeIdParens If the type is in parens, the source range.
    982 /// \param D The type to be allocated, as well as array dimensions.
    983 /// \param Initializer The initializing expression or initializer-list, or null
    984 ///   if there is none.
    985 ExprResult
    986 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
    987                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
    988                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
    989                   Declarator &D, Expr *Initializer) {
    990   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
    991 
    992   Expr *ArraySize = 0;
    993   // If the specified type is an array, unwrap it and save the expression.
    994   if (D.getNumTypeObjects() > 0 &&
    995       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    996      DeclaratorChunk &Chunk = D.getTypeObject(0);
    997     if (TypeContainsAuto)
    998       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
    999         << D.getSourceRange());
   1000     if (Chunk.Arr.hasStatic)
   1001       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
   1002         << D.getSourceRange());
   1003     if (!Chunk.Arr.NumElts)
   1004       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
   1005         << D.getSourceRange());
   1006 
   1007     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
   1008     D.DropFirstTypeObject();
   1009   }
   1010 
   1011   // Every dimension shall be of constant size.
   1012   if (ArraySize) {
   1013     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
   1014       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
   1015         break;
   1016 
   1017       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
   1018       if (Expr *NumElts = (Expr *)Array.NumElts) {
   1019         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
   1020           if (getLangOpts().CPlusPlus1y) {
   1021 	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
   1022 	    //   shall be a converted constant expression (5.19) of type std::size_t
   1023 	    //   and shall evaluate to a strictly positive value.
   1024             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   1025             assert(IntWidth && "Builtin type of size 0?");
   1026             llvm::APSInt Value(IntWidth);
   1027             Array.NumElts
   1028              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
   1029                                                 CCEK_NewExpr)
   1030                  .take();
   1031           } else {
   1032             Array.NumElts
   1033               = VerifyIntegerConstantExpression(NumElts, 0,
   1034                                                 diag::err_new_array_nonconst)
   1035                   .take();
   1036           }
   1037           if (!Array.NumElts)
   1038             return ExprError();
   1039         }
   1040       }
   1041     }
   1042   }
   1043 
   1044   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
   1045   QualType AllocType = TInfo->getType();
   1046   if (D.isInvalidType())
   1047     return ExprError();
   1048 
   1049   SourceRange DirectInitRange;
   1050   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
   1051     DirectInitRange = List->getSourceRange();
   1052 
   1053   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
   1054                      PlacementLParen,
   1055                      PlacementArgs,
   1056                      PlacementRParen,
   1057                      TypeIdParens,
   1058                      AllocType,
   1059                      TInfo,
   1060                      ArraySize,
   1061                      DirectInitRange,
   1062                      Initializer,
   1063                      TypeContainsAuto);
   1064 }
   1065 
   1066 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1067                                        Expr *Init) {
   1068   if (!Init)
   1069     return true;
   1070   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1071     return PLE->getNumExprs() == 0;
   1072   if (isa<ImplicitValueInitExpr>(Init))
   1073     return true;
   1074   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1075     return !CCE->isListInitialization() &&
   1076            CCE->getConstructor()->isDefaultConstructor();
   1077   else if (Style == CXXNewExpr::ListInit) {
   1078     assert(isa<InitListExpr>(Init) &&
   1079            "Shouldn't create list CXXConstructExprs for arrays.");
   1080     return true;
   1081   }
   1082   return false;
   1083 }
   1084 
   1085 ExprResult
   1086 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
   1087                   SourceLocation PlacementLParen,
   1088                   MultiExprArg PlacementArgs,
   1089                   SourceLocation PlacementRParen,
   1090                   SourceRange TypeIdParens,
   1091                   QualType AllocType,
   1092                   TypeSourceInfo *AllocTypeInfo,
   1093                   Expr *ArraySize,
   1094                   SourceRange DirectInitRange,
   1095                   Expr *Initializer,
   1096                   bool TypeMayContainAuto) {
   1097   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1098   SourceLocation StartLoc = Range.getBegin();
   1099 
   1100   CXXNewExpr::InitializationStyle initStyle;
   1101   if (DirectInitRange.isValid()) {
   1102     assert(Initializer && "Have parens but no initializer.");
   1103     initStyle = CXXNewExpr::CallInit;
   1104   } else if (Initializer && isa<InitListExpr>(Initializer))
   1105     initStyle = CXXNewExpr::ListInit;
   1106   else {
   1107     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1108             isa<CXXConstructExpr>(Initializer)) &&
   1109            "Initializer expression that cannot have been implicitly created.");
   1110     initStyle = CXXNewExpr::NoInit;
   1111   }
   1112 
   1113   Expr **Inits = &Initializer;
   1114   unsigned NumInits = Initializer ? 1 : 0;
   1115   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
   1116     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
   1117     Inits = List->getExprs();
   1118     NumInits = List->getNumExprs();
   1119   }
   1120 
   1121   // Determine whether we've already built the initializer.
   1122   bool HaveCompleteInit = false;
   1123   if (Initializer && isa<CXXConstructExpr>(Initializer) &&
   1124       !isa<CXXTemporaryObjectExpr>(Initializer))
   1125     HaveCompleteInit = true;
   1126   else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
   1127     HaveCompleteInit = true;
   1128 
   1129   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1130   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
   1131     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1132       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1133                        << AllocType << TypeRange);
   1134     if (initStyle == CXXNewExpr::ListInit)
   1135       return ExprError(Diag(Inits[0]->getLocStart(),
   1136                             diag::err_auto_new_requires_parens)
   1137                        << AllocType << TypeRange);
   1138     if (NumInits > 1) {
   1139       Expr *FirstBad = Inits[1];
   1140       return ExprError(Diag(FirstBad->getLocStart(),
   1141                             diag::err_auto_new_ctor_multiple_expressions)
   1142                        << AllocType << TypeRange);
   1143     }
   1144     Expr *Deduce = Inits[0];
   1145     QualType DeducedType;
   1146     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
   1147       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1148                        << AllocType << Deduce->getType()
   1149                        << TypeRange << Deduce->getSourceRange());
   1150     if (DeducedType.isNull())
   1151       return ExprError();
   1152     AllocType = DeducedType;
   1153   }
   1154 
   1155   // Per C++0x [expr.new]p5, the type being constructed may be a
   1156   // typedef of an array type.
   1157   if (!ArraySize) {
   1158     if (const ConstantArrayType *Array
   1159                               = Context.getAsConstantArrayType(AllocType)) {
   1160       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1161                                          Context.getSizeType(),
   1162                                          TypeRange.getEnd());
   1163       AllocType = Array->getElementType();
   1164     }
   1165   }
   1166 
   1167   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1168     return ExprError();
   1169 
   1170   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
   1171     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1172          diag::warn_dangling_std_initializer_list)
   1173         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1174   }
   1175 
   1176   // In ARC, infer 'retaining' for the allocated
   1177   if (getLangOpts().ObjCAutoRefCount &&
   1178       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1179       AllocType->isObjCLifetimeType()) {
   1180     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1181                                     AllocType->getObjCARCImplicitLifetime());
   1182   }
   1183 
   1184   QualType ResultType = Context.getPointerType(AllocType);
   1185 
   1186   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
   1187     ExprResult result = CheckPlaceholderExpr(ArraySize);
   1188     if (result.isInvalid()) return ExprError();
   1189     ArraySize = result.take();
   1190   }
   1191   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1192   //   integral or enumeration type with a non-negative value."
   1193   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1194   //   enumeration type, or a class type for which a single non-explicit
   1195   //   conversion function to integral or unscoped enumeration type exists.
   1196   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
   1197   //   std::size_t.
   1198   if (ArraySize && !ArraySize->isTypeDependent()) {
   1199     ExprResult ConvertedSize;
   1200     if (getLangOpts().CPlusPlus1y) {
   1201       unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   1202       assert(IntWidth && "Builtin type of size 0?");
   1203       llvm::APSInt Value(IntWidth);
   1204       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
   1205 						AA_Converting);
   1206 
   1207       if (!ConvertedSize.isInvalid() &&
   1208           ArraySize->getType()->getAs<RecordType>())
   1209         // Diagnose the compatibility of this conversion.
   1210         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
   1211           << ArraySize->getType() << 0 << "'size_t'";
   1212     } else {
   1213       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
   1214       protected:
   1215         Expr *ArraySize;
   1216 
   1217       public:
   1218         SizeConvertDiagnoser(Expr *ArraySize)
   1219             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
   1220               ArraySize(ArraySize) {}
   1221 
   1222         virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   1223                                                      QualType T) {
   1224           return S.Diag(Loc, diag::err_array_size_not_integral)
   1225                    << S.getLangOpts().CPlusPlus11 << T;
   1226         }
   1227 
   1228         virtual SemaDiagnosticBuilder diagnoseIncomplete(
   1229             Sema &S, SourceLocation Loc, QualType T) {
   1230           return S.Diag(Loc, diag::err_array_size_incomplete_type)
   1231                    << T << ArraySize->getSourceRange();
   1232         }
   1233 
   1234         virtual SemaDiagnosticBuilder diagnoseExplicitConv(
   1235             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
   1236           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
   1237         }
   1238 
   1239         virtual SemaDiagnosticBuilder noteExplicitConv(
   1240             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
   1241           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1242                    << ConvTy->isEnumeralType() << ConvTy;
   1243         }
   1244 
   1245         virtual SemaDiagnosticBuilder diagnoseAmbiguous(
   1246             Sema &S, SourceLocation Loc, QualType T) {
   1247           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
   1248         }
   1249 
   1250         virtual SemaDiagnosticBuilder noteAmbiguous(
   1251             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
   1252           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1253                    << ConvTy->isEnumeralType() << ConvTy;
   1254         }
   1255 
   1256         virtual SemaDiagnosticBuilder diagnoseConversion(
   1257             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
   1258           return S.Diag(Loc,
   1259                         S.getLangOpts().CPlusPlus11
   1260                           ? diag::warn_cxx98_compat_array_size_conversion
   1261                           : diag::ext_array_size_conversion)
   1262                    << T << ConvTy->isEnumeralType() << ConvTy;
   1263         }
   1264       } SizeDiagnoser(ArraySize);
   1265 
   1266       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
   1267                                                           SizeDiagnoser);
   1268     }
   1269     if (ConvertedSize.isInvalid())
   1270       return ExprError();
   1271 
   1272     ArraySize = ConvertedSize.take();
   1273     QualType SizeType = ArraySize->getType();
   1274 
   1275     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1276       return ExprError();
   1277 
   1278     // C++98 [expr.new]p7:
   1279     //   The expression in a direct-new-declarator shall have integral type
   1280     //   with a non-negative value.
   1281     //
   1282     // Let's see if this is a constant < 0. If so, we reject it out of
   1283     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1284     // array type.
   1285     //
   1286     // Note: such a construct has well-defined semantics in C++11: it throws
   1287     // std::bad_array_new_length.
   1288     if (!ArraySize->isValueDependent()) {
   1289       llvm::APSInt Value;
   1290       // We've already performed any required implicit conversion to integer or
   1291       // unscoped enumeration type.
   1292       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1293         if (Value < llvm::APSInt(
   1294                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1295                                  Value.isUnsigned())) {
   1296           if (getLangOpts().CPlusPlus11)
   1297             Diag(ArraySize->getLocStart(),
   1298                  diag::warn_typecheck_negative_array_new_size)
   1299               << ArraySize->getSourceRange();
   1300           else
   1301             return ExprError(Diag(ArraySize->getLocStart(),
   1302                                   diag::err_typecheck_negative_array_size)
   1303                              << ArraySize->getSourceRange());
   1304         } else if (!AllocType->isDependentType()) {
   1305           unsigned ActiveSizeBits =
   1306             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1307           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1308             if (getLangOpts().CPlusPlus11)
   1309               Diag(ArraySize->getLocStart(),
   1310                    diag::warn_array_new_too_large)
   1311                 << Value.toString(10)
   1312                 << ArraySize->getSourceRange();
   1313             else
   1314               return ExprError(Diag(ArraySize->getLocStart(),
   1315                                     diag::err_array_too_large)
   1316                                << Value.toString(10)
   1317                                << ArraySize->getSourceRange());
   1318           }
   1319         }
   1320       } else if (TypeIdParens.isValid()) {
   1321         // Can't have dynamic array size when the type-id is in parentheses.
   1322         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1323           << ArraySize->getSourceRange()
   1324           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1325           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1326 
   1327         TypeIdParens = SourceRange();
   1328       }
   1329     }
   1330 
   1331     // Note that we do *not* convert the argument in any way.  It can
   1332     // be signed, larger than size_t, whatever.
   1333   }
   1334 
   1335   FunctionDecl *OperatorNew = 0;
   1336   FunctionDecl *OperatorDelete = 0;
   1337 
   1338   if (!AllocType->isDependentType() &&
   1339       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
   1340       FindAllocationFunctions(StartLoc,
   1341                               SourceRange(PlacementLParen, PlacementRParen),
   1342                               UseGlobal, AllocType, ArraySize, PlacementArgs,
   1343                               OperatorNew, OperatorDelete))
   1344     return ExprError();
   1345 
   1346   // If this is an array allocation, compute whether the usual array
   1347   // deallocation function for the type has a size_t parameter.
   1348   bool UsualArrayDeleteWantsSize = false;
   1349   if (ArraySize && !AllocType->isDependentType())
   1350     UsualArrayDeleteWantsSize
   1351       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1352 
   1353   SmallVector<Expr *, 8> AllPlaceArgs;
   1354   if (OperatorNew) {
   1355     // Add default arguments, if any.
   1356     const FunctionProtoType *Proto =
   1357       OperatorNew->getType()->getAs<FunctionProtoType>();
   1358     VariadicCallType CallType =
   1359       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   1360 
   1361     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
   1362                                PlacementArgs, AllPlaceArgs, CallType))
   1363       return ExprError();
   1364 
   1365     if (!AllPlaceArgs.empty())
   1366       PlacementArgs = AllPlaceArgs;
   1367 
   1368     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
   1369 
   1370     // FIXME: Missing call to CheckFunctionCall or equivalent
   1371   }
   1372 
   1373   // Warn if the type is over-aligned and is being allocated by global operator
   1374   // new.
   1375   if (PlacementArgs.empty() && OperatorNew &&
   1376       (OperatorNew->isImplicit() ||
   1377        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1378     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1379       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1380       if (Align > SuitableAlign)
   1381         Diag(StartLoc, diag::warn_overaligned_type)
   1382             << AllocType
   1383             << unsigned(Align / Context.getCharWidth())
   1384             << unsigned(SuitableAlign / Context.getCharWidth());
   1385     }
   1386   }
   1387 
   1388   QualType InitType = AllocType;
   1389   // Array 'new' can't have any initializers except empty parentheses.
   1390   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1391   // dialect distinction.
   1392   if (ResultType->isArrayType() || ArraySize) {
   1393     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1394       SourceRange InitRange(Inits[0]->getLocStart(),
   1395                             Inits[NumInits - 1]->getLocEnd());
   1396       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1397       return ExprError();
   1398     }
   1399     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1400       // We do the initialization typechecking against the array type
   1401       // corresponding to the number of initializers + 1 (to also check
   1402       // default-initialization).
   1403       unsigned NumElements = ILE->getNumInits() + 1;
   1404       InitType = Context.getConstantArrayType(AllocType,
   1405           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1406                                               ArrayType::Normal, 0);
   1407     }
   1408   }
   1409 
   1410   // If we can perform the initialization, and we've not already done so,
   1411   // do it now.
   1412   if (!AllocType->isDependentType() &&
   1413       !Expr::hasAnyTypeDependentArguments(
   1414         llvm::makeArrayRef(Inits, NumInits)) &&
   1415       !HaveCompleteInit) {
   1416     // C++11 [expr.new]p15:
   1417     //   A new-expression that creates an object of type T initializes that
   1418     //   object as follows:
   1419     InitializationKind Kind
   1420     //     - If the new-initializer is omitted, the object is default-
   1421     //       initialized (8.5); if no initialization is performed,
   1422     //       the object has indeterminate value
   1423       = initStyle == CXXNewExpr::NoInit
   1424           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1425     //     - Otherwise, the new-initializer is interpreted according to the
   1426     //       initialization rules of 8.5 for direct-initialization.
   1427           : initStyle == CXXNewExpr::ListInit
   1428               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1429               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1430                                                  DirectInitRange.getBegin(),
   1431                                                  DirectInitRange.getEnd());
   1432 
   1433     InitializedEntity Entity
   1434       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1435     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
   1436     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1437                                           MultiExprArg(Inits, NumInits));
   1438     if (FullInit.isInvalid())
   1439       return ExprError();
   1440 
   1441     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1442     // we don't want the initialized object to be destructed.
   1443     if (CXXBindTemporaryExpr *Binder =
   1444             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1445       FullInit = Owned(Binder->getSubExpr());
   1446 
   1447     Initializer = FullInit.take();
   1448   }
   1449 
   1450   // Mark the new and delete operators as referenced.
   1451   if (OperatorNew) {
   1452     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
   1453       return ExprError();
   1454     MarkFunctionReferenced(StartLoc, OperatorNew);
   1455   }
   1456   if (OperatorDelete) {
   1457     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
   1458       return ExprError();
   1459     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1460   }
   1461 
   1462   // C++0x [expr.new]p17:
   1463   //   If the new expression creates an array of objects of class type,
   1464   //   access and ambiguity control are done for the destructor.
   1465   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1466   if (ArraySize && !BaseAllocType->isDependentType()) {
   1467     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1468       if (CXXDestructorDecl *dtor = LookupDestructor(
   1469               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1470         MarkFunctionReferenced(StartLoc, dtor);
   1471         CheckDestructorAccess(StartLoc, dtor,
   1472                               PDiag(diag::err_access_dtor)
   1473                                 << BaseAllocType);
   1474         if (DiagnoseUseOfDecl(dtor, StartLoc))
   1475           return ExprError();
   1476       }
   1477     }
   1478   }
   1479 
   1480   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
   1481                                         OperatorDelete,
   1482                                         UsualArrayDeleteWantsSize,
   1483                                         PlacementArgs, TypeIdParens,
   1484                                         ArraySize, initStyle, Initializer,
   1485                                         ResultType, AllocTypeInfo,
   1486                                         Range, DirectInitRange));
   1487 }
   1488 
   1489 /// \brief Checks that a type is suitable as the allocated type
   1490 /// in a new-expression.
   1491 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1492                               SourceRange R) {
   1493   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1494   //   abstract class type or array thereof.
   1495   if (AllocType->isFunctionType())
   1496     return Diag(Loc, diag::err_bad_new_type)
   1497       << AllocType << 0 << R;
   1498   else if (AllocType->isReferenceType())
   1499     return Diag(Loc, diag::err_bad_new_type)
   1500       << AllocType << 1 << R;
   1501   else if (!AllocType->isDependentType() &&
   1502            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
   1503     return true;
   1504   else if (RequireNonAbstractType(Loc, AllocType,
   1505                                   diag::err_allocation_of_abstract_type))
   1506     return true;
   1507   else if (AllocType->isVariablyModifiedType())
   1508     return Diag(Loc, diag::err_variably_modified_new_type)
   1509              << AllocType;
   1510   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1511     return Diag(Loc, diag::err_address_space_qualified_new)
   1512       << AllocType.getUnqualifiedType() << AddressSpace;
   1513   else if (getLangOpts().ObjCAutoRefCount) {
   1514     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1515       QualType BaseAllocType = Context.getBaseElementType(AT);
   1516       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1517           BaseAllocType->isObjCLifetimeType())
   1518         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1519           << BaseAllocType;
   1520     }
   1521   }
   1522 
   1523   return false;
   1524 }
   1525 
   1526 /// \brief Determine whether the given function is a non-placement
   1527 /// deallocation function.
   1528 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
   1529   if (FD->isInvalidDecl())
   1530     return false;
   1531 
   1532   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1533     return Method->isUsualDeallocationFunction();
   1534 
   1535   return ((FD->getOverloadedOperator() == OO_Delete ||
   1536            FD->getOverloadedOperator() == OO_Array_Delete) &&
   1537           FD->getNumParams() == 1);
   1538 }
   1539 
   1540 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1541 /// that are appropriate for the allocation.
   1542 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1543                                    bool UseGlobal, QualType AllocType,
   1544                                    bool IsArray, MultiExprArg PlaceArgs,
   1545                                    FunctionDecl *&OperatorNew,
   1546                                    FunctionDecl *&OperatorDelete) {
   1547   // --- Choosing an allocation function ---
   1548   // C++ 5.3.4p8 - 14 & 18
   1549   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1550   //   in the scope of the allocated class.
   1551   // 2) If an array size is given, look for operator new[], else look for
   1552   //   operator new.
   1553   // 3) The first argument is always size_t. Append the arguments from the
   1554   //   placement form.
   1555 
   1556   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
   1557   // We don't care about the actual value of this argument.
   1558   // FIXME: Should the Sema create the expression and embed it in the syntax
   1559   // tree? Or should the consumer just recalculate the value?
   1560   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1561                       Context.getTargetInfo().getPointerWidth(0)),
   1562                       Context.getSizeType(),
   1563                       SourceLocation());
   1564   AllocArgs[0] = &Size;
   1565   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
   1566 
   1567   // C++ [expr.new]p8:
   1568   //   If the allocated type is a non-array type, the allocation
   1569   //   function's name is operator new and the deallocation function's
   1570   //   name is operator delete. If the allocated type is an array
   1571   //   type, the allocation function's name is operator new[] and the
   1572   //   deallocation function's name is operator delete[].
   1573   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1574                                         IsArray ? OO_Array_New : OO_New);
   1575   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1576                                         IsArray ? OO_Array_Delete : OO_Delete);
   1577 
   1578   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1579 
   1580   if (AllocElemType->isRecordType() && !UseGlobal) {
   1581     CXXRecordDecl *Record
   1582       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1583     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
   1584                                /*AllowMissing=*/true, OperatorNew))
   1585       return true;
   1586   }
   1587 
   1588   if (!OperatorNew) {
   1589     // Didn't find a member overload. Look for a global one.
   1590     DeclareGlobalNewDelete();
   1591     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1592     bool FallbackEnabled = IsArray && Context.getLangOpts().MicrosoftMode;
   1593     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1594                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
   1595                                /*Diagnose=*/!FallbackEnabled)) {
   1596       if (!FallbackEnabled)
   1597         return true;
   1598 
   1599       // MSVC will fall back on trying to find a matching global operator new
   1600       // if operator new[] cannot be found.  Also, MSVC will leak by not
   1601       // generating a call to operator delete or operator delete[], but we
   1602       // will not replicate that bug.
   1603       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
   1604       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   1605       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1606                                /*AllowMissing=*/false, OperatorNew))
   1607       return true;
   1608     }
   1609   }
   1610 
   1611   // We don't need an operator delete if we're running under
   1612   // -fno-exceptions.
   1613   if (!getLangOpts().Exceptions) {
   1614     OperatorDelete = 0;
   1615     return false;
   1616   }
   1617 
   1618   // FindAllocationOverload can change the passed in arguments, so we need to
   1619   // copy them back.
   1620   if (!PlaceArgs.empty())
   1621     std::copy(AllocArgs.begin() + 1, AllocArgs.end(), PlaceArgs.data());
   1622 
   1623   // C++ [expr.new]p19:
   1624   //
   1625   //   If the new-expression begins with a unary :: operator, the
   1626   //   deallocation function's name is looked up in the global
   1627   //   scope. Otherwise, if the allocated type is a class type T or an
   1628   //   array thereof, the deallocation function's name is looked up in
   1629   //   the scope of T. If this lookup fails to find the name, or if
   1630   //   the allocated type is not a class type or array thereof, the
   1631   //   deallocation function's name is looked up in the global scope.
   1632   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1633   if (AllocElemType->isRecordType() && !UseGlobal) {
   1634     CXXRecordDecl *RD
   1635       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1636     LookupQualifiedName(FoundDelete, RD);
   1637   }
   1638   if (FoundDelete.isAmbiguous())
   1639     return true; // FIXME: clean up expressions?
   1640 
   1641   if (FoundDelete.empty()) {
   1642     DeclareGlobalNewDelete();
   1643     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1644   }
   1645 
   1646   FoundDelete.suppressDiagnostics();
   1647 
   1648   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1649 
   1650   // Whether we're looking for a placement operator delete is dictated
   1651   // by whether we selected a placement operator new, not by whether
   1652   // we had explicit placement arguments.  This matters for things like
   1653   //   struct A { void *operator new(size_t, int = 0); ... };
   1654   //   A *a = new A()
   1655   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
   1656 
   1657   if (isPlacementNew) {
   1658     // C++ [expr.new]p20:
   1659     //   A declaration of a placement deallocation function matches the
   1660     //   declaration of a placement allocation function if it has the
   1661     //   same number of parameters and, after parameter transformations
   1662     //   (8.3.5), all parameter types except the first are
   1663     //   identical. [...]
   1664     //
   1665     // To perform this comparison, we compute the function type that
   1666     // the deallocation function should have, and use that type both
   1667     // for template argument deduction and for comparison purposes.
   1668     //
   1669     // FIXME: this comparison should ignore CC and the like.
   1670     QualType ExpectedFunctionType;
   1671     {
   1672       const FunctionProtoType *Proto
   1673         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1674 
   1675       SmallVector<QualType, 4> ArgTypes;
   1676       ArgTypes.push_back(Context.VoidPtrTy);
   1677       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
   1678         ArgTypes.push_back(Proto->getArgType(I));
   1679 
   1680       FunctionProtoType::ExtProtoInfo EPI;
   1681       EPI.Variadic = Proto->isVariadic();
   1682 
   1683       ExpectedFunctionType
   1684         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
   1685     }
   1686 
   1687     for (LookupResult::iterator D = FoundDelete.begin(),
   1688                              DEnd = FoundDelete.end();
   1689          D != DEnd; ++D) {
   1690       FunctionDecl *Fn = 0;
   1691       if (FunctionTemplateDecl *FnTmpl
   1692             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1693         // Perform template argument deduction to try to match the
   1694         // expected function type.
   1695         TemplateDeductionInfo Info(StartLoc);
   1696         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
   1697           continue;
   1698       } else
   1699         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1700 
   1701       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1702         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1703     }
   1704   } else {
   1705     // C++ [expr.new]p20:
   1706     //   [...] Any non-placement deallocation function matches a
   1707     //   non-placement allocation function. [...]
   1708     for (LookupResult::iterator D = FoundDelete.begin(),
   1709                              DEnd = FoundDelete.end();
   1710          D != DEnd; ++D) {
   1711       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1712         if (isNonPlacementDeallocationFunction(Fn))
   1713           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1714     }
   1715   }
   1716 
   1717   // C++ [expr.new]p20:
   1718   //   [...] If the lookup finds a single matching deallocation
   1719   //   function, that function will be called; otherwise, no
   1720   //   deallocation function will be called.
   1721   if (Matches.size() == 1) {
   1722     OperatorDelete = Matches[0].second;
   1723 
   1724     // C++0x [expr.new]p20:
   1725     //   If the lookup finds the two-parameter form of a usual
   1726     //   deallocation function (3.7.4.2) and that function, considered
   1727     //   as a placement deallocation function, would have been
   1728     //   selected as a match for the allocation function, the program
   1729     //   is ill-formed.
   1730     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
   1731         isNonPlacementDeallocationFunction(OperatorDelete)) {
   1732       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1733         << SourceRange(PlaceArgs.front()->getLocStart(),
   1734                        PlaceArgs.back()->getLocEnd());
   1735       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1736         << DeleteName;
   1737     } else {
   1738       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1739                             Matches[0].first);
   1740     }
   1741   }
   1742 
   1743   return false;
   1744 }
   1745 
   1746 /// FindAllocationOverload - Find an fitting overload for the allocation
   1747 /// function in the specified scope.
   1748 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1749                                   DeclarationName Name, MultiExprArg Args,
   1750                                   DeclContext *Ctx,
   1751                                   bool AllowMissing, FunctionDecl *&Operator,
   1752                                   bool Diagnose) {
   1753   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1754   LookupQualifiedName(R, Ctx);
   1755   if (R.empty()) {
   1756     if (AllowMissing || !Diagnose)
   1757       return false;
   1758     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1759       << Name << Range;
   1760   }
   1761 
   1762   if (R.isAmbiguous())
   1763     return true;
   1764 
   1765   R.suppressDiagnostics();
   1766 
   1767   OverloadCandidateSet Candidates(StartLoc);
   1768   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1769        Alloc != AllocEnd; ++Alloc) {
   1770     // Even member operator new/delete are implicitly treated as
   1771     // static, so don't use AddMemberCandidate.
   1772     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1773 
   1774     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1775       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1776                                    /*ExplicitTemplateArgs=*/0,
   1777                                    Args, Candidates,
   1778                                    /*SuppressUserConversions=*/false);
   1779       continue;
   1780     }
   1781 
   1782     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1783     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
   1784                          /*SuppressUserConversions=*/false);
   1785   }
   1786 
   1787   // Do the resolution.
   1788   OverloadCandidateSet::iterator Best;
   1789   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1790   case OR_Success: {
   1791     // Got one!
   1792     FunctionDecl *FnDecl = Best->Function;
   1793     MarkFunctionReferenced(StartLoc, FnDecl);
   1794     // The first argument is size_t, and the first parameter must be size_t,
   1795     // too. This is checked on declaration and can be assumed. (It can't be
   1796     // asserted on, though, since invalid decls are left in there.)
   1797     // Watch out for variadic allocator function.
   1798     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
   1799     for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
   1800       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1801                                                        FnDecl->getParamDecl(i));
   1802 
   1803       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
   1804         return true;
   1805 
   1806       ExprResult Result
   1807         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
   1808       if (Result.isInvalid())
   1809         return true;
   1810 
   1811       Args[i] = Result.takeAs<Expr>();
   1812     }
   1813 
   1814     Operator = FnDecl;
   1815 
   1816     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   1817                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   1818       return true;
   1819 
   1820     return false;
   1821   }
   1822 
   1823   case OR_No_Viable_Function:
   1824     if (Diagnose) {
   1825       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1826         << Name << Range;
   1827       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   1828     }
   1829     return true;
   1830 
   1831   case OR_Ambiguous:
   1832     if (Diagnose) {
   1833       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1834         << Name << Range;
   1835       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
   1836     }
   1837     return true;
   1838 
   1839   case OR_Deleted: {
   1840     if (Diagnose) {
   1841       Diag(StartLoc, diag::err_ovl_deleted_call)
   1842         << Best->Function->isDeleted()
   1843         << Name
   1844         << getDeletedOrUnavailableSuffix(Best->Function)
   1845         << Range;
   1846       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   1847     }
   1848     return true;
   1849   }
   1850   }
   1851   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   1852 }
   1853 
   1854 
   1855 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1856 /// delete. These are:
   1857 /// @code
   1858 ///   // C++03:
   1859 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1860 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1861 ///   void operator delete(void *) throw();
   1862 ///   void operator delete[](void *) throw();
   1863 ///   // C++0x:
   1864 ///   void* operator new(std::size_t);
   1865 ///   void* operator new[](std::size_t);
   1866 ///   void operator delete(void *);
   1867 ///   void operator delete[](void *);
   1868 /// @endcode
   1869 /// C++0x operator delete is implicitly noexcept.
   1870 /// Note that the placement and nothrow forms of new are *not* implicitly
   1871 /// declared. Their use requires including \<new\>.
   1872 void Sema::DeclareGlobalNewDelete() {
   1873   if (GlobalNewDeleteDeclared)
   1874     return;
   1875 
   1876   // C++ [basic.std.dynamic]p2:
   1877   //   [...] The following allocation and deallocation functions (18.4) are
   1878   //   implicitly declared in global scope in each translation unit of a
   1879   //   program
   1880   //
   1881   //     C++03:
   1882   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1883   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1884   //     void  operator delete(void*) throw();
   1885   //     void  operator delete[](void*) throw();
   1886   //     C++0x:
   1887   //     void* operator new(std::size_t);
   1888   //     void* operator new[](std::size_t);
   1889   //     void  operator delete(void*);
   1890   //     void  operator delete[](void*);
   1891   //
   1892   //   These implicit declarations introduce only the function names operator
   1893   //   new, operator new[], operator delete, operator delete[].
   1894   //
   1895   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1896   // "std" or "bad_alloc" as necessary to form the exception specification.
   1897   // However, we do not make these implicit declarations visible to name
   1898   // lookup.
   1899   // Note that the C++0x versions of operator delete are deallocation functions,
   1900   // and thus are implicitly noexcept.
   1901   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
   1902     // The "std::bad_alloc" class has not yet been declared, so build it
   1903     // implicitly.
   1904     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1905                                         getOrCreateStdNamespace(),
   1906                                         SourceLocation(), SourceLocation(),
   1907                                       &PP.getIdentifierTable().get("bad_alloc"),
   1908                                         0);
   1909     getStdBadAlloc()->setImplicit(true);
   1910   }
   1911 
   1912   GlobalNewDeleteDeclared = true;
   1913 
   1914   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   1915   QualType SizeT = Context.getSizeType();
   1916   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   1917 
   1918   DeclareGlobalAllocationFunction(
   1919       Context.DeclarationNames.getCXXOperatorName(OO_New),
   1920       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1921   DeclareGlobalAllocationFunction(
   1922       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   1923       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1924   DeclareGlobalAllocationFunction(
   1925       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   1926       Context.VoidTy, VoidPtr);
   1927   DeclareGlobalAllocationFunction(
   1928       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   1929       Context.VoidTy, VoidPtr);
   1930 }
   1931 
   1932 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   1933 /// allocation function if it doesn't already exist.
   1934 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   1935                                            QualType Return, QualType Argument,
   1936                                            bool AddMallocAttr) {
   1937   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   1938 
   1939   // Check if this function is already declared.
   1940   {
   1941     DeclContext::lookup_result R = GlobalCtx->lookup(Name);
   1942     for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
   1943          Alloc != AllocEnd; ++Alloc) {
   1944       // Only look at non-template functions, as it is the predefined,
   1945       // non-templated allocation function we are trying to declare here.
   1946       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   1947         QualType InitialParamType =
   1948           Context.getCanonicalType(
   1949             Func->getParamDecl(0)->getType().getUnqualifiedType());
   1950         // FIXME: Do we need to check for default arguments here?
   1951         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
   1952           if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
   1953             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1954           // Make the function visible to name lookup, even if we found it in an
   1955           // unimported module. It either is an implicitly-declared global
   1956           // allocation function, or is suppressing that function.
   1957           Func->setHidden(false);
   1958           return;
   1959         }
   1960       }
   1961     }
   1962   }
   1963 
   1964   QualType BadAllocType;
   1965   bool HasBadAllocExceptionSpec
   1966     = (Name.getCXXOverloadedOperator() == OO_New ||
   1967        Name.getCXXOverloadedOperator() == OO_Array_New);
   1968   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
   1969     assert(StdBadAlloc && "Must have std::bad_alloc declared");
   1970     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   1971   }
   1972 
   1973   FunctionProtoType::ExtProtoInfo EPI;
   1974   if (HasBadAllocExceptionSpec) {
   1975     if (!getLangOpts().CPlusPlus11) {
   1976       EPI.ExceptionSpecType = EST_Dynamic;
   1977       EPI.NumExceptions = 1;
   1978       EPI.Exceptions = &BadAllocType;
   1979     }
   1980   } else {
   1981     EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
   1982                                 EST_BasicNoexcept : EST_DynamicNone;
   1983   }
   1984 
   1985   QualType FnType = Context.getFunctionType(Return, Argument, EPI);
   1986   FunctionDecl *Alloc =
   1987     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   1988                          SourceLocation(), Name,
   1989                          FnType, /*TInfo=*/0, SC_None, false, true);
   1990   Alloc->setImplicit();
   1991 
   1992   if (AddMallocAttr)
   1993     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1994 
   1995   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   1996                                            SourceLocation(), 0,
   1997                                            Argument, /*TInfo=*/0,
   1998                                            SC_None, 0);
   1999   Alloc->setParams(Param);
   2000 
   2001   // FIXME: Also add this declaration to the IdentifierResolver, but
   2002   // make sure it is at the end of the chain to coincide with the
   2003   // global scope.
   2004   Context.getTranslationUnitDecl()->addDecl(Alloc);
   2005 }
   2006 
   2007 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   2008                                     DeclarationName Name,
   2009                                     FunctionDecl* &Operator, bool Diagnose) {
   2010   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   2011   // Try to find operator delete/operator delete[] in class scope.
   2012   LookupQualifiedName(Found, RD);
   2013 
   2014   if (Found.isAmbiguous())
   2015     return true;
   2016 
   2017   Found.suppressDiagnostics();
   2018 
   2019   SmallVector<DeclAccessPair,4> Matches;
   2020   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2021        F != FEnd; ++F) {
   2022     NamedDecl *ND = (*F)->getUnderlyingDecl();
   2023 
   2024     // Ignore template operator delete members from the check for a usual
   2025     // deallocation function.
   2026     if (isa<FunctionTemplateDecl>(ND))
   2027       continue;
   2028 
   2029     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   2030       Matches.push_back(F.getPair());
   2031   }
   2032 
   2033   // There's exactly one suitable operator;  pick it.
   2034   if (Matches.size() == 1) {
   2035     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   2036 
   2037     if (Operator->isDeleted()) {
   2038       if (Diagnose) {
   2039         Diag(StartLoc, diag::err_deleted_function_use);
   2040         NoteDeletedFunction(Operator);
   2041       }
   2042       return true;
   2043     }
   2044 
   2045     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   2046                               Matches[0], Diagnose) == AR_inaccessible)
   2047       return true;
   2048 
   2049     return false;
   2050 
   2051   // We found multiple suitable operators;  complain about the ambiguity.
   2052   } else if (!Matches.empty()) {
   2053     if (Diagnose) {
   2054       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   2055         << Name << RD;
   2056 
   2057       for (SmallVectorImpl<DeclAccessPair>::iterator
   2058              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   2059         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2060              diag::note_member_declared_here) << Name;
   2061     }
   2062     return true;
   2063   }
   2064 
   2065   // We did find operator delete/operator delete[] declarations, but
   2066   // none of them were suitable.
   2067   if (!Found.empty()) {
   2068     if (Diagnose) {
   2069       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   2070         << Name << RD;
   2071 
   2072       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2073            F != FEnd; ++F)
   2074         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2075              diag::note_member_declared_here) << Name;
   2076     }
   2077     return true;
   2078   }
   2079 
   2080   // Look for a global declaration.
   2081   DeclareGlobalNewDelete();
   2082   DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2083 
   2084   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
   2085   Expr *DeallocArgs[1] = { &Null };
   2086   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
   2087                              DeallocArgs, TUDecl, !Diagnose,
   2088                              Operator, Diagnose))
   2089     return true;
   2090 
   2091   assert(Operator && "Did not find a deallocation function!");
   2092   return false;
   2093 }
   2094 
   2095 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   2096 /// @code ::delete ptr; @endcode
   2097 /// or
   2098 /// @code delete [] ptr; @endcode
   2099 ExprResult
   2100 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   2101                      bool ArrayForm, Expr *ExE) {
   2102   // C++ [expr.delete]p1:
   2103   //   The operand shall have a pointer type, or a class type having a single
   2104   //   non-explicit conversion function to a pointer type. The result has type
   2105   //   void.
   2106   //
   2107   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2108 
   2109   ExprResult Ex = Owned(ExE);
   2110   FunctionDecl *OperatorDelete = 0;
   2111   bool ArrayFormAsWritten = ArrayForm;
   2112   bool UsualArrayDeleteWantsSize = false;
   2113 
   2114   if (!Ex.get()->isTypeDependent()) {
   2115     // Perform lvalue-to-rvalue cast, if needed.
   2116     Ex = DefaultLvalueConversion(Ex.take());
   2117     if (Ex.isInvalid())
   2118       return ExprError();
   2119 
   2120     QualType Type = Ex.get()->getType();
   2121 
   2122     class DeleteConverter : public ContextualImplicitConverter {
   2123     public:
   2124       DeleteConverter() : ContextualImplicitConverter(false, true) {}
   2125 
   2126       bool match(QualType ConvType) {
   2127         // FIXME: If we have an operator T* and an operator void*, we must pick
   2128         // the operator T*.
   2129         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2130           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2131             return true;
   2132         return false;
   2133       }
   2134 
   2135       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
   2136                                             QualType T) {
   2137         return S.Diag(Loc, diag::err_delete_operand) << T;
   2138       }
   2139 
   2140       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
   2141                                                QualType T) {
   2142         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
   2143       }
   2144 
   2145       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
   2146                                                  QualType T, QualType ConvTy) {
   2147         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
   2148       }
   2149 
   2150       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
   2151                                              QualType ConvTy) {
   2152         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2153           << ConvTy;
   2154       }
   2155 
   2156       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   2157                                               QualType T) {
   2158         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
   2159       }
   2160 
   2161       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
   2162                                           QualType ConvTy) {
   2163         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2164           << ConvTy;
   2165       }
   2166 
   2167       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   2168                                                QualType T, QualType ConvTy) {
   2169         llvm_unreachable("conversion functions are permitted");
   2170       }
   2171     } Converter;
   2172 
   2173     Ex = PerformContextualImplicitConversion(StartLoc, Ex.take(), Converter);
   2174     if (Ex.isInvalid())
   2175       return ExprError();
   2176     Type = Ex.get()->getType();
   2177     if (!Converter.match(Type))
   2178       // FIXME: PerformContextualImplicitConversion should return ExprError
   2179       //        itself in this case.
   2180       return ExprError();
   2181 
   2182     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2183     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2184 
   2185     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2186       return Diag(Ex.get()->getLocStart(),
   2187                   diag::err_address_space_qualified_delete)
   2188                << Pointee.getUnqualifiedType() << AddressSpace;
   2189 
   2190     CXXRecordDecl *PointeeRD = 0;
   2191     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2192       // The C++ standard bans deleting a pointer to a non-object type, which
   2193       // effectively bans deletion of "void*". However, most compilers support
   2194       // this, so we treat it as a warning unless we're in a SFINAE context.
   2195       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2196         << Type << Ex.get()->getSourceRange();
   2197     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2198       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2199         << Type << Ex.get()->getSourceRange());
   2200     } else if (!Pointee->isDependentType()) {
   2201       if (!RequireCompleteType(StartLoc, Pointee,
   2202                                diag::warn_delete_incomplete, Ex.get())) {
   2203         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2204           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2205       }
   2206     }
   2207 
   2208     // C++ [expr.delete]p2:
   2209     //   [Note: a pointer to a const type can be the operand of a
   2210     //   delete-expression; it is not necessary to cast away the constness
   2211     //   (5.2.11) of the pointer expression before it is used as the operand
   2212     //   of the delete-expression. ]
   2213 
   2214     if (Pointee->isArrayType() && !ArrayForm) {
   2215       Diag(StartLoc, diag::warn_delete_array_type)
   2216           << Type << Ex.get()->getSourceRange()
   2217           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   2218       ArrayForm = true;
   2219     }
   2220 
   2221     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2222                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2223 
   2224     if (PointeeRD) {
   2225       if (!UseGlobal &&
   2226           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2227                                    OperatorDelete))
   2228         return ExprError();
   2229 
   2230       // If we're allocating an array of records, check whether the
   2231       // usual operator delete[] has a size_t parameter.
   2232       if (ArrayForm) {
   2233         // If the user specifically asked to use the global allocator,
   2234         // we'll need to do the lookup into the class.
   2235         if (UseGlobal)
   2236           UsualArrayDeleteWantsSize =
   2237             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2238 
   2239         // Otherwise, the usual operator delete[] should be the
   2240         // function we just found.
   2241         else if (isa<CXXMethodDecl>(OperatorDelete))
   2242           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2243       }
   2244 
   2245       if (!PointeeRD->hasIrrelevantDestructor())
   2246         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2247           MarkFunctionReferenced(StartLoc,
   2248                                     const_cast<CXXDestructorDecl*>(Dtor));
   2249           if (DiagnoseUseOfDecl(Dtor, StartLoc))
   2250             return ExprError();
   2251         }
   2252 
   2253       // C++ [expr.delete]p3:
   2254       //   In the first alternative (delete object), if the static type of the
   2255       //   object to be deleted is different from its dynamic type, the static
   2256       //   type shall be a base class of the dynamic type of the object to be
   2257       //   deleted and the static type shall have a virtual destructor or the
   2258       //   behavior is undefined.
   2259       //
   2260       // Note: a final class cannot be derived from, no issue there
   2261       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2262         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2263         if (dtor && !dtor->isVirtual()) {
   2264           if (PointeeRD->isAbstract()) {
   2265             // If the class is abstract, we warn by default, because we're
   2266             // sure the code has undefined behavior.
   2267             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2268                 << PointeeElem;
   2269           } else if (!ArrayForm) {
   2270             // Otherwise, if this is not an array delete, it's a bit suspect,
   2271             // but not necessarily wrong.
   2272             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2273           }
   2274         }
   2275       }
   2276 
   2277     }
   2278 
   2279     if (!OperatorDelete) {
   2280       // Look for a global declaration.
   2281       DeclareGlobalNewDelete();
   2282       DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2283       Expr *Arg = Ex.get();
   2284       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
   2285         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
   2286                                        CK_BitCast, Arg, 0, VK_RValue);
   2287       Expr *DeallocArgs[1] = { Arg };
   2288       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
   2289                                  DeallocArgs, TUDecl, /*AllowMissing=*/false,
   2290                                  OperatorDelete))
   2291         return ExprError();
   2292     }
   2293 
   2294     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2295 
   2296     // Check access and ambiguity of operator delete and destructor.
   2297     if (PointeeRD) {
   2298       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2299           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2300                       PDiag(diag::err_access_dtor) << PointeeElem);
   2301       }
   2302     }
   2303   }
   2304 
   2305   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
   2306                                            ArrayFormAsWritten,
   2307                                            UsualArrayDeleteWantsSize,
   2308                                            OperatorDelete, Ex.take(), StartLoc));
   2309 }
   2310 
   2311 /// \brief Check the use of the given variable as a C++ condition in an if,
   2312 /// while, do-while, or switch statement.
   2313 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2314                                         SourceLocation StmtLoc,
   2315                                         bool ConvertToBoolean) {
   2316   if (ConditionVar->isInvalidDecl())
   2317     return ExprError();
   2318 
   2319   QualType T = ConditionVar->getType();
   2320 
   2321   // C++ [stmt.select]p2:
   2322   //   The declarator shall not specify a function or an array.
   2323   if (T->isFunctionType())
   2324     return ExprError(Diag(ConditionVar->getLocation(),
   2325                           diag::err_invalid_use_of_function_type)
   2326                        << ConditionVar->getSourceRange());
   2327   else if (T->isArrayType())
   2328     return ExprError(Diag(ConditionVar->getLocation(),
   2329                           diag::err_invalid_use_of_array_type)
   2330                      << ConditionVar->getSourceRange());
   2331 
   2332   ExprResult Condition =
   2333     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
   2334                               SourceLocation(),
   2335                               ConditionVar,
   2336                               /*enclosing*/ false,
   2337                               ConditionVar->getLocation(),
   2338                               ConditionVar->getType().getNonReferenceType(),
   2339                               VK_LValue));
   2340 
   2341   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2342 
   2343   if (ConvertToBoolean) {
   2344     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
   2345     if (Condition.isInvalid())
   2346       return ExprError();
   2347   }
   2348 
   2349   return Condition;
   2350 }
   2351 
   2352 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2353 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2354   // C++ 6.4p4:
   2355   // The value of a condition that is an initialized declaration in a statement
   2356   // other than a switch statement is the value of the declared variable
   2357   // implicitly converted to type bool. If that conversion is ill-formed, the
   2358   // program is ill-formed.
   2359   // The value of a condition that is an expression is the value of the
   2360   // expression, implicitly converted to bool.
   2361   //
   2362   return PerformContextuallyConvertToBool(CondExpr);
   2363 }
   2364 
   2365 /// Helper function to determine whether this is the (deprecated) C++
   2366 /// conversion from a string literal to a pointer to non-const char or
   2367 /// non-const wchar_t (for narrow and wide string literals,
   2368 /// respectively).
   2369 bool
   2370 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2371   // Look inside the implicit cast, if it exists.
   2372   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2373     From = Cast->getSubExpr();
   2374 
   2375   // A string literal (2.13.4) that is not a wide string literal can
   2376   // be converted to an rvalue of type "pointer to char"; a wide
   2377   // string literal can be converted to an rvalue of type "pointer
   2378   // to wchar_t" (C++ 4.2p2).
   2379   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2380     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2381       if (const BuiltinType *ToPointeeType
   2382           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2383         // This conversion is considered only when there is an
   2384         // explicit appropriate pointer target type (C++ 4.2p2).
   2385         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2386           switch (StrLit->getKind()) {
   2387             case StringLiteral::UTF8:
   2388             case StringLiteral::UTF16:
   2389             case StringLiteral::UTF32:
   2390               // We don't allow UTF literals to be implicitly converted
   2391               break;
   2392             case StringLiteral::Ascii:
   2393               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2394                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2395             case StringLiteral::Wide:
   2396               return ToPointeeType->isWideCharType();
   2397           }
   2398         }
   2399       }
   2400 
   2401   return false;
   2402 }
   2403 
   2404 static ExprResult BuildCXXCastArgument(Sema &S,
   2405                                        SourceLocation CastLoc,
   2406                                        QualType Ty,
   2407                                        CastKind Kind,
   2408                                        CXXMethodDecl *Method,
   2409                                        DeclAccessPair FoundDecl,
   2410                                        bool HadMultipleCandidates,
   2411                                        Expr *From) {
   2412   switch (Kind) {
   2413   default: llvm_unreachable("Unhandled cast kind!");
   2414   case CK_ConstructorConversion: {
   2415     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2416     SmallVector<Expr*, 8> ConstructorArgs;
   2417 
   2418     if (S.RequireNonAbstractType(CastLoc, Ty,
   2419                                  diag::err_allocation_of_abstract_type))
   2420       return ExprError();
   2421 
   2422     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
   2423       return ExprError();
   2424 
   2425     S.CheckConstructorAccess(CastLoc, Constructor,
   2426                              InitializedEntity::InitializeTemporary(Ty),
   2427                              Constructor->getAccess());
   2428 
   2429     ExprResult Result
   2430       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2431                                 ConstructorArgs, HadMultipleCandidates,
   2432                                 /*ListInit*/ false, /*ZeroInit*/ false,
   2433                                 CXXConstructExpr::CK_Complete, SourceRange());
   2434     if (Result.isInvalid())
   2435       return ExprError();
   2436 
   2437     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
   2438   }
   2439 
   2440   case CK_UserDefinedConversion: {
   2441     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2442 
   2443     // Create an implicit call expr that calls it.
   2444     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2445     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2446                                                  HadMultipleCandidates);
   2447     if (Result.isInvalid())
   2448       return ExprError();
   2449     // Record usage of conversion in an implicit cast.
   2450     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
   2451                                               Result.get()->getType(),
   2452                                               CK_UserDefinedConversion,
   2453                                               Result.get(), 0,
   2454                                               Result.get()->getValueKind()));
   2455 
   2456     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
   2457 
   2458     return S.MaybeBindToTemporary(Result.get());
   2459   }
   2460   }
   2461 }
   2462 
   2463 /// PerformImplicitConversion - Perform an implicit conversion of the
   2464 /// expression From to the type ToType using the pre-computed implicit
   2465 /// conversion sequence ICS. Returns the converted
   2466 /// expression. Action is the kind of conversion we're performing,
   2467 /// used in the error message.
   2468 ExprResult
   2469 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2470                                 const ImplicitConversionSequence &ICS,
   2471                                 AssignmentAction Action,
   2472                                 CheckedConversionKind CCK) {
   2473   switch (ICS.getKind()) {
   2474   case ImplicitConversionSequence::StandardConversion: {
   2475     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2476                                                Action, CCK);
   2477     if (Res.isInvalid())
   2478       return ExprError();
   2479     From = Res.take();
   2480     break;
   2481   }
   2482 
   2483   case ImplicitConversionSequence::UserDefinedConversion: {
   2484 
   2485       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2486       CastKind CastKind;
   2487       QualType BeforeToType;
   2488       assert(FD && "FIXME: aggregate initialization from init list");
   2489       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2490         CastKind = CK_UserDefinedConversion;
   2491 
   2492         // If the user-defined conversion is specified by a conversion function,
   2493         // the initial standard conversion sequence converts the source type to
   2494         // the implicit object parameter of the conversion function.
   2495         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2496       } else {
   2497         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2498         CastKind = CK_ConstructorConversion;
   2499         // Do no conversion if dealing with ... for the first conversion.
   2500         if (!ICS.UserDefined.EllipsisConversion) {
   2501           // If the user-defined conversion is specified by a constructor, the
   2502           // initial standard conversion sequence converts the source type to the
   2503           // type required by the argument of the constructor
   2504           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2505         }
   2506       }
   2507       // Watch out for ellipsis conversion.
   2508       if (!ICS.UserDefined.EllipsisConversion) {
   2509         ExprResult Res =
   2510           PerformImplicitConversion(From, BeforeToType,
   2511                                     ICS.UserDefined.Before, AA_Converting,
   2512                                     CCK);
   2513         if (Res.isInvalid())
   2514           return ExprError();
   2515         From = Res.take();
   2516       }
   2517 
   2518       ExprResult CastArg
   2519         = BuildCXXCastArgument(*this,
   2520                                From->getLocStart(),
   2521                                ToType.getNonReferenceType(),
   2522                                CastKind, cast<CXXMethodDecl>(FD),
   2523                                ICS.UserDefined.FoundConversionFunction,
   2524                                ICS.UserDefined.HadMultipleCandidates,
   2525                                From);
   2526 
   2527       if (CastArg.isInvalid())
   2528         return ExprError();
   2529 
   2530       From = CastArg.take();
   2531 
   2532       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2533                                        AA_Converting, CCK);
   2534   }
   2535 
   2536   case ImplicitConversionSequence::AmbiguousConversion:
   2537     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2538                           PDiag(diag::err_typecheck_ambiguous_condition)
   2539                             << From->getSourceRange());
   2540      return ExprError();
   2541 
   2542   case ImplicitConversionSequence::EllipsisConversion:
   2543     llvm_unreachable("Cannot perform an ellipsis conversion");
   2544 
   2545   case ImplicitConversionSequence::BadConversion:
   2546     return ExprError();
   2547   }
   2548 
   2549   // Everything went well.
   2550   return Owned(From);
   2551 }
   2552 
   2553 /// PerformImplicitConversion - Perform an implicit conversion of the
   2554 /// expression From to the type ToType by following the standard
   2555 /// conversion sequence SCS. Returns the converted
   2556 /// expression. Flavor is the context in which we're performing this
   2557 /// conversion, for use in error messages.
   2558 ExprResult
   2559 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2560                                 const StandardConversionSequence& SCS,
   2561                                 AssignmentAction Action,
   2562                                 CheckedConversionKind CCK) {
   2563   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2564 
   2565   // Overall FIXME: we are recomputing too many types here and doing far too
   2566   // much extra work. What this means is that we need to keep track of more
   2567   // information that is computed when we try the implicit conversion initially,
   2568   // so that we don't need to recompute anything here.
   2569   QualType FromType = From->getType();
   2570 
   2571   if (SCS.CopyConstructor) {
   2572     // FIXME: When can ToType be a reference type?
   2573     assert(!ToType->isReferenceType());
   2574     if (SCS.Second == ICK_Derived_To_Base) {
   2575       SmallVector<Expr*, 8> ConstructorArgs;
   2576       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2577                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
   2578                                   ConstructorArgs))
   2579         return ExprError();
   2580       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2581                                    ToType, SCS.CopyConstructor,
   2582                                    ConstructorArgs,
   2583                                    /*HadMultipleCandidates*/ false,
   2584                                    /*ListInit*/ false, /*ZeroInit*/ false,
   2585                                    CXXConstructExpr::CK_Complete,
   2586                                    SourceRange());
   2587     }
   2588     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2589                                  ToType, SCS.CopyConstructor,
   2590                                  From, /*HadMultipleCandidates*/ false,
   2591                                  /*ListInit*/ false, /*ZeroInit*/ false,
   2592                                  CXXConstructExpr::CK_Complete,
   2593                                  SourceRange());
   2594   }
   2595 
   2596   // Resolve overloaded function references.
   2597   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2598     DeclAccessPair Found;
   2599     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2600                                                           true, Found);
   2601     if (!Fn)
   2602       return ExprError();
   2603 
   2604     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   2605       return ExprError();
   2606 
   2607     From = FixOverloadedFunctionReference(From, Found, Fn);
   2608     FromType = From->getType();
   2609   }
   2610 
   2611   // If we're converting to an atomic type, first convert to the corresponding
   2612   // non-atomic type.
   2613   QualType ToAtomicType;
   2614   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
   2615     ToAtomicType = ToType;
   2616     ToType = ToAtomic->getValueType();
   2617   }
   2618 
   2619   // Perform the first implicit conversion.
   2620   switch (SCS.First) {
   2621   case ICK_Identity:
   2622     // Nothing to do.
   2623     break;
   2624 
   2625   case ICK_Lvalue_To_Rvalue: {
   2626     assert(From->getObjectKind() != OK_ObjCProperty);
   2627     FromType = FromType.getUnqualifiedType();
   2628     ExprResult FromRes = DefaultLvalueConversion(From);
   2629     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   2630     From = FromRes.take();
   2631     break;
   2632   }
   2633 
   2634   case ICK_Array_To_Pointer:
   2635     FromType = Context.getArrayDecayedType(FromType);
   2636     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2637                              VK_RValue, /*BasePath=*/0, CCK).take();
   2638     break;
   2639 
   2640   case ICK_Function_To_Pointer:
   2641     FromType = Context.getPointerType(FromType);
   2642     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2643                              VK_RValue, /*BasePath=*/0, CCK).take();
   2644     break;
   2645 
   2646   default:
   2647     llvm_unreachable("Improper first standard conversion");
   2648   }
   2649 
   2650   // Perform the second implicit conversion
   2651   switch (SCS.Second) {
   2652   case ICK_Identity:
   2653     // If both sides are functions (or pointers/references to them), there could
   2654     // be incompatible exception declarations.
   2655     if (CheckExceptionSpecCompatibility(From, ToType))
   2656       return ExprError();
   2657     // Nothing else to do.
   2658     break;
   2659 
   2660   case ICK_NoReturn_Adjustment:
   2661     // If both sides are functions (or pointers/references to them), there could
   2662     // be incompatible exception declarations.
   2663     if (CheckExceptionSpecCompatibility(From, ToType))
   2664       return ExprError();
   2665 
   2666     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2667                              VK_RValue, /*BasePath=*/0, CCK).take();
   2668     break;
   2669 
   2670   case ICK_Integral_Promotion:
   2671   case ICK_Integral_Conversion:
   2672     if (ToType->isBooleanType()) {
   2673       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
   2674              SCS.Second == ICK_Integral_Promotion &&
   2675              "only enums with fixed underlying type can promote to bool");
   2676       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
   2677                                VK_RValue, /*BasePath=*/0, CCK).take();
   2678     } else {
   2679       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2680                                VK_RValue, /*BasePath=*/0, CCK).take();
   2681     }
   2682     break;
   2683 
   2684   case ICK_Floating_Promotion:
   2685   case ICK_Floating_Conversion:
   2686     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2687                              VK_RValue, /*BasePath=*/0, CCK).take();
   2688     break;
   2689 
   2690   case ICK_Complex_Promotion:
   2691   case ICK_Complex_Conversion: {
   2692     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2693     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2694     CastKind CK;
   2695     if (FromEl->isRealFloatingType()) {
   2696       if (ToEl->isRealFloatingType())
   2697         CK = CK_FloatingComplexCast;
   2698       else
   2699         CK = CK_FloatingComplexToIntegralComplex;
   2700     } else if (ToEl->isRealFloatingType()) {
   2701       CK = CK_IntegralComplexToFloatingComplex;
   2702     } else {
   2703       CK = CK_IntegralComplexCast;
   2704     }
   2705     From = ImpCastExprToType(From, ToType, CK,
   2706                              VK_RValue, /*BasePath=*/0, CCK).take();
   2707     break;
   2708   }
   2709 
   2710   case ICK_Floating_Integral:
   2711     if (ToType->isRealFloatingType())
   2712       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2713                                VK_RValue, /*BasePath=*/0, CCK).take();
   2714     else
   2715       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2716                                VK_RValue, /*BasePath=*/0, CCK).take();
   2717     break;
   2718 
   2719   case ICK_Compatible_Conversion:
   2720       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2721                                VK_RValue, /*BasePath=*/0, CCK).take();
   2722     break;
   2723 
   2724   case ICK_Writeback_Conversion:
   2725   case ICK_Pointer_Conversion: {
   2726     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2727       // Diagnose incompatible Objective-C conversions
   2728       if (Action == AA_Initializing || Action == AA_Assigning)
   2729         Diag(From->getLocStart(),
   2730              diag::ext_typecheck_convert_incompatible_pointer)
   2731           << ToType << From->getType() << Action
   2732           << From->getSourceRange() << 0;
   2733       else
   2734         Diag(From->getLocStart(),
   2735              diag::ext_typecheck_convert_incompatible_pointer)
   2736           << From->getType() << ToType << Action
   2737           << From->getSourceRange() << 0;
   2738 
   2739       if (From->getType()->isObjCObjectPointerType() &&
   2740           ToType->isObjCObjectPointerType())
   2741         EmitRelatedResultTypeNote(From);
   2742     }
   2743     else if (getLangOpts().ObjCAutoRefCount &&
   2744              !CheckObjCARCUnavailableWeakConversion(ToType,
   2745                                                     From->getType())) {
   2746       if (Action == AA_Initializing)
   2747         Diag(From->getLocStart(),
   2748              diag::err_arc_weak_unavailable_assign);
   2749       else
   2750         Diag(From->getLocStart(),
   2751              diag::err_arc_convesion_of_weak_unavailable)
   2752           << (Action == AA_Casting) << From->getType() << ToType
   2753           << From->getSourceRange();
   2754     }
   2755 
   2756     CastKind Kind = CK_Invalid;
   2757     CXXCastPath BasePath;
   2758     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2759       return ExprError();
   2760 
   2761     // Make sure we extend blocks if necessary.
   2762     // FIXME: doing this here is really ugly.
   2763     if (Kind == CK_BlockPointerToObjCPointerCast) {
   2764       ExprResult E = From;
   2765       (void) PrepareCastToObjCObjectPointer(E);
   2766       From = E.take();
   2767     }
   2768     if (getLangOpts().ObjCAutoRefCount)
   2769       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
   2770     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2771              .take();
   2772     break;
   2773   }
   2774 
   2775   case ICK_Pointer_Member: {
   2776     CastKind Kind = CK_Invalid;
   2777     CXXCastPath BasePath;
   2778     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2779       return ExprError();
   2780     if (CheckExceptionSpecCompatibility(From, ToType))
   2781       return ExprError();
   2782     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2783              .take();
   2784     break;
   2785   }
   2786 
   2787   case ICK_Boolean_Conversion:
   2788     // Perform half-to-boolean conversion via float.
   2789     if (From->getType()->isHalfType()) {
   2790       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
   2791       FromType = Context.FloatTy;
   2792     }
   2793 
   2794     From = ImpCastExprToType(From, Context.BoolTy,
   2795                              ScalarTypeToBooleanCastKind(FromType),
   2796                              VK_RValue, /*BasePath=*/0, CCK).take();
   2797     break;
   2798 
   2799   case ICK_Derived_To_Base: {
   2800     CXXCastPath BasePath;
   2801     if (CheckDerivedToBaseConversion(From->getType(),
   2802                                      ToType.getNonReferenceType(),
   2803                                      From->getLocStart(),
   2804                                      From->getSourceRange(),
   2805                                      &BasePath,
   2806                                      CStyle))
   2807       return ExprError();
   2808 
   2809     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2810                       CK_DerivedToBase, From->getValueKind(),
   2811                       &BasePath, CCK).take();
   2812     break;
   2813   }
   2814 
   2815   case ICK_Vector_Conversion:
   2816     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2817                              VK_RValue, /*BasePath=*/0, CCK).take();
   2818     break;
   2819 
   2820   case ICK_Vector_Splat:
   2821     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2822                              VK_RValue, /*BasePath=*/0, CCK).take();
   2823     break;
   2824 
   2825   case ICK_Complex_Real:
   2826     // Case 1.  x -> _Complex y
   2827     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2828       QualType ElType = ToComplex->getElementType();
   2829       bool isFloatingComplex = ElType->isRealFloatingType();
   2830 
   2831       // x -> y
   2832       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2833         // do nothing
   2834       } else if (From->getType()->isRealFloatingType()) {
   2835         From = ImpCastExprToType(From, ElType,
   2836                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
   2837       } else {
   2838         assert(From->getType()->isIntegerType());
   2839         From = ImpCastExprToType(From, ElType,
   2840                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
   2841       }
   2842       // y -> _Complex y
   2843       From = ImpCastExprToType(From, ToType,
   2844                    isFloatingComplex ? CK_FloatingRealToComplex
   2845                                      : CK_IntegralRealToComplex).take();
   2846 
   2847     // Case 2.  _Complex x -> y
   2848     } else {
   2849       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2850       assert(FromComplex);
   2851 
   2852       QualType ElType = FromComplex->getElementType();
   2853       bool isFloatingComplex = ElType->isRealFloatingType();
   2854 
   2855       // _Complex x -> x
   2856       From = ImpCastExprToType(From, ElType,
   2857                    isFloatingComplex ? CK_FloatingComplexToReal
   2858                                      : CK_IntegralComplexToReal,
   2859                                VK_RValue, /*BasePath=*/0, CCK).take();
   2860 
   2861       // x -> y
   2862       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2863         // do nothing
   2864       } else if (ToType->isRealFloatingType()) {
   2865         From = ImpCastExprToType(From, ToType,
   2866                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2867                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2868       } else {
   2869         assert(ToType->isIntegerType());
   2870         From = ImpCastExprToType(From, ToType,
   2871                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   2872                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2873       }
   2874     }
   2875     break;
   2876 
   2877   case ICK_Block_Pointer_Conversion: {
   2878     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   2879                              VK_RValue, /*BasePath=*/0, CCK).take();
   2880     break;
   2881   }
   2882 
   2883   case ICK_TransparentUnionConversion: {
   2884     ExprResult FromRes = Owned(From);
   2885     Sema::AssignConvertType ConvTy =
   2886       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   2887     if (FromRes.isInvalid())
   2888       return ExprError();
   2889     From = FromRes.take();
   2890     assert ((ConvTy == Sema::Compatible) &&
   2891             "Improper transparent union conversion");
   2892     (void)ConvTy;
   2893     break;
   2894   }
   2895 
   2896   case ICK_Zero_Event_Conversion:
   2897     From = ImpCastExprToType(From, ToType,
   2898                              CK_ZeroToOCLEvent,
   2899                              From->getValueKind()).take();
   2900     break;
   2901 
   2902   case ICK_Lvalue_To_Rvalue:
   2903   case ICK_Array_To_Pointer:
   2904   case ICK_Function_To_Pointer:
   2905   case ICK_Qualification:
   2906   case ICK_Num_Conversion_Kinds:
   2907     llvm_unreachable("Improper second standard conversion");
   2908   }
   2909 
   2910   switch (SCS.Third) {
   2911   case ICK_Identity:
   2912     // Nothing to do.
   2913     break;
   2914 
   2915   case ICK_Qualification: {
   2916     // The qualification keeps the category of the inner expression, unless the
   2917     // target type isn't a reference.
   2918     ExprValueKind VK = ToType->isReferenceType() ?
   2919                                   From->getValueKind() : VK_RValue;
   2920     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   2921                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
   2922 
   2923     if (SCS.DeprecatedStringLiteralToCharPtr &&
   2924         !getLangOpts().WritableStrings)
   2925       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
   2926         << ToType.getNonReferenceType();
   2927 
   2928     break;
   2929   }
   2930 
   2931   default:
   2932     llvm_unreachable("Improper third standard conversion");
   2933   }
   2934 
   2935   // If this conversion sequence involved a scalar -> atomic conversion, perform
   2936   // that conversion now.
   2937   if (!ToAtomicType.isNull()) {
   2938     assert(Context.hasSameType(
   2939         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
   2940     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
   2941                              VK_RValue, 0, CCK).take();
   2942   }
   2943 
   2944   return Owned(From);
   2945 }
   2946 
   2947 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
   2948                                      SourceLocation KWLoc,
   2949                                      ParsedType Ty,
   2950                                      SourceLocation RParen) {
   2951   TypeSourceInfo *TSInfo;
   2952   QualType T = GetTypeFromParser(Ty, &TSInfo);
   2953 
   2954   if (!TSInfo)
   2955     TSInfo = Context.getTrivialTypeSourceInfo(T);
   2956   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
   2957 }
   2958 
   2959 /// \brief Check the completeness of a type in a unary type trait.
   2960 ///
   2961 /// If the particular type trait requires a complete type, tries to complete
   2962 /// it. If completing the type fails, a diagnostic is emitted and false
   2963 /// returned. If completing the type succeeds or no completion was required,
   2964 /// returns true.
   2965 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
   2966                                                 UnaryTypeTrait UTT,
   2967                                                 SourceLocation Loc,
   2968                                                 QualType ArgTy) {
   2969   // C++0x [meta.unary.prop]p3:
   2970   //   For all of the class templates X declared in this Clause, instantiating
   2971   //   that template with a template argument that is a class template
   2972   //   specialization may result in the implicit instantiation of the template
   2973   //   argument if and only if the semantics of X require that the argument
   2974   //   must be a complete type.
   2975   // We apply this rule to all the type trait expressions used to implement
   2976   // these class templates. We also try to follow any GCC documented behavior
   2977   // in these expressions to ensure portability of standard libraries.
   2978   switch (UTT) {
   2979     // is_complete_type somewhat obviously cannot require a complete type.
   2980   case UTT_IsCompleteType:
   2981     // Fall-through
   2982 
   2983     // These traits are modeled on the type predicates in C++0x
   2984     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   2985     // requiring a complete type, as whether or not they return true cannot be
   2986     // impacted by the completeness of the type.
   2987   case UTT_IsVoid:
   2988   case UTT_IsIntegral:
   2989   case UTT_IsFloatingPoint:
   2990   case UTT_IsArray:
   2991   case UTT_IsPointer:
   2992   case UTT_IsLvalueReference:
   2993   case UTT_IsRvalueReference:
   2994   case UTT_IsMemberFunctionPointer:
   2995   case UTT_IsMemberObjectPointer:
   2996   case UTT_IsEnum:
   2997   case UTT_IsUnion:
   2998   case UTT_IsClass:
   2999   case UTT_IsFunction:
   3000   case UTT_IsReference:
   3001   case UTT_IsArithmetic:
   3002   case UTT_IsFundamental:
   3003   case UTT_IsObject:
   3004   case UTT_IsScalar:
   3005   case UTT_IsCompound:
   3006   case UTT_IsMemberPointer:
   3007     // Fall-through
   3008 
   3009     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   3010     // which requires some of its traits to have the complete type. However,
   3011     // the completeness of the type cannot impact these traits' semantics, and
   3012     // so they don't require it. This matches the comments on these traits in
   3013     // Table 49.
   3014   case UTT_IsConst:
   3015   case UTT_IsVolatile:
   3016   case UTT_IsSigned:
   3017   case UTT_IsUnsigned:
   3018     return true;
   3019 
   3020     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   3021     // applied to a complete type.
   3022   case UTT_IsTrivial:
   3023   case UTT_IsTriviallyCopyable:
   3024   case UTT_IsStandardLayout:
   3025   case UTT_IsPOD:
   3026   case UTT_IsLiteral:
   3027   case UTT_IsEmpty:
   3028   case UTT_IsPolymorphic:
   3029   case UTT_IsAbstract:
   3030   case UTT_IsInterfaceClass:
   3031     // Fall-through
   3032 
   3033   // These traits require a complete type.
   3034   case UTT_IsFinal:
   3035 
   3036     // These trait expressions are designed to help implement predicates in
   3037     // [meta.unary.prop] despite not being named the same. They are specified
   3038     // by both GCC and the Embarcadero C++ compiler, and require the complete
   3039     // type due to the overarching C++0x type predicates being implemented
   3040     // requiring the complete type.
   3041   case UTT_HasNothrowAssign:
   3042   case UTT_HasNothrowMoveAssign:
   3043   case UTT_HasNothrowConstructor:
   3044   case UTT_HasNothrowCopy:
   3045   case UTT_HasTrivialAssign:
   3046   case UTT_HasTrivialMoveAssign:
   3047   case UTT_HasTrivialDefaultConstructor:
   3048   case UTT_HasTrivialMoveConstructor:
   3049   case UTT_HasTrivialCopy:
   3050   case UTT_HasTrivialDestructor:
   3051   case UTT_HasVirtualDestructor:
   3052     // Arrays of unknown bound are expressly allowed.
   3053     QualType ElTy = ArgTy;
   3054     if (ArgTy->isIncompleteArrayType())
   3055       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   3056 
   3057     // The void type is expressly allowed.
   3058     if (ElTy->isVoidType())
   3059       return true;
   3060 
   3061     return !S.RequireCompleteType(
   3062       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   3063   }
   3064   llvm_unreachable("Type trait not handled by switch");
   3065 }
   3066 
   3067 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
   3068                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
   3069                                bool (CXXRecordDecl::*HasTrivial)() const,
   3070                                bool (CXXRecordDecl::*HasNonTrivial)() const,
   3071                                bool (CXXMethodDecl::*IsDesiredOp)() const)
   3072 {
   3073   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3074   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
   3075     return true;
   3076 
   3077   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
   3078   DeclarationNameInfo NameInfo(Name, KeyLoc);
   3079   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
   3080   if (Self.LookupQualifiedName(Res, RD)) {
   3081     bool FoundOperator = false;
   3082     Res.suppressDiagnostics();
   3083     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3084          Op != OpEnd; ++Op) {
   3085       if (isa<FunctionTemplateDecl>(*Op))
   3086         continue;
   3087 
   3088       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3089       if((Operator->*IsDesiredOp)()) {
   3090         FoundOperator = true;
   3091         const FunctionProtoType *CPT =
   3092           Operator->getType()->getAs<FunctionProtoType>();
   3093         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3094         if (!CPT || !CPT->isNothrow(Self.Context))
   3095           return false;
   3096       }
   3097     }
   3098     return FoundOperator;
   3099   }
   3100   return false;
   3101 }
   3102 
   3103 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
   3104                                    SourceLocation KeyLoc, QualType T) {
   3105   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3106 
   3107   ASTContext &C = Self.Context;
   3108   switch(UTT) {
   3109     // Type trait expressions corresponding to the primary type category
   3110     // predicates in C++0x [meta.unary.cat].
   3111   case UTT_IsVoid:
   3112     return T->isVoidType();
   3113   case UTT_IsIntegral:
   3114     return T->isIntegralType(C);
   3115   case UTT_IsFloatingPoint:
   3116     return T->isFloatingType();
   3117   case UTT_IsArray:
   3118     return T->isArrayType();
   3119   case UTT_IsPointer:
   3120     return T->isPointerType();
   3121   case UTT_IsLvalueReference:
   3122     return T->isLValueReferenceType();
   3123   case UTT_IsRvalueReference:
   3124     return T->isRValueReferenceType();
   3125   case UTT_IsMemberFunctionPointer:
   3126     return T->isMemberFunctionPointerType();
   3127   case UTT_IsMemberObjectPointer:
   3128     return T->isMemberDataPointerType();
   3129   case UTT_IsEnum:
   3130     return T->isEnumeralType();
   3131   case UTT_IsUnion:
   3132     return T->isUnionType();
   3133   case UTT_IsClass:
   3134     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
   3135   case UTT_IsFunction:
   3136     return T->isFunctionType();
   3137 
   3138     // Type trait expressions which correspond to the convenient composition
   3139     // predicates in C++0x [meta.unary.comp].
   3140   case UTT_IsReference:
   3141     return T->isReferenceType();
   3142   case UTT_IsArithmetic:
   3143     return T->isArithmeticType() && !T->isEnumeralType();
   3144   case UTT_IsFundamental:
   3145     return T->isFundamentalType();
   3146   case UTT_IsObject:
   3147     return T->isObjectType();
   3148   case UTT_IsScalar:
   3149     // Note: semantic analysis depends on Objective-C lifetime types to be
   3150     // considered scalar types. However, such types do not actually behave
   3151     // like scalar types at run time (since they may require retain/release
   3152     // operations), so we report them as non-scalar.
   3153     if (T->isObjCLifetimeType()) {
   3154       switch (T.getObjCLifetime()) {
   3155       case Qualifiers::OCL_None:
   3156       case Qualifiers::OCL_ExplicitNone:
   3157         return true;
   3158 
   3159       case Qualifiers::OCL_Strong:
   3160       case Qualifiers::OCL_Weak:
   3161       case Qualifiers::OCL_Autoreleasing:
   3162         return false;
   3163       }
   3164     }
   3165 
   3166     return T->isScalarType();
   3167   case UTT_IsCompound:
   3168     return T->isCompoundType();
   3169   case UTT_IsMemberPointer:
   3170     return T->isMemberPointerType();
   3171 
   3172     // Type trait expressions which correspond to the type property predicates
   3173     // in C++0x [meta.unary.prop].
   3174   case UTT_IsConst:
   3175     return T.isConstQualified();
   3176   case UTT_IsVolatile:
   3177     return T.isVolatileQualified();
   3178   case UTT_IsTrivial:
   3179     return T.isTrivialType(Self.Context);
   3180   case UTT_IsTriviallyCopyable:
   3181     return T.isTriviallyCopyableType(Self.Context);
   3182   case UTT_IsStandardLayout:
   3183     return T->isStandardLayoutType();
   3184   case UTT_IsPOD:
   3185     return T.isPODType(Self.Context);
   3186   case UTT_IsLiteral:
   3187     return T->isLiteralType(Self.Context);
   3188   case UTT_IsEmpty:
   3189     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3190       return !RD->isUnion() && RD->isEmpty();
   3191     return false;
   3192   case UTT_IsPolymorphic:
   3193     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3194       return RD->isPolymorphic();
   3195     return false;
   3196   case UTT_IsAbstract:
   3197     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3198       return RD->isAbstract();
   3199     return false;
   3200   case UTT_IsInterfaceClass:
   3201     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3202       return RD->isInterface();
   3203     return false;
   3204   case UTT_IsFinal:
   3205     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3206       return RD->hasAttr<FinalAttr>();
   3207     return false;
   3208   case UTT_IsSigned:
   3209     return T->isSignedIntegerType();
   3210   case UTT_IsUnsigned:
   3211     return T->isUnsignedIntegerType();
   3212 
   3213     // Type trait expressions which query classes regarding their construction,
   3214     // destruction, and copying. Rather than being based directly on the
   3215     // related type predicates in the standard, they are specified by both
   3216     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3217     // specifications.
   3218     //
   3219     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3220     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3221     //
   3222     // Note that these builtins do not behave as documented in g++: if a class
   3223     // has both a trivial and a non-trivial special member of a particular kind,
   3224     // they return false! For now, we emulate this behavior.
   3225     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
   3226     // does not correctly compute triviality in the presence of multiple special
   3227     // members of the same kind. Revisit this once the g++ bug is fixed.
   3228   case UTT_HasTrivialDefaultConstructor:
   3229     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3230     //   If __is_pod (type) is true then the trait is true, else if type is
   3231     //   a cv class or union type (or array thereof) with a trivial default
   3232     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3233     if (T.isPODType(Self.Context))
   3234       return true;
   3235     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3236       return RD->hasTrivialDefaultConstructor() &&
   3237              !RD->hasNonTrivialDefaultConstructor();
   3238     return false;
   3239   case UTT_HasTrivialMoveConstructor:
   3240     //  This trait is implemented by MSVC 2012 and needed to parse the
   3241     //  standard library headers. Specifically this is used as the logic
   3242     //  behind std::is_trivially_move_constructible (20.9.4.3).
   3243     if (T.isPODType(Self.Context))
   3244       return true;
   3245     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3246       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
   3247     return false;
   3248   case UTT_HasTrivialCopy:
   3249     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3250     //   If __is_pod (type) is true or type is a reference type then
   3251     //   the trait is true, else if type is a cv class or union type
   3252     //   with a trivial copy constructor ([class.copy]) then the trait
   3253     //   is true, else it is false.
   3254     if (T.isPODType(Self.Context) || T->isReferenceType())
   3255       return true;
   3256     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3257       return RD->hasTrivialCopyConstructor() &&
   3258              !RD->hasNonTrivialCopyConstructor();
   3259     return false;
   3260   case UTT_HasTrivialMoveAssign:
   3261     //  This trait is implemented by MSVC 2012 and needed to parse the
   3262     //  standard library headers. Specifically it is used as the logic
   3263     //  behind std::is_trivially_move_assignable (20.9.4.3)
   3264     if (T.isPODType(Self.Context))
   3265       return true;
   3266     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3267       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
   3268     return false;
   3269   case UTT_HasTrivialAssign:
   3270     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3271     //   If type is const qualified or is a reference type then the
   3272     //   trait is false. Otherwise if __is_pod (type) is true then the
   3273     //   trait is true, else if type is a cv class or union type with
   3274     //   a trivial copy assignment ([class.copy]) then the trait is
   3275     //   true, else it is false.
   3276     // Note: the const and reference restrictions are interesting,
   3277     // given that const and reference members don't prevent a class
   3278     // from having a trivial copy assignment operator (but do cause
   3279     // errors if the copy assignment operator is actually used, q.v.
   3280     // [class.copy]p12).
   3281 
   3282     if (T.isConstQualified())
   3283       return false;
   3284     if (T.isPODType(Self.Context))
   3285       return true;
   3286     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3287       return RD->hasTrivialCopyAssignment() &&
   3288              !RD->hasNonTrivialCopyAssignment();
   3289     return false;
   3290   case UTT_HasTrivialDestructor:
   3291     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3292     //   If __is_pod (type) is true or type is a reference type
   3293     //   then the trait is true, else if type is a cv class or union
   3294     //   type (or array thereof) with a trivial destructor
   3295     //   ([class.dtor]) then the trait is true, else it is
   3296     //   false.
   3297     if (T.isPODType(Self.Context) || T->isReferenceType())
   3298       return true;
   3299 
   3300     // Objective-C++ ARC: autorelease types don't require destruction.
   3301     if (T->isObjCLifetimeType() &&
   3302         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3303       return true;
   3304 
   3305     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3306       return RD->hasTrivialDestructor();
   3307     return false;
   3308   // TODO: Propagate nothrowness for implicitly declared special members.
   3309   case UTT_HasNothrowAssign:
   3310     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3311     //   If type is const qualified or is a reference type then the
   3312     //   trait is false. Otherwise if __has_trivial_assign (type)
   3313     //   is true then the trait is true, else if type is a cv class
   3314     //   or union type with copy assignment operators that are known
   3315     //   not to throw an exception then the trait is true, else it is
   3316     //   false.
   3317     if (C.getBaseElementType(T).isConstQualified())
   3318       return false;
   3319     if (T->isReferenceType())
   3320       return false;
   3321     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   3322       return true;
   3323 
   3324     if (const RecordType *RT = T->getAs<RecordType>())
   3325       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3326                                 &CXXRecordDecl::hasTrivialCopyAssignment,
   3327                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
   3328                                 &CXXMethodDecl::isCopyAssignmentOperator);
   3329     return false;
   3330   case UTT_HasNothrowMoveAssign:
   3331     //  This trait is implemented by MSVC 2012 and needed to parse the
   3332     //  standard library headers. Specifically this is used as the logic
   3333     //  behind std::is_nothrow_move_assignable (20.9.4.3).
   3334     if (T.isPODType(Self.Context))
   3335       return true;
   3336 
   3337     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
   3338       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3339                                 &CXXRecordDecl::hasTrivialMoveAssignment,
   3340                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
   3341                                 &CXXMethodDecl::isMoveAssignmentOperator);
   3342     return false;
   3343   case UTT_HasNothrowCopy:
   3344     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3345     //   If __has_trivial_copy (type) is true then the trait is true, else
   3346     //   if type is a cv class or union type with copy constructors that are
   3347     //   known not to throw an exception then the trait is true, else it is
   3348     //   false.
   3349     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3350       return true;
   3351     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
   3352       if (RD->hasTrivialCopyConstructor() &&
   3353           !RD->hasNonTrivialCopyConstructor())
   3354         return true;
   3355 
   3356       bool FoundConstructor = false;
   3357       unsigned FoundTQs;
   3358       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3359       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3360            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3361         // A template constructor is never a copy constructor.
   3362         // FIXME: However, it may actually be selected at the actual overload
   3363         // resolution point.
   3364         if (isa<FunctionTemplateDecl>(*Con))
   3365           continue;
   3366         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3367         if (Constructor->isCopyConstructor(FoundTQs)) {
   3368           FoundConstructor = true;
   3369           const FunctionProtoType *CPT
   3370               = Constructor->getType()->getAs<FunctionProtoType>();
   3371           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3372           if (!CPT)
   3373             return false;
   3374           // FIXME: check whether evaluating default arguments can throw.
   3375           // For now, we'll be conservative and assume that they can throw.
   3376           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
   3377             return false;
   3378         }
   3379       }
   3380 
   3381       return FoundConstructor;
   3382     }
   3383     return false;
   3384   case UTT_HasNothrowConstructor:
   3385     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3386     //   If __has_trivial_constructor (type) is true then the trait is
   3387     //   true, else if type is a cv class or union type (or array
   3388     //   thereof) with a default constructor that is known not to
   3389     //   throw an exception then the trait is true, else it is false.
   3390     if (T.isPODType(C) || T->isObjCLifetimeType())
   3391       return true;
   3392     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
   3393       if (RD->hasTrivialDefaultConstructor() &&
   3394           !RD->hasNonTrivialDefaultConstructor())
   3395         return true;
   3396 
   3397       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3398       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3399            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3400         // FIXME: In C++0x, a constructor template can be a default constructor.
   3401         if (isa<FunctionTemplateDecl>(*Con))
   3402           continue;
   3403         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3404         if (Constructor->isDefaultConstructor()) {
   3405           const FunctionProtoType *CPT
   3406               = Constructor->getType()->getAs<FunctionProtoType>();
   3407           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3408           if (!CPT)
   3409             return false;
   3410           // TODO: check whether evaluating default arguments can throw.
   3411           // For now, we'll be conservative and assume that they can throw.
   3412           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
   3413         }
   3414       }
   3415     }
   3416     return false;
   3417   case UTT_HasVirtualDestructor:
   3418     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3419     //   If type is a class type with a virtual destructor ([class.dtor])
   3420     //   then the trait is true, else it is false.
   3421     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3422       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   3423         return Destructor->isVirtual();
   3424     return false;
   3425 
   3426     // These type trait expressions are modeled on the specifications for the
   3427     // Embarcadero C++0x type trait functions:
   3428     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3429   case UTT_IsCompleteType:
   3430     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   3431     //   Returns True if and only if T is a complete type at the point of the
   3432     //   function call.
   3433     return !T->isIncompleteType();
   3434   }
   3435   llvm_unreachable("Type trait not covered by switch");
   3436 }
   3437 
   3438 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
   3439                                      SourceLocation KWLoc,
   3440                                      TypeSourceInfo *TSInfo,
   3441                                      SourceLocation RParen) {
   3442   QualType T = TSInfo->getType();
   3443   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
   3444     return ExprError();
   3445 
   3446   bool Value = false;
   3447   if (!T->isDependentType())
   3448     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
   3449 
   3450   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
   3451                                                 RParen, Context.BoolTy));
   3452 }
   3453 
   3454 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
   3455                                       SourceLocation KWLoc,
   3456                                       ParsedType LhsTy,
   3457                                       ParsedType RhsTy,
   3458                                       SourceLocation RParen) {
   3459   TypeSourceInfo *LhsTSInfo;
   3460   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
   3461   if (!LhsTSInfo)
   3462     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
   3463 
   3464   TypeSourceInfo *RhsTSInfo;
   3465   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
   3466   if (!RhsTSInfo)
   3467     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
   3468 
   3469   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
   3470 }
   3471 
   3472 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
   3473 /// ARC mode.
   3474 static bool hasNontrivialObjCLifetime(QualType T) {
   3475   switch (T.getObjCLifetime()) {
   3476   case Qualifiers::OCL_ExplicitNone:
   3477     return false;
   3478 
   3479   case Qualifiers::OCL_Strong:
   3480   case Qualifiers::OCL_Weak:
   3481   case Qualifiers::OCL_Autoreleasing:
   3482     return true;
   3483 
   3484   case Qualifiers::OCL_None:
   3485     return T->isObjCLifetimeType();
   3486   }
   3487 
   3488   llvm_unreachable("Unknown ObjC lifetime qualifier");
   3489 }
   3490 
   3491 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   3492                               ArrayRef<TypeSourceInfo *> Args,
   3493                               SourceLocation RParenLoc) {
   3494   switch (Kind) {
   3495   case clang::TT_IsTriviallyConstructible: {
   3496     // C++11 [meta.unary.prop]:
   3497     //   is_trivially_constructible is defined as:
   3498     //
   3499     //     is_constructible<T, Args...>::value is true and the variable
   3500     //     definition for is_constructible, as defined below, is known to call no
   3501     //     operation that is not trivial.
   3502     //
   3503     //   The predicate condition for a template specialization
   3504     //   is_constructible<T, Args...> shall be satisfied if and only if the
   3505     //   following variable definition would be well-formed for some invented
   3506     //   variable t:
   3507     //
   3508     //     T t(create<Args>()...);
   3509     if (Args.empty()) {
   3510       S.Diag(KWLoc, diag::err_type_trait_arity)
   3511         << 1 << 1 << 1 << (int)Args.size();
   3512       return false;
   3513     }
   3514 
   3515     bool SawVoid = false;
   3516     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3517       if (Args[I]->getType()->isVoidType()) {
   3518         SawVoid = true;
   3519         continue;
   3520       }
   3521 
   3522       if (!Args[I]->getType()->isIncompleteType() &&
   3523         S.RequireCompleteType(KWLoc, Args[I]->getType(),
   3524           diag::err_incomplete_type_used_in_type_trait_expr))
   3525         return false;
   3526     }
   3527 
   3528     // If any argument was 'void', of course it won't type-check.
   3529     if (SawVoid)
   3530       return false;
   3531 
   3532     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   3533     SmallVector<Expr *, 2> ArgExprs;
   3534     ArgExprs.reserve(Args.size() - 1);
   3535     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   3536       QualType T = Args[I]->getType();
   3537       if (T->isObjectType() || T->isFunctionType())
   3538         T = S.Context.getRValueReferenceType(T);
   3539       OpaqueArgExprs.push_back(
   3540         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   3541                         T.getNonLValueExprType(S.Context),
   3542                         Expr::getValueKindForType(T)));
   3543       ArgExprs.push_back(&OpaqueArgExprs.back());
   3544     }
   3545 
   3546     // Perform the initialization in an unevaluated context within a SFINAE
   3547     // trap at translation unit scope.
   3548     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   3549     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   3550     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   3551     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   3552     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   3553                                                                  RParenLoc));
   3554     InitializationSequence Init(S, To, InitKind, ArgExprs);
   3555     if (Init.Failed())
   3556       return false;
   3557 
   3558     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
   3559     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3560       return false;
   3561 
   3562     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3563     // lifetime, this is a non-trivial construction.
   3564     if (S.getLangOpts().ObjCAutoRefCount &&
   3565         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
   3566       return false;
   3567 
   3568     // The initialization succeeded; now make sure there are no non-trivial
   3569     // calls.
   3570     return !Result.get()->hasNonTrivialCall(S.Context);
   3571   }
   3572   }
   3573 
   3574   return false;
   3575 }
   3576 
   3577 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3578                                 ArrayRef<TypeSourceInfo *> Args,
   3579                                 SourceLocation RParenLoc) {
   3580   bool Dependent = false;
   3581   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3582     if (Args[I]->getType()->isDependentType()) {
   3583       Dependent = true;
   3584       break;
   3585     }
   3586   }
   3587 
   3588   bool Value = false;
   3589   if (!Dependent)
   3590     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   3591 
   3592   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
   3593                                Args, RParenLoc, Value);
   3594 }
   3595 
   3596 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3597                                 ArrayRef<ParsedType> Args,
   3598                                 SourceLocation RParenLoc) {
   3599   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   3600   ConvertedArgs.reserve(Args.size());
   3601 
   3602   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3603     TypeSourceInfo *TInfo;
   3604     QualType T = GetTypeFromParser(Args[I], &TInfo);
   3605     if (!TInfo)
   3606       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   3607 
   3608     ConvertedArgs.push_back(TInfo);
   3609   }
   3610 
   3611   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   3612 }
   3613 
   3614 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
   3615                                     QualType LhsT, QualType RhsT,
   3616                                     SourceLocation KeyLoc) {
   3617   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   3618          "Cannot evaluate traits of dependent types");
   3619 
   3620   switch(BTT) {
   3621   case BTT_IsBaseOf: {
   3622     // C++0x [meta.rel]p2
   3623     // Base is a base class of Derived without regard to cv-qualifiers or
   3624     // Base and Derived are not unions and name the same class type without
   3625     // regard to cv-qualifiers.
   3626 
   3627     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   3628     if (!lhsRecord) return false;
   3629 
   3630     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3631     if (!rhsRecord) return false;
   3632 
   3633     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3634              == (lhsRecord == rhsRecord));
   3635 
   3636     if (lhsRecord == rhsRecord)
   3637       return !lhsRecord->getDecl()->isUnion();
   3638 
   3639     // C++0x [meta.rel]p2:
   3640     //   If Base and Derived are class types and are different types
   3641     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3642     //   complete type.
   3643     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3644                           diag::err_incomplete_type_used_in_type_trait_expr))
   3645       return false;
   3646 
   3647     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3648       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3649   }
   3650   case BTT_IsSame:
   3651     return Self.Context.hasSameType(LhsT, RhsT);
   3652   case BTT_TypeCompatible:
   3653     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3654                                            RhsT.getUnqualifiedType());
   3655   case BTT_IsConvertible:
   3656   case BTT_IsConvertibleTo: {
   3657     // C++0x [meta.rel]p4:
   3658     //   Given the following function prototype:
   3659     //
   3660     //     template <class T>
   3661     //       typename add_rvalue_reference<T>::type create();
   3662     //
   3663     //   the predicate condition for a template specialization
   3664     //   is_convertible<From, To> shall be satisfied if and only if
   3665     //   the return expression in the following code would be
   3666     //   well-formed, including any implicit conversions to the return
   3667     //   type of the function:
   3668     //
   3669     //     To test() {
   3670     //       return create<From>();
   3671     //     }
   3672     //
   3673     //   Access checking is performed as if in a context unrelated to To and
   3674     //   From. Only the validity of the immediate context of the expression
   3675     //   of the return-statement (including conversions to the return type)
   3676     //   is considered.
   3677     //
   3678     // We model the initialization as a copy-initialization of a temporary
   3679     // of the appropriate type, which for this expression is identical to the
   3680     // return statement (since NRVO doesn't apply).
   3681 
   3682     // Functions aren't allowed to return function or array types.
   3683     if (RhsT->isFunctionType() || RhsT->isArrayType())
   3684       return false;
   3685 
   3686     // A return statement in a void function must have void type.
   3687     if (RhsT->isVoidType())
   3688       return LhsT->isVoidType();
   3689 
   3690     // A function definition requires a complete, non-abstract return type.
   3691     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
   3692         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
   3693       return false;
   3694 
   3695     // Compute the result of add_rvalue_reference.
   3696     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3697       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3698 
   3699     // Build a fake source and destination for initialization.
   3700     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3701     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3702                          Expr::getValueKindForType(LhsT));
   3703     Expr *FromPtr = &From;
   3704     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3705                                                            SourceLocation()));
   3706 
   3707     // Perform the initialization in an unevaluated context within a SFINAE
   3708     // trap at translation unit scope.
   3709     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3710     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3711     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3712     InitializationSequence Init(Self, To, Kind, FromPtr);
   3713     if (Init.Failed())
   3714       return false;
   3715 
   3716     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
   3717     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3718   }
   3719 
   3720   case BTT_IsTriviallyAssignable: {
   3721     // C++11 [meta.unary.prop]p3:
   3722     //   is_trivially_assignable is defined as:
   3723     //     is_assignable<T, U>::value is true and the assignment, as defined by
   3724     //     is_assignable, is known to call no operation that is not trivial
   3725     //
   3726     //   is_assignable is defined as:
   3727     //     The expression declval<T>() = declval<U>() is well-formed when
   3728     //     treated as an unevaluated operand (Clause 5).
   3729     //
   3730     //   For both, T and U shall be complete types, (possibly cv-qualified)
   3731     //   void, or arrays of unknown bound.
   3732     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   3733         Self.RequireCompleteType(KeyLoc, LhsT,
   3734           diag::err_incomplete_type_used_in_type_trait_expr))
   3735       return false;
   3736     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   3737         Self.RequireCompleteType(KeyLoc, RhsT,
   3738           diag::err_incomplete_type_used_in_type_trait_expr))
   3739       return false;
   3740 
   3741     // cv void is never assignable.
   3742     if (LhsT->isVoidType() || RhsT->isVoidType())
   3743       return false;
   3744 
   3745     // Build expressions that emulate the effect of declval<T>() and
   3746     // declval<U>().
   3747     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3748       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3749     if (RhsT->isObjectType() || RhsT->isFunctionType())
   3750       RhsT = Self.Context.getRValueReferenceType(RhsT);
   3751     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3752                         Expr::getValueKindForType(LhsT));
   3753     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   3754                         Expr::getValueKindForType(RhsT));
   3755 
   3756     // Attempt the assignment in an unevaluated context within a SFINAE
   3757     // trap at translation unit scope.
   3758     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3759     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3760     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3761     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
   3762     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3763       return false;
   3764 
   3765     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3766     // lifetime, this is a non-trivial assignment.
   3767     if (Self.getLangOpts().ObjCAutoRefCount &&
   3768         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
   3769       return false;
   3770 
   3771     return !Result.get()->hasNonTrivialCall(Self.Context);
   3772   }
   3773   }
   3774   llvm_unreachable("Unknown type trait or not implemented");
   3775 }
   3776 
   3777 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
   3778                                       SourceLocation KWLoc,
   3779                                       TypeSourceInfo *LhsTSInfo,
   3780                                       TypeSourceInfo *RhsTSInfo,
   3781                                       SourceLocation RParen) {
   3782   QualType LhsT = LhsTSInfo->getType();
   3783   QualType RhsT = RhsTSInfo->getType();
   3784 
   3785   if (BTT == BTT_TypeCompatible) {
   3786     if (getLangOpts().CPlusPlus) {
   3787       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
   3788         << SourceRange(KWLoc, RParen);
   3789       return ExprError();
   3790     }
   3791   }
   3792 
   3793   bool Value = false;
   3794   if (!LhsT->isDependentType() && !RhsT->isDependentType())
   3795     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
   3796 
   3797   // Select trait result type.
   3798   QualType ResultType;
   3799   switch (BTT) {
   3800   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
   3801   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
   3802   case BTT_IsSame:         ResultType = Context.BoolTy; break;
   3803   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
   3804   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
   3805   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
   3806   }
   3807 
   3808   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
   3809                                                  RhsTSInfo, Value, RParen,
   3810                                                  ResultType));
   3811 }
   3812 
   3813 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3814                                      SourceLocation KWLoc,
   3815                                      ParsedType Ty,
   3816                                      Expr* DimExpr,
   3817                                      SourceLocation RParen) {
   3818   TypeSourceInfo *TSInfo;
   3819   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3820   if (!TSInfo)
   3821     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3822 
   3823   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3824 }
   3825 
   3826 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3827                                            QualType T, Expr *DimExpr,
   3828                                            SourceLocation KeyLoc) {
   3829   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3830 
   3831   switch(ATT) {
   3832   case ATT_ArrayRank:
   3833     if (T->isArrayType()) {
   3834       unsigned Dim = 0;
   3835       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3836         ++Dim;
   3837         T = AT->getElementType();
   3838       }
   3839       return Dim;
   3840     }
   3841     return 0;
   3842 
   3843   case ATT_ArrayExtent: {
   3844     llvm::APSInt Value;
   3845     uint64_t Dim;
   3846     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   3847           diag::err_dimension_expr_not_constant_integer,
   3848           false).isInvalid())
   3849       return 0;
   3850     if (Value.isSigned() && Value.isNegative()) {
   3851       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   3852         << DimExpr->getSourceRange();
   3853       return 0;
   3854     }
   3855     Dim = Value.getLimitedValue();
   3856 
   3857     if (T->isArrayType()) {
   3858       unsigned D = 0;
   3859       bool Matched = false;
   3860       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3861         if (Dim == D) {
   3862           Matched = true;
   3863           break;
   3864         }
   3865         ++D;
   3866         T = AT->getElementType();
   3867       }
   3868 
   3869       if (Matched && T->isArrayType()) {
   3870         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3871           return CAT->getSize().getLimitedValue();
   3872       }
   3873     }
   3874     return 0;
   3875   }
   3876   }
   3877   llvm_unreachable("Unknown type trait or not implemented");
   3878 }
   3879 
   3880 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3881                                      SourceLocation KWLoc,
   3882                                      TypeSourceInfo *TSInfo,
   3883                                      Expr* DimExpr,
   3884                                      SourceLocation RParen) {
   3885   QualType T = TSInfo->getType();
   3886 
   3887   // FIXME: This should likely be tracked as an APInt to remove any host
   3888   // assumptions about the width of size_t on the target.
   3889   uint64_t Value = 0;
   3890   if (!T->isDependentType())
   3891     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   3892 
   3893   // While the specification for these traits from the Embarcadero C++
   3894   // compiler's documentation says the return type is 'unsigned int', Clang
   3895   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   3896   // compiler, there is no difference. On several other platforms this is an
   3897   // important distinction.
   3898   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
   3899                                                 DimExpr, RParen,
   3900                                                 Context.getSizeType()));
   3901 }
   3902 
   3903 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   3904                                       SourceLocation KWLoc,
   3905                                       Expr *Queried,
   3906                                       SourceLocation RParen) {
   3907   // If error parsing the expression, ignore.
   3908   if (!Queried)
   3909     return ExprError();
   3910 
   3911   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   3912 
   3913   return Result;
   3914 }
   3915 
   3916 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   3917   switch (ET) {
   3918   case ET_IsLValueExpr: return E->isLValue();
   3919   case ET_IsRValueExpr: return E->isRValue();
   3920   }
   3921   llvm_unreachable("Expression trait not covered by switch");
   3922 }
   3923 
   3924 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   3925                                       SourceLocation KWLoc,
   3926                                       Expr *Queried,
   3927                                       SourceLocation RParen) {
   3928   if (Queried->isTypeDependent()) {
   3929     // Delay type-checking for type-dependent expressions.
   3930   } else if (Queried->getType()->isPlaceholderType()) {
   3931     ExprResult PE = CheckPlaceholderExpr(Queried);
   3932     if (PE.isInvalid()) return ExprError();
   3933     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
   3934   }
   3935 
   3936   bool Value = EvaluateExpressionTrait(ET, Queried);
   3937 
   3938   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
   3939                                                  RParen, Context.BoolTy));
   3940 }
   3941 
   3942 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   3943                                             ExprValueKind &VK,
   3944                                             SourceLocation Loc,
   3945                                             bool isIndirect) {
   3946   assert(!LHS.get()->getType()->isPlaceholderType() &&
   3947          !RHS.get()->getType()->isPlaceholderType() &&
   3948          "placeholders should have been weeded out by now");
   3949 
   3950   // The LHS undergoes lvalue conversions if this is ->*.
   3951   if (isIndirect) {
   3952     LHS = DefaultLvalueConversion(LHS.take());
   3953     if (LHS.isInvalid()) return QualType();
   3954   }
   3955 
   3956   // The RHS always undergoes lvalue conversions.
   3957   RHS = DefaultLvalueConversion(RHS.take());
   3958   if (RHS.isInvalid()) return QualType();
   3959 
   3960   const char *OpSpelling = isIndirect ? "->*" : ".*";
   3961   // C++ 5.5p2
   3962   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   3963   //   be of type "pointer to member of T" (where T is a completely-defined
   3964   //   class type) [...]
   3965   QualType RHSType = RHS.get()->getType();
   3966   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   3967   if (!MemPtr) {
   3968     Diag(Loc, diag::err_bad_memptr_rhs)
   3969       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   3970     return QualType();
   3971   }
   3972 
   3973   QualType Class(MemPtr->getClass(), 0);
   3974 
   3975   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   3976   // member pointer points must be completely-defined. However, there is no
   3977   // reason for this semantic distinction, and the rule is not enforced by
   3978   // other compilers. Therefore, we do not check this property, as it is
   3979   // likely to be considered a defect.
   3980 
   3981   // C++ 5.5p2
   3982   //   [...] to its first operand, which shall be of class T or of a class of
   3983   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   3984   //   such a class]
   3985   QualType LHSType = LHS.get()->getType();
   3986   if (isIndirect) {
   3987     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   3988       LHSType = Ptr->getPointeeType();
   3989     else {
   3990       Diag(Loc, diag::err_bad_memptr_lhs)
   3991         << OpSpelling << 1 << LHSType
   3992         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   3993       return QualType();
   3994     }
   3995   }
   3996 
   3997   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   3998     // If we want to check the hierarchy, we need a complete type.
   3999     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
   4000                             OpSpelling, (int)isIndirect)) {
   4001       return QualType();
   4002     }
   4003     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   4004                        /*DetectVirtual=*/false);
   4005     // FIXME: Would it be useful to print full ambiguity paths, or is that
   4006     // overkill?
   4007     if (!IsDerivedFrom(LHSType, Class, Paths) ||
   4008         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
   4009       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   4010         << (int)isIndirect << LHS.get()->getType();
   4011       return QualType();
   4012     }
   4013     // Cast LHS to type of use.
   4014     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   4015     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   4016 
   4017     CXXCastPath BasePath;
   4018     BuildBasePathArray(Paths, BasePath);
   4019     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
   4020                             &BasePath);
   4021   }
   4022 
   4023   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   4024     // Diagnose use of pointer-to-member type which when used as
   4025     // the functional cast in a pointer-to-member expression.
   4026     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   4027      return QualType();
   4028   }
   4029 
   4030   // C++ 5.5p2
   4031   //   The result is an object or a function of the type specified by the
   4032   //   second operand.
   4033   // The cv qualifiers are the union of those in the pointer and the left side,
   4034   // in accordance with 5.5p5 and 5.2.5.
   4035   QualType Result = MemPtr->getPointeeType();
   4036   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   4037 
   4038   // C++0x [expr.mptr.oper]p6:
   4039   //   In a .* expression whose object expression is an rvalue, the program is
   4040   //   ill-formed if the second operand is a pointer to member function with
   4041   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   4042   //   expression is an lvalue, the program is ill-formed if the second operand
   4043   //   is a pointer to member function with ref-qualifier &&.
   4044   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   4045     switch (Proto->getRefQualifier()) {
   4046     case RQ_None:
   4047       // Do nothing
   4048       break;
   4049 
   4050     case RQ_LValue:
   4051       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   4052         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4053           << RHSType << 1 << LHS.get()->getSourceRange();
   4054       break;
   4055 
   4056     case RQ_RValue:
   4057       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   4058         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4059           << RHSType << 0 << LHS.get()->getSourceRange();
   4060       break;
   4061     }
   4062   }
   4063 
   4064   // C++ [expr.mptr.oper]p6:
   4065   //   The result of a .* expression whose second operand is a pointer
   4066   //   to a data member is of the same value category as its
   4067   //   first operand. The result of a .* expression whose second
   4068   //   operand is a pointer to a member function is a prvalue. The
   4069   //   result of an ->* expression is an lvalue if its second operand
   4070   //   is a pointer to data member and a prvalue otherwise.
   4071   if (Result->isFunctionType()) {
   4072     VK = VK_RValue;
   4073     return Context.BoundMemberTy;
   4074   } else if (isIndirect) {
   4075     VK = VK_LValue;
   4076   } else {
   4077     VK = LHS.get()->getValueKind();
   4078   }
   4079 
   4080   return Result;
   4081 }
   4082 
   4083 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   4084 ///
   4085 /// This is part of the parameter validation for the ? operator. If either
   4086 /// value operand is a class type, the two operands are attempted to be
   4087 /// converted to each other. This function does the conversion in one direction.
   4088 /// It returns true if the program is ill-formed and has already been diagnosed
   4089 /// as such.
   4090 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   4091                                 SourceLocation QuestionLoc,
   4092                                 bool &HaveConversion,
   4093                                 QualType &ToType) {
   4094   HaveConversion = false;
   4095   ToType = To->getType();
   4096 
   4097   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   4098                                                            SourceLocation());
   4099   // C++0x 5.16p3
   4100   //   The process for determining whether an operand expression E1 of type T1
   4101   //   can be converted to match an operand expression E2 of type T2 is defined
   4102   //   as follows:
   4103   //   -- If E2 is an lvalue:
   4104   bool ToIsLvalue = To->isLValue();
   4105   if (ToIsLvalue) {
   4106     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   4107     //   type "lvalue reference to T2", subject to the constraint that in the
   4108     //   conversion the reference must bind directly to E1.
   4109     QualType T = Self.Context.getLValueReferenceType(ToType);
   4110     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4111 
   4112     InitializationSequence InitSeq(Self, Entity, Kind, From);
   4113     if (InitSeq.isDirectReferenceBinding()) {
   4114       ToType = T;
   4115       HaveConversion = true;
   4116       return false;
   4117     }
   4118 
   4119     if (InitSeq.isAmbiguous())
   4120       return InitSeq.Diagnose(Self, Entity, Kind, From);
   4121   }
   4122 
   4123   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   4124   //      -- if E1 and E2 have class type, and the underlying class types are
   4125   //         the same or one is a base class of the other:
   4126   QualType FTy = From->getType();
   4127   QualType TTy = To->getType();
   4128   const RecordType *FRec = FTy->getAs<RecordType>();
   4129   const RecordType *TRec = TTy->getAs<RecordType>();
   4130   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   4131                        Self.IsDerivedFrom(FTy, TTy);
   4132   if (FRec && TRec &&
   4133       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   4134     //         E1 can be converted to match E2 if the class of T2 is the
   4135     //         same type as, or a base class of, the class of T1, and
   4136     //         [cv2 > cv1].
   4137     if (FRec == TRec || FDerivedFromT) {
   4138       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   4139         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4140         InitializationSequence InitSeq(Self, Entity, Kind, From);
   4141         if (InitSeq) {
   4142           HaveConversion = true;
   4143           return false;
   4144         }
   4145 
   4146         if (InitSeq.isAmbiguous())
   4147           return InitSeq.Diagnose(Self, Entity, Kind, From);
   4148       }
   4149     }
   4150 
   4151     return false;
   4152   }
   4153 
   4154   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   4155   //        implicitly converted to the type that expression E2 would have
   4156   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   4157   //        an rvalue).
   4158   //
   4159   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   4160   // to the array-to-pointer or function-to-pointer conversions.
   4161   if (!TTy->getAs<TagType>())
   4162     TTy = TTy.getUnqualifiedType();
   4163 
   4164   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4165   InitializationSequence InitSeq(Self, Entity, Kind, From);
   4166   HaveConversion = !InitSeq.Failed();
   4167   ToType = TTy;
   4168   if (InitSeq.isAmbiguous())
   4169     return InitSeq.Diagnose(Self, Entity, Kind, From);
   4170 
   4171   return false;
   4172 }
   4173 
   4174 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   4175 ///
   4176 /// This is part of the parameter validation for the ? operator. If either
   4177 /// value operand is a class type, overload resolution is used to find a
   4178 /// conversion to a common type.
   4179 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   4180                                     SourceLocation QuestionLoc) {
   4181   Expr *Args[2] = { LHS.get(), RHS.get() };
   4182   OverloadCandidateSet CandidateSet(QuestionLoc);
   4183   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
   4184                                     CandidateSet);
   4185 
   4186   OverloadCandidateSet::iterator Best;
   4187   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   4188     case OR_Success: {
   4189       // We found a match. Perform the conversions on the arguments and move on.
   4190       ExprResult LHSRes =
   4191         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   4192                                        Best->Conversions[0], Sema::AA_Converting);
   4193       if (LHSRes.isInvalid())
   4194         break;
   4195       LHS = LHSRes;
   4196 
   4197       ExprResult RHSRes =
   4198         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   4199                                        Best->Conversions[1], Sema::AA_Converting);
   4200       if (RHSRes.isInvalid())
   4201         break;
   4202       RHS = RHSRes;
   4203       if (Best->Function)
   4204         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   4205       return false;
   4206     }
   4207 
   4208     case OR_No_Viable_Function:
   4209 
   4210       // Emit a better diagnostic if one of the expressions is a null pointer
   4211       // constant and the other is a pointer type. In this case, the user most
   4212       // likely forgot to take the address of the other expression.
   4213       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4214         return true;
   4215 
   4216       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4217         << LHS.get()->getType() << RHS.get()->getType()
   4218         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4219       return true;
   4220 
   4221     case OR_Ambiguous:
   4222       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   4223         << LHS.get()->getType() << RHS.get()->getType()
   4224         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4225       // FIXME: Print the possible common types by printing the return types of
   4226       // the viable candidates.
   4227       break;
   4228 
   4229     case OR_Deleted:
   4230       llvm_unreachable("Conditional operator has only built-in overloads");
   4231   }
   4232   return true;
   4233 }
   4234 
   4235 /// \brief Perform an "extended" implicit conversion as returned by
   4236 /// TryClassUnification.
   4237 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4238   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4239   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4240                                                            SourceLocation());
   4241   Expr *Arg = E.take();
   4242   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
   4243   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
   4244   if (Result.isInvalid())
   4245     return true;
   4246 
   4247   E = Result;
   4248   return false;
   4249 }
   4250 
   4251 /// \brief Check the operands of ?: under C++ semantics.
   4252 ///
   4253 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4254 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4255 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   4256                                            ExprResult &RHS, ExprValueKind &VK,
   4257                                            ExprObjectKind &OK,
   4258                                            SourceLocation QuestionLoc) {
   4259   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4260   // interface pointers.
   4261 
   4262   // C++11 [expr.cond]p1
   4263   //   The first expression is contextually converted to bool.
   4264   if (!Cond.get()->isTypeDependent()) {
   4265     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
   4266     if (CondRes.isInvalid())
   4267       return QualType();
   4268     Cond = CondRes;
   4269   }
   4270 
   4271   // Assume r-value.
   4272   VK = VK_RValue;
   4273   OK = OK_Ordinary;
   4274 
   4275   // Either of the arguments dependent?
   4276   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4277     return Context.DependentTy;
   4278 
   4279   // C++11 [expr.cond]p2
   4280   //   If either the second or the third operand has type (cv) void, ...
   4281   QualType LTy = LHS.get()->getType();
   4282   QualType RTy = RHS.get()->getType();
   4283   bool LVoid = LTy->isVoidType();
   4284   bool RVoid = RTy->isVoidType();
   4285   if (LVoid || RVoid) {
   4286     //   ... then the [l2r] conversions are performed on the second and third
   4287     //   operands ...
   4288     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4289     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4290     if (LHS.isInvalid() || RHS.isInvalid())
   4291       return QualType();
   4292 
   4293     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
   4294     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
   4295     // do this part for us.
   4296     ExprResult &NonVoid = LVoid ? RHS : LHS;
   4297     if (NonVoid.get()->getType()->isRecordType() &&
   4298         NonVoid.get()->isGLValue()) {
   4299       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
   4300                              diag::err_allocation_of_abstract_type))
   4301         return QualType();
   4302       InitializedEntity Entity =
   4303           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
   4304       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
   4305       if (NonVoid.isInvalid())
   4306         return QualType();
   4307     }
   4308 
   4309     LTy = LHS.get()->getType();
   4310     RTy = RHS.get()->getType();
   4311 
   4312     //   ... and one of the following shall hold:
   4313     //   -- The second or the third operand (but not both) is a throw-
   4314     //      expression; the result is of the type of the other and is a prvalue.
   4315     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenCasts());
   4316     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenCasts());
   4317     if (LThrow && !RThrow)
   4318       return RTy;
   4319     if (RThrow && !LThrow)
   4320       return LTy;
   4321 
   4322     //   -- Both the second and third operands have type void; the result is of
   4323     //      type void and is a prvalue.
   4324     if (LVoid && RVoid)
   4325       return Context.VoidTy;
   4326 
   4327     // Neither holds, error.
   4328     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4329       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4330       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4331     return QualType();
   4332   }
   4333 
   4334   // Neither is void.
   4335 
   4336   // C++11 [expr.cond]p3
   4337   //   Otherwise, if the second and third operand have different types, and
   4338   //   either has (cv) class type [...] an attempt is made to convert each of
   4339   //   those operands to the type of the other.
   4340   if (!Context.hasSameType(LTy, RTy) &&
   4341       (LTy->isRecordType() || RTy->isRecordType())) {
   4342     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
   4343     // These return true if a single direction is already ambiguous.
   4344     QualType L2RType, R2LType;
   4345     bool HaveL2R, HaveR2L;
   4346     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4347       return QualType();
   4348     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4349       return QualType();
   4350 
   4351     //   If both can be converted, [...] the program is ill-formed.
   4352     if (HaveL2R && HaveR2L) {
   4353       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4354         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4355       return QualType();
   4356     }
   4357 
   4358     //   If exactly one conversion is possible, that conversion is applied to
   4359     //   the chosen operand and the converted operands are used in place of the
   4360     //   original operands for the remainder of this section.
   4361     if (HaveL2R) {
   4362       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4363         return QualType();
   4364       LTy = LHS.get()->getType();
   4365     } else if (HaveR2L) {
   4366       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4367         return QualType();
   4368       RTy = RHS.get()->getType();
   4369     }
   4370   }
   4371 
   4372   // C++11 [expr.cond]p3
   4373   //   if both are glvalues of the same value category and the same type except
   4374   //   for cv-qualification, an attempt is made to convert each of those
   4375   //   operands to the type of the other.
   4376   ExprValueKind LVK = LHS.get()->getValueKind();
   4377   ExprValueKind RVK = RHS.get()->getValueKind();
   4378   if (!Context.hasSameType(LTy, RTy) &&
   4379       Context.hasSameUnqualifiedType(LTy, RTy) &&
   4380       LVK == RVK && LVK != VK_RValue) {
   4381     // Since the unqualified types are reference-related and we require the
   4382     // result to be as if a reference bound directly, the only conversion
   4383     // we can perform is to add cv-qualifiers.
   4384     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
   4385     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
   4386     if (RCVR.isStrictSupersetOf(LCVR)) {
   4387       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
   4388       LTy = LHS.get()->getType();
   4389     }
   4390     else if (LCVR.isStrictSupersetOf(RCVR)) {
   4391       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
   4392       RTy = RHS.get()->getType();
   4393     }
   4394   }
   4395 
   4396   // C++11 [expr.cond]p4
   4397   //   If the second and third operands are glvalues of the same value
   4398   //   category and have the same type, the result is of that type and
   4399   //   value category and it is a bit-field if the second or the third
   4400   //   operand is a bit-field, or if both are bit-fields.
   4401   // We only extend this to bitfields, not to the crazy other kinds of
   4402   // l-values.
   4403   bool Same = Context.hasSameType(LTy, RTy);
   4404   if (Same && LVK == RVK && LVK != VK_RValue &&
   4405       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4406       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4407     VK = LHS.get()->getValueKind();
   4408     if (LHS.get()->getObjectKind() == OK_BitField ||
   4409         RHS.get()->getObjectKind() == OK_BitField)
   4410       OK = OK_BitField;
   4411     return LTy;
   4412   }
   4413 
   4414   // C++11 [expr.cond]p5
   4415   //   Otherwise, the result is a prvalue. If the second and third operands
   4416   //   do not have the same type, and either has (cv) class type, ...
   4417   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4418     //   ... overload resolution is used to determine the conversions (if any)
   4419     //   to be applied to the operands. If the overload resolution fails, the
   4420     //   program is ill-formed.
   4421     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4422       return QualType();
   4423   }
   4424 
   4425   // C++11 [expr.cond]p6
   4426   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4427   //   conversions are performed on the second and third operands.
   4428   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4429   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4430   if (LHS.isInvalid() || RHS.isInvalid())
   4431     return QualType();
   4432   LTy = LHS.get()->getType();
   4433   RTy = RHS.get()->getType();
   4434 
   4435   //   After those conversions, one of the following shall hold:
   4436   //   -- The second and third operands have the same type; the result
   4437   //      is of that type. If the operands have class type, the result
   4438   //      is a prvalue temporary of the result type, which is
   4439   //      copy-initialized from either the second operand or the third
   4440   //      operand depending on the value of the first operand.
   4441   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   4442     if (LTy->isRecordType()) {
   4443       // The operands have class type. Make a temporary copy.
   4444       if (RequireNonAbstractType(QuestionLoc, LTy,
   4445                                  diag::err_allocation_of_abstract_type))
   4446         return QualType();
   4447       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   4448 
   4449       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   4450                                                      SourceLocation(),
   4451                                                      LHS);
   4452       if (LHSCopy.isInvalid())
   4453         return QualType();
   4454 
   4455       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   4456                                                      SourceLocation(),
   4457                                                      RHS);
   4458       if (RHSCopy.isInvalid())
   4459         return QualType();
   4460 
   4461       LHS = LHSCopy;
   4462       RHS = RHSCopy;
   4463     }
   4464 
   4465     return LTy;
   4466   }
   4467 
   4468   // Extension: conditional operator involving vector types.
   4469   if (LTy->isVectorType() || RTy->isVectorType())
   4470     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4471 
   4472   //   -- The second and third operands have arithmetic or enumeration type;
   4473   //      the usual arithmetic conversions are performed to bring them to a
   4474   //      common type, and the result is of that type.
   4475   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   4476     UsualArithmeticConversions(LHS, RHS);
   4477     if (LHS.isInvalid() || RHS.isInvalid())
   4478       return QualType();
   4479     return LHS.get()->getType();
   4480   }
   4481 
   4482   //   -- The second and third operands have pointer type, or one has pointer
   4483   //      type and the other is a null pointer constant, or both are null
   4484   //      pointer constants, at least one of which is non-integral; pointer
   4485   //      conversions and qualification conversions are performed to bring them
   4486   //      to their composite pointer type. The result is of the composite
   4487   //      pointer type.
   4488   //   -- The second and third operands have pointer to member type, or one has
   4489   //      pointer to member type and the other is a null pointer constant;
   4490   //      pointer to member conversions and qualification conversions are
   4491   //      performed to bring them to a common type, whose cv-qualification
   4492   //      shall match the cv-qualification of either the second or the third
   4493   //      operand. The result is of the common type.
   4494   bool NonStandardCompositeType = false;
   4495   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   4496                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   4497   if (!Composite.isNull()) {
   4498     if (NonStandardCompositeType)
   4499       Diag(QuestionLoc,
   4500            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   4501         << LTy << RTy << Composite
   4502         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4503 
   4504     return Composite;
   4505   }
   4506 
   4507   // Similarly, attempt to find composite type of two objective-c pointers.
   4508   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   4509   if (!Composite.isNull())
   4510     return Composite;
   4511 
   4512   // Check if we are using a null with a non-pointer type.
   4513   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4514     return QualType();
   4515 
   4516   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4517     << LHS.get()->getType() << RHS.get()->getType()
   4518     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4519   return QualType();
   4520 }
   4521 
   4522 /// \brief Find a merged pointer type and convert the two expressions to it.
   4523 ///
   4524 /// This finds the composite pointer type (or member pointer type) for @p E1
   4525 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
   4526 /// type and returns it.
   4527 /// It does not emit diagnostics.
   4528 ///
   4529 /// \param Loc The location of the operator requiring these two expressions to
   4530 /// be converted to the composite pointer type.
   4531 ///
   4532 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   4533 /// a non-standard (but still sane) composite type to which both expressions
   4534 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   4535 /// will be set true.
   4536 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   4537                                         Expr *&E1, Expr *&E2,
   4538                                         bool *NonStandardCompositeType) {
   4539   if (NonStandardCompositeType)
   4540     *NonStandardCompositeType = false;
   4541 
   4542   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   4543   QualType T1 = E1->getType(), T2 = E2->getType();
   4544 
   4545   // C++11 5.9p2
   4546   //   Pointer conversions and qualification conversions are performed on
   4547   //   pointer operands to bring them to their composite pointer type. If
   4548   //   one operand is a null pointer constant, the composite pointer type is
   4549   //   std::nullptr_t if the other operand is also a null pointer constant or,
   4550   //   if the other operand is a pointer, the type of the other operand.
   4551   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   4552       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
   4553     if (T1->isNullPtrType() &&
   4554         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4555       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4556       return T1;
   4557     }
   4558     if (T2->isNullPtrType() &&
   4559         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4560       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4561       return T2;
   4562     }
   4563     return QualType();
   4564   }
   4565 
   4566   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4567     if (T2->isMemberPointerType())
   4568       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
   4569     else
   4570       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4571     return T2;
   4572   }
   4573   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4574     if (T1->isMemberPointerType())
   4575       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
   4576     else
   4577       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4578     return T1;
   4579   }
   4580 
   4581   // Now both have to be pointers or member pointers.
   4582   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   4583       (!T2->isPointerType() && !T2->isMemberPointerType()))
   4584     return QualType();
   4585 
   4586   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   4587   //   the other has type "pointer to cv2 T" and the composite pointer type is
   4588   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   4589   //   Otherwise, the composite pointer type is a pointer type similar to the
   4590   //   type of one of the operands, with a cv-qualification signature that is
   4591   //   the union of the cv-qualification signatures of the operand types.
   4592   // In practice, the first part here is redundant; it's subsumed by the second.
   4593   // What we do here is, we build the two possible composite types, and try the
   4594   // conversions in both directions. If only one works, or if the two composite
   4595   // types are the same, we have succeeded.
   4596   // FIXME: extended qualifiers?
   4597   typedef SmallVector<unsigned, 4> QualifierVector;
   4598   QualifierVector QualifierUnion;
   4599   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   4600       ContainingClassVector;
   4601   ContainingClassVector MemberOfClass;
   4602   QualType Composite1 = Context.getCanonicalType(T1),
   4603            Composite2 = Context.getCanonicalType(T2);
   4604   unsigned NeedConstBefore = 0;
   4605   do {
   4606     const PointerType *Ptr1, *Ptr2;
   4607     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   4608         (Ptr2 = Composite2->getAs<PointerType>())) {
   4609       Composite1 = Ptr1->getPointeeType();
   4610       Composite2 = Ptr2->getPointeeType();
   4611 
   4612       // If we're allowed to create a non-standard composite type, keep track
   4613       // of where we need to fill in additional 'const' qualifiers.
   4614       if (NonStandardCompositeType &&
   4615           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4616         NeedConstBefore = QualifierUnion.size();
   4617 
   4618       QualifierUnion.push_back(
   4619                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4620       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
   4621       continue;
   4622     }
   4623 
   4624     const MemberPointerType *MemPtr1, *MemPtr2;
   4625     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   4626         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   4627       Composite1 = MemPtr1->getPointeeType();
   4628       Composite2 = MemPtr2->getPointeeType();
   4629 
   4630       // If we're allowed to create a non-standard composite type, keep track
   4631       // of where we need to fill in additional 'const' qualifiers.
   4632       if (NonStandardCompositeType &&
   4633           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4634         NeedConstBefore = QualifierUnion.size();
   4635 
   4636       QualifierUnion.push_back(
   4637                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4638       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   4639                                              MemPtr2->getClass()));
   4640       continue;
   4641     }
   4642 
   4643     // FIXME: block pointer types?
   4644 
   4645     // Cannot unwrap any more types.
   4646     break;
   4647   } while (true);
   4648 
   4649   if (NeedConstBefore && NonStandardCompositeType) {
   4650     // Extension: Add 'const' to qualifiers that come before the first qualifier
   4651     // mismatch, so that our (non-standard!) composite type meets the
   4652     // requirements of C++ [conv.qual]p4 bullet 3.
   4653     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   4654       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   4655         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   4656         *NonStandardCompositeType = true;
   4657       }
   4658     }
   4659   }
   4660 
   4661   // Rewrap the composites as pointers or member pointers with the union CVRs.
   4662   ContainingClassVector::reverse_iterator MOC
   4663     = MemberOfClass.rbegin();
   4664   for (QualifierVector::reverse_iterator
   4665          I = QualifierUnion.rbegin(),
   4666          E = QualifierUnion.rend();
   4667        I != E; (void)++I, ++MOC) {
   4668     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   4669     if (MOC->first && MOC->second) {
   4670       // Rebuild member pointer type
   4671       Composite1 = Context.getMemberPointerType(
   4672                                     Context.getQualifiedType(Composite1, Quals),
   4673                                     MOC->first);
   4674       Composite2 = Context.getMemberPointerType(
   4675                                     Context.getQualifiedType(Composite2, Quals),
   4676                                     MOC->second);
   4677     } else {
   4678       // Rebuild pointer type
   4679       Composite1
   4680         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   4681       Composite2
   4682         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   4683     }
   4684   }
   4685 
   4686   // Try to convert to the first composite pointer type.
   4687   InitializedEntity Entity1
   4688     = InitializedEntity::InitializeTemporary(Composite1);
   4689   InitializationKind Kind
   4690     = InitializationKind::CreateCopy(Loc, SourceLocation());
   4691   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
   4692   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
   4693 
   4694   if (E1ToC1 && E2ToC1) {
   4695     // Conversion to Composite1 is viable.
   4696     if (!Context.hasSameType(Composite1, Composite2)) {
   4697       // Composite2 is a different type from Composite1. Check whether
   4698       // Composite2 is also viable.
   4699       InitializedEntity Entity2
   4700         = InitializedEntity::InitializeTemporary(Composite2);
   4701       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   4702       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   4703       if (E1ToC2 && E2ToC2) {
   4704         // Both Composite1 and Composite2 are viable and are different;
   4705         // this is an ambiguity.
   4706         return QualType();
   4707       }
   4708     }
   4709 
   4710     // Convert E1 to Composite1
   4711     ExprResult E1Result
   4712       = E1ToC1.Perform(*this, Entity1, Kind, E1);
   4713     if (E1Result.isInvalid())
   4714       return QualType();
   4715     E1 = E1Result.takeAs<Expr>();
   4716 
   4717     // Convert E2 to Composite1
   4718     ExprResult E2Result
   4719       = E2ToC1.Perform(*this, Entity1, Kind, E2);
   4720     if (E2Result.isInvalid())
   4721       return QualType();
   4722     E2 = E2Result.takeAs<Expr>();
   4723 
   4724     return Composite1;
   4725   }
   4726 
   4727   // Check whether Composite2 is viable.
   4728   InitializedEntity Entity2
   4729     = InitializedEntity::InitializeTemporary(Composite2);
   4730   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   4731   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   4732   if (!E1ToC2 || !E2ToC2)
   4733     return QualType();
   4734 
   4735   // Convert E1 to Composite2
   4736   ExprResult E1Result
   4737     = E1ToC2.Perform(*this, Entity2, Kind, E1);
   4738   if (E1Result.isInvalid())
   4739     return QualType();
   4740   E1 = E1Result.takeAs<Expr>();
   4741 
   4742   // Convert E2 to Composite2
   4743   ExprResult E2Result
   4744     = E2ToC2.Perform(*this, Entity2, Kind, E2);
   4745   if (E2Result.isInvalid())
   4746     return QualType();
   4747   E2 = E2Result.takeAs<Expr>();
   4748 
   4749   return Composite2;
   4750 }
   4751 
   4752 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   4753   if (!E)
   4754     return ExprError();
   4755 
   4756   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4757 
   4758   // If the result is a glvalue, we shouldn't bind it.
   4759   if (!E->isRValue())
   4760     return Owned(E);
   4761 
   4762   // In ARC, calls that return a retainable type can return retained,
   4763   // in which case we have to insert a consuming cast.
   4764   if (getLangOpts().ObjCAutoRefCount &&
   4765       E->getType()->isObjCRetainableType()) {
   4766 
   4767     bool ReturnsRetained;
   4768 
   4769     // For actual calls, we compute this by examining the type of the
   4770     // called value.
   4771     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4772       Expr *Callee = Call->getCallee()->IgnoreParens();
   4773       QualType T = Callee->getType();
   4774 
   4775       if (T == Context.BoundMemberTy) {
   4776         // Handle pointer-to-members.
   4777         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4778           T = BinOp->getRHS()->getType();
   4779         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4780           T = Mem->getMemberDecl()->getType();
   4781       }
   4782 
   4783       if (const PointerType *Ptr = T->getAs<PointerType>())
   4784         T = Ptr->getPointeeType();
   4785       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4786         T = Ptr->getPointeeType();
   4787       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4788         T = MemPtr->getPointeeType();
   4789 
   4790       const FunctionType *FTy = T->getAs<FunctionType>();
   4791       assert(FTy && "call to value not of function type?");
   4792       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4793 
   4794     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4795     // type always produce a +1 object.
   4796     } else if (isa<StmtExpr>(E)) {
   4797       ReturnsRetained = true;
   4798 
   4799     // We hit this case with the lambda conversion-to-block optimization;
   4800     // we don't want any extra casts here.
   4801     } else if (isa<CastExpr>(E) &&
   4802                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   4803       return Owned(E);
   4804 
   4805     // For message sends and property references, we try to find an
   4806     // actual method.  FIXME: we should infer retention by selector in
   4807     // cases where we don't have an actual method.
   4808     } else {
   4809       ObjCMethodDecl *D = 0;
   4810       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4811         D = Send->getMethodDecl();
   4812       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   4813         D = BoxedExpr->getBoxingMethod();
   4814       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   4815         D = ArrayLit->getArrayWithObjectsMethod();
   4816       } else if (ObjCDictionaryLiteral *DictLit
   4817                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   4818         D = DictLit->getDictWithObjectsMethod();
   4819       }
   4820 
   4821       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4822 
   4823       // Don't do reclaims on performSelector calls; despite their
   4824       // return type, the invoked method doesn't necessarily actually
   4825       // return an object.
   4826       if (!ReturnsRetained &&
   4827           D && D->getMethodFamily() == OMF_performSelector)
   4828         return Owned(E);
   4829     }
   4830 
   4831     // Don't reclaim an object of Class type.
   4832     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   4833       return Owned(E);
   4834 
   4835     ExprNeedsCleanups = true;
   4836 
   4837     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   4838                                    : CK_ARCReclaimReturnedObject);
   4839     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
   4840                                           VK_RValue));
   4841   }
   4842 
   4843   if (!getLangOpts().CPlusPlus)
   4844     return Owned(E);
   4845 
   4846   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   4847   // a fast path for the common case that the type is directly a RecordType.
   4848   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   4849   const RecordType *RT = 0;
   4850   while (!RT) {
   4851     switch (T->getTypeClass()) {
   4852     case Type::Record:
   4853       RT = cast<RecordType>(T);
   4854       break;
   4855     case Type::ConstantArray:
   4856     case Type::IncompleteArray:
   4857     case Type::VariableArray:
   4858     case Type::DependentSizedArray:
   4859       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   4860       break;
   4861     default:
   4862       return Owned(E);
   4863     }
   4864   }
   4865 
   4866   // That should be enough to guarantee that this type is complete, if we're
   4867   // not processing a decltype expression.
   4868   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4869   if (RD->isInvalidDecl() || RD->isDependentContext())
   4870     return Owned(E);
   4871 
   4872   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   4873   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
   4874 
   4875   if (Destructor) {
   4876     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4877     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4878                           PDiag(diag::err_access_dtor_temp)
   4879                             << E->getType());
   4880     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
   4881       return ExprError();
   4882 
   4883     // If destructor is trivial, we can avoid the extra copy.
   4884     if (Destructor->isTrivial())
   4885       return Owned(E);
   4886 
   4887     // We need a cleanup, but we don't need to remember the temporary.
   4888     ExprNeedsCleanups = true;
   4889   }
   4890 
   4891   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4892   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   4893 
   4894   if (IsDecltype)
   4895     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   4896 
   4897   return Owned(Bind);
   4898 }
   4899 
   4900 ExprResult
   4901 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4902   if (SubExpr.isInvalid())
   4903     return ExprError();
   4904 
   4905   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
   4906 }
   4907 
   4908 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4909   assert(SubExpr && "sub expression can't be null!");
   4910 
   4911   CleanupVarDeclMarking();
   4912 
   4913   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   4914   assert(ExprCleanupObjects.size() >= FirstCleanup);
   4915   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   4916   if (!ExprNeedsCleanups)
   4917     return SubExpr;
   4918 
   4919   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
   4920     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   4921                          ExprCleanupObjects.size() - FirstCleanup);
   4922 
   4923   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   4924   DiscardCleanupsInEvaluationContext();
   4925 
   4926   return E;
   4927 }
   4928 
   4929 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   4930   assert(SubStmt && "sub statement can't be null!");
   4931 
   4932   CleanupVarDeclMarking();
   4933 
   4934   if (!ExprNeedsCleanups)
   4935     return SubStmt;
   4936 
   4937   // FIXME: In order to attach the temporaries, wrap the statement into
   4938   // a StmtExpr; currently this is only used for asm statements.
   4939   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   4940   // a new AsmStmtWithTemporaries.
   4941   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
   4942                                                       SourceLocation(),
   4943                                                       SourceLocation());
   4944   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   4945                                    SourceLocation());
   4946   return MaybeCreateExprWithCleanups(E);
   4947 }
   4948 
   4949 /// Process the expression contained within a decltype. For such expressions,
   4950 /// certain semantic checks on temporaries are delayed until this point, and
   4951 /// are omitted for the 'topmost' call in the decltype expression. If the
   4952 /// topmost call bound a temporary, strip that temporary off the expression.
   4953 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   4954   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
   4955 
   4956   // C++11 [expr.call]p11:
   4957   //   If a function call is a prvalue of object type,
   4958   // -- if the function call is either
   4959   //   -- the operand of a decltype-specifier, or
   4960   //   -- the right operand of a comma operator that is the operand of a
   4961   //      decltype-specifier,
   4962   //   a temporary object is not introduced for the prvalue.
   4963 
   4964   // Recursively rebuild ParenExprs and comma expressions to strip out the
   4965   // outermost CXXBindTemporaryExpr, if any.
   4966   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   4967     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   4968     if (SubExpr.isInvalid())
   4969       return ExprError();
   4970     if (SubExpr.get() == PE->getSubExpr())
   4971       return Owned(E);
   4972     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
   4973   }
   4974   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   4975     if (BO->getOpcode() == BO_Comma) {
   4976       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   4977       if (RHS.isInvalid())
   4978         return ExprError();
   4979       if (RHS.get() == BO->getRHS())
   4980         return Owned(E);
   4981       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
   4982                                                 BO_Comma, BO->getType(),
   4983                                                 BO->getValueKind(),
   4984                                                 BO->getObjectKind(),
   4985                                                 BO->getOperatorLoc(),
   4986                                                 BO->isFPContractable()));
   4987     }
   4988   }
   4989 
   4990   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   4991   if (TopBind)
   4992     E = TopBind->getSubExpr();
   4993 
   4994   // Disable the special decltype handling now.
   4995   ExprEvalContexts.back().IsDecltype = false;
   4996 
   4997   // In MS mode, don't perform any extra checking of call return types within a
   4998   // decltype expression.
   4999   if (getLangOpts().MicrosoftMode)
   5000     return Owned(E);
   5001 
   5002   // Perform the semantic checks we delayed until this point.
   5003   CallExpr *TopCall = dyn_cast<CallExpr>(E);
   5004   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
   5005        I != N; ++I) {
   5006     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
   5007     if (Call == TopCall)
   5008       continue;
   5009 
   5010     if (CheckCallReturnType(Call->getCallReturnType(),
   5011                             Call->getLocStart(),
   5012                             Call, Call->getDirectCallee()))
   5013       return ExprError();
   5014   }
   5015 
   5016   // Now all relevant types are complete, check the destructors are accessible
   5017   // and non-deleted, and annotate them on the temporaries.
   5018   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
   5019        I != N; ++I) {
   5020     CXXBindTemporaryExpr *Bind =
   5021       ExprEvalContexts.back().DelayedDecltypeBinds[I];
   5022     if (Bind == TopBind)
   5023       continue;
   5024 
   5025     CXXTemporary *Temp = Bind->getTemporary();
   5026 
   5027     CXXRecordDecl *RD =
   5028       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   5029     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   5030     Temp->setDestructor(Destructor);
   5031 
   5032     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
   5033     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
   5034                           PDiag(diag::err_access_dtor_temp)
   5035                             << Bind->getType());
   5036     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
   5037       return ExprError();
   5038 
   5039     // We need a cleanup, but we don't need to remember the temporary.
   5040     ExprNeedsCleanups = true;
   5041   }
   5042 
   5043   // Possibly strip off the top CXXBindTemporaryExpr.
   5044   return Owned(E);
   5045 }
   5046 
   5047 ExprResult
   5048 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   5049                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   5050                                    bool &MayBePseudoDestructor) {
   5051   // Since this might be a postfix expression, get rid of ParenListExprs.
   5052   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   5053   if (Result.isInvalid()) return ExprError();
   5054   Base = Result.get();
   5055 
   5056   Result = CheckPlaceholderExpr(Base);
   5057   if (Result.isInvalid()) return ExprError();
   5058   Base = Result.take();
   5059 
   5060   QualType BaseType = Base->getType();
   5061   MayBePseudoDestructor = false;
   5062   if (BaseType->isDependentType()) {
   5063     // If we have a pointer to a dependent type and are using the -> operator,
   5064     // the object type is the type that the pointer points to. We might still
   5065     // have enough information about that type to do something useful.
   5066     if (OpKind == tok::arrow)
   5067       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   5068         BaseType = Ptr->getPointeeType();
   5069 
   5070     ObjectType = ParsedType::make(BaseType);
   5071     MayBePseudoDestructor = true;
   5072     return Owned(Base);
   5073   }
   5074 
   5075   // C++ [over.match.oper]p8:
   5076   //   [...] When operator->returns, the operator-> is applied  to the value
   5077   //   returned, with the original second operand.
   5078   if (OpKind == tok::arrow) {
   5079     bool NoArrowOperatorFound = false;
   5080     bool FirstIteration = true;
   5081     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
   5082     // The set of types we've considered so far.
   5083     llvm::SmallPtrSet<CanQualType,8> CTypes;
   5084     SmallVector<SourceLocation, 8> Locations;
   5085     CTypes.insert(Context.getCanonicalType(BaseType));
   5086 
   5087     while (BaseType->isRecordType()) {
   5088       Result = BuildOverloadedArrowExpr(
   5089           S, Base, OpLoc,
   5090           // When in a template specialization and on the first loop iteration,
   5091           // potentially give the default diagnostic (with the fixit in a
   5092           // separate note) instead of having the error reported back to here
   5093           // and giving a diagnostic with a fixit attached to the error itself.
   5094           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
   5095               ? 0
   5096               : &NoArrowOperatorFound);
   5097       if (Result.isInvalid()) {
   5098         if (NoArrowOperatorFound) {
   5099           if (FirstIteration) {
   5100             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5101               << BaseType << 1 << Base->getSourceRange()
   5102               << FixItHint::CreateReplacement(OpLoc, ".");
   5103             OpKind = tok::period;
   5104             break;
   5105           }
   5106           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   5107             << BaseType << Base->getSourceRange();
   5108           CallExpr *CE = dyn_cast<CallExpr>(Base);
   5109           if (Decl *CD = (CE ? CE->getCalleeDecl() : 0)) {
   5110             Diag(CD->getLocStart(),
   5111                  diag::note_member_reference_arrow_from_operator_arrow);
   5112           }
   5113         }
   5114         return ExprError();
   5115       }
   5116       Base = Result.get();
   5117       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   5118         Locations.push_back(OpCall->getDirectCallee()->getLocation());
   5119       BaseType = Base->getType();
   5120       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   5121       if (!CTypes.insert(CBaseType)) {
   5122         Diag(OpLoc, diag::err_operator_arrow_circular);
   5123         for (unsigned i = 0; i < Locations.size(); i++)
   5124           Diag(Locations[i], diag::note_declared_at);
   5125         return ExprError();
   5126       }
   5127       FirstIteration = false;
   5128     }
   5129 
   5130     if (OpKind == tok::arrow &&
   5131         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
   5132       BaseType = BaseType->getPointeeType();
   5133   }
   5134 
   5135   // Objective-C properties allow "." access on Objective-C pointer types,
   5136   // so adjust the base type to the object type itself.
   5137   if (BaseType->isObjCObjectPointerType())
   5138     BaseType = BaseType->getPointeeType();
   5139 
   5140   // C++ [basic.lookup.classref]p2:
   5141   //   [...] If the type of the object expression is of pointer to scalar
   5142   //   type, the unqualified-id is looked up in the context of the complete
   5143   //   postfix-expression.
   5144   //
   5145   // This also indicates that we could be parsing a pseudo-destructor-name.
   5146   // Note that Objective-C class and object types can be pseudo-destructor
   5147   // expressions or normal member (ivar or property) access expressions.
   5148   if (BaseType->isObjCObjectOrInterfaceType()) {
   5149     MayBePseudoDestructor = true;
   5150   } else if (!BaseType->isRecordType()) {
   5151     ObjectType = ParsedType();
   5152     MayBePseudoDestructor = true;
   5153     return Owned(Base);
   5154   }
   5155 
   5156   // The object type must be complete (or dependent), or
   5157   // C++11 [expr.prim.general]p3:
   5158   //   Unlike the object expression in other contexts, *this is not required to
   5159   //   be of complete type for purposes of class member access (5.2.5) outside
   5160   //   the member function body.
   5161   if (!BaseType->isDependentType() &&
   5162       !isThisOutsideMemberFunctionBody(BaseType) &&
   5163       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
   5164     return ExprError();
   5165 
   5166   // C++ [basic.lookup.classref]p2:
   5167   //   If the id-expression in a class member access (5.2.5) is an
   5168   //   unqualified-id, and the type of the object expression is of a class
   5169   //   type C (or of pointer to a class type C), the unqualified-id is looked
   5170   //   up in the scope of class C. [...]
   5171   ObjectType = ParsedType::make(BaseType);
   5172   return Base;
   5173 }
   5174 
   5175 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   5176                                                    Expr *MemExpr) {
   5177   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   5178   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   5179     << isa<CXXPseudoDestructorExpr>(MemExpr)
   5180     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   5181 
   5182   return ActOnCallExpr(/*Scope*/ 0,
   5183                        MemExpr,
   5184                        /*LPLoc*/ ExpectedLParenLoc,
   5185                        None,
   5186                        /*RPLoc*/ ExpectedLParenLoc);
   5187 }
   5188 
   5189 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   5190                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   5191   if (Base->hasPlaceholderType()) {
   5192     ExprResult result = S.CheckPlaceholderExpr(Base);
   5193     if (result.isInvalid()) return true;
   5194     Base = result.take();
   5195   }
   5196   ObjectType = Base->getType();
   5197 
   5198   // C++ [expr.pseudo]p2:
   5199   //   The left-hand side of the dot operator shall be of scalar type. The
   5200   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   5201   //   This scalar type is the object type.
   5202   // Note that this is rather different from the normal handling for the
   5203   // arrow operator.
   5204   if (OpKind == tok::arrow) {
   5205     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   5206       ObjectType = Ptr->getPointeeType();
   5207     } else if (!Base->isTypeDependent()) {
   5208       // The user wrote "p->" when she probably meant "p."; fix it.
   5209       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5210         << ObjectType << true
   5211         << FixItHint::CreateReplacement(OpLoc, ".");
   5212       if (S.isSFINAEContext())
   5213         return true;
   5214 
   5215       OpKind = tok::period;
   5216     }
   5217   }
   5218 
   5219   return false;
   5220 }
   5221 
   5222 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   5223                                            SourceLocation OpLoc,
   5224                                            tok::TokenKind OpKind,
   5225                                            const CXXScopeSpec &SS,
   5226                                            TypeSourceInfo *ScopeTypeInfo,
   5227                                            SourceLocation CCLoc,
   5228                                            SourceLocation TildeLoc,
   5229                                          PseudoDestructorTypeStorage Destructed,
   5230                                            bool HasTrailingLParen) {
   5231   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   5232 
   5233   QualType ObjectType;
   5234   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5235     return ExprError();
   5236 
   5237   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
   5238       !ObjectType->isVectorType()) {
   5239     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
   5240       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   5241     else
   5242       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   5243         << ObjectType << Base->getSourceRange();
   5244     return ExprError();
   5245   }
   5246 
   5247   // C++ [expr.pseudo]p2:
   5248   //   [...] The cv-unqualified versions of the object type and of the type
   5249   //   designated by the pseudo-destructor-name shall be the same type.
   5250   if (DestructedTypeInfo) {
   5251     QualType DestructedType = DestructedTypeInfo->getType();
   5252     SourceLocation DestructedTypeStart
   5253       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   5254     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   5255       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   5256         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   5257           << ObjectType << DestructedType << Base->getSourceRange()
   5258           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5259 
   5260         // Recover by setting the destructed type to the object type.
   5261         DestructedType = ObjectType;
   5262         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5263                                                            DestructedTypeStart);
   5264         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5265       } else if (DestructedType.getObjCLifetime() !=
   5266                                                 ObjectType.getObjCLifetime()) {
   5267 
   5268         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   5269           // Okay: just pretend that the user provided the correctly-qualified
   5270           // type.
   5271         } else {
   5272           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   5273             << ObjectType << DestructedType << Base->getSourceRange()
   5274             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5275         }
   5276 
   5277         // Recover by setting the destructed type to the object type.
   5278         DestructedType = ObjectType;
   5279         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5280                                                            DestructedTypeStart);
   5281         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5282       }
   5283     }
   5284   }
   5285 
   5286   // C++ [expr.pseudo]p2:
   5287   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   5288   //   form
   5289   //
   5290   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   5291   //
   5292   //   shall designate the same scalar type.
   5293   if (ScopeTypeInfo) {
   5294     QualType ScopeType = ScopeTypeInfo->getType();
   5295     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   5296         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   5297 
   5298       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   5299            diag::err_pseudo_dtor_type_mismatch)
   5300         << ObjectType << ScopeType << Base->getSourceRange()
   5301         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   5302 
   5303       ScopeType = QualType();
   5304       ScopeTypeInfo = 0;
   5305     }
   5306   }
   5307 
   5308   Expr *Result
   5309     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   5310                                             OpKind == tok::arrow, OpLoc,
   5311                                             SS.getWithLocInContext(Context),
   5312                                             ScopeTypeInfo,
   5313                                             CCLoc,
   5314                                             TildeLoc,
   5315                                             Destructed);
   5316 
   5317   if (HasTrailingLParen)
   5318     return Owned(Result);
   5319 
   5320   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   5321 }
   5322 
   5323 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5324                                            SourceLocation OpLoc,
   5325                                            tok::TokenKind OpKind,
   5326                                            CXXScopeSpec &SS,
   5327                                            UnqualifiedId &FirstTypeName,
   5328                                            SourceLocation CCLoc,
   5329                                            SourceLocation TildeLoc,
   5330                                            UnqualifiedId &SecondTypeName,
   5331                                            bool HasTrailingLParen) {
   5332   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5333           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5334          "Invalid first type name in pseudo-destructor");
   5335   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5336           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5337          "Invalid second type name in pseudo-destructor");
   5338 
   5339   QualType ObjectType;
   5340   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5341     return ExprError();
   5342 
   5343   // Compute the object type that we should use for name lookup purposes. Only
   5344   // record types and dependent types matter.
   5345   ParsedType ObjectTypePtrForLookup;
   5346   if (!SS.isSet()) {
   5347     if (ObjectType->isRecordType())
   5348       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5349     else if (ObjectType->isDependentType())
   5350       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5351   }
   5352 
   5353   // Convert the name of the type being destructed (following the ~) into a
   5354   // type (with source-location information).
   5355   QualType DestructedType;
   5356   TypeSourceInfo *DestructedTypeInfo = 0;
   5357   PseudoDestructorTypeStorage Destructed;
   5358   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5359     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5360                                SecondTypeName.StartLocation,
   5361                                S, &SS, true, false, ObjectTypePtrForLookup);
   5362     if (!T &&
   5363         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5364          (!SS.isSet() && ObjectType->isDependentType()))) {
   5365       // The name of the type being destroyed is a dependent name, and we
   5366       // couldn't find anything useful in scope. Just store the identifier and
   5367       // it's location, and we'll perform (qualified) name lookup again at
   5368       // template instantiation time.
   5369       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5370                                                SecondTypeName.StartLocation);
   5371     } else if (!T) {
   5372       Diag(SecondTypeName.StartLocation,
   5373            diag::err_pseudo_dtor_destructor_non_type)
   5374         << SecondTypeName.Identifier << ObjectType;
   5375       if (isSFINAEContext())
   5376         return ExprError();
   5377 
   5378       // Recover by assuming we had the right type all along.
   5379       DestructedType = ObjectType;
   5380     } else
   5381       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5382   } else {
   5383     // Resolve the template-id to a type.
   5384     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5385     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5386                                        TemplateId->NumArgs);
   5387     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5388                                        TemplateId->TemplateKWLoc,
   5389                                        TemplateId->Template,
   5390                                        TemplateId->TemplateNameLoc,
   5391                                        TemplateId->LAngleLoc,
   5392                                        TemplateArgsPtr,
   5393                                        TemplateId->RAngleLoc);
   5394     if (T.isInvalid() || !T.get()) {
   5395       // Recover by assuming we had the right type all along.
   5396       DestructedType = ObjectType;
   5397     } else
   5398       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5399   }
   5400 
   5401   // If we've performed some kind of recovery, (re-)build the type source
   5402   // information.
   5403   if (!DestructedType.isNull()) {
   5404     if (!DestructedTypeInfo)
   5405       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5406                                                   SecondTypeName.StartLocation);
   5407     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5408   }
   5409 
   5410   // Convert the name of the scope type (the type prior to '::') into a type.
   5411   TypeSourceInfo *ScopeTypeInfo = 0;
   5412   QualType ScopeType;
   5413   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5414       FirstTypeName.Identifier) {
   5415     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5416       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   5417                                  FirstTypeName.StartLocation,
   5418                                  S, &SS, true, false, ObjectTypePtrForLookup);
   5419       if (!T) {
   5420         Diag(FirstTypeName.StartLocation,
   5421              diag::err_pseudo_dtor_destructor_non_type)
   5422           << FirstTypeName.Identifier << ObjectType;
   5423 
   5424         if (isSFINAEContext())
   5425           return ExprError();
   5426 
   5427         // Just drop this type. It's unnecessary anyway.
   5428         ScopeType = QualType();
   5429       } else
   5430         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   5431     } else {
   5432       // Resolve the template-id to a type.
   5433       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   5434       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5435                                          TemplateId->NumArgs);
   5436       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5437                                          TemplateId->TemplateKWLoc,
   5438                                          TemplateId->Template,
   5439                                          TemplateId->TemplateNameLoc,
   5440                                          TemplateId->LAngleLoc,
   5441                                          TemplateArgsPtr,
   5442                                          TemplateId->RAngleLoc);
   5443       if (T.isInvalid() || !T.get()) {
   5444         // Recover by dropping this type.
   5445         ScopeType = QualType();
   5446       } else
   5447         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   5448     }
   5449   }
   5450 
   5451   if (!ScopeType.isNull() && !ScopeTypeInfo)
   5452     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   5453                                                   FirstTypeName.StartLocation);
   5454 
   5455 
   5456   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   5457                                    ScopeTypeInfo, CCLoc, TildeLoc,
   5458                                    Destructed, HasTrailingLParen);
   5459 }
   5460 
   5461 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5462                                            SourceLocation OpLoc,
   5463                                            tok::TokenKind OpKind,
   5464                                            SourceLocation TildeLoc,
   5465                                            const DeclSpec& DS,
   5466                                            bool HasTrailingLParen) {
   5467   QualType ObjectType;
   5468   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5469     return ExprError();
   5470 
   5471   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   5472 
   5473   TypeLocBuilder TLB;
   5474   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   5475   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   5476   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   5477   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   5478 
   5479   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   5480                                    0, SourceLocation(), TildeLoc,
   5481                                    Destructed, HasTrailingLParen);
   5482 }
   5483 
   5484 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   5485                                         CXXConversionDecl *Method,
   5486                                         bool HadMultipleCandidates) {
   5487   if (Method->getParent()->isLambda() &&
   5488       Method->getConversionType()->isBlockPointerType()) {
   5489     // This is a lambda coversion to block pointer; check if the argument
   5490     // is a LambdaExpr.
   5491     Expr *SubE = E;
   5492     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   5493     if (CE && CE->getCastKind() == CK_NoOp)
   5494       SubE = CE->getSubExpr();
   5495     SubE = SubE->IgnoreParens();
   5496     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   5497       SubE = BE->getSubExpr();
   5498     if (isa<LambdaExpr>(SubE)) {
   5499       // For the conversion to block pointer on a lambda expression, we
   5500       // construct a special BlockLiteral instead; this doesn't really make
   5501       // a difference in ARC, but outside of ARC the resulting block literal
   5502       // follows the normal lifetime rules for block literals instead of being
   5503       // autoreleased.
   5504       DiagnosticErrorTrap Trap(Diags);
   5505       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   5506                                                      E->getExprLoc(),
   5507                                                      Method, E);
   5508       if (Exp.isInvalid())
   5509         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   5510       return Exp;
   5511     }
   5512   }
   5513 
   5514 
   5515   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
   5516                                           FoundDecl, Method);
   5517   if (Exp.isInvalid())
   5518     return true;
   5519 
   5520   MemberExpr *ME =
   5521       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
   5522                                SourceLocation(), Context.BoundMemberTy,
   5523                                VK_RValue, OK_Ordinary);
   5524   if (HadMultipleCandidates)
   5525     ME->setHadMultipleCandidates(true);
   5526   MarkMemberReferenced(ME);
   5527 
   5528   QualType ResultType = Method->getResultType();
   5529   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   5530   ResultType = ResultType.getNonLValueExprType(Context);
   5531 
   5532   CXXMemberCallExpr *CE =
   5533     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
   5534                                     Exp.get()->getLocEnd());
   5535   return CE;
   5536 }
   5537 
   5538 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   5539                                       SourceLocation RParen) {
   5540   CanThrowResult CanThrow = canThrow(Operand);
   5541   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
   5542                                              CanThrow, KeyLoc, RParen));
   5543 }
   5544 
   5545 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   5546                                    Expr *Operand, SourceLocation RParen) {
   5547   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   5548 }
   5549 
   5550 static bool IsSpecialDiscardedValue(Expr *E) {
   5551   // In C++11, discarded-value expressions of a certain form are special,
   5552   // according to [expr]p10:
   5553   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
   5554   //   expression is an lvalue of volatile-qualified type and it has
   5555   //   one of the following forms:
   5556   E = E->IgnoreParens();
   5557 
   5558   //   - id-expression (5.1.1),
   5559   if (isa<DeclRefExpr>(E))
   5560     return true;
   5561 
   5562   //   - subscripting (5.2.1),
   5563   if (isa<ArraySubscriptExpr>(E))
   5564     return true;
   5565 
   5566   //   - class member access (5.2.5),
   5567   if (isa<MemberExpr>(E))
   5568     return true;
   5569 
   5570   //   - indirection (5.3.1),
   5571   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
   5572     if (UO->getOpcode() == UO_Deref)
   5573       return true;
   5574 
   5575   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5576     //   - pointer-to-member operation (5.5),
   5577     if (BO->isPtrMemOp())
   5578       return true;
   5579 
   5580     //   - comma expression (5.18) where the right operand is one of the above.
   5581     if (BO->getOpcode() == BO_Comma)
   5582       return IsSpecialDiscardedValue(BO->getRHS());
   5583   }
   5584 
   5585   //   - conditional expression (5.16) where both the second and the third
   5586   //     operands are one of the above, or
   5587   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
   5588     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
   5589            IsSpecialDiscardedValue(CO->getFalseExpr());
   5590   // The related edge case of "*x ?: *x".
   5591   if (BinaryConditionalOperator *BCO =
   5592           dyn_cast<BinaryConditionalOperator>(E)) {
   5593     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
   5594       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
   5595              IsSpecialDiscardedValue(BCO->getFalseExpr());
   5596   }
   5597 
   5598   // Objective-C++ extensions to the rule.
   5599   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
   5600     return true;
   5601 
   5602   return false;
   5603 }
   5604 
   5605 /// Perform the conversions required for an expression used in a
   5606 /// context that ignores the result.
   5607 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   5608   if (E->hasPlaceholderType()) {
   5609     ExprResult result = CheckPlaceholderExpr(E);
   5610     if (result.isInvalid()) return Owned(E);
   5611     E = result.take();
   5612   }
   5613 
   5614   // C99 6.3.2.1:
   5615   //   [Except in specific positions,] an lvalue that does not have
   5616   //   array type is converted to the value stored in the
   5617   //   designated object (and is no longer an lvalue).
   5618   if (E->isRValue()) {
   5619     // In C, function designators (i.e. expressions of function type)
   5620     // are r-values, but we still want to do function-to-pointer decay
   5621     // on them.  This is both technically correct and convenient for
   5622     // some clients.
   5623     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   5624       return DefaultFunctionArrayConversion(E);
   5625 
   5626     return Owned(E);
   5627   }
   5628 
   5629   if (getLangOpts().CPlusPlus)  {
   5630     // The C++11 standard defines the notion of a discarded-value expression;
   5631     // normally, we don't need to do anything to handle it, but if it is a
   5632     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
   5633     // conversion.
   5634     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
   5635         E->getType().isVolatileQualified() &&
   5636         IsSpecialDiscardedValue(E)) {
   5637       ExprResult Res = DefaultLvalueConversion(E);
   5638       if (Res.isInvalid())
   5639         return Owned(E);
   5640       E = Res.take();
   5641     }
   5642     return Owned(E);
   5643   }
   5644 
   5645   // GCC seems to also exclude expressions of incomplete enum type.
   5646   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   5647     if (!T->getDecl()->isComplete()) {
   5648       // FIXME: stupid workaround for a codegen bug!
   5649       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
   5650       return Owned(E);
   5651     }
   5652   }
   5653 
   5654   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   5655   if (Res.isInvalid())
   5656     return Owned(E);
   5657   E = Res.take();
   5658 
   5659   if (!E->getType()->isVoidType())
   5660     RequireCompleteType(E->getExprLoc(), E->getType(),
   5661                         diag::err_incomplete_type);
   5662   return Owned(E);
   5663 }
   5664 
   5665 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
   5666                                      bool DiscardedValue,
   5667                                      bool IsConstexpr) {
   5668   ExprResult FullExpr = Owned(FE);
   5669 
   5670   if (!FullExpr.get())
   5671     return ExprError();
   5672 
   5673   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
   5674     return ExprError();
   5675 
   5676   // Top-level expressions default to 'id' when we're in a debugger.
   5677   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
   5678       FullExpr.get()->getType() == Context.UnknownAnyTy) {
   5679     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
   5680     if (FullExpr.isInvalid())
   5681       return ExprError();
   5682   }
   5683 
   5684   if (DiscardedValue) {
   5685     FullExpr = CheckPlaceholderExpr(FullExpr.take());
   5686     if (FullExpr.isInvalid())
   5687       return ExprError();
   5688 
   5689     FullExpr = IgnoredValueConversions(FullExpr.take());
   5690     if (FullExpr.isInvalid())
   5691       return ExprError();
   5692   }
   5693 
   5694   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
   5695   return MaybeCreateExprWithCleanups(FullExpr);
   5696 }
   5697 
   5698 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   5699   if (!FullStmt) return StmtError();
   5700 
   5701   return MaybeCreateStmtWithCleanups(FullStmt);
   5702 }
   5703 
   5704 Sema::IfExistsResult
   5705 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   5706                                    CXXScopeSpec &SS,
   5707                                    const DeclarationNameInfo &TargetNameInfo) {
   5708   DeclarationName TargetName = TargetNameInfo.getName();
   5709   if (!TargetName)
   5710     return IER_DoesNotExist;
   5711 
   5712   // If the name itself is dependent, then the result is dependent.
   5713   if (TargetName.isDependentName())
   5714     return IER_Dependent;
   5715 
   5716   // Do the redeclaration lookup in the current scope.
   5717   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   5718                  Sema::NotForRedeclaration);
   5719   LookupParsedName(R, S, &SS);
   5720   R.suppressDiagnostics();
   5721 
   5722   switch (R.getResultKind()) {
   5723   case LookupResult::Found:
   5724   case LookupResult::FoundOverloaded:
   5725   case LookupResult::FoundUnresolvedValue:
   5726   case LookupResult::Ambiguous:
   5727     return IER_Exists;
   5728 
   5729   case LookupResult::NotFound:
   5730     return IER_DoesNotExist;
   5731 
   5732   case LookupResult::NotFoundInCurrentInstantiation:
   5733     return IER_Dependent;
   5734   }
   5735 
   5736   llvm_unreachable("Invalid LookupResult Kind!");
   5737 }
   5738 
   5739 Sema::IfExistsResult
   5740 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   5741                                    bool IsIfExists, CXXScopeSpec &SS,
   5742                                    UnqualifiedId &Name) {
   5743   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   5744 
   5745   // Check for unexpanded parameter packs.
   5746   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   5747   collectUnexpandedParameterPacks(SS, Unexpanded);
   5748   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   5749   if (!Unexpanded.empty()) {
   5750     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   5751                                      IsIfExists? UPPC_IfExists
   5752                                                : UPPC_IfNotExists,
   5753                                      Unexpanded);
   5754     return IER_Error;
   5755   }
   5756 
   5757   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   5758 }
   5759