Home | History | Annotate | Download | only in CodeGen
      1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "machine-trace-metrics"
     11 #include "llvm/CodeGen/MachineTraceMetrics.h"
     12 #include "llvm/ADT/PostOrderIterator.h"
     13 #include "llvm/ADT/SparseSet.h"
     14 #include "llvm/CodeGen/MachineBasicBlock.h"
     15 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/MC/MCSubtargetInfo.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/Format.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 #include "llvm/Target/TargetSubtargetInfo.h"
     26 
     27 using namespace llvm;
     28 
     29 char MachineTraceMetrics::ID = 0;
     30 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
     31 
     32 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
     33                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     34 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     35 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     36 INITIALIZE_PASS_END(MachineTraceMetrics,
     37                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     38 
     39 MachineTraceMetrics::MachineTraceMetrics()
     40   : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) {
     41   std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0);
     42 }
     43 
     44 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
     45   AU.setPreservesAll();
     46   AU.addRequired<MachineBranchProbabilityInfo>();
     47   AU.addRequired<MachineLoopInfo>();
     48   MachineFunctionPass::getAnalysisUsage(AU);
     49 }
     50 
     51 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
     52   MF = &Func;
     53   TII = MF->getTarget().getInstrInfo();
     54   TRI = MF->getTarget().getRegisterInfo();
     55   MRI = &MF->getRegInfo();
     56   Loops = &getAnalysis<MachineLoopInfo>();
     57   const TargetSubtargetInfo &ST =
     58     MF->getTarget().getSubtarget<TargetSubtargetInfo>();
     59   SchedModel.init(*ST.getSchedModel(), &ST, TII);
     60   BlockInfo.resize(MF->getNumBlockIDs());
     61   ProcResourceCycles.resize(MF->getNumBlockIDs() *
     62                             SchedModel.getNumProcResourceKinds());
     63   return false;
     64 }
     65 
     66 void MachineTraceMetrics::releaseMemory() {
     67   MF = 0;
     68   BlockInfo.clear();
     69   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
     70     delete Ensembles[i];
     71     Ensembles[i] = 0;
     72   }
     73 }
     74 
     75 //===----------------------------------------------------------------------===//
     76 //                          Fixed block information
     77 //===----------------------------------------------------------------------===//
     78 //
     79 // The number of instructions in a basic block and the CPU resources used by
     80 // those instructions don't depend on any given trace strategy.
     81 
     82 /// Compute the resource usage in basic block MBB.
     83 const MachineTraceMetrics::FixedBlockInfo*
     84 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
     85   assert(MBB && "No basic block");
     86   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
     87   if (FBI->hasResources())
     88     return FBI;
     89 
     90   // Compute resource usage in the block.
     91   FBI->HasCalls = false;
     92   unsigned InstrCount = 0;
     93 
     94   // Add up per-processor resource cycles as well.
     95   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
     96   SmallVector<unsigned, 32> PRCycles(PRKinds);
     97 
     98   for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
     99        I != E; ++I) {
    100     const MachineInstr *MI = I;
    101     if (MI->isTransient())
    102       continue;
    103     ++InstrCount;
    104     if (MI->isCall())
    105       FBI->HasCalls = true;
    106 
    107     // Count processor resources used.
    108     if (!SchedModel.hasInstrSchedModel())
    109       continue;
    110     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(MI);
    111     if (!SC->isValid())
    112       continue;
    113 
    114     for (TargetSchedModel::ProcResIter
    115          PI = SchedModel.getWriteProcResBegin(SC),
    116          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    117       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
    118       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    119     }
    120   }
    121   FBI->InstrCount = InstrCount;
    122 
    123   // Scale the resource cycles so they are comparable.
    124   unsigned PROffset = MBB->getNumber() * PRKinds;
    125   for (unsigned K = 0; K != PRKinds; ++K)
    126     ProcResourceCycles[PROffset + K] =
    127       PRCycles[K] * SchedModel.getResourceFactor(K);
    128 
    129   return FBI;
    130 }
    131 
    132 ArrayRef<unsigned>
    133 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
    134   assert(BlockInfo[MBBNum].hasResources() &&
    135          "getResources() must be called before getProcResourceCycles()");
    136   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
    137   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
    138   return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds,
    139                             PRKinds);
    140 }
    141 
    142 
    143 //===----------------------------------------------------------------------===//
    144 //                         Ensemble utility functions
    145 //===----------------------------------------------------------------------===//
    146 
    147 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
    148   : MTM(*ct) {
    149   BlockInfo.resize(MTM.BlockInfo.size());
    150   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    151   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
    152   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
    153 }
    154 
    155 // Virtual destructor serves as an anchor.
    156 MachineTraceMetrics::Ensemble::~Ensemble() {}
    157 
    158 const MachineLoop*
    159 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
    160   return MTM.Loops->getLoopFor(MBB);
    161 }
    162 
    163 // Update resource-related information in the TraceBlockInfo for MBB.
    164 // Only update resources related to the trace above MBB.
    165 void MachineTraceMetrics::Ensemble::
    166 computeDepthResources(const MachineBasicBlock *MBB) {
    167   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    168   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    169   unsigned PROffset = MBB->getNumber() * PRKinds;
    170 
    171   // Compute resources from trace above. The top block is simple.
    172   if (!TBI->Pred) {
    173     TBI->InstrDepth = 0;
    174     TBI->Head = MBB->getNumber();
    175     std::fill(ProcResourceDepths.begin() + PROffset,
    176               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    177     return;
    178   }
    179 
    180   // Compute from the block above. A post-order traversal ensures the
    181   // predecessor is always computed first.
    182   unsigned PredNum = TBI->Pred->getNumber();
    183   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
    184   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
    185   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
    186   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
    187   TBI->Head = PredTBI->Head;
    188 
    189   // Compute per-resource depths.
    190   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
    191   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
    192   for (unsigned K = 0; K != PRKinds; ++K)
    193     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
    194 }
    195 
    196 // Update resource-related information in the TraceBlockInfo for MBB.
    197 // Only update resources related to the trace below MBB.
    198 void MachineTraceMetrics::Ensemble::
    199 computeHeightResources(const MachineBasicBlock *MBB) {
    200   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    201   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    202   unsigned PROffset = MBB->getNumber() * PRKinds;
    203 
    204   // Compute resources for the current block.
    205   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
    206   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
    207 
    208   // The trace tail is done.
    209   if (!TBI->Succ) {
    210     TBI->Tail = MBB->getNumber();
    211     std::copy(PRCycles.begin(), PRCycles.end(),
    212               ProcResourceHeights.begin() + PROffset);
    213     return;
    214   }
    215 
    216   // Compute from the block below. A post-order traversal ensures the
    217   // predecessor is always computed first.
    218   unsigned SuccNum = TBI->Succ->getNumber();
    219   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
    220   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
    221   TBI->InstrHeight += SuccTBI->InstrHeight;
    222   TBI->Tail = SuccTBI->Tail;
    223 
    224   // Compute per-resource heights.
    225   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
    226   for (unsigned K = 0; K != PRKinds; ++K)
    227     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
    228 }
    229 
    230 // Check if depth resources for MBB are valid and return the TBI.
    231 // Return NULL if the resources have been invalidated.
    232 const MachineTraceMetrics::TraceBlockInfo*
    233 MachineTraceMetrics::Ensemble::
    234 getDepthResources(const MachineBasicBlock *MBB) const {
    235   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    236   return TBI->hasValidDepth() ? TBI : 0;
    237 }
    238 
    239 // Check if height resources for MBB are valid and return the TBI.
    240 // Return NULL if the resources have been invalidated.
    241 const MachineTraceMetrics::TraceBlockInfo*
    242 MachineTraceMetrics::Ensemble::
    243 getHeightResources(const MachineBasicBlock *MBB) const {
    244   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    245   return TBI->hasValidHeight() ? TBI : 0;
    246 }
    247 
    248 /// Get an array of processor resource depths for MBB. Indexed by processor
    249 /// resource kind, this array contains the scaled processor resources consumed
    250 /// by all blocks preceding MBB in its trace. It does not include instructions
    251 /// in MBB.
    252 ///
    253 /// Compare TraceBlockInfo::InstrDepth.
    254 ArrayRef<unsigned>
    255 MachineTraceMetrics::Ensemble::
    256 getProcResourceDepths(unsigned MBBNum) const {
    257   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    258   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
    259   return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds,
    260                             PRKinds);
    261 }
    262 
    263 /// Get an array of processor resource heights for MBB. Indexed by processor
    264 /// resource kind, this array contains the scaled processor resources consumed
    265 /// by this block and all blocks following it in its trace.
    266 ///
    267 /// Compare TraceBlockInfo::InstrHeight.
    268 ArrayRef<unsigned>
    269 MachineTraceMetrics::Ensemble::
    270 getProcResourceHeights(unsigned MBBNum) const {
    271   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    272   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
    273   return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds,
    274                             PRKinds);
    275 }
    276 
    277 //===----------------------------------------------------------------------===//
    278 //                         Trace Selection Strategies
    279 //===----------------------------------------------------------------------===//
    280 //
    281 // A trace selection strategy is implemented as a sub-class of Ensemble. The
    282 // trace through a block B is computed by two DFS traversals of the CFG
    283 // starting from B. One upwards, and one downwards. During the upwards DFS,
    284 // pickTracePred() is called on the post-ordered blocks. During the downwards
    285 // DFS, pickTraceSucc() is called in a post-order.
    286 //
    287 
    288 // We never allow traces that leave loops, but we do allow traces to enter
    289 // nested loops. We also never allow traces to contain back-edges.
    290 //
    291 // This means that a loop header can never appear above the center block of a
    292 // trace, except as the trace head. Below the center block, loop exiting edges
    293 // are banned.
    294 //
    295 // Return true if an edge from the From loop to the To loop is leaving a loop.
    296 // Either of To and From can be null.
    297 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
    298   return From && !From->contains(To);
    299 }
    300 
    301 // MinInstrCountEnsemble - Pick the trace that executes the least number of
    302 // instructions.
    303 namespace {
    304 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
    305   const char *getName() const { return "MinInstr"; }
    306   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*);
    307   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*);
    308 
    309 public:
    310   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    311     : MachineTraceMetrics::Ensemble(mtm) {}
    312 };
    313 }
    314 
    315 // Select the preferred predecessor for MBB.
    316 const MachineBasicBlock*
    317 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
    318   if (MBB->pred_empty())
    319     return 0;
    320   const MachineLoop *CurLoop = getLoopFor(MBB);
    321   // Don't leave loops, and never follow back-edges.
    322   if (CurLoop && MBB == CurLoop->getHeader())
    323     return 0;
    324   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
    325   const MachineBasicBlock *Best = 0;
    326   unsigned BestDepth = 0;
    327   for (MachineBasicBlock::const_pred_iterator
    328        I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    329     const MachineBasicBlock *Pred = *I;
    330     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
    331       getDepthResources(Pred);
    332     // Ignore cycles that aren't natural loops.
    333     if (!PredTBI)
    334       continue;
    335     // Pick the predecessor that would give this block the smallest InstrDepth.
    336     unsigned Depth = PredTBI->InstrDepth + CurCount;
    337     if (!Best || Depth < BestDepth)
    338       Best = Pred, BestDepth = Depth;
    339   }
    340   return Best;
    341 }
    342 
    343 // Select the preferred successor for MBB.
    344 const MachineBasicBlock*
    345 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
    346   if (MBB->pred_empty())
    347     return 0;
    348   const MachineLoop *CurLoop = getLoopFor(MBB);
    349   const MachineBasicBlock *Best = 0;
    350   unsigned BestHeight = 0;
    351   for (MachineBasicBlock::const_succ_iterator
    352        I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    353     const MachineBasicBlock *Succ = *I;
    354     // Don't consider back-edges.
    355     if (CurLoop && Succ == CurLoop->getHeader())
    356       continue;
    357     // Don't consider successors exiting CurLoop.
    358     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
    359       continue;
    360     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
    361       getHeightResources(Succ);
    362     // Ignore cycles that aren't natural loops.
    363     if (!SuccTBI)
    364       continue;
    365     // Pick the successor that would give this block the smallest InstrHeight.
    366     unsigned Height = SuccTBI->InstrHeight;
    367     if (!Best || Height < BestHeight)
    368       Best = Succ, BestHeight = Height;
    369   }
    370   return Best;
    371 }
    372 
    373 // Get an Ensemble sub-class for the requested trace strategy.
    374 MachineTraceMetrics::Ensemble *
    375 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
    376   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
    377   Ensemble *&E = Ensembles[strategy];
    378   if (E)
    379     return E;
    380 
    381   // Allocate new Ensemble on demand.
    382   switch (strategy) {
    383   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
    384   default: llvm_unreachable("Invalid trace strategy enum");
    385   }
    386 }
    387 
    388 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
    389   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
    390   BlockInfo[MBB->getNumber()].invalidate();
    391   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    392     if (Ensembles[i])
    393       Ensembles[i]->invalidate(MBB);
    394 }
    395 
    396 void MachineTraceMetrics::verifyAnalysis() const {
    397   if (!MF)
    398     return;
    399 #ifndef NDEBUG
    400   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
    401   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    402     if (Ensembles[i])
    403       Ensembles[i]->verify();
    404 #endif
    405 }
    406 
    407 //===----------------------------------------------------------------------===//
    408 //                               Trace building
    409 //===----------------------------------------------------------------------===//
    410 //
    411 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
    412 // set abstraction that confines the search to the current loop, and doesn't
    413 // revisit blocks.
    414 
    415 namespace {
    416 struct LoopBounds {
    417   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
    418   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
    419   const MachineLoopInfo *Loops;
    420   bool Downward;
    421   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
    422              const MachineLoopInfo *loops)
    423     : Blocks(blocks), Loops(loops), Downward(false) {}
    424 };
    425 }
    426 
    427 // Specialize po_iterator_storage in order to prune the post-order traversal so
    428 // it is limited to the current loop and doesn't traverse the loop back edges.
    429 namespace llvm {
    430 template<>
    431 class po_iterator_storage<LoopBounds, true> {
    432   LoopBounds &LB;
    433 public:
    434   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
    435   void finishPostorder(const MachineBasicBlock*) {}
    436 
    437   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
    438     // Skip already visited To blocks.
    439     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    440     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
    441       return false;
    442     // From is null once when To is the trace center block.
    443     if (From) {
    444       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
    445         // Don't follow backedges, don't leave FromLoop when going upwards.
    446         if ((LB.Downward ? To : From) == FromLoop->getHeader())
    447           return false;
    448         // Don't leave FromLoop.
    449         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
    450           return false;
    451       }
    452     }
    453     // To is a new block. Mark the block as visited in case the CFG has cycles
    454     // that MachineLoopInfo didn't recognize as a natural loop.
    455     return LB.Visited.insert(To);
    456   }
    457 };
    458 }
    459 
    460 /// Compute the trace through MBB.
    461 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
    462   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
    463                << MBB->getNumber() << '\n');
    464   // Set up loop bounds for the backwards post-order traversal.
    465   LoopBounds Bounds(BlockInfo, MTM.Loops);
    466 
    467   // Run an upwards post-order search for the trace start.
    468   Bounds.Downward = false;
    469   Bounds.Visited.clear();
    470   typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO;
    471   for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds);
    472        I != E; ++I) {
    473     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
    474     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    475     // All the predecessors have been visited, pick the preferred one.
    476     TBI.Pred = pickTracePred(*I);
    477     DEBUG({
    478       if (TBI.Pred)
    479         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
    480       else
    481         dbgs() << "null\n";
    482     });
    483     // The trace leading to I is now known, compute the depth resources.
    484     computeDepthResources(*I);
    485   }
    486 
    487   // Run a downwards post-order search for the trace end.
    488   Bounds.Downward = true;
    489   Bounds.Visited.clear();
    490   typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO;
    491   for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds);
    492        I != E; ++I) {
    493     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
    494     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    495     // All the successors have been visited, pick the preferred one.
    496     TBI.Succ = pickTraceSucc(*I);
    497     DEBUG({
    498       if (TBI.Succ)
    499         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
    500       else
    501         dbgs() << "null\n";
    502     });
    503     // The trace leaving I is now known, compute the height resources.
    504     computeHeightResources(*I);
    505   }
    506 }
    507 
    508 /// Invalidate traces through BadMBB.
    509 void
    510 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
    511   SmallVector<const MachineBasicBlock*, 16> WorkList;
    512   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
    513 
    514   // Invalidate height resources of blocks above MBB.
    515   if (BadTBI.hasValidHeight()) {
    516     BadTBI.invalidateHeight();
    517     WorkList.push_back(BadMBB);
    518     do {
    519       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    520       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    521             << " height.\n");
    522       // Find any MBB predecessors that have MBB as their preferred successor.
    523       // They are the only ones that need to be invalidated.
    524       for (MachineBasicBlock::const_pred_iterator
    525            I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    526         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    527         if (!TBI.hasValidHeight())
    528           continue;
    529         if (TBI.Succ == MBB) {
    530           TBI.invalidateHeight();
    531           WorkList.push_back(*I);
    532           continue;
    533         }
    534         // Verify that TBI.Succ is actually a *I successor.
    535         assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
    536       }
    537     } while (!WorkList.empty());
    538   }
    539 
    540   // Invalidate depth resources of blocks below MBB.
    541   if (BadTBI.hasValidDepth()) {
    542     BadTBI.invalidateDepth();
    543     WorkList.push_back(BadMBB);
    544     do {
    545       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    546       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    547             << " depth.\n");
    548       // Find any MBB successors that have MBB as their preferred predecessor.
    549       // They are the only ones that need to be invalidated.
    550       for (MachineBasicBlock::const_succ_iterator
    551            I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    552         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    553         if (!TBI.hasValidDepth())
    554           continue;
    555         if (TBI.Pred == MBB) {
    556           TBI.invalidateDepth();
    557           WorkList.push_back(*I);
    558           continue;
    559         }
    560         // Verify that TBI.Pred is actually a *I predecessor.
    561         assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
    562       }
    563     } while (!WorkList.empty());
    564   }
    565 
    566   // Clear any per-instruction data. We only have to do this for BadMBB itself
    567   // because the instructions in that block may change. Other blocks may be
    568   // invalidated, but their instructions will stay the same, so there is no
    569   // need to erase the Cycle entries. They will be overwritten when we
    570   // recompute.
    571   for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end();
    572        I != E; ++I)
    573     Cycles.erase(I);
    574 }
    575 
    576 void MachineTraceMetrics::Ensemble::verify() const {
    577 #ifndef NDEBUG
    578   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
    579          "Outdated BlockInfo size");
    580   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    581     const TraceBlockInfo &TBI = BlockInfo[Num];
    582     if (TBI.hasValidDepth() && TBI.Pred) {
    583       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    584       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
    585       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
    586              "Trace is broken, depth should have been invalidated.");
    587       const MachineLoop *Loop = getLoopFor(MBB);
    588       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    589     }
    590     if (TBI.hasValidHeight() && TBI.Succ) {
    591       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    592       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
    593       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
    594              "Trace is broken, height should have been invalidated.");
    595       const MachineLoop *Loop = getLoopFor(MBB);
    596       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
    597       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
    598              "Trace contains backedge");
    599     }
    600   }
    601 #endif
    602 }
    603 
    604 //===----------------------------------------------------------------------===//
    605 //                             Data Dependencies
    606 //===----------------------------------------------------------------------===//
    607 //
    608 // Compute the depth and height of each instruction based on data dependencies
    609 // and instruction latencies. These cycle numbers assume that the CPU can issue
    610 // an infinite number of instructions per cycle as long as their dependencies
    611 // are ready.
    612 
    613 // A data dependency is represented as a defining MI and operand numbers on the
    614 // defining and using MI.
    615 namespace {
    616 struct DataDep {
    617   const MachineInstr *DefMI;
    618   unsigned DefOp;
    619   unsigned UseOp;
    620 
    621   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    622     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
    623 
    624   /// Create a DataDep from an SSA form virtual register.
    625   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    626     : UseOp(UseOp) {
    627     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
    628     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    629     assert(!DefI.atEnd() && "Register has no defs");
    630     DefMI = &*DefI;
    631     DefOp = DefI.getOperandNo();
    632     assert((++DefI).atEnd() && "Register has multiple defs");
    633   }
    634 };
    635 }
    636 
    637 // Get the input data dependencies that must be ready before UseMI can issue.
    638 // Return true if UseMI has any physreg operands.
    639 static bool getDataDeps(const MachineInstr *UseMI,
    640                         SmallVectorImpl<DataDep> &Deps,
    641                         const MachineRegisterInfo *MRI) {
    642   bool HasPhysRegs = false;
    643   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    644     if (!MO->isReg())
    645       continue;
    646     unsigned Reg = MO->getReg();
    647     if (!Reg)
    648       continue;
    649     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    650       HasPhysRegs = true;
    651       continue;
    652     }
    653     // Collect virtual register reads.
    654     if (MO->readsReg())
    655       Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
    656   }
    657   return HasPhysRegs;
    658 }
    659 
    660 // Get the input data dependencies of a PHI instruction, using Pred as the
    661 // preferred predecessor.
    662 // This will add at most one dependency to Deps.
    663 static void getPHIDeps(const MachineInstr *UseMI,
    664                        SmallVectorImpl<DataDep> &Deps,
    665                        const MachineBasicBlock *Pred,
    666                        const MachineRegisterInfo *MRI) {
    667   // No predecessor at the beginning of a trace. Ignore dependencies.
    668   if (!Pred)
    669     return;
    670   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
    671   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
    672     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
    673       unsigned Reg = UseMI->getOperand(i).getReg();
    674       Deps.push_back(DataDep(MRI, Reg, i));
    675       return;
    676     }
    677   }
    678 }
    679 
    680 // Keep track of physreg data dependencies by recording each live register unit.
    681 // Associate each regunit with an instruction operand. Depending on the
    682 // direction instructions are scanned, it could be the operand that defined the
    683 // regunit, or the highest operand to read the regunit.
    684 namespace {
    685 struct LiveRegUnit {
    686   unsigned RegUnit;
    687   unsigned Cycle;
    688   const MachineInstr *MI;
    689   unsigned Op;
    690 
    691   unsigned getSparseSetIndex() const { return RegUnit; }
    692 
    693   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {}
    694 };
    695 }
    696 
    697 // Identify physreg dependencies for UseMI, and update the live regunit
    698 // tracking set when scanning instructions downwards.
    699 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
    700                                     SmallVectorImpl<DataDep> &Deps,
    701                                     SparseSet<LiveRegUnit> &RegUnits,
    702                                     const TargetRegisterInfo *TRI) {
    703   SmallVector<unsigned, 8> Kills;
    704   SmallVector<unsigned, 8> LiveDefOps;
    705 
    706   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    707     if (!MO->isReg())
    708       continue;
    709     unsigned Reg = MO->getReg();
    710     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    711       continue;
    712     // Track live defs and kills for updating RegUnits.
    713     if (MO->isDef()) {
    714       if (MO->isDead())
    715         Kills.push_back(Reg);
    716       else
    717         LiveDefOps.push_back(MO.getOperandNo());
    718     } else if (MO->isKill())
    719       Kills.push_back(Reg);
    720     // Identify dependencies.
    721     if (!MO->readsReg())
    722       continue;
    723     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    724       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    725       if (I == RegUnits.end())
    726         continue;
    727       Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
    728       break;
    729     }
    730   }
    731 
    732   // Update RegUnits to reflect live registers after UseMI.
    733   // First kills.
    734   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
    735     for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
    736       RegUnits.erase(*Units);
    737 
    738   // Second, live defs.
    739   for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
    740     unsigned DefOp = LiveDefOps[i];
    741     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
    742          Units.isValid(); ++Units) {
    743       LiveRegUnit &LRU = RegUnits[*Units];
    744       LRU.MI = UseMI;
    745       LRU.Op = DefOp;
    746     }
    747   }
    748 }
    749 
    750 /// The length of the critical path through a trace is the maximum of two path
    751 /// lengths:
    752 ///
    753 /// 1. The maximum height+depth over all instructions in the trace center block.
    754 ///
    755 /// 2. The longest cross-block dependency chain. For small blocks, it is
    756 ///    possible that the critical path through the trace doesn't include any
    757 ///    instructions in the block.
    758 ///
    759 /// This function computes the second number from the live-in list of the
    760 /// center block.
    761 unsigned MachineTraceMetrics::Ensemble::
    762 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
    763   assert(TBI.HasValidInstrDepths && "Missing depth info");
    764   assert(TBI.HasValidInstrHeights && "Missing height info");
    765   unsigned MaxLen = 0;
    766   for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
    767     const LiveInReg &LIR = TBI.LiveIns[i];
    768     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
    769       continue;
    770     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    771     // Ignore dependencies outside the current trace.
    772     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    773     if (!DefTBI.isUsefulDominator(TBI))
    774       continue;
    775     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    776     MaxLen = std::max(MaxLen, Len);
    777   }
    778   return MaxLen;
    779 }
    780 
    781 /// Compute instruction depths for all instructions above or in MBB in its
    782 /// trace. This assumes that the trace through MBB has already been computed.
    783 void MachineTraceMetrics::Ensemble::
    784 computeInstrDepths(const MachineBasicBlock *MBB) {
    785   // The top of the trace may already be computed, and HasValidInstrDepths
    786   // implies Head->HasValidInstrDepths, so we only need to start from the first
    787   // block in the trace that needs to be recomputed.
    788   SmallVector<const MachineBasicBlock*, 8> Stack;
    789   do {
    790     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    791     assert(TBI.hasValidDepth() && "Incomplete trace");
    792     if (TBI.HasValidInstrDepths)
    793       break;
    794     Stack.push_back(MBB);
    795     MBB = TBI.Pred;
    796   } while (MBB);
    797 
    798   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
    799   // in the trace. We should track any live-out physregs that were defined in
    800   // the trace. This is quite rare in SSA form, typically created by CSE
    801   // hoisting a compare.
    802   SparseSet<LiveRegUnit> RegUnits;
    803   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    804 
    805   // Go through trace blocks in top-down order, stopping after the center block.
    806   SmallVector<DataDep, 8> Deps;
    807   while (!Stack.empty()) {
    808     MBB = Stack.pop_back_val();
    809     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
    810     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    811     TBI.HasValidInstrDepths = true;
    812     TBI.CriticalPath = 0;
    813 
    814     // Print out resource depths here as well.
    815     DEBUG({
    816       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
    817       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
    818       for (unsigned K = 0; K != PRDepths.size(); ++K)
    819         if (PRDepths[K]) {
    820           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
    821           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
    822                  << MTM.SchedModel.getProcResource(K)->Name << " ("
    823                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
    824         }
    825     });
    826 
    827     // Also compute the critical path length through MBB when possible.
    828     if (TBI.HasValidInstrHeights)
    829       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
    830 
    831     for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
    832          I != E; ++I) {
    833       const MachineInstr *UseMI = I;
    834 
    835       // Collect all data dependencies.
    836       Deps.clear();
    837       if (UseMI->isPHI())
    838         getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI);
    839       else if (getDataDeps(UseMI, Deps, MTM.MRI))
    840         updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI);
    841 
    842       // Filter and process dependencies, computing the earliest issue cycle.
    843       unsigned Cycle = 0;
    844       for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
    845         const DataDep &Dep = Deps[i];
    846         const TraceBlockInfo&DepTBI =
    847           BlockInfo[Dep.DefMI->getParent()->getNumber()];
    848         // Ignore dependencies from outside the current trace.
    849         if (!DepTBI.isUsefulDominator(TBI))
    850           continue;
    851         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
    852         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
    853         // Add latency if DefMI is a real instruction. Transients get latency 0.
    854         if (!Dep.DefMI->isTransient())
    855           DepCycle += MTM.SchedModel
    856             .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp);
    857         Cycle = std::max(Cycle, DepCycle);
    858       }
    859       // Remember the instruction depth.
    860       InstrCycles &MICycles = Cycles[UseMI];
    861       MICycles.Depth = Cycle;
    862 
    863       if (!TBI.HasValidInstrHeights) {
    864         DEBUG(dbgs() << Cycle << '\t' << *UseMI);
    865         continue;
    866       }
    867       // Update critical path length.
    868       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
    869       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI);
    870     }
    871   }
    872 }
    873 
    874 // Identify physreg dependencies for MI when scanning instructions upwards.
    875 // Return the issue height of MI after considering any live regunits.
    876 // Height is the issue height computed from virtual register dependencies alone.
    877 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
    878                                       SparseSet<LiveRegUnit> &RegUnits,
    879                                       const TargetSchedModel &SchedModel,
    880                                       const TargetInstrInfo *TII,
    881                                       const TargetRegisterInfo *TRI) {
    882   SmallVector<unsigned, 8> ReadOps;
    883   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
    884     if (!MO->isReg())
    885       continue;
    886     unsigned Reg = MO->getReg();
    887     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    888       continue;
    889     if (MO->readsReg())
    890       ReadOps.push_back(MO.getOperandNo());
    891     if (!MO->isDef())
    892       continue;
    893     // This is a def of Reg. Remove corresponding entries from RegUnits, and
    894     // update MI Height to consider the physreg dependencies.
    895     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    896       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    897       if (I == RegUnits.end())
    898         continue;
    899       unsigned DepHeight = I->Cycle;
    900       if (!MI->isTransient()) {
    901         // We may not know the UseMI of this dependency, if it came from the
    902         // live-in list. SchedModel can handle a NULL UseMI.
    903         DepHeight += SchedModel
    904           .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
    905       }
    906       Height = std::max(Height, DepHeight);
    907       // This regunit is dead above MI.
    908       RegUnits.erase(I);
    909     }
    910   }
    911 
    912   // Now we know the height of MI. Update any regunits read.
    913   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    914     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
    915     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    916       LiveRegUnit &LRU = RegUnits[*Units];
    917       // Set the height to the highest reader of the unit.
    918       if (LRU.Cycle <= Height && LRU.MI != MI) {
    919         LRU.Cycle = Height;
    920         LRU.MI = MI;
    921         LRU.Op = ReadOps[i];
    922       }
    923     }
    924   }
    925 
    926   return Height;
    927 }
    928 
    929 
    930 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
    931 
    932 // Push the height of DefMI upwards if required to match UseMI.
    933 // Return true if this is the first time DefMI was seen.
    934 static bool pushDepHeight(const DataDep &Dep,
    935                           const MachineInstr *UseMI, unsigned UseHeight,
    936                           MIHeightMap &Heights,
    937                           const TargetSchedModel &SchedModel,
    938                           const TargetInstrInfo *TII) {
    939   // Adjust height by Dep.DefMI latency.
    940   if (!Dep.DefMI->isTransient())
    941     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
    942                                                   UseMI, Dep.UseOp);
    943 
    944   // Update Heights[DefMI] to be the maximum height seen.
    945   MIHeightMap::iterator I;
    946   bool New;
    947   tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
    948   if (New)
    949     return true;
    950 
    951   // DefMI has been pushed before. Give it the max height.
    952   if (I->second < UseHeight)
    953     I->second = UseHeight;
    954   return false;
    955 }
    956 
    957 /// Assuming that the virtual register defined by DefMI:DefOp was used by
    958 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
    959 /// when reaching the block that contains DefMI.
    960 void MachineTraceMetrics::Ensemble::
    961 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
    962            ArrayRef<const MachineBasicBlock*> Trace) {
    963   assert(!Trace.empty() && "Trace should contain at least one block");
    964   unsigned Reg = DefMI->getOperand(DefOp).getReg();
    965   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    966   const MachineBasicBlock *DefMBB = DefMI->getParent();
    967 
    968   // Reg is live-in to all blocks in Trace that follow DefMBB.
    969   for (unsigned i = Trace.size(); i; --i) {
    970     const MachineBasicBlock *MBB = Trace[i-1];
    971     if (MBB == DefMBB)
    972       return;
    973     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    974     // Just add the register. The height will be updated later.
    975     TBI.LiveIns.push_back(Reg);
    976   }
    977 }
    978 
    979 /// Compute instruction heights in the trace through MBB. This updates MBB and
    980 /// the blocks below it in the trace. It is assumed that the trace has already
    981 /// been computed.
    982 void MachineTraceMetrics::Ensemble::
    983 computeInstrHeights(const MachineBasicBlock *MBB) {
    984   // The bottom of the trace may already be computed.
    985   // Find the blocks that need updating.
    986   SmallVector<const MachineBasicBlock*, 8> Stack;
    987   do {
    988     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    989     assert(TBI.hasValidHeight() && "Incomplete trace");
    990     if (TBI.HasValidInstrHeights)
    991       break;
    992     Stack.push_back(MBB);
    993     TBI.LiveIns.clear();
    994     MBB = TBI.Succ;
    995   } while (MBB);
    996 
    997   // As we move upwards in the trace, keep track of instructions that are
    998   // required by deeper trace instructions. Map MI -> height required so far.
    999   MIHeightMap Heights;
   1000 
   1001   // For physregs, the def isn't known when we see the use.
   1002   // Instead, keep track of the highest use of each regunit.
   1003   SparseSet<LiveRegUnit> RegUnits;
   1004   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
   1005 
   1006   // If the bottom of the trace was already precomputed, initialize heights
   1007   // from its live-in list.
   1008   // MBB is the highest precomputed block in the trace.
   1009   if (MBB) {
   1010     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1011     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1012       LiveInReg LI = TBI.LiveIns[i];
   1013       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
   1014         // For virtual registers, the def latency is included.
   1015         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
   1016         if (Height < LI.Height)
   1017           Height = LI.Height;
   1018       } else {
   1019         // For register units, the def latency is not included because we don't
   1020         // know the def yet.
   1021         RegUnits[LI.Reg].Cycle = LI.Height;
   1022       }
   1023     }
   1024   }
   1025 
   1026   // Go through the trace blocks in bottom-up order.
   1027   SmallVector<DataDep, 8> Deps;
   1028   for (;!Stack.empty(); Stack.pop_back()) {
   1029     MBB = Stack.back();
   1030     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
   1031     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1032     TBI.HasValidInstrHeights = true;
   1033     TBI.CriticalPath = 0;
   1034 
   1035     DEBUG({
   1036       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
   1037       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
   1038       for (unsigned K = 0; K != PRHeights.size(); ++K)
   1039         if (PRHeights[K]) {
   1040           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
   1041           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
   1042                  << MTM.SchedModel.getProcResource(K)->Name << " ("
   1043                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
   1044         }
   1045     });
   1046 
   1047     // Get dependencies from PHIs in the trace successor.
   1048     const MachineBasicBlock *Succ = TBI.Succ;
   1049     // If MBB is the last block in the trace, and it has a back-edge to the
   1050     // loop header, get loop-carried dependencies from PHIs in the header. For
   1051     // that purpose, pretend that all the loop header PHIs have height 0.
   1052     if (!Succ)
   1053       if (const MachineLoop *Loop = getLoopFor(MBB))
   1054         if (MBB->isSuccessor(Loop->getHeader()))
   1055           Succ = Loop->getHeader();
   1056 
   1057     if (Succ) {
   1058       for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end();
   1059            I != E && I->isPHI(); ++I) {
   1060         const MachineInstr *PHI = I;
   1061         Deps.clear();
   1062         getPHIDeps(PHI, Deps, MBB, MTM.MRI);
   1063         if (!Deps.empty()) {
   1064           // Loop header PHI heights are all 0.
   1065           unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0;
   1066           DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI);
   1067           if (pushDepHeight(Deps.front(), PHI, Height,
   1068                             Heights, MTM.SchedModel, MTM.TII))
   1069             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
   1070         }
   1071       }
   1072     }
   1073 
   1074     // Go through the block backwards.
   1075     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
   1076          BI != BB;) {
   1077       const MachineInstr *MI = --BI;
   1078 
   1079       // Find the MI height as determined by virtual register uses in the
   1080       // trace below.
   1081       unsigned Cycle = 0;
   1082       MIHeightMap::iterator HeightI = Heights.find(MI);
   1083       if (HeightI != Heights.end()) {
   1084         Cycle = HeightI->second;
   1085         // We won't be seeing any more MI uses.
   1086         Heights.erase(HeightI);
   1087       }
   1088 
   1089       // Don't process PHI deps. They depend on the specific predecessor, and
   1090       // we'll get them when visiting the predecessor.
   1091       Deps.clear();
   1092       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
   1093 
   1094       // There may also be regunit dependencies to include in the height.
   1095       if (HasPhysRegs)
   1096         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
   1097                                       MTM.SchedModel, MTM.TII, MTM.TRI);
   1098 
   1099       // Update the required height of any virtual registers read by MI.
   1100       for (unsigned i = 0, e = Deps.size(); i != e; ++i)
   1101         if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
   1102           addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
   1103 
   1104       InstrCycles &MICycles = Cycles[MI];
   1105       MICycles.Height = Cycle;
   1106       if (!TBI.HasValidInstrDepths) {
   1107         DEBUG(dbgs() << Cycle << '\t' << *MI);
   1108         continue;
   1109       }
   1110       // Update critical path length.
   1111       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
   1112       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
   1113     }
   1114 
   1115     // Update virtual live-in heights. They were added by addLiveIns() with a 0
   1116     // height because the final height isn't known until now.
   1117     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
   1118     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1119       LiveInReg &LIR = TBI.LiveIns[i];
   1120       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
   1121       LIR.Height = Heights.lookup(DefMI);
   1122       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
   1123     }
   1124 
   1125     // Transfer the live regunits to the live-in list.
   1126     for (SparseSet<LiveRegUnit>::const_iterator
   1127          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
   1128       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
   1129       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
   1130                    << '@' << RI->Cycle);
   1131     }
   1132     DEBUG(dbgs() << '\n');
   1133 
   1134     if (!TBI.HasValidInstrDepths)
   1135       continue;
   1136     // Add live-ins to the critical path length.
   1137     TBI.CriticalPath = std::max(TBI.CriticalPath,
   1138                                 computeCrossBlockCriticalPath(TBI));
   1139     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
   1140   }
   1141 }
   1142 
   1143 MachineTraceMetrics::Trace
   1144 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
   1145   // FIXME: Check cache tags, recompute as needed.
   1146   computeTrace(MBB);
   1147   computeInstrDepths(MBB);
   1148   computeInstrHeights(MBB);
   1149   return Trace(*this, BlockInfo[MBB->getNumber()]);
   1150 }
   1151 
   1152 unsigned
   1153 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
   1154   assert(MI && "Not an instruction.");
   1155   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
   1156          "MI must be in the trace center block");
   1157   InstrCycles Cyc = getInstrCycles(MI);
   1158   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
   1159 }
   1160 
   1161 unsigned
   1162 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
   1163   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
   1164   SmallVector<DataDep, 1> Deps;
   1165   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
   1166   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
   1167   DataDep &Dep = Deps.front();
   1168   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
   1169   // Add latency if DefMI is a real instruction. Transients get latency 0.
   1170   if (!Dep.DefMI->isTransient())
   1171     DepCycle += TE.MTM.SchedModel
   1172       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
   1173   return DepCycle;
   1174 }
   1175 
   1176 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
   1177   // Find the limiting processor resource.
   1178   // Numbers have been pre-scaled to be comparable.
   1179   unsigned PRMax = 0;
   1180   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1181   if (Bottom) {
   1182     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
   1183     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1184       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
   1185   } else {
   1186     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1187       PRMax = std::max(PRMax, PRDepths[K]);
   1188   }
   1189   // Convert to cycle count.
   1190   PRMax = TE.MTM.getCycles(PRMax);
   1191 
   1192   unsigned Instrs = TBI.InstrDepth;
   1193   if (Bottom)
   1194     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
   1195   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1196     Instrs /= IW;
   1197   // Assume issue width 1 without a schedule model.
   1198   return std::max(Instrs, PRMax);
   1199 }
   1200 
   1201 
   1202 unsigned MachineTraceMetrics::Trace::
   1203 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks,
   1204                   ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const {
   1205   // Add up resources above and below the center block.
   1206   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1207   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
   1208   unsigned PRMax = 0;
   1209   for (unsigned K = 0; K != PRDepths.size(); ++K) {
   1210     unsigned PRCycles = PRDepths[K] + PRHeights[K];
   1211     for (unsigned I = 0; I != Extrablocks.size(); ++I)
   1212       PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
   1213     for (unsigned I = 0; I != ExtraInstrs.size(); ++I) {
   1214       const MCSchedClassDesc* SC = ExtraInstrs[I];
   1215       if (!SC->isValid())
   1216         continue;
   1217       for (TargetSchedModel::ProcResIter
   1218              PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
   1219              PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
   1220         if (PI->ProcResourceIdx != K)
   1221           continue;
   1222         PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K));
   1223       }
   1224     }
   1225     PRMax = std::max(PRMax, PRCycles);
   1226   }
   1227   // Convert to cycle count.
   1228   PRMax = TE.MTM.getCycles(PRMax);
   1229 
   1230   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
   1231   for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
   1232     Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
   1233   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1234     Instrs /= IW;
   1235   // Assume issue width 1 without a schedule model.
   1236   return std::max(Instrs, PRMax);
   1237 }
   1238 
   1239 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
   1240   OS << getName() << " ensemble:\n";
   1241   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
   1242     OS << "  BB#" << i << '\t';
   1243     BlockInfo[i].print(OS);
   1244     OS << '\n';
   1245   }
   1246 }
   1247 
   1248 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
   1249   if (hasValidDepth()) {
   1250     OS << "depth=" << InstrDepth;
   1251     if (Pred)
   1252       OS << " pred=BB#" << Pred->getNumber();
   1253     else
   1254       OS << " pred=null";
   1255     OS << " head=BB#" << Head;
   1256     if (HasValidInstrDepths)
   1257       OS << " +instrs";
   1258   } else
   1259     OS << "depth invalid";
   1260   OS << ", ";
   1261   if (hasValidHeight()) {
   1262     OS << "height=" << InstrHeight;
   1263     if (Succ)
   1264       OS << " succ=BB#" << Succ->getNumber();
   1265     else
   1266       OS << " succ=null";
   1267     OS << " tail=BB#" << Tail;
   1268     if (HasValidInstrHeights)
   1269       OS << " +instrs";
   1270   } else
   1271     OS << "height invalid";
   1272   if (HasValidInstrDepths && HasValidInstrHeights)
   1273     OS << ", crit=" << CriticalPath;
   1274 }
   1275 
   1276 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
   1277   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
   1278 
   1279   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
   1280      << " --> BB#" << TBI.Tail << ':';
   1281   if (TBI.hasValidHeight() && TBI.hasValidDepth())
   1282     OS << ' ' << getInstrCount() << " instrs.";
   1283   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
   1284     OS << ' ' << TBI.CriticalPath << " cycles.";
   1285 
   1286   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
   1287   OS << "\nBB#" << MBBNum;
   1288   while (Block->hasValidDepth() && Block->Pred) {
   1289     unsigned Num = Block->Pred->getNumber();
   1290     OS << " <- BB#" << Num;
   1291     Block = &TE.BlockInfo[Num];
   1292   }
   1293 
   1294   Block = &TBI;
   1295   OS << "\n    ";
   1296   while (Block->hasValidHeight() && Block->Succ) {
   1297     unsigned Num = Block->Succ->getNumber();
   1298     OS << " -> BB#" << Num;
   1299     Block = &TE.BlockInfo[Num];
   1300   }
   1301   OS << '\n';
   1302 }
   1303