Home | History | Annotate | Download | only in CodeGen
      1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
     11 // register allocator for LLVM. This allocator works by constructing a PBQP
     12 // problem representing the register allocation problem under consideration,
     13 // solving this using a PBQP solver, and mapping the solution back to a
     14 // register assignment. If any variables are selected for spilling then spill
     15 // code is inserted and the process repeated.
     16 //
     17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
     18 // for register allocation. For more information on PBQP for register
     19 // allocation, see the following papers:
     20 //
     21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
     22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
     23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
     24 //
     25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
     26 //   architectures. In Proceedings of the Joint Conference on Languages,
     27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
     28 //   NY, USA, 139-148.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #define DEBUG_TYPE "regalloc"
     33 
     34 #include "llvm/CodeGen/RegAllocPBQP.h"
     35 #include "RegisterCoalescer.h"
     36 #include "Spiller.h"
     37 #include "llvm/ADT/OwningPtr.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/CodeGen/CalcSpillWeights.h"
     40 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     41 #include "llvm/CodeGen/LiveRangeEdit.h"
     42 #include "llvm/CodeGen/LiveStackAnalysis.h"
     43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     44 #include "llvm/CodeGen/MachineDominators.h"
     45 #include "llvm/CodeGen/MachineFunctionPass.h"
     46 #include "llvm/CodeGen/MachineLoopInfo.h"
     47 #include "llvm/CodeGen/MachineRegisterInfo.h"
     48 #include "llvm/CodeGen/PBQP/Graph.h"
     49 #include "llvm/CodeGen/PBQP/HeuristicSolver.h"
     50 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
     51 #include "llvm/CodeGen/RegAllocRegistry.h"
     52 #include "llvm/CodeGen/VirtRegMap.h"
     53 #include "llvm/IR/Module.h"
     54 #include "llvm/Support/Debug.h"
     55 #include "llvm/Support/raw_ostream.h"
     56 #include "llvm/Target/TargetInstrInfo.h"
     57 #include "llvm/Target/TargetMachine.h"
     58 #include <limits>
     59 #include <memory>
     60 #include <set>
     61 #include <sstream>
     62 #include <vector>
     63 
     64 using namespace llvm;
     65 
     66 static RegisterRegAlloc
     67 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
     68                        createDefaultPBQPRegisterAllocator);
     69 
     70 static cl::opt<bool>
     71 pbqpCoalescing("pbqp-coalescing",
     72                 cl::desc("Attempt coalescing during PBQP register allocation."),
     73                 cl::init(false), cl::Hidden);
     74 
     75 #ifndef NDEBUG
     76 static cl::opt<bool>
     77 pbqpDumpGraphs("pbqp-dump-graphs",
     78                cl::desc("Dump graphs for each function/round in the compilation unit."),
     79                cl::init(false), cl::Hidden);
     80 #endif
     81 
     82 namespace {
     83 
     84 ///
     85 /// PBQP based allocators solve the register allocation problem by mapping
     86 /// register allocation problems to Partitioned Boolean Quadratic
     87 /// Programming problems.
     88 class RegAllocPBQP : public MachineFunctionPass {
     89 public:
     90 
     91   static char ID;
     92 
     93   /// Construct a PBQP register allocator.
     94   RegAllocPBQP(OwningPtr<PBQPBuilder> &b, char *cPassID=0)
     95       : MachineFunctionPass(ID), builder(b.take()), customPassID(cPassID) {
     96     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
     97     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     98     initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
     99     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    100     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    101   }
    102 
    103   /// Return the pass name.
    104   virtual const char* getPassName() const {
    105     return "PBQP Register Allocator";
    106   }
    107 
    108   /// PBQP analysis usage.
    109   virtual void getAnalysisUsage(AnalysisUsage &au) const;
    110 
    111   /// Perform register allocation
    112   virtual bool runOnMachineFunction(MachineFunction &MF);
    113 
    114 private:
    115 
    116   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
    117   typedef std::vector<const LiveInterval*> Node2LIMap;
    118   typedef std::vector<unsigned> AllowedSet;
    119   typedef std::vector<AllowedSet> AllowedSetMap;
    120   typedef std::pair<unsigned, unsigned> RegPair;
    121   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
    122   typedef std::set<unsigned> RegSet;
    123 
    124 
    125   OwningPtr<PBQPBuilder> builder;
    126 
    127   char *customPassID;
    128 
    129   MachineFunction *mf;
    130   const TargetMachine *tm;
    131   const TargetRegisterInfo *tri;
    132   const TargetInstrInfo *tii;
    133   MachineRegisterInfo *mri;
    134   const MachineBlockFrequencyInfo *mbfi;
    135 
    136   OwningPtr<Spiller> spiller;
    137   LiveIntervals *lis;
    138   LiveStacks *lss;
    139   VirtRegMap *vrm;
    140 
    141   RegSet vregsToAlloc, emptyIntervalVRegs;
    142 
    143   /// \brief Finds the initial set of vreg intervals to allocate.
    144   void findVRegIntervalsToAlloc();
    145 
    146   /// \brief Given a solved PBQP problem maps this solution back to a register
    147   /// assignment.
    148   bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
    149                          const PBQP::Solution &solution);
    150 
    151   /// \brief Postprocessing before final spilling. Sets basic block "live in"
    152   /// variables.
    153   void finalizeAlloc() const;
    154 
    155 };
    156 
    157 char RegAllocPBQP::ID = 0;
    158 
    159 } // End anonymous namespace.
    160 
    161 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
    162   Node2VReg::const_iterator vregItr = node2VReg.find(node);
    163   assert(vregItr != node2VReg.end() && "No vreg for node.");
    164   return vregItr->second;
    165 }
    166 
    167 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
    168   VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
    169   assert(nodeItr != vreg2Node.end() && "No node for vreg.");
    170   return nodeItr->second;
    171 
    172 }
    173 
    174 const PBQPRAProblem::AllowedSet&
    175   PBQPRAProblem::getAllowedSet(unsigned vreg) const {
    176   AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
    177   assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
    178   const AllowedSet &allowedSet = allowedSetItr->second;
    179   return allowedSet;
    180 }
    181 
    182 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
    183   assert(isPRegOption(vreg, option) && "Not a preg option.");
    184 
    185   const AllowedSet& allowedSet = getAllowedSet(vreg);
    186   assert(option <= allowedSet.size() && "Option outside allowed set.");
    187   return allowedSet[option - 1];
    188 }
    189 
    190 PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
    191                                   const MachineBlockFrequencyInfo *mbfi,
    192                                   const RegSet &vregs) {
    193 
    194   LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
    195   MachineRegisterInfo *mri = &mf->getRegInfo();
    196   const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
    197 
    198   OwningPtr<PBQPRAProblem> p(new PBQPRAProblem());
    199   PBQP::Graph &g = p->getGraph();
    200   RegSet pregs;
    201 
    202   // Collect the set of preg intervals, record that they're used in the MF.
    203   for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
    204     if (mri->def_empty(Reg))
    205       continue;
    206     pregs.insert(Reg);
    207     mri->setPhysRegUsed(Reg);
    208   }
    209 
    210   // Iterate over vregs.
    211   for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
    212        vregItr != vregEnd; ++vregItr) {
    213     unsigned vreg = *vregItr;
    214     const TargetRegisterClass *trc = mri->getRegClass(vreg);
    215     LiveInterval *vregLI = &LIS->getInterval(vreg);
    216 
    217     // Record any overlaps with regmask operands.
    218     BitVector regMaskOverlaps;
    219     LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
    220 
    221     // Compute an initial allowed set for the current vreg.
    222     typedef std::vector<unsigned> VRAllowed;
    223     VRAllowed vrAllowed;
    224     ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
    225     for (unsigned i = 0; i != rawOrder.size(); ++i) {
    226       unsigned preg = rawOrder[i];
    227       if (mri->isReserved(preg))
    228         continue;
    229 
    230       // vregLI crosses a regmask operand that clobbers preg.
    231       if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
    232         continue;
    233 
    234       // vregLI overlaps fixed regunit interference.
    235       bool Interference = false;
    236       for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
    237         if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
    238           Interference = true;
    239           break;
    240         }
    241       }
    242       if (Interference)
    243         continue;
    244 
    245       // preg is usable for this virtual register.
    246       vrAllowed.push_back(preg);
    247     }
    248 
    249     // Construct the node.
    250     PBQP::Graph::NodeItr node =
    251       g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
    252 
    253     // Record the mapping and allowed set in the problem.
    254     p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
    255 
    256     PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
    257         vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
    258 
    259     addSpillCosts(g.getNodeCosts(node), spillCost);
    260   }
    261 
    262   for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
    263          vr1Itr != vrEnd; ++vr1Itr) {
    264     unsigned vr1 = *vr1Itr;
    265     const LiveInterval &l1 = lis->getInterval(vr1);
    266     const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
    267 
    268     for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
    269          vr2Itr != vrEnd; ++vr2Itr) {
    270       unsigned vr2 = *vr2Itr;
    271       const LiveInterval &l2 = lis->getInterval(vr2);
    272       const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
    273 
    274       assert(!l2.empty() && "Empty interval in vreg set?");
    275       if (l1.overlaps(l2)) {
    276         PBQP::Graph::EdgeItr edge =
    277           g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
    278                     PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
    279 
    280         addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
    281       }
    282     }
    283   }
    284 
    285   return p.take();
    286 }
    287 
    288 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
    289                                 PBQP::PBQPNum spillCost) {
    290   costVec[0] = spillCost;
    291 }
    292 
    293 void PBQPBuilder::addInterferenceCosts(
    294                                     PBQP::Matrix &costMat,
    295                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
    296                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
    297                                     const TargetRegisterInfo *tri) {
    298   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
    299   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
    300 
    301   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
    302     unsigned preg1 = vr1Allowed[i];
    303 
    304     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
    305       unsigned preg2 = vr2Allowed[j];
    306 
    307       if (tri->regsOverlap(preg1, preg2)) {
    308         costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
    309       }
    310     }
    311   }
    312 }
    313 
    314 PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
    315                                                 const LiveIntervals *lis,
    316                                                 const MachineBlockFrequencyInfo *mbfi,
    317                                                 const RegSet &vregs) {
    318 
    319   OwningPtr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
    320   PBQP::Graph &g = p->getGraph();
    321 
    322   const TargetMachine &tm = mf->getTarget();
    323   CoalescerPair cp(*tm.getRegisterInfo());
    324 
    325   // Scan the machine function and add a coalescing cost whenever CoalescerPair
    326   // gives the Ok.
    327   for (MachineFunction::const_iterator mbbItr = mf->begin(),
    328                                        mbbEnd = mf->end();
    329        mbbItr != mbbEnd; ++mbbItr) {
    330     const MachineBasicBlock *mbb = &*mbbItr;
    331 
    332     for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
    333                                            miEnd = mbb->end();
    334          miItr != miEnd; ++miItr) {
    335       const MachineInstr *mi = &*miItr;
    336 
    337       if (!cp.setRegisters(mi)) {
    338         continue; // Not coalescable.
    339       }
    340 
    341       if (cp.getSrcReg() == cp.getDstReg()) {
    342         continue; // Already coalesced.
    343       }
    344 
    345       unsigned dst = cp.getDstReg(),
    346                src = cp.getSrcReg();
    347 
    348       const float copyFactor = 0.5; // Cost of copy relative to load. Current
    349       // value plucked randomly out of the air.
    350 
    351       PBQP::PBQPNum cBenefit =
    352         copyFactor * LiveIntervals::getSpillWeight(false, true,
    353                                                    mbfi->getBlockFreq(mbb));
    354 
    355       if (cp.isPhys()) {
    356         if (!mf->getRegInfo().isAllocatable(dst)) {
    357           continue;
    358         }
    359 
    360         const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
    361         unsigned pregOpt = 0;
    362         while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
    363           ++pregOpt;
    364         }
    365         if (pregOpt < allowed.size()) {
    366           ++pregOpt; // +1 to account for spill option.
    367           PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
    368           addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
    369         }
    370       } else {
    371         const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
    372         const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
    373         PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
    374         PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
    375         PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
    376         if (edge == g.edgesEnd()) {
    377           edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
    378                                                       allowed2->size() + 1,
    379                                                       0));
    380         } else {
    381           if (g.getEdgeNode1(edge) == node2) {
    382             std::swap(node1, node2);
    383             std::swap(allowed1, allowed2);
    384           }
    385         }
    386 
    387         addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
    388                            cBenefit);
    389       }
    390     }
    391   }
    392 
    393   return p.take();
    394 }
    395 
    396 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
    397                                                    unsigned pregOption,
    398                                                    PBQP::PBQPNum benefit) {
    399   costVec[pregOption] += -benefit;
    400 }
    401 
    402 void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
    403                                     PBQP::Matrix &costMat,
    404                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
    405                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
    406                                     PBQP::PBQPNum benefit) {
    407 
    408   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
    409   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
    410 
    411   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
    412     unsigned preg1 = vr1Allowed[i];
    413     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
    414       unsigned preg2 = vr2Allowed[j];
    415 
    416       if (preg1 == preg2) {
    417         costMat[i + 1][j + 1] += -benefit;
    418       }
    419     }
    420   }
    421 }
    422 
    423 
    424 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
    425   au.setPreservesCFG();
    426   au.addRequired<AliasAnalysis>();
    427   au.addPreserved<AliasAnalysis>();
    428   au.addRequired<SlotIndexes>();
    429   au.addPreserved<SlotIndexes>();
    430   au.addRequired<LiveIntervals>();
    431   au.addPreserved<LiveIntervals>();
    432   //au.addRequiredID(SplitCriticalEdgesID);
    433   if (customPassID)
    434     au.addRequiredID(*customPassID);
    435   au.addRequired<CalculateSpillWeights>();
    436   au.addRequired<LiveStacks>();
    437   au.addPreserved<LiveStacks>();
    438   au.addRequired<MachineBlockFrequencyInfo>();
    439   au.addPreserved<MachineBlockFrequencyInfo>();
    440   au.addRequired<MachineLoopInfo>();
    441   au.addPreserved<MachineLoopInfo>();
    442   au.addRequired<MachineDominatorTree>();
    443   au.addPreserved<MachineDominatorTree>();
    444   au.addRequired<VirtRegMap>();
    445   au.addPreserved<VirtRegMap>();
    446   MachineFunctionPass::getAnalysisUsage(au);
    447 }
    448 
    449 void RegAllocPBQP::findVRegIntervalsToAlloc() {
    450 
    451   // Iterate over all live ranges.
    452   for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
    453     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    454     if (mri->reg_nodbg_empty(Reg))
    455       continue;
    456     LiveInterval *li = &lis->getInterval(Reg);
    457 
    458     // If this live interval is non-empty we will use pbqp to allocate it.
    459     // Empty intervals we allocate in a simple post-processing stage in
    460     // finalizeAlloc.
    461     if (!li->empty()) {
    462       vregsToAlloc.insert(li->reg);
    463     } else {
    464       emptyIntervalVRegs.insert(li->reg);
    465     }
    466   }
    467 }
    468 
    469 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
    470                                      const PBQP::Solution &solution) {
    471   // Set to true if we have any spills
    472   bool anotherRoundNeeded = false;
    473 
    474   // Clear the existing allocation.
    475   vrm->clearAllVirt();
    476 
    477   const PBQP::Graph &g = problem.getGraph();
    478   // Iterate over the nodes mapping the PBQP solution to a register
    479   // assignment.
    480   for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
    481                                  nodeEnd = g.nodesEnd();
    482        node != nodeEnd; ++node) {
    483     unsigned vreg = problem.getVRegForNode(node);
    484     unsigned alloc = solution.getSelection(node);
    485 
    486     if (problem.isPRegOption(vreg, alloc)) {
    487       unsigned preg = problem.getPRegForOption(vreg, alloc);
    488       DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
    489             << tri->getName(preg) << "\n");
    490       assert(preg != 0 && "Invalid preg selected.");
    491       vrm->assignVirt2Phys(vreg, preg);
    492     } else if (problem.isSpillOption(vreg, alloc)) {
    493       vregsToAlloc.erase(vreg);
    494       SmallVector<LiveInterval*, 8> newSpills;
    495       LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
    496       spiller->spill(LRE);
    497 
    498       DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
    499                    << LRE.getParent().weight << ", New vregs: ");
    500 
    501       // Copy any newly inserted live intervals into the list of regs to
    502       // allocate.
    503       for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
    504            itr != end; ++itr) {
    505         assert(!(*itr)->empty() && "Empty spill range.");
    506         DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " ");
    507         vregsToAlloc.insert((*itr)->reg);
    508       }
    509 
    510       DEBUG(dbgs() << ")\n");
    511 
    512       // We need another round if spill intervals were added.
    513       anotherRoundNeeded |= !LRE.empty();
    514     } else {
    515       llvm_unreachable("Unknown allocation option.");
    516     }
    517   }
    518 
    519   return !anotherRoundNeeded;
    520 }
    521 
    522 
    523 void RegAllocPBQP::finalizeAlloc() const {
    524   // First allocate registers for the empty intervals.
    525   for (RegSet::const_iterator
    526          itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
    527          itr != end; ++itr) {
    528     LiveInterval *li = &lis->getInterval(*itr);
    529 
    530     unsigned physReg = mri->getSimpleHint(li->reg);
    531 
    532     if (physReg == 0) {
    533       const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
    534       physReg = liRC->getRawAllocationOrder(*mf).front();
    535     }
    536 
    537     vrm->assignVirt2Phys(li->reg, physReg);
    538   }
    539 }
    540 
    541 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
    542 
    543   mf = &MF;
    544   tm = &mf->getTarget();
    545   tri = tm->getRegisterInfo();
    546   tii = tm->getInstrInfo();
    547   mri = &mf->getRegInfo();
    548 
    549   lis = &getAnalysis<LiveIntervals>();
    550   lss = &getAnalysis<LiveStacks>();
    551   mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
    552 
    553   vrm = &getAnalysis<VirtRegMap>();
    554   spiller.reset(createInlineSpiller(*this, MF, *vrm));
    555 
    556   mri->freezeReservedRegs(MF);
    557 
    558   DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
    559 
    560   // Allocator main loop:
    561   //
    562   // * Map current regalloc problem to a PBQP problem
    563   // * Solve the PBQP problem
    564   // * Map the solution back to a register allocation
    565   // * Spill if necessary
    566   //
    567   // This process is continued till no more spills are generated.
    568 
    569   // Find the vreg intervals in need of allocation.
    570   findVRegIntervalsToAlloc();
    571 
    572 #ifndef NDEBUG
    573   const Function* func = mf->getFunction();
    574   std::string fqn =
    575     func->getParent()->getModuleIdentifier() + "." +
    576     func->getName().str();
    577 #endif
    578 
    579   // If there are non-empty intervals allocate them using pbqp.
    580   if (!vregsToAlloc.empty()) {
    581 
    582     bool pbqpAllocComplete = false;
    583     unsigned round = 0;
    584 
    585     while (!pbqpAllocComplete) {
    586       DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
    587 
    588       OwningPtr<PBQPRAProblem> problem(
    589         builder->build(mf, lis, mbfi, vregsToAlloc));
    590 
    591 #ifndef NDEBUG
    592       if (pbqpDumpGraphs) {
    593         std::ostringstream rs;
    594         rs << round;
    595         std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
    596         std::string tmp;
    597         raw_fd_ostream os(graphFileName.c_str(), tmp);
    598         DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
    599               << graphFileName << "\"\n");
    600         problem->getGraph().dump(os);
    601       }
    602 #endif
    603 
    604       PBQP::Solution solution =
    605         PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
    606           problem->getGraph());
    607 
    608       pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
    609 
    610       ++round;
    611     }
    612   }
    613 
    614   // Finalise allocation, allocate empty ranges.
    615   finalizeAlloc();
    616   vregsToAlloc.clear();
    617   emptyIntervalVRegs.clear();
    618 
    619   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
    620 
    621   return true;
    622 }
    623 
    624 FunctionPass* llvm::createPBQPRegisterAllocator(
    625                                            OwningPtr<PBQPBuilder> &builder,
    626                                            char *customPassID) {
    627   return new RegAllocPBQP(builder, customPassID);
    628 }
    629 
    630 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
    631   OwningPtr<PBQPBuilder> Builder;
    632   if (pbqpCoalescing)
    633     Builder.reset(new PBQPBuilderWithCoalescing());
    634   else
    635     Builder.reset(new PBQPBuilder());
    636   return createPBQPRegisterAllocator(Builder);
    637 }
    638 
    639 #undef DEBUG_TYPE
    640