Home | History | Annotate | Download | only in src
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "hydrogen.h"
     29 
     30 #include <algorithm>
     31 
     32 #include "v8.h"
     33 #include "allocation-site-scopes.h"
     34 #include "codegen.h"
     35 #include "full-codegen.h"
     36 #include "hashmap.h"
     37 #include "hydrogen-bce.h"
     38 #include "hydrogen-bch.h"
     39 #include "hydrogen-canonicalize.h"
     40 #include "hydrogen-check-elimination.h"
     41 #include "hydrogen-dce.h"
     42 #include "hydrogen-dehoist.h"
     43 #include "hydrogen-environment-liveness.h"
     44 #include "hydrogen-escape-analysis.h"
     45 #include "hydrogen-infer-representation.h"
     46 #include "hydrogen-infer-types.h"
     47 #include "hydrogen-load-elimination.h"
     48 #include "hydrogen-gvn.h"
     49 #include "hydrogen-mark-deoptimize.h"
     50 #include "hydrogen-mark-unreachable.h"
     51 #include "hydrogen-minus-zero.h"
     52 #include "hydrogen-osr.h"
     53 #include "hydrogen-range-analysis.h"
     54 #include "hydrogen-redundant-phi.h"
     55 #include "hydrogen-removable-simulates.h"
     56 #include "hydrogen-representation-changes.h"
     57 #include "hydrogen-sce.h"
     58 #include "hydrogen-uint32-analysis.h"
     59 #include "lithium-allocator.h"
     60 #include "parser.h"
     61 #include "runtime.h"
     62 #include "scopeinfo.h"
     63 #include "scopes.h"
     64 #include "stub-cache.h"
     65 #include "typing.h"
     66 
     67 #if V8_TARGET_ARCH_IA32
     68 #include "ia32/lithium-codegen-ia32.h"
     69 #elif V8_TARGET_ARCH_X64
     70 #include "x64/lithium-codegen-x64.h"
     71 #elif V8_TARGET_ARCH_ARM
     72 #include "arm/lithium-codegen-arm.h"
     73 #elif V8_TARGET_ARCH_MIPS
     74 #include "mips/lithium-codegen-mips.h"
     75 #else
     76 #error Unsupported target architecture.
     77 #endif
     78 
     79 namespace v8 {
     80 namespace internal {
     81 
     82 HBasicBlock::HBasicBlock(HGraph* graph)
     83     : block_id_(graph->GetNextBlockID()),
     84       graph_(graph),
     85       phis_(4, graph->zone()),
     86       first_(NULL),
     87       last_(NULL),
     88       end_(NULL),
     89       loop_information_(NULL),
     90       predecessors_(2, graph->zone()),
     91       dominator_(NULL),
     92       dominated_blocks_(4, graph->zone()),
     93       last_environment_(NULL),
     94       argument_count_(-1),
     95       first_instruction_index_(-1),
     96       last_instruction_index_(-1),
     97       deleted_phis_(4, graph->zone()),
     98       parent_loop_header_(NULL),
     99       inlined_entry_block_(NULL),
    100       is_inline_return_target_(false),
    101       is_reachable_(true),
    102       dominates_loop_successors_(false),
    103       is_osr_entry_(false) { }
    104 
    105 
    106 Isolate* HBasicBlock::isolate() const {
    107   return graph_->isolate();
    108 }
    109 
    110 
    111 void HBasicBlock::MarkUnreachable() {
    112   is_reachable_ = false;
    113 }
    114 
    115 
    116 void HBasicBlock::AttachLoopInformation() {
    117   ASSERT(!IsLoopHeader());
    118   loop_information_ = new(zone()) HLoopInformation(this, zone());
    119 }
    120 
    121 
    122 void HBasicBlock::DetachLoopInformation() {
    123   ASSERT(IsLoopHeader());
    124   loop_information_ = NULL;
    125 }
    126 
    127 
    128 void HBasicBlock::AddPhi(HPhi* phi) {
    129   ASSERT(!IsStartBlock());
    130   phis_.Add(phi, zone());
    131   phi->SetBlock(this);
    132 }
    133 
    134 
    135 void HBasicBlock::RemovePhi(HPhi* phi) {
    136   ASSERT(phi->block() == this);
    137   ASSERT(phis_.Contains(phi));
    138   phi->Kill();
    139   phis_.RemoveElement(phi);
    140   phi->SetBlock(NULL);
    141 }
    142 
    143 
    144 void HBasicBlock::AddInstruction(HInstruction* instr, int position) {
    145   ASSERT(!IsStartBlock() || !IsFinished());
    146   ASSERT(!instr->IsLinked());
    147   ASSERT(!IsFinished());
    148 
    149   if (position != RelocInfo::kNoPosition) {
    150     instr->set_position(position);
    151   }
    152   if (first_ == NULL) {
    153     ASSERT(last_environment() != NULL);
    154     ASSERT(!last_environment()->ast_id().IsNone());
    155     HBlockEntry* entry = new(zone()) HBlockEntry();
    156     entry->InitializeAsFirst(this);
    157     if (position != RelocInfo::kNoPosition) {
    158       entry->set_position(position);
    159     } else {
    160       ASSERT(!FLAG_emit_opt_code_positions ||
    161              !graph()->info()->IsOptimizing());
    162     }
    163     first_ = last_ = entry;
    164   }
    165   instr->InsertAfter(last_);
    166 }
    167 
    168 
    169 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
    170   if (graph()->IsInsideNoSideEffectsScope()) {
    171     merged_index = HPhi::kInvalidMergedIndex;
    172   }
    173   HPhi* phi = new(zone()) HPhi(merged_index, zone());
    174   AddPhi(phi);
    175   return phi;
    176 }
    177 
    178 
    179 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
    180                                        RemovableSimulate removable) {
    181   ASSERT(HasEnvironment());
    182   HEnvironment* environment = last_environment();
    183   ASSERT(ast_id.IsNone() ||
    184          ast_id == BailoutId::StubEntry() ||
    185          environment->closure()->shared()->VerifyBailoutId(ast_id));
    186 
    187   int push_count = environment->push_count();
    188   int pop_count = environment->pop_count();
    189 
    190   HSimulate* instr =
    191       new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
    192 #ifdef DEBUG
    193   instr->set_closure(environment->closure());
    194 #endif
    195   // Order of pushed values: newest (top of stack) first. This allows
    196   // HSimulate::MergeWith() to easily append additional pushed values
    197   // that are older (from further down the stack).
    198   for (int i = 0; i < push_count; ++i) {
    199     instr->AddPushedValue(environment->ExpressionStackAt(i));
    200   }
    201   for (GrowableBitVector::Iterator it(environment->assigned_variables(),
    202                                       zone());
    203        !it.Done();
    204        it.Advance()) {
    205     int index = it.Current();
    206     instr->AddAssignedValue(index, environment->Lookup(index));
    207   }
    208   environment->ClearHistory();
    209   return instr;
    210 }
    211 
    212 
    213 void HBasicBlock::Finish(HControlInstruction* end, int position) {
    214   ASSERT(!IsFinished());
    215   AddInstruction(end, position);
    216   end_ = end;
    217   for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
    218     it.Current()->RegisterPredecessor(this);
    219   }
    220 }
    221 
    222 
    223 void HBasicBlock::Goto(HBasicBlock* block,
    224                        int position,
    225                        FunctionState* state,
    226                        bool add_simulate) {
    227   bool drop_extra = state != NULL &&
    228       state->inlining_kind() == DROP_EXTRA_ON_RETURN;
    229 
    230   if (block->IsInlineReturnTarget()) {
    231     HEnvironment* env = last_environment();
    232     int argument_count = env->arguments_environment()->parameter_count();
    233     AddInstruction(new(zone())
    234                    HLeaveInlined(state->entry(), argument_count),
    235                    position);
    236     UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
    237   }
    238 
    239   if (add_simulate) AddNewSimulate(BailoutId::None(), position);
    240   HGoto* instr = new(zone()) HGoto(block);
    241   Finish(instr, position);
    242 }
    243 
    244 
    245 void HBasicBlock::AddLeaveInlined(HValue* return_value,
    246                                   FunctionState* state,
    247                                   int position) {
    248   HBasicBlock* target = state->function_return();
    249   bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
    250 
    251   ASSERT(target->IsInlineReturnTarget());
    252   ASSERT(return_value != NULL);
    253   HEnvironment* env = last_environment();
    254   int argument_count = env->arguments_environment()->parameter_count();
    255   AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
    256                  position);
    257   UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
    258   last_environment()->Push(return_value);
    259   AddNewSimulate(BailoutId::None(), position);
    260   HGoto* instr = new(zone()) HGoto(target);
    261   Finish(instr, position);
    262 }
    263 
    264 
    265 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
    266   ASSERT(!HasEnvironment());
    267   ASSERT(first() == NULL);
    268   UpdateEnvironment(env);
    269 }
    270 
    271 
    272 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
    273   last_environment_ = env;
    274   graph()->update_maximum_environment_size(env->first_expression_index());
    275 }
    276 
    277 
    278 void HBasicBlock::SetJoinId(BailoutId ast_id) {
    279   int length = predecessors_.length();
    280   ASSERT(length > 0);
    281   for (int i = 0; i < length; i++) {
    282     HBasicBlock* predecessor = predecessors_[i];
    283     ASSERT(predecessor->end()->IsGoto());
    284     HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
    285     ASSERT(i != 0 ||
    286            (predecessor->last_environment()->closure().is_null() ||
    287             predecessor->last_environment()->closure()->shared()
    288               ->VerifyBailoutId(ast_id)));
    289     simulate->set_ast_id(ast_id);
    290     predecessor->last_environment()->set_ast_id(ast_id);
    291   }
    292 }
    293 
    294 
    295 bool HBasicBlock::Dominates(HBasicBlock* other) const {
    296   HBasicBlock* current = other->dominator();
    297   while (current != NULL) {
    298     if (current == this) return true;
    299     current = current->dominator();
    300   }
    301   return false;
    302 }
    303 
    304 
    305 int HBasicBlock::LoopNestingDepth() const {
    306   const HBasicBlock* current = this;
    307   int result  = (current->IsLoopHeader()) ? 1 : 0;
    308   while (current->parent_loop_header() != NULL) {
    309     current = current->parent_loop_header();
    310     result++;
    311   }
    312   return result;
    313 }
    314 
    315 
    316 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
    317   ASSERT(IsLoopHeader());
    318 
    319   SetJoinId(stmt->EntryId());
    320   if (predecessors()->length() == 1) {
    321     // This is a degenerated loop.
    322     DetachLoopInformation();
    323     return;
    324   }
    325 
    326   // Only the first entry into the loop is from outside the loop. All other
    327   // entries must be back edges.
    328   for (int i = 1; i < predecessors()->length(); ++i) {
    329     loop_information()->RegisterBackEdge(predecessors()->at(i));
    330   }
    331 }
    332 
    333 
    334 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
    335   if (HasPredecessor()) {
    336     // Only loop header blocks can have a predecessor added after
    337     // instructions have been added to the block (they have phis for all
    338     // values in the environment, these phis may be eliminated later).
    339     ASSERT(IsLoopHeader() || first_ == NULL);
    340     HEnvironment* incoming_env = pred->last_environment();
    341     if (IsLoopHeader()) {
    342       ASSERT(phis()->length() == incoming_env->length());
    343       for (int i = 0; i < phis_.length(); ++i) {
    344         phis_[i]->AddInput(incoming_env->values()->at(i));
    345       }
    346     } else {
    347       last_environment()->AddIncomingEdge(this, pred->last_environment());
    348     }
    349   } else if (!HasEnvironment() && !IsFinished()) {
    350     ASSERT(!IsLoopHeader());
    351     SetInitialEnvironment(pred->last_environment()->Copy());
    352   }
    353 
    354   predecessors_.Add(pred, zone());
    355 }
    356 
    357 
    358 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
    359   ASSERT(!dominated_blocks_.Contains(block));
    360   // Keep the list of dominated blocks sorted such that if there is two
    361   // succeeding block in this list, the predecessor is before the successor.
    362   int index = 0;
    363   while (index < dominated_blocks_.length() &&
    364          dominated_blocks_[index]->block_id() < block->block_id()) {
    365     ++index;
    366   }
    367   dominated_blocks_.InsertAt(index, block, zone());
    368 }
    369 
    370 
    371 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
    372   if (dominator_ == NULL) {
    373     dominator_ = other;
    374     other->AddDominatedBlock(this);
    375   } else if (other->dominator() != NULL) {
    376     HBasicBlock* first = dominator_;
    377     HBasicBlock* second = other;
    378 
    379     while (first != second) {
    380       if (first->block_id() > second->block_id()) {
    381         first = first->dominator();
    382       } else {
    383         second = second->dominator();
    384       }
    385       ASSERT(first != NULL && second != NULL);
    386     }
    387 
    388     if (dominator_ != first) {
    389       ASSERT(dominator_->dominated_blocks_.Contains(this));
    390       dominator_->dominated_blocks_.RemoveElement(this);
    391       dominator_ = first;
    392       first->AddDominatedBlock(this);
    393     }
    394   }
    395 }
    396 
    397 
    398 void HBasicBlock::AssignLoopSuccessorDominators() {
    399   // Mark blocks that dominate all subsequent reachable blocks inside their
    400   // loop. Exploit the fact that blocks are sorted in reverse post order. When
    401   // the loop is visited in increasing block id order, if the number of
    402   // non-loop-exiting successor edges at the dominator_candidate block doesn't
    403   // exceed the number of previously encountered predecessor edges, there is no
    404   // path from the loop header to any block with higher id that doesn't go
    405   // through the dominator_candidate block. In this case, the
    406   // dominator_candidate block is guaranteed to dominate all blocks reachable
    407   // from it with higher ids.
    408   HBasicBlock* last = loop_information()->GetLastBackEdge();
    409   int outstanding_successors = 1;  // one edge from the pre-header
    410   // Header always dominates everything.
    411   MarkAsLoopSuccessorDominator();
    412   for (int j = block_id(); j <= last->block_id(); ++j) {
    413     HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
    414     for (HPredecessorIterator it(dominator_candidate); !it.Done();
    415          it.Advance()) {
    416       HBasicBlock* predecessor = it.Current();
    417       // Don't count back edges.
    418       if (predecessor->block_id() < dominator_candidate->block_id()) {
    419         outstanding_successors--;
    420       }
    421     }
    422 
    423     // If more successors than predecessors have been seen in the loop up to
    424     // now, it's not possible to guarantee that the current block dominates
    425     // all of the blocks with higher IDs. In this case, assume conservatively
    426     // that those paths through loop that don't go through the current block
    427     // contain all of the loop's dependencies. Also be careful to record
    428     // dominator information about the current loop that's being processed,
    429     // and not nested loops, which will be processed when
    430     // AssignLoopSuccessorDominators gets called on their header.
    431     ASSERT(outstanding_successors >= 0);
    432     HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
    433     if (outstanding_successors == 0 &&
    434         (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
    435       dominator_candidate->MarkAsLoopSuccessorDominator();
    436     }
    437     HControlInstruction* end = dominator_candidate->end();
    438     for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
    439       HBasicBlock* successor = it.Current();
    440       // Only count successors that remain inside the loop and don't loop back
    441       // to a loop header.
    442       if (successor->block_id() > dominator_candidate->block_id() &&
    443           successor->block_id() <= last->block_id()) {
    444         // Backwards edges must land on loop headers.
    445         ASSERT(successor->block_id() > dominator_candidate->block_id() ||
    446                successor->IsLoopHeader());
    447         outstanding_successors++;
    448       }
    449     }
    450   }
    451 }
    452 
    453 
    454 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
    455   for (int i = 0; i < predecessors_.length(); ++i) {
    456     if (predecessors_[i] == predecessor) return i;
    457   }
    458   UNREACHABLE();
    459   return -1;
    460 }
    461 
    462 
    463 #ifdef DEBUG
    464 void HBasicBlock::Verify() {
    465   // Check that every block is finished.
    466   ASSERT(IsFinished());
    467   ASSERT(block_id() >= 0);
    468 
    469   // Check that the incoming edges are in edge split form.
    470   if (predecessors_.length() > 1) {
    471     for (int i = 0; i < predecessors_.length(); ++i) {
    472       ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
    473     }
    474   }
    475 }
    476 #endif
    477 
    478 
    479 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
    480   this->back_edges_.Add(block, block->zone());
    481   AddBlock(block);
    482 }
    483 
    484 
    485 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
    486   int max_id = -1;
    487   HBasicBlock* result = NULL;
    488   for (int i = 0; i < back_edges_.length(); ++i) {
    489     HBasicBlock* cur = back_edges_[i];
    490     if (cur->block_id() > max_id) {
    491       max_id = cur->block_id();
    492       result = cur;
    493     }
    494   }
    495   return result;
    496 }
    497 
    498 
    499 void HLoopInformation::AddBlock(HBasicBlock* block) {
    500   if (block == loop_header()) return;
    501   if (block->parent_loop_header() == loop_header()) return;
    502   if (block->parent_loop_header() != NULL) {
    503     AddBlock(block->parent_loop_header());
    504   } else {
    505     block->set_parent_loop_header(loop_header());
    506     blocks_.Add(block, block->zone());
    507     for (int i = 0; i < block->predecessors()->length(); ++i) {
    508       AddBlock(block->predecessors()->at(i));
    509     }
    510   }
    511 }
    512 
    513 
    514 #ifdef DEBUG
    515 
    516 // Checks reachability of the blocks in this graph and stores a bit in
    517 // the BitVector "reachable()" for every block that can be reached
    518 // from the start block of the graph. If "dont_visit" is non-null, the given
    519 // block is treated as if it would not be part of the graph. "visited_count()"
    520 // returns the number of reachable blocks.
    521 class ReachabilityAnalyzer BASE_EMBEDDED {
    522  public:
    523   ReachabilityAnalyzer(HBasicBlock* entry_block,
    524                        int block_count,
    525                        HBasicBlock* dont_visit)
    526       : visited_count_(0),
    527         stack_(16, entry_block->zone()),
    528         reachable_(block_count, entry_block->zone()),
    529         dont_visit_(dont_visit) {
    530     PushBlock(entry_block);
    531     Analyze();
    532   }
    533 
    534   int visited_count() const { return visited_count_; }
    535   const BitVector* reachable() const { return &reachable_; }
    536 
    537  private:
    538   void PushBlock(HBasicBlock* block) {
    539     if (block != NULL && block != dont_visit_ &&
    540         !reachable_.Contains(block->block_id())) {
    541       reachable_.Add(block->block_id());
    542       stack_.Add(block, block->zone());
    543       visited_count_++;
    544     }
    545   }
    546 
    547   void Analyze() {
    548     while (!stack_.is_empty()) {
    549       HControlInstruction* end = stack_.RemoveLast()->end();
    550       for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
    551         PushBlock(it.Current());
    552       }
    553     }
    554   }
    555 
    556   int visited_count_;
    557   ZoneList<HBasicBlock*> stack_;
    558   BitVector reachable_;
    559   HBasicBlock* dont_visit_;
    560 };
    561 
    562 
    563 void HGraph::Verify(bool do_full_verify) const {
    564   Heap::RelocationLock relocation_lock(isolate()->heap());
    565   AllowHandleDereference allow_deref;
    566   AllowDeferredHandleDereference allow_deferred_deref;
    567   for (int i = 0; i < blocks_.length(); i++) {
    568     HBasicBlock* block = blocks_.at(i);
    569 
    570     block->Verify();
    571 
    572     // Check that every block contains at least one node and that only the last
    573     // node is a control instruction.
    574     HInstruction* current = block->first();
    575     ASSERT(current != NULL && current->IsBlockEntry());
    576     while (current != NULL) {
    577       ASSERT((current->next() == NULL) == current->IsControlInstruction());
    578       ASSERT(current->block() == block);
    579       current->Verify();
    580       current = current->next();
    581     }
    582 
    583     // Check that successors are correctly set.
    584     HBasicBlock* first = block->end()->FirstSuccessor();
    585     HBasicBlock* second = block->end()->SecondSuccessor();
    586     ASSERT(second == NULL || first != NULL);
    587 
    588     // Check that the predecessor array is correct.
    589     if (first != NULL) {
    590       ASSERT(first->predecessors()->Contains(block));
    591       if (second != NULL) {
    592         ASSERT(second->predecessors()->Contains(block));
    593       }
    594     }
    595 
    596     // Check that phis have correct arguments.
    597     for (int j = 0; j < block->phis()->length(); j++) {
    598       HPhi* phi = block->phis()->at(j);
    599       phi->Verify();
    600     }
    601 
    602     // Check that all join blocks have predecessors that end with an
    603     // unconditional goto and agree on their environment node id.
    604     if (block->predecessors()->length() >= 2) {
    605       BailoutId id =
    606           block->predecessors()->first()->last_environment()->ast_id();
    607       for (int k = 0; k < block->predecessors()->length(); k++) {
    608         HBasicBlock* predecessor = block->predecessors()->at(k);
    609         ASSERT(predecessor->end()->IsGoto() ||
    610                predecessor->end()->IsDeoptimize());
    611         ASSERT(predecessor->last_environment()->ast_id() == id);
    612       }
    613     }
    614   }
    615 
    616   // Check special property of first block to have no predecessors.
    617   ASSERT(blocks_.at(0)->predecessors()->is_empty());
    618 
    619   if (do_full_verify) {
    620     // Check that the graph is fully connected.
    621     ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
    622     ASSERT(analyzer.visited_count() == blocks_.length());
    623 
    624     // Check that entry block dominator is NULL.
    625     ASSERT(entry_block_->dominator() == NULL);
    626 
    627     // Check dominators.
    628     for (int i = 0; i < blocks_.length(); ++i) {
    629       HBasicBlock* block = blocks_.at(i);
    630       if (block->dominator() == NULL) {
    631         // Only start block may have no dominator assigned to.
    632         ASSERT(i == 0);
    633       } else {
    634         // Assert that block is unreachable if dominator must not be visited.
    635         ReachabilityAnalyzer dominator_analyzer(entry_block_,
    636                                                 blocks_.length(),
    637                                                 block->dominator());
    638         ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
    639       }
    640     }
    641   }
    642 }
    643 
    644 #endif
    645 
    646 
    647 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
    648                                int32_t value) {
    649   if (!pointer->is_set()) {
    650     // Can't pass GetInvalidContext() to HConstant::New, because that will
    651     // recursively call GetConstant
    652     HConstant* constant = HConstant::New(zone(), NULL, value);
    653     constant->InsertAfter(entry_block()->first());
    654     pointer->set(constant);
    655     return constant;
    656   }
    657   return ReinsertConstantIfNecessary(pointer->get());
    658 }
    659 
    660 
    661 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
    662   if (!constant->IsLinked()) {
    663     // The constant was removed from the graph. Reinsert.
    664     constant->ClearFlag(HValue::kIsDead);
    665     constant->InsertAfter(entry_block()->first());
    666   }
    667   return constant;
    668 }
    669 
    670 
    671 HConstant* HGraph::GetConstant0() {
    672   return GetConstant(&constant_0_, 0);
    673 }
    674 
    675 
    676 HConstant* HGraph::GetConstant1() {
    677   return GetConstant(&constant_1_, 1);
    678 }
    679 
    680 
    681 HConstant* HGraph::GetConstantMinus1() {
    682   return GetConstant(&constant_minus1_, -1);
    683 }
    684 
    685 
    686 #define DEFINE_GET_CONSTANT(Name, name, htype, boolean_value)                  \
    687 HConstant* HGraph::GetConstant##Name() {                                       \
    688   if (!constant_##name##_.is_set()) {                                          \
    689     HConstant* constant = new(zone()) HConstant(                               \
    690         Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
    691         Representation::Tagged(),                                              \
    692         htype,                                                                 \
    693         false,                                                                 \
    694         true,                                                                  \
    695         false,                                                                 \
    696         boolean_value);                                                        \
    697     constant->InsertAfter(entry_block()->first());                             \
    698     constant_##name##_.set(constant);                                          \
    699   }                                                                            \
    700   return ReinsertConstantIfNecessary(constant_##name##_.get());                \
    701 }
    702 
    703 
    704 DEFINE_GET_CONSTANT(Undefined, undefined, HType::Tagged(), false)
    705 DEFINE_GET_CONSTANT(True, true, HType::Boolean(), true)
    706 DEFINE_GET_CONSTANT(False, false, HType::Boolean(), false)
    707 DEFINE_GET_CONSTANT(Hole, the_hole, HType::Tagged(), false)
    708 DEFINE_GET_CONSTANT(Null, null, HType::Tagged(), false)
    709 
    710 
    711 #undef DEFINE_GET_CONSTANT
    712 
    713 #define DEFINE_IS_CONSTANT(Name, name)                                         \
    714 bool HGraph::IsConstant##Name(HConstant* constant) {                           \
    715   return constant_##name##_.is_set() && constant == constant_##name##_.get();  \
    716 }
    717 DEFINE_IS_CONSTANT(Undefined, undefined)
    718 DEFINE_IS_CONSTANT(0, 0)
    719 DEFINE_IS_CONSTANT(1, 1)
    720 DEFINE_IS_CONSTANT(Minus1, minus1)
    721 DEFINE_IS_CONSTANT(True, true)
    722 DEFINE_IS_CONSTANT(False, false)
    723 DEFINE_IS_CONSTANT(Hole, the_hole)
    724 DEFINE_IS_CONSTANT(Null, null)
    725 
    726 #undef DEFINE_IS_CONSTANT
    727 
    728 
    729 HConstant* HGraph::GetInvalidContext() {
    730   return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
    731 }
    732 
    733 
    734 bool HGraph::IsStandardConstant(HConstant* constant) {
    735   if (IsConstantUndefined(constant)) return true;
    736   if (IsConstant0(constant)) return true;
    737   if (IsConstant1(constant)) return true;
    738   if (IsConstantMinus1(constant)) return true;
    739   if (IsConstantTrue(constant)) return true;
    740   if (IsConstantFalse(constant)) return true;
    741   if (IsConstantHole(constant)) return true;
    742   if (IsConstantNull(constant)) return true;
    743   return false;
    744 }
    745 
    746 
    747 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
    748     : builder_(builder),
    749       finished_(false),
    750       did_then_(false),
    751       did_else_(false),
    752       did_else_if_(false),
    753       did_and_(false),
    754       did_or_(false),
    755       captured_(false),
    756       needs_compare_(true),
    757       pending_merge_block_(false),
    758       split_edge_merge_block_(NULL),
    759       merge_at_join_blocks_(NULL),
    760       normal_merge_at_join_block_count_(0),
    761       deopt_merge_at_join_block_count_(0) {
    762   HEnvironment* env = builder->environment();
    763   first_true_block_ = builder->CreateBasicBlock(env->Copy());
    764   first_false_block_ = builder->CreateBasicBlock(env->Copy());
    765 }
    766 
    767 
    768 HGraphBuilder::IfBuilder::IfBuilder(
    769     HGraphBuilder* builder,
    770     HIfContinuation* continuation)
    771     : builder_(builder),
    772       finished_(false),
    773       did_then_(false),
    774       did_else_(false),
    775       did_else_if_(false),
    776       did_and_(false),
    777       did_or_(false),
    778       captured_(false),
    779       needs_compare_(false),
    780       pending_merge_block_(false),
    781       first_true_block_(NULL),
    782       first_false_block_(NULL),
    783       split_edge_merge_block_(NULL),
    784       merge_at_join_blocks_(NULL),
    785       normal_merge_at_join_block_count_(0),
    786       deopt_merge_at_join_block_count_(0) {
    787   continuation->Continue(&first_true_block_,
    788                          &first_false_block_);
    789 }
    790 
    791 
    792 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
    793     HControlInstruction* compare) {
    794   ASSERT(did_then_ == did_else_);
    795   if (did_else_) {
    796     // Handle if-then-elseif
    797     did_else_if_ = true;
    798     did_else_ = false;
    799     did_then_ = false;
    800     did_and_ = false;
    801     did_or_ = false;
    802     pending_merge_block_ = false;
    803     split_edge_merge_block_ = NULL;
    804     HEnvironment* env = builder_->environment();
    805     first_true_block_ = builder_->CreateBasicBlock(env->Copy());
    806     first_false_block_ = builder_->CreateBasicBlock(env->Copy());
    807   }
    808   if (split_edge_merge_block_ != NULL) {
    809     HEnvironment* env = first_false_block_->last_environment();
    810     HBasicBlock* split_edge =
    811         builder_->CreateBasicBlock(env->Copy());
    812     if (did_or_) {
    813       compare->SetSuccessorAt(0, split_edge);
    814       compare->SetSuccessorAt(1, first_false_block_);
    815     } else {
    816       compare->SetSuccessorAt(0, first_true_block_);
    817       compare->SetSuccessorAt(1, split_edge);
    818     }
    819     builder_->GotoNoSimulate(split_edge, split_edge_merge_block_);
    820   } else {
    821     compare->SetSuccessorAt(0, first_true_block_);
    822     compare->SetSuccessorAt(1, first_false_block_);
    823   }
    824   builder_->FinishCurrentBlock(compare);
    825   needs_compare_ = false;
    826   return compare;
    827 }
    828 
    829 
    830 void HGraphBuilder::IfBuilder::Or() {
    831   ASSERT(!needs_compare_);
    832   ASSERT(!did_and_);
    833   did_or_ = true;
    834   HEnvironment* env = first_false_block_->last_environment();
    835   if (split_edge_merge_block_ == NULL) {
    836     split_edge_merge_block_ =
    837         builder_->CreateBasicBlock(env->Copy());
    838     builder_->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
    839     first_true_block_ = split_edge_merge_block_;
    840   }
    841   builder_->set_current_block(first_false_block_);
    842   first_false_block_ = builder_->CreateBasicBlock(env->Copy());
    843 }
    844 
    845 
    846 void HGraphBuilder::IfBuilder::And() {
    847   ASSERT(!needs_compare_);
    848   ASSERT(!did_or_);
    849   did_and_ = true;
    850   HEnvironment* env = first_false_block_->last_environment();
    851   if (split_edge_merge_block_ == NULL) {
    852     split_edge_merge_block_ = builder_->CreateBasicBlock(env->Copy());
    853     builder_->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
    854     first_false_block_ = split_edge_merge_block_;
    855   }
    856   builder_->set_current_block(first_true_block_);
    857   first_true_block_ = builder_->CreateBasicBlock(env->Copy());
    858 }
    859 
    860 
    861 void HGraphBuilder::IfBuilder::CaptureContinuation(
    862     HIfContinuation* continuation) {
    863   ASSERT(!did_else_if_);
    864   ASSERT(!finished_);
    865   ASSERT(!captured_);
    866 
    867   HBasicBlock* true_block = NULL;
    868   HBasicBlock* false_block = NULL;
    869   Finish(&true_block, &false_block);
    870   ASSERT(true_block != NULL);
    871   ASSERT(false_block != NULL);
    872   continuation->Capture(true_block, false_block);
    873   captured_ = true;
    874   builder_->set_current_block(NULL);
    875   End();
    876 }
    877 
    878 
    879 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
    880   ASSERT(!did_else_if_);
    881   ASSERT(!finished_);
    882   ASSERT(!captured_);
    883   HBasicBlock* true_block = NULL;
    884   HBasicBlock* false_block = NULL;
    885   Finish(&true_block, &false_block);
    886   merge_at_join_blocks_ = NULL;
    887   if (true_block != NULL && !true_block->IsFinished()) {
    888     ASSERT(continuation->IsTrueReachable());
    889     builder_->GotoNoSimulate(true_block, continuation->true_branch());
    890   }
    891   if (false_block != NULL && !false_block->IsFinished()) {
    892     ASSERT(continuation->IsFalseReachable());
    893     builder_->GotoNoSimulate(false_block, continuation->false_branch());
    894   }
    895   captured_ = true;
    896   End();
    897 }
    898 
    899 
    900 void HGraphBuilder::IfBuilder::Then() {
    901   ASSERT(!captured_);
    902   ASSERT(!finished_);
    903   did_then_ = true;
    904   if (needs_compare_) {
    905     // Handle if's without any expressions, they jump directly to the "else"
    906     // branch. However, we must pretend that the "then" branch is reachable,
    907     // so that the graph builder visits it and sees any live range extending
    908     // constructs within it.
    909     HConstant* constant_false = builder_->graph()->GetConstantFalse();
    910     ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
    911     boolean_type.Add(ToBooleanStub::BOOLEAN);
    912     HBranch* branch = builder()->New<HBranch>(
    913         constant_false, boolean_type, first_true_block_, first_false_block_);
    914     builder_->FinishCurrentBlock(branch);
    915   }
    916   builder_->set_current_block(first_true_block_);
    917   pending_merge_block_ = true;
    918 }
    919 
    920 
    921 void HGraphBuilder::IfBuilder::Else() {
    922   ASSERT(did_then_);
    923   ASSERT(!captured_);
    924   ASSERT(!finished_);
    925   AddMergeAtJoinBlock(false);
    926   builder_->set_current_block(first_false_block_);
    927   pending_merge_block_ = true;
    928   did_else_ = true;
    929 }
    930 
    931 
    932 void HGraphBuilder::IfBuilder::Deopt(const char* reason) {
    933   ASSERT(did_then_);
    934   builder_->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
    935   AddMergeAtJoinBlock(true);
    936 }
    937 
    938 
    939 void HGraphBuilder::IfBuilder::Return(HValue* value) {
    940   HValue* parameter_count = builder_->graph()->GetConstantMinus1();
    941   builder_->FinishExitCurrentBlock(
    942       builder_->New<HReturn>(value, parameter_count));
    943   AddMergeAtJoinBlock(false);
    944 }
    945 
    946 
    947 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
    948   if (!pending_merge_block_) return;
    949   HBasicBlock* block = builder_->current_block();
    950   ASSERT(block == NULL || !block->IsFinished());
    951   MergeAtJoinBlock* record =
    952       new(builder_->zone()) MergeAtJoinBlock(block, deopt,
    953                                              merge_at_join_blocks_);
    954   merge_at_join_blocks_ = record;
    955   if (block != NULL) {
    956     ASSERT(block->end() == NULL);
    957     if (deopt) {
    958       normal_merge_at_join_block_count_++;
    959     } else {
    960       deopt_merge_at_join_block_count_++;
    961     }
    962   }
    963   builder_->set_current_block(NULL);
    964   pending_merge_block_ = false;
    965 }
    966 
    967 
    968 void HGraphBuilder::IfBuilder::Finish() {
    969   ASSERT(!finished_);
    970   if (!did_then_) {
    971     Then();
    972   }
    973   AddMergeAtJoinBlock(false);
    974   if (!did_else_) {
    975     Else();
    976     AddMergeAtJoinBlock(false);
    977   }
    978   finished_ = true;
    979 }
    980 
    981 
    982 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
    983                                       HBasicBlock** else_continuation) {
    984   Finish();
    985 
    986   MergeAtJoinBlock* else_record = merge_at_join_blocks_;
    987   if (else_continuation != NULL) {
    988     *else_continuation = else_record->block_;
    989   }
    990   MergeAtJoinBlock* then_record = else_record->next_;
    991   if (then_continuation != NULL) {
    992     *then_continuation = then_record->block_;
    993   }
    994   ASSERT(then_record->next_ == NULL);
    995 }
    996 
    997 
    998 void HGraphBuilder::IfBuilder::End() {
    999   if (captured_) return;
   1000   Finish();
   1001 
   1002   int total_merged_blocks = normal_merge_at_join_block_count_ +
   1003     deopt_merge_at_join_block_count_;
   1004   ASSERT(total_merged_blocks >= 1);
   1005   HBasicBlock* merge_block = total_merged_blocks == 1
   1006       ? NULL : builder_->graph()->CreateBasicBlock();
   1007 
   1008   // Merge non-deopt blocks first to ensure environment has right size for
   1009   // padding.
   1010   MergeAtJoinBlock* current = merge_at_join_blocks_;
   1011   while (current != NULL) {
   1012     if (!current->deopt_ && current->block_ != NULL) {
   1013       // If there is only one block that makes it through to the end of the
   1014       // if, then just set it as the current block and continue rather then
   1015       // creating an unnecessary merge block.
   1016       if (total_merged_blocks == 1) {
   1017         builder_->set_current_block(current->block_);
   1018         return;
   1019       }
   1020       builder_->GotoNoSimulate(current->block_, merge_block);
   1021     }
   1022     current = current->next_;
   1023   }
   1024 
   1025   // Merge deopt blocks, padding when necessary.
   1026   current = merge_at_join_blocks_;
   1027   while (current != NULL) {
   1028     if (current->deopt_ && current->block_ != NULL) {
   1029       builder_->PadEnvironmentForContinuation(current->block_,
   1030                                               merge_block);
   1031       builder_->GotoNoSimulate(current->block_, merge_block);
   1032     }
   1033     current = current->next_;
   1034   }
   1035   builder_->set_current_block(merge_block);
   1036 }
   1037 
   1038 
   1039 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
   1040                                         HValue* context,
   1041                                         LoopBuilder::Direction direction)
   1042     : builder_(builder),
   1043       context_(context),
   1044       direction_(direction),
   1045       finished_(false) {
   1046   header_block_ = builder->CreateLoopHeaderBlock();
   1047   body_block_ = NULL;
   1048   exit_block_ = NULL;
   1049   exit_trampoline_block_ = NULL;
   1050   increment_amount_ = builder_->graph()->GetConstant1();
   1051 }
   1052 
   1053 
   1054 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
   1055                                         HValue* context,
   1056                                         LoopBuilder::Direction direction,
   1057                                         HValue* increment_amount)
   1058     : builder_(builder),
   1059       context_(context),
   1060       direction_(direction),
   1061       finished_(false) {
   1062   header_block_ = builder->CreateLoopHeaderBlock();
   1063   body_block_ = NULL;
   1064   exit_block_ = NULL;
   1065   exit_trampoline_block_ = NULL;
   1066   increment_amount_ = increment_amount;
   1067 }
   1068 
   1069 
   1070 HValue* HGraphBuilder::LoopBuilder::BeginBody(
   1071     HValue* initial,
   1072     HValue* terminating,
   1073     Token::Value token) {
   1074   HEnvironment* env = builder_->environment();
   1075   phi_ = header_block_->AddNewPhi(env->values()->length());
   1076   phi_->AddInput(initial);
   1077   env->Push(initial);
   1078   builder_->GotoNoSimulate(header_block_);
   1079 
   1080   HEnvironment* body_env = env->Copy();
   1081   HEnvironment* exit_env = env->Copy();
   1082   // Remove the phi from the expression stack
   1083   body_env->Pop();
   1084   exit_env->Pop();
   1085   body_block_ = builder_->CreateBasicBlock(body_env);
   1086   exit_block_ = builder_->CreateBasicBlock(exit_env);
   1087 
   1088   builder_->set_current_block(header_block_);
   1089   env->Pop();
   1090   builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
   1091           phi_, terminating, token, body_block_, exit_block_));
   1092 
   1093   builder_->set_current_block(body_block_);
   1094   if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
   1095     HValue* one = builder_->graph()->GetConstant1();
   1096     if (direction_ == kPreIncrement) {
   1097       increment_ = HAdd::New(zone(), context_, phi_, one);
   1098     } else {
   1099       increment_ = HSub::New(zone(), context_, phi_, one);
   1100     }
   1101     increment_->ClearFlag(HValue::kCanOverflow);
   1102     builder_->AddInstruction(increment_);
   1103     return increment_;
   1104   } else {
   1105     return phi_;
   1106   }
   1107 }
   1108 
   1109 
   1110 void HGraphBuilder::LoopBuilder::Break() {
   1111   if (exit_trampoline_block_ == NULL) {
   1112     // Its the first time we saw a break.
   1113     HEnvironment* env = exit_block_->last_environment()->Copy();
   1114     exit_trampoline_block_ = builder_->CreateBasicBlock(env);
   1115     builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
   1116   }
   1117 
   1118   builder_->GotoNoSimulate(exit_trampoline_block_);
   1119   builder_->set_current_block(NULL);
   1120 }
   1121 
   1122 
   1123 void HGraphBuilder::LoopBuilder::EndBody() {
   1124   ASSERT(!finished_);
   1125 
   1126   if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
   1127     if (direction_ == kPostIncrement) {
   1128       increment_ = HAdd::New(zone(), context_, phi_, increment_amount_);
   1129     } else {
   1130       increment_ = HSub::New(zone(), context_, phi_, increment_amount_);
   1131     }
   1132     increment_->ClearFlag(HValue::kCanOverflow);
   1133     builder_->AddInstruction(increment_);
   1134   }
   1135 
   1136   // Push the new increment value on the expression stack to merge into the phi.
   1137   builder_->environment()->Push(increment_);
   1138   HBasicBlock* last_block = builder_->current_block();
   1139   builder_->GotoNoSimulate(last_block, header_block_);
   1140   header_block_->loop_information()->RegisterBackEdge(last_block);
   1141 
   1142   if (exit_trampoline_block_ != NULL) {
   1143     builder_->set_current_block(exit_trampoline_block_);
   1144   } else {
   1145     builder_->set_current_block(exit_block_);
   1146   }
   1147   finished_ = true;
   1148 }
   1149 
   1150 
   1151 HGraph* HGraphBuilder::CreateGraph() {
   1152   graph_ = new(zone()) HGraph(info_);
   1153   if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
   1154   CompilationPhase phase("H_Block building", info_);
   1155   set_current_block(graph()->entry_block());
   1156   if (!BuildGraph()) return NULL;
   1157   graph()->FinalizeUniqueness();
   1158   return graph_;
   1159 }
   1160 
   1161 
   1162 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
   1163   ASSERT(current_block() != NULL);
   1164   ASSERT(!FLAG_emit_opt_code_positions ||
   1165          position_ != RelocInfo::kNoPosition || !info_->IsOptimizing());
   1166   current_block()->AddInstruction(instr, position_);
   1167   if (graph()->IsInsideNoSideEffectsScope()) {
   1168     instr->SetFlag(HValue::kHasNoObservableSideEffects);
   1169   }
   1170   return instr;
   1171 }
   1172 
   1173 
   1174 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
   1175   ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
   1176          position_ != RelocInfo::kNoPosition);
   1177   current_block()->Finish(last, position_);
   1178   if (last->IsReturn() || last->IsAbnormalExit()) {
   1179     set_current_block(NULL);
   1180   }
   1181 }
   1182 
   1183 
   1184 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
   1185   ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
   1186          position_ != RelocInfo::kNoPosition);
   1187   current_block()->FinishExit(instruction, position_);
   1188   if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
   1189     set_current_block(NULL);
   1190   }
   1191 }
   1192 
   1193 
   1194 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
   1195   if (FLAG_native_code_counters && counter->Enabled()) {
   1196     HValue* reference = Add<HConstant>(ExternalReference(counter));
   1197     HValue* old_value = Add<HLoadNamedField>(reference,
   1198                                              HObjectAccess::ForCounter());
   1199     HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
   1200     new_value->ClearFlag(HValue::kCanOverflow);  // Ignore counter overflow
   1201     Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
   1202                           new_value);
   1203   }
   1204 }
   1205 
   1206 
   1207 void HGraphBuilder::AddSimulate(BailoutId id,
   1208                                 RemovableSimulate removable) {
   1209   ASSERT(current_block() != NULL);
   1210   ASSERT(!graph()->IsInsideNoSideEffectsScope());
   1211   current_block()->AddNewSimulate(id, removable);
   1212 }
   1213 
   1214 
   1215 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
   1216   HBasicBlock* b = graph()->CreateBasicBlock();
   1217   b->SetInitialEnvironment(env);
   1218   return b;
   1219 }
   1220 
   1221 
   1222 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
   1223   HBasicBlock* header = graph()->CreateBasicBlock();
   1224   HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
   1225   header->SetInitialEnvironment(entry_env);
   1226   header->AttachLoopInformation();
   1227   return header;
   1228 }
   1229 
   1230 
   1231 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
   1232   if (obj->type().IsHeapObject()) return obj;
   1233   return Add<HCheckHeapObject>(obj);
   1234 }
   1235 
   1236 
   1237 void HGraphBuilder::FinishExitWithHardDeoptimization(
   1238     const char* reason, HBasicBlock* continuation) {
   1239   PadEnvironmentForContinuation(current_block(), continuation);
   1240   Add<HDeoptimize>(reason, Deoptimizer::EAGER);
   1241   if (graph()->IsInsideNoSideEffectsScope()) {
   1242     GotoNoSimulate(continuation);
   1243   } else {
   1244     Goto(continuation);
   1245   }
   1246 }
   1247 
   1248 
   1249 void HGraphBuilder::PadEnvironmentForContinuation(
   1250     HBasicBlock* from,
   1251     HBasicBlock* continuation) {
   1252   if (continuation->last_environment() != NULL) {
   1253     // When merging from a deopt block to a continuation, resolve differences in
   1254     // environment by pushing constant 0 and popping extra values so that the
   1255     // environments match during the join. Push 0 since it has the most specific
   1256     // representation, and will not influence representation inference of the
   1257     // phi.
   1258     int continuation_env_length = continuation->last_environment()->length();
   1259     while (continuation_env_length != from->last_environment()->length()) {
   1260       if (continuation_env_length > from->last_environment()->length()) {
   1261         from->last_environment()->Push(graph()->GetConstant0());
   1262       } else {
   1263         from->last_environment()->Pop();
   1264       }
   1265     }
   1266   } else {
   1267     ASSERT(continuation->predecessors()->length() == 0);
   1268   }
   1269 }
   1270 
   1271 
   1272 HValue* HGraphBuilder::BuildCheckMap(HValue* obj, Handle<Map> map) {
   1273   return Add<HCheckMaps>(obj, map, top_info());
   1274 }
   1275 
   1276 
   1277 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
   1278   if (!string->type().IsString()) {
   1279     ASSERT(!string->IsConstant() ||
   1280            !HConstant::cast(string)->HasStringValue());
   1281     BuildCheckHeapObject(string);
   1282     return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
   1283   }
   1284   return string;
   1285 }
   1286 
   1287 
   1288 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
   1289   if (object->type().IsJSObject()) return object;
   1290   return Add<HWrapReceiver>(object, function);
   1291 }
   1292 
   1293 
   1294 HValue* HGraphBuilder::BuildCheckForCapacityGrow(HValue* object,
   1295                                                  HValue* elements,
   1296                                                  ElementsKind kind,
   1297                                                  HValue* length,
   1298                                                  HValue* key,
   1299                                                  bool is_js_array) {
   1300   IfBuilder length_checker(this);
   1301 
   1302   Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
   1303   length_checker.If<HCompareNumericAndBranch>(key, length, token);
   1304 
   1305   length_checker.Then();
   1306 
   1307   HValue* current_capacity = AddLoadFixedArrayLength(elements);
   1308 
   1309   IfBuilder capacity_checker(this);
   1310 
   1311   capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
   1312                                                 Token::GTE);
   1313   capacity_checker.Then();
   1314 
   1315   HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
   1316   HValue* max_capacity = AddUncasted<HAdd>(current_capacity, max_gap);
   1317   IfBuilder key_checker(this);
   1318   key_checker.If<HCompareNumericAndBranch>(key, max_capacity, Token::LT);
   1319   key_checker.Then();
   1320   key_checker.ElseDeopt("Key out of capacity range");
   1321   key_checker.End();
   1322 
   1323   HValue* new_capacity = BuildNewElementsCapacity(key);
   1324   HValue* new_elements = BuildGrowElementsCapacity(object, elements,
   1325                                                    kind, kind, length,
   1326                                                    new_capacity);
   1327 
   1328   environment()->Push(new_elements);
   1329   capacity_checker.Else();
   1330 
   1331   environment()->Push(elements);
   1332   capacity_checker.End();
   1333 
   1334   if (is_js_array) {
   1335     HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
   1336     new_length->ClearFlag(HValue::kCanOverflow);
   1337 
   1338     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
   1339                           new_length);
   1340   }
   1341 
   1342   length_checker.Else();
   1343   Add<HBoundsCheck>(key, length);
   1344 
   1345   environment()->Push(elements);
   1346   length_checker.End();
   1347 
   1348   return environment()->Pop();
   1349 }
   1350 
   1351 
   1352 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
   1353                                                 HValue* elements,
   1354                                                 ElementsKind kind,
   1355                                                 HValue* length) {
   1356   Factory* factory = isolate()->factory();
   1357 
   1358   IfBuilder cow_checker(this);
   1359 
   1360   cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
   1361   cow_checker.Then();
   1362 
   1363   HValue* capacity = AddLoadFixedArrayLength(elements);
   1364 
   1365   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
   1366                                                    kind, length, capacity);
   1367 
   1368   environment()->Push(new_elements);
   1369 
   1370   cow_checker.Else();
   1371 
   1372   environment()->Push(elements);
   1373 
   1374   cow_checker.End();
   1375 
   1376   return environment()->Pop();
   1377 }
   1378 
   1379 
   1380 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
   1381                                                 HValue* map,
   1382                                                 ElementsKind from_kind,
   1383                                                 ElementsKind to_kind,
   1384                                                 bool is_jsarray) {
   1385   ASSERT(!IsFastHoleyElementsKind(from_kind) ||
   1386          IsFastHoleyElementsKind(to_kind));
   1387 
   1388   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
   1389     Add<HTrapAllocationMemento>(object);
   1390   }
   1391 
   1392   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
   1393     HInstruction* elements = AddLoadElements(object);
   1394 
   1395     HInstruction* empty_fixed_array = Add<HConstant>(
   1396         isolate()->factory()->empty_fixed_array());
   1397 
   1398     IfBuilder if_builder(this);
   1399 
   1400     if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
   1401 
   1402     if_builder.Then();
   1403 
   1404     HInstruction* elements_length = AddLoadFixedArrayLength(elements);
   1405 
   1406     HInstruction* array_length = is_jsarray
   1407         ? Add<HLoadNamedField>(object, HObjectAccess::ForArrayLength(from_kind))
   1408         : elements_length;
   1409 
   1410     BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
   1411                               array_length, elements_length);
   1412 
   1413     if_builder.End();
   1414   }
   1415 
   1416   Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
   1417 }
   1418 
   1419 
   1420 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoadHelper(
   1421     HValue* elements,
   1422     HValue* key,
   1423     HValue* hash,
   1424     HValue* mask,
   1425     int current_probe) {
   1426   if (current_probe == kNumberDictionaryProbes) {
   1427     return NULL;
   1428   }
   1429 
   1430   int32_t offset = SeededNumberDictionary::GetProbeOffset(current_probe);
   1431   HValue* raw_index = (current_probe == 0)
   1432       ? hash
   1433       : AddUncasted<HAdd>(hash, Add<HConstant>(offset));
   1434   raw_index = AddUncasted<HBitwise>(Token::BIT_AND, raw_index, mask);
   1435   int32_t entry_size = SeededNumberDictionary::kEntrySize;
   1436   raw_index = AddUncasted<HMul>(raw_index, Add<HConstant>(entry_size));
   1437   raw_index->ClearFlag(HValue::kCanOverflow);
   1438 
   1439   int32_t base_offset = SeededNumberDictionary::kElementsStartIndex;
   1440   HValue* key_index = AddUncasted<HAdd>(raw_index, Add<HConstant>(base_offset));
   1441   key_index->ClearFlag(HValue::kCanOverflow);
   1442 
   1443   HValue* candidate_key = Add<HLoadKeyed>(elements, key_index,
   1444                                           static_cast<HValue*>(NULL),
   1445                                           FAST_SMI_ELEMENTS);
   1446 
   1447   IfBuilder key_compare(this);
   1448   key_compare.IfNot<HCompareObjectEqAndBranch>(key, candidate_key);
   1449   key_compare.Then();
   1450   {
   1451     // Key at the current probe doesn't match, try at the next probe.
   1452     HValue* result = BuildUncheckedDictionaryElementLoadHelper(
   1453         elements, key, hash, mask, current_probe + 1);
   1454     if (result == NULL) {
   1455       key_compare.Deopt("probes exhausted in keyed load dictionary lookup");
   1456       result = graph()->GetConstantUndefined();
   1457     } else {
   1458       Push(result);
   1459     }
   1460   }
   1461   key_compare.Else();
   1462   {
   1463     // Key at current probe matches. Details must be zero, otherwise the
   1464     // dictionary element requires special handling.
   1465     HValue* details_index = AddUncasted<HAdd>(
   1466         raw_index, Add<HConstant>(base_offset + 2));
   1467     details_index->ClearFlag(HValue::kCanOverflow);
   1468 
   1469     HValue* details = Add<HLoadKeyed>(elements, details_index,
   1470                                       static_cast<HValue*>(NULL),
   1471                                       FAST_SMI_ELEMENTS);
   1472     IfBuilder details_compare(this);
   1473     details_compare.If<HCompareNumericAndBranch>(details,
   1474                                                  graph()->GetConstant0(),
   1475                                                  Token::NE);
   1476     details_compare.ThenDeopt("keyed load dictionary element not fast case");
   1477 
   1478     details_compare.Else();
   1479     {
   1480       // Key matches and details are zero --> fast case. Load and return the
   1481       // value.
   1482       HValue* result_index = AddUncasted<HAdd>(
   1483           raw_index, Add<HConstant>(base_offset + 1));
   1484       result_index->ClearFlag(HValue::kCanOverflow);
   1485 
   1486       Push(Add<HLoadKeyed>(elements, result_index,
   1487                            static_cast<HValue*>(NULL),
   1488                            FAST_ELEMENTS));
   1489     }
   1490     details_compare.End();
   1491   }
   1492   key_compare.End();
   1493 
   1494   return Pop();
   1495 }
   1496 
   1497 
   1498 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
   1499   int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
   1500   HValue* seed = Add<HConstant>(seed_value);
   1501   HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
   1502 
   1503   // hash = ~hash + (hash << 15);
   1504   HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
   1505   HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
   1506                                            graph()->GetConstantMinus1());
   1507   hash = AddUncasted<HAdd>(shifted_hash, not_hash);
   1508 
   1509   // hash = hash ^ (hash >> 12);
   1510   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
   1511   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
   1512 
   1513   // hash = hash + (hash << 2);
   1514   shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
   1515   hash = AddUncasted<HAdd>(hash, shifted_hash);
   1516 
   1517   // hash = hash ^ (hash >> 4);
   1518   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
   1519   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
   1520 
   1521   // hash = hash * 2057;
   1522   hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
   1523   hash->ClearFlag(HValue::kCanOverflow);
   1524 
   1525   // hash = hash ^ (hash >> 16);
   1526   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
   1527   return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
   1528 }
   1529 
   1530 
   1531 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(HValue* receiver,
   1532                                                            HValue* key) {
   1533   HValue* elements = AddLoadElements(receiver);
   1534 
   1535   HValue* hash = BuildElementIndexHash(key);
   1536 
   1537   HValue* capacity = Add<HLoadKeyed>(
   1538       elements,
   1539       Add<HConstant>(NameDictionary::kCapacityIndex),
   1540       static_cast<HValue*>(NULL),
   1541       FAST_SMI_ELEMENTS);
   1542 
   1543   HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
   1544   mask->ChangeRepresentation(Representation::Integer32());
   1545   mask->ClearFlag(HValue::kCanOverflow);
   1546 
   1547   return BuildUncheckedDictionaryElementLoadHelper(elements, key,
   1548                                                    hash, mask, 0);
   1549 }
   1550 
   1551 
   1552 HValue* HGraphBuilder::BuildNumberToString(HValue* object,
   1553                                            Handle<Type> type) {
   1554   NoObservableSideEffectsScope scope(this);
   1555 
   1556   // Convert constant numbers at compile time.
   1557   if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
   1558     Handle<Object> number = HConstant::cast(object)->handle(isolate());
   1559     Handle<String> result = isolate()->factory()->NumberToString(number);
   1560     return Add<HConstant>(result);
   1561   }
   1562 
   1563   // Create a joinable continuation.
   1564   HIfContinuation found(graph()->CreateBasicBlock(),
   1565                         graph()->CreateBasicBlock());
   1566 
   1567   // Load the number string cache.
   1568   HValue* number_string_cache =
   1569       Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
   1570 
   1571   // Make the hash mask from the length of the number string cache. It
   1572   // contains two elements (number and string) for each cache entry.
   1573   HValue* mask = AddLoadFixedArrayLength(number_string_cache);
   1574   mask->set_type(HType::Smi());
   1575   mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
   1576   mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
   1577 
   1578   // Check whether object is a smi.
   1579   IfBuilder if_objectissmi(this);
   1580   if_objectissmi.If<HIsSmiAndBranch>(object);
   1581   if_objectissmi.Then();
   1582   {
   1583     // Compute hash for smi similar to smi_get_hash().
   1584     HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
   1585 
   1586     // Load the key.
   1587     HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
   1588     HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
   1589                                   static_cast<HValue*>(NULL),
   1590                                   FAST_ELEMENTS, ALLOW_RETURN_HOLE);
   1591 
   1592     // Check if object == key.
   1593     IfBuilder if_objectiskey(this);
   1594     if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
   1595     if_objectiskey.Then();
   1596     {
   1597       // Make the key_index available.
   1598       Push(key_index);
   1599     }
   1600     if_objectiskey.JoinContinuation(&found);
   1601   }
   1602   if_objectissmi.Else();
   1603   {
   1604     if (type->Is(Type::Smi())) {
   1605       if_objectissmi.Deopt("Expected smi");
   1606     } else {
   1607       // Check if the object is a heap number.
   1608       IfBuilder if_objectisnumber(this);
   1609       if_objectisnumber.If<HCompareMap>(
   1610           object, isolate()->factory()->heap_number_map());
   1611       if_objectisnumber.Then();
   1612       {
   1613         // Compute hash for heap number similar to double_get_hash().
   1614         HValue* low = Add<HLoadNamedField>(
   1615             object, HObjectAccess::ForHeapNumberValueLowestBits());
   1616         HValue* high = Add<HLoadNamedField>(
   1617             object, HObjectAccess::ForHeapNumberValueHighestBits());
   1618         HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
   1619         hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
   1620 
   1621         // Load the key.
   1622         HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
   1623         HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
   1624                                       static_cast<HValue*>(NULL),
   1625                                       FAST_ELEMENTS, ALLOW_RETURN_HOLE);
   1626 
   1627         // Check if key is a heap number (the number string cache contains only
   1628         // SMIs and heap number, so it is sufficient to do a SMI check here).
   1629         IfBuilder if_keyisnotsmi(this);
   1630         if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
   1631         if_keyisnotsmi.Then();
   1632         {
   1633           // Check if values of key and object match.
   1634           IfBuilder if_keyeqobject(this);
   1635           if_keyeqobject.If<HCompareNumericAndBranch>(
   1636               Add<HLoadNamedField>(key, HObjectAccess::ForHeapNumberValue()),
   1637               Add<HLoadNamedField>(object, HObjectAccess::ForHeapNumberValue()),
   1638               Token::EQ);
   1639           if_keyeqobject.Then();
   1640           {
   1641             // Make the key_index available.
   1642             Push(key_index);
   1643           }
   1644           if_keyeqobject.JoinContinuation(&found);
   1645         }
   1646         if_keyisnotsmi.JoinContinuation(&found);
   1647       }
   1648       if_objectisnumber.Else();
   1649       {
   1650         if (type->Is(Type::Number())) {
   1651           if_objectisnumber.Deopt("Expected heap number");
   1652         }
   1653       }
   1654       if_objectisnumber.JoinContinuation(&found);
   1655     }
   1656   }
   1657   if_objectissmi.JoinContinuation(&found);
   1658 
   1659   // Check for cache hit.
   1660   IfBuilder if_found(this, &found);
   1661   if_found.Then();
   1662   {
   1663     // Count number to string operation in native code.
   1664     AddIncrementCounter(isolate()->counters()->number_to_string_native());
   1665 
   1666     // Load the value in case of cache hit.
   1667     HValue* key_index = Pop();
   1668     HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
   1669     Push(Add<HLoadKeyed>(number_string_cache, value_index,
   1670                          static_cast<HValue*>(NULL),
   1671                          FAST_ELEMENTS, ALLOW_RETURN_HOLE));
   1672   }
   1673   if_found.Else();
   1674   {
   1675     // Cache miss, fallback to runtime.
   1676     Add<HPushArgument>(object);
   1677     Push(Add<HCallRuntime>(
   1678             isolate()->factory()->empty_string(),
   1679             Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
   1680             1));
   1681   }
   1682   if_found.End();
   1683 
   1684   return Pop();
   1685 }
   1686 
   1687 
   1688 HValue* HGraphBuilder::BuildSeqStringSizeFor(HValue* length,
   1689                                              String::Encoding encoding) {
   1690   STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
   1691   HValue* size = length;
   1692   if (encoding == String::TWO_BYTE_ENCODING) {
   1693     size = AddUncasted<HShl>(length, graph()->GetConstant1());
   1694     size->ClearFlag(HValue::kCanOverflow);
   1695     size->SetFlag(HValue::kUint32);
   1696   }
   1697   size = AddUncasted<HAdd>(size, Add<HConstant>(static_cast<int32_t>(
   1698               SeqString::kHeaderSize + kObjectAlignmentMask)));
   1699   size->ClearFlag(HValue::kCanOverflow);
   1700   size = AddUncasted<HBitwise>(
   1701       Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
   1702               ~kObjectAlignmentMask)));
   1703   return size;
   1704 }
   1705 
   1706 
   1707 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
   1708                                             HValue* src_offset,
   1709                                             String::Encoding src_encoding,
   1710                                             HValue* dst,
   1711                                             HValue* dst_offset,
   1712                                             String::Encoding dst_encoding,
   1713                                             HValue* length) {
   1714   ASSERT(dst_encoding != String::ONE_BYTE_ENCODING ||
   1715          src_encoding == String::ONE_BYTE_ENCODING);
   1716   LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
   1717   HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
   1718   {
   1719     HValue* src_index = AddUncasted<HAdd>(src_offset, index);
   1720     HValue* value =
   1721         AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
   1722     HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
   1723     Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
   1724   }
   1725   loop.EndBody();
   1726 }
   1727 
   1728 
   1729 HValue* HGraphBuilder::BuildUncheckedStringAdd(HValue* left,
   1730                                                HValue* right,
   1731                                                PretenureFlag pretenure_flag) {
   1732   // Determine the string lengths.
   1733   HValue* left_length = Add<HLoadNamedField>(
   1734       left, HObjectAccess::ForStringLength());
   1735   HValue* right_length = Add<HLoadNamedField>(
   1736       right, HObjectAccess::ForStringLength());
   1737 
   1738   // Compute the combined string length. If the result is larger than the max
   1739   // supported string length, we bailout to the runtime. This is done implicitly
   1740   // when converting the result back to a smi in case the max string length
   1741   // equals the max smi valie. Otherwise, for platforms with 32-bit smis, we do
   1742   HValue* length = AddUncasted<HAdd>(left_length, right_length);
   1743   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
   1744   if (String::kMaxLength != Smi::kMaxValue) {
   1745     IfBuilder if_nooverflow(this);
   1746     if_nooverflow.If<HCompareNumericAndBranch>(
   1747         length, Add<HConstant>(String::kMaxLength), Token::LTE);
   1748     if_nooverflow.Then();
   1749     if_nooverflow.ElseDeopt("String length exceeds limit");
   1750   }
   1751 
   1752   // Determine the string instance types.
   1753   HLoadNamedField* left_instance_type = Add<HLoadNamedField>(
   1754       Add<HLoadNamedField>(left, HObjectAccess::ForMap()),
   1755       HObjectAccess::ForMapInstanceType());
   1756   HLoadNamedField* right_instance_type = Add<HLoadNamedField>(
   1757       Add<HLoadNamedField>(right, HObjectAccess::ForMap()),
   1758       HObjectAccess::ForMapInstanceType());
   1759 
   1760   // Compute difference of instance types.
   1761   HValue* xored_instance_types = AddUncasted<HBitwise>(
   1762       Token::BIT_XOR, left_instance_type, right_instance_type);
   1763 
   1764   // Check if we should create a cons string.
   1765   IfBuilder if_createcons(this);
   1766   if_createcons.If<HCompareNumericAndBranch>(
   1767       length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
   1768   if_createcons.Then();
   1769   {
   1770     // Allocate the cons string object. HAllocate does not care whether we
   1771     // pass CONS_STRING_TYPE or CONS_ASCII_STRING_TYPE here, so we just use
   1772     // CONS_STRING_TYPE here. Below we decide whether the cons string is
   1773     // one-byte or two-byte and set the appropriate map.
   1774     HAllocate* string = Add<HAllocate>(Add<HConstant>(ConsString::kSize),
   1775                                        HType::String(), pretenure_flag,
   1776                                        CONS_STRING_TYPE);
   1777 
   1778     // Compute the intersection of instance types.
   1779     HValue* anded_instance_types = AddUncasted<HBitwise>(
   1780         Token::BIT_AND, left_instance_type, right_instance_type);
   1781 
   1782     // We create a one-byte cons string if
   1783     // 1. both strings are one-byte, or
   1784     // 2. at least one of the strings is two-byte, but happens to contain only
   1785     //    one-byte characters.
   1786     // To do this, we check
   1787     // 1. if both strings are one-byte, or if the one-byte data hint is set in
   1788     //    both strings, or
   1789     // 2. if one of the strings has the one-byte data hint set and the other
   1790     //    string is one-byte.
   1791     IfBuilder if_onebyte(this);
   1792     STATIC_ASSERT(kOneByteStringTag != 0);
   1793     STATIC_ASSERT(kOneByteDataHintMask != 0);
   1794     if_onebyte.If<HCompareNumericAndBranch>(
   1795         AddUncasted<HBitwise>(
   1796             Token::BIT_AND, anded_instance_types,
   1797             Add<HConstant>(static_cast<int32_t>(
   1798                     kStringEncodingMask | kOneByteDataHintMask))),
   1799         graph()->GetConstant0(), Token::NE);
   1800     if_onebyte.Or();
   1801     STATIC_ASSERT(kOneByteStringTag != 0 &&
   1802                   kOneByteDataHintTag != 0 &&
   1803                   kOneByteDataHintTag != kOneByteStringTag);
   1804     if_onebyte.If<HCompareNumericAndBranch>(
   1805         AddUncasted<HBitwise>(
   1806             Token::BIT_AND, xored_instance_types,
   1807             Add<HConstant>(static_cast<int32_t>(
   1808                     kOneByteStringTag | kOneByteDataHintTag))),
   1809         Add<HConstant>(static_cast<int32_t>(
   1810                 kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
   1811     if_onebyte.Then();
   1812     {
   1813       // We can safely skip the write barrier for storing the map here.
   1814       Handle<Map> map = isolate()->factory()->cons_ascii_string_map();
   1815       AddStoreMapConstantNoWriteBarrier(string, map);
   1816     }
   1817     if_onebyte.Else();
   1818     {
   1819       // We can safely skip the write barrier for storing the map here.
   1820       Handle<Map> map = isolate()->factory()->cons_string_map();
   1821       AddStoreMapConstantNoWriteBarrier(string, map);
   1822     }
   1823     if_onebyte.End();
   1824 
   1825     // Initialize the cons string fields.
   1826     Add<HStoreNamedField>(string, HObjectAccess::ForStringHashField(),
   1827                           Add<HConstant>(String::kEmptyHashField));
   1828     Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(), length);
   1829     Add<HStoreNamedField>(string, HObjectAccess::ForConsStringFirst(), left);
   1830     Add<HStoreNamedField>(string, HObjectAccess::ForConsStringSecond(),
   1831                           right);
   1832 
   1833     // Count the native string addition.
   1834     AddIncrementCounter(isolate()->counters()->string_add_native());
   1835 
   1836     // Cons string is result.
   1837     Push(string);
   1838   }
   1839   if_createcons.Else();
   1840   {
   1841     // Compute union of instance types.
   1842     HValue* ored_instance_types = AddUncasted<HBitwise>(
   1843         Token::BIT_OR, left_instance_type, right_instance_type);
   1844 
   1845     // Check if both strings have the same encoding and both are
   1846     // sequential.
   1847     IfBuilder if_sameencodingandsequential(this);
   1848     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
   1849         AddUncasted<HBitwise>(
   1850             Token::BIT_AND, xored_instance_types,
   1851             Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
   1852         graph()->GetConstant0(), Token::EQ);
   1853     if_sameencodingandsequential.And();
   1854     STATIC_ASSERT(kSeqStringTag == 0);
   1855     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
   1856         AddUncasted<HBitwise>(
   1857             Token::BIT_AND, ored_instance_types,
   1858             Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
   1859         graph()->GetConstant0(), Token::EQ);
   1860     if_sameencodingandsequential.Then();
   1861     {
   1862       // Check if the result is a one-byte string.
   1863       IfBuilder if_onebyte(this);
   1864       STATIC_ASSERT(kOneByteStringTag != 0);
   1865       if_onebyte.If<HCompareNumericAndBranch>(
   1866           AddUncasted<HBitwise>(
   1867               Token::BIT_AND, ored_instance_types,
   1868               Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
   1869           graph()->GetConstant0(), Token::NE);
   1870       if_onebyte.Then();
   1871       {
   1872         // Calculate the number of bytes needed for the characters in the
   1873         // string while observing object alignment.
   1874         HValue* size = BuildSeqStringSizeFor(
   1875             length, String::ONE_BYTE_ENCODING);
   1876 
   1877         // Allocate the ASCII string object.
   1878         Handle<Map> map = isolate()->factory()->ascii_string_map();
   1879         HAllocate* string = Add<HAllocate>(size, HType::String(),
   1880                                            pretenure_flag, ASCII_STRING_TYPE);
   1881         string->set_known_initial_map(map);
   1882 
   1883         // We can safely skip the write barrier for storing map here.
   1884         AddStoreMapConstantNoWriteBarrier(string, map);
   1885 
   1886         // Length must be stored into the string before we copy characters to
   1887         // make debug verification code happy.
   1888         Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(),
   1889                               length);
   1890 
   1891         // Copy bytes from the left string.
   1892         BuildCopySeqStringChars(
   1893             left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
   1894             string, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
   1895             left_length);
   1896 
   1897         // Copy bytes from the right string.
   1898         BuildCopySeqStringChars(
   1899             right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
   1900             string, left_length, String::ONE_BYTE_ENCODING,
   1901             right_length);
   1902 
   1903         // Count the native string addition.
   1904         AddIncrementCounter(isolate()->counters()->string_add_native());
   1905 
   1906         // Return the string.
   1907         Push(string);
   1908       }
   1909       if_onebyte.Else();
   1910       {
   1911         // Calculate the number of bytes needed for the characters in the
   1912         // string while observing object alignment.
   1913         HValue* size = BuildSeqStringSizeFor(
   1914             length, String::TWO_BYTE_ENCODING);
   1915 
   1916         // Allocate the two-byte string object.
   1917         Handle<Map> map = isolate()->factory()->string_map();
   1918         HAllocate* string = Add<HAllocate>(size, HType::String(),
   1919                                            pretenure_flag, STRING_TYPE);
   1920         string->set_known_initial_map(map);
   1921 
   1922         // We can safely skip the write barrier for storing map here.
   1923         AddStoreMapConstantNoWriteBarrier(string, map);
   1924 
   1925         // Length must be stored into the string before we copy characters to
   1926         // make debug verification code happy.
   1927         Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(),
   1928                               length);
   1929 
   1930         // Copy bytes from the left string.
   1931         BuildCopySeqStringChars(
   1932             left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
   1933             string, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
   1934             left_length);
   1935 
   1936         // Copy bytes from the right string.
   1937         BuildCopySeqStringChars(
   1938             right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
   1939             string, left_length, String::TWO_BYTE_ENCODING,
   1940             right_length);
   1941 
   1942         // Return the string.
   1943         Push(string);
   1944       }
   1945       if_onebyte.End();
   1946 
   1947       // Initialize the (common) string fields.
   1948       HValue* string = Pop();
   1949       Add<HStoreNamedField>(string, HObjectAccess::ForStringHashField(),
   1950                             Add<HConstant>(String::kEmptyHashField));
   1951 
   1952       // Count the native string addition.
   1953       AddIncrementCounter(isolate()->counters()->string_add_native());
   1954 
   1955       Push(string);
   1956     }
   1957     if_sameencodingandsequential.Else();
   1958     {
   1959       // Fallback to the runtime to add the two strings.
   1960       Add<HPushArgument>(left);
   1961       Add<HPushArgument>(right);
   1962       Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
   1963                              Runtime::FunctionForId(Runtime::kStringAdd),
   1964                              2));
   1965     }
   1966     if_sameencodingandsequential.End();
   1967   }
   1968   if_createcons.End();
   1969 
   1970   return Pop();
   1971 }
   1972 
   1973 
   1974 HValue* HGraphBuilder::BuildStringAdd(HValue* left,
   1975                                       HValue* right,
   1976                                       PretenureFlag pretenure_flag) {
   1977   // Determine the string lengths.
   1978   HValue* left_length = Add<HLoadNamedField>(
   1979       left, HObjectAccess::ForStringLength());
   1980   HValue* right_length = Add<HLoadNamedField>(
   1981       right, HObjectAccess::ForStringLength());
   1982 
   1983   // Check if left string is empty.
   1984   IfBuilder if_leftisempty(this);
   1985   if_leftisempty.If<HCompareNumericAndBranch>(
   1986       left_length, graph()->GetConstant0(), Token::EQ);
   1987   if_leftisempty.Then();
   1988   {
   1989     // Count the native string addition.
   1990     AddIncrementCounter(isolate()->counters()->string_add_native());
   1991 
   1992     // Just return the right string.
   1993     Push(right);
   1994   }
   1995   if_leftisempty.Else();
   1996   {
   1997     // Check if right string is empty.
   1998     IfBuilder if_rightisempty(this);
   1999     if_rightisempty.If<HCompareNumericAndBranch>(
   2000         right_length, graph()->GetConstant0(), Token::EQ);
   2001     if_rightisempty.Then();
   2002     {
   2003       // Count the native string addition.
   2004       AddIncrementCounter(isolate()->counters()->string_add_native());
   2005 
   2006       // Just return the left string.
   2007       Push(left);
   2008     }
   2009     if_rightisempty.Else();
   2010     {
   2011       // Concatenate the two non-empty strings.
   2012       Push(BuildUncheckedStringAdd(left, right, pretenure_flag));
   2013     }
   2014     if_rightisempty.End();
   2015   }
   2016   if_leftisempty.End();
   2017 
   2018   return Pop();
   2019 }
   2020 
   2021 
   2022 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
   2023     HValue* checked_object,
   2024     HValue* key,
   2025     HValue* val,
   2026     bool is_js_array,
   2027     ElementsKind elements_kind,
   2028     bool is_store,
   2029     LoadKeyedHoleMode load_mode,
   2030     KeyedAccessStoreMode store_mode) {
   2031   ASSERT(!IsExternalArrayElementsKind(elements_kind) || !is_js_array);
   2032   // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
   2033   // on a HElementsTransition instruction. The flag can also be removed if the
   2034   // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
   2035   // ElementsKind transitions. Finally, the dependency can be removed for stores
   2036   // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
   2037   // generated store code.
   2038   if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
   2039       (elements_kind == FAST_ELEMENTS && is_store)) {
   2040     checked_object->ClearGVNFlag(kDependsOnElementsKind);
   2041   }
   2042 
   2043   bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
   2044   bool fast_elements = IsFastObjectElementsKind(elements_kind);
   2045   HValue* elements = AddLoadElements(checked_object);
   2046   if (is_store && (fast_elements || fast_smi_only_elements) &&
   2047       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
   2048     HCheckMaps* check_cow_map = Add<HCheckMaps>(
   2049         elements, isolate()->factory()->fixed_array_map(), top_info());
   2050     check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
   2051   }
   2052   HInstruction* length = NULL;
   2053   if (is_js_array) {
   2054     length = Add<HLoadNamedField>(
   2055         checked_object, HObjectAccess::ForArrayLength(elements_kind));
   2056   } else {
   2057     length = AddLoadFixedArrayLength(elements);
   2058   }
   2059   length->set_type(HType::Smi());
   2060   HValue* checked_key = NULL;
   2061   if (IsExternalArrayElementsKind(elements_kind)) {
   2062     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
   2063       NoObservableSideEffectsScope no_effects(this);
   2064        HLoadExternalArrayPointer* external_elements =
   2065            Add<HLoadExternalArrayPointer>(elements);
   2066       IfBuilder length_checker(this);
   2067       length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
   2068       length_checker.Then();
   2069       IfBuilder negative_checker(this);
   2070       HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
   2071           key, graph()->GetConstant0(), Token::GTE);
   2072       negative_checker.Then();
   2073       HInstruction* result = AddElementAccess(
   2074           external_elements, key, val, bounds_check, elements_kind, is_store);
   2075       negative_checker.ElseDeopt("Negative key encountered");
   2076       negative_checker.End();
   2077       length_checker.End();
   2078       return result;
   2079     } else {
   2080       ASSERT(store_mode == STANDARD_STORE);
   2081       checked_key = Add<HBoundsCheck>(key, length);
   2082       HLoadExternalArrayPointer* external_elements =
   2083           Add<HLoadExternalArrayPointer>(elements);
   2084       return AddElementAccess(
   2085           external_elements, checked_key, val,
   2086           checked_object, elements_kind, is_store);
   2087     }
   2088   }
   2089   ASSERT(fast_smi_only_elements ||
   2090          fast_elements ||
   2091          IsFastDoubleElementsKind(elements_kind));
   2092 
   2093   // In case val is stored into a fast smi array, assure that the value is a smi
   2094   // before manipulating the backing store. Otherwise the actual store may
   2095   // deopt, leaving the backing store in an invalid state.
   2096   if (is_store && IsFastSmiElementsKind(elements_kind) &&
   2097       !val->type().IsSmi()) {
   2098     val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
   2099   }
   2100 
   2101   if (IsGrowStoreMode(store_mode)) {
   2102     NoObservableSideEffectsScope no_effects(this);
   2103     elements = BuildCheckForCapacityGrow(checked_object, elements,
   2104                                          elements_kind, length, key,
   2105                                          is_js_array);
   2106     checked_key = key;
   2107   } else {
   2108     checked_key = Add<HBoundsCheck>(key, length);
   2109 
   2110     if (is_store && (fast_elements || fast_smi_only_elements)) {
   2111       if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
   2112         NoObservableSideEffectsScope no_effects(this);
   2113         elements = BuildCopyElementsOnWrite(checked_object, elements,
   2114                                             elements_kind, length);
   2115       } else {
   2116         HCheckMaps* check_cow_map = Add<HCheckMaps>(
   2117             elements, isolate()->factory()->fixed_array_map(), top_info());
   2118         check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
   2119       }
   2120     }
   2121   }
   2122   return AddElementAccess(elements, checked_key, val, checked_object,
   2123                           elements_kind, is_store, load_mode);
   2124 }
   2125 
   2126 
   2127 
   2128 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
   2129     JSArrayBuilder* array_builder,
   2130     HValue* length_argument) {
   2131   if (length_argument->IsConstant() &&
   2132       HConstant::cast(length_argument)->HasSmiValue()) {
   2133     int array_length = HConstant::cast(length_argument)->Integer32Value();
   2134     HValue* new_object = array_length == 0
   2135         ? array_builder->AllocateEmptyArray()
   2136         : array_builder->AllocateArray(length_argument, length_argument);
   2137     return new_object;
   2138   }
   2139 
   2140   HValue* constant_zero = graph()->GetConstant0();
   2141   HConstant* max_alloc_length =
   2142       Add<HConstant>(JSObject::kInitialMaxFastElementArray);
   2143   HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
   2144                                                    max_alloc_length);
   2145   IfBuilder if_builder(this);
   2146   if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
   2147                                           Token::EQ);
   2148   if_builder.Then();
   2149   const int initial_capacity = JSArray::kPreallocatedArrayElements;
   2150   HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
   2151   Push(initial_capacity_node);  // capacity
   2152   Push(constant_zero);          // length
   2153   if_builder.Else();
   2154   if (!(top_info()->IsStub()) &&
   2155       IsFastPackedElementsKind(array_builder->kind())) {
   2156     // We'll come back later with better (holey) feedback.
   2157     if_builder.Deopt("Holey array despite packed elements_kind feedback");
   2158   } else {
   2159     Push(checked_length);         // capacity
   2160     Push(checked_length);         // length
   2161   }
   2162   if_builder.End();
   2163 
   2164   // Figure out total size
   2165   HValue* length = Pop();
   2166   HValue* capacity = Pop();
   2167   return array_builder->AllocateArray(capacity, length);
   2168 }
   2169 
   2170 HValue* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
   2171                                              HValue* capacity) {
   2172   int elements_size;
   2173   InstanceType instance_type;
   2174 
   2175   if (IsFastDoubleElementsKind(kind)) {
   2176     elements_size = kDoubleSize;
   2177     instance_type = FIXED_DOUBLE_ARRAY_TYPE;
   2178   } else {
   2179     elements_size = kPointerSize;
   2180     instance_type = FIXED_ARRAY_TYPE;
   2181   }
   2182 
   2183   HConstant* elements_size_value = Add<HConstant>(elements_size);
   2184   HValue* mul = AddUncasted<HMul>(capacity, elements_size_value);
   2185   mul->ClearFlag(HValue::kCanOverflow);
   2186 
   2187   HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
   2188   HValue* total_size = AddUncasted<HAdd>(mul, header_size);
   2189   total_size->ClearFlag(HValue::kCanOverflow);
   2190 
   2191   return Add<HAllocate>(total_size, HType::JSArray(),
   2192       isolate()->heap()->GetPretenureMode(), instance_type);
   2193 }
   2194 
   2195 
   2196 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
   2197                                                   ElementsKind kind,
   2198                                                   HValue* capacity) {
   2199   Factory* factory = isolate()->factory();
   2200   Handle<Map> map = IsFastDoubleElementsKind(kind)
   2201       ? factory->fixed_double_array_map()
   2202       : factory->fixed_array_map();
   2203 
   2204   AddStoreMapConstant(elements, map);
   2205   Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
   2206                         capacity);
   2207 }
   2208 
   2209 
   2210 HValue* HGraphBuilder::BuildAllocateElementsAndInitializeElementsHeader(
   2211     ElementsKind kind,
   2212     HValue* capacity) {
   2213   // The HForceRepresentation is to prevent possible deopt on int-smi
   2214   // conversion after allocation but before the new object fields are set.
   2215   capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
   2216   HValue* new_elements = BuildAllocateElements(kind, capacity);
   2217   BuildInitializeElementsHeader(new_elements, kind, capacity);
   2218   return new_elements;
   2219 }
   2220 
   2221 
   2222 HInnerAllocatedObject* HGraphBuilder::BuildJSArrayHeader(HValue* array,
   2223     HValue* array_map,
   2224     AllocationSiteMode mode,
   2225     ElementsKind elements_kind,
   2226     HValue* allocation_site_payload,
   2227     HValue* length_field) {
   2228 
   2229   Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
   2230 
   2231   HConstant* empty_fixed_array =
   2232     Add<HConstant>(isolate()->factory()->empty_fixed_array());
   2233 
   2234   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
   2235   Add<HStoreNamedField>(array, access, empty_fixed_array);
   2236   Add<HStoreNamedField>(array, HObjectAccess::ForArrayLength(elements_kind),
   2237                         length_field);
   2238 
   2239   if (mode == TRACK_ALLOCATION_SITE) {
   2240     BuildCreateAllocationMemento(
   2241         array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
   2242   }
   2243 
   2244   int elements_location = JSArray::kSize;
   2245   if (mode == TRACK_ALLOCATION_SITE) {
   2246     elements_location += AllocationMemento::kSize;
   2247   }
   2248 
   2249   HInnerAllocatedObject* elements = Add<HInnerAllocatedObject>(
   2250       array, Add<HConstant>(elements_location));
   2251   Add<HStoreNamedField>(array, HObjectAccess::ForElementsPointer(), elements);
   2252   return elements;
   2253 }
   2254 
   2255 
   2256 HInstruction* HGraphBuilder::AddElementAccess(
   2257     HValue* elements,
   2258     HValue* checked_key,
   2259     HValue* val,
   2260     HValue* dependency,
   2261     ElementsKind elements_kind,
   2262     bool is_store,
   2263     LoadKeyedHoleMode load_mode) {
   2264   if (is_store) {
   2265     ASSERT(val != NULL);
   2266     if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
   2267       val = Add<HClampToUint8>(val);
   2268     }
   2269     return Add<HStoreKeyed>(elements, checked_key, val, elements_kind);
   2270   }
   2271 
   2272   ASSERT(!is_store);
   2273   ASSERT(val == NULL);
   2274   HLoadKeyed* load = Add<HLoadKeyed>(
   2275       elements, checked_key, dependency, elements_kind, load_mode);
   2276   if (FLAG_opt_safe_uint32_operations &&
   2277       elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
   2278     graph()->RecordUint32Instruction(load);
   2279   }
   2280   return load;
   2281 }
   2282 
   2283 
   2284 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object) {
   2285   return Add<HLoadNamedField>(object, HObjectAccess::ForElementsPointer());
   2286 }
   2287 
   2288 
   2289 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(HValue* object) {
   2290   return Add<HLoadNamedField>(object,
   2291                               HObjectAccess::ForFixedArrayLength());
   2292 }
   2293 
   2294 
   2295 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
   2296   HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
   2297                                                 graph_->GetConstant1());
   2298 
   2299   HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
   2300   new_capacity->ClearFlag(HValue::kCanOverflow);
   2301 
   2302   HValue* min_growth = Add<HConstant>(16);
   2303 
   2304   new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
   2305   new_capacity->ClearFlag(HValue::kCanOverflow);
   2306 
   2307   return new_capacity;
   2308 }
   2309 
   2310 
   2311 void HGraphBuilder::BuildNewSpaceArrayCheck(HValue* length, ElementsKind kind) {
   2312   Heap* heap = isolate()->heap();
   2313   int element_size = IsFastDoubleElementsKind(kind) ? kDoubleSize
   2314                                                     : kPointerSize;
   2315   int max_size = heap->MaxRegularSpaceAllocationSize() / element_size;
   2316   max_size -= JSArray::kSize / element_size;
   2317   HConstant* max_size_constant = Add<HConstant>(max_size);
   2318   Add<HBoundsCheck>(length, max_size_constant);
   2319 }
   2320 
   2321 
   2322 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
   2323                                                  HValue* elements,
   2324                                                  ElementsKind kind,
   2325                                                  ElementsKind new_kind,
   2326                                                  HValue* length,
   2327                                                  HValue* new_capacity) {
   2328   BuildNewSpaceArrayCheck(new_capacity, new_kind);
   2329 
   2330   HValue* new_elements = BuildAllocateElementsAndInitializeElementsHeader(
   2331       new_kind, new_capacity);
   2332 
   2333   BuildCopyElements(elements, kind,
   2334                     new_elements, new_kind,
   2335                     length, new_capacity);
   2336 
   2337   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
   2338                         new_elements);
   2339 
   2340   return new_elements;
   2341 }
   2342 
   2343 
   2344 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
   2345                                               ElementsKind elements_kind,
   2346                                               HValue* from,
   2347                                               HValue* to) {
   2348   // Fast elements kinds need to be initialized in case statements below cause
   2349   // a garbage collection.
   2350   Factory* factory = isolate()->factory();
   2351 
   2352   double nan_double = FixedDoubleArray::hole_nan_as_double();
   2353   HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
   2354       ? Add<HConstant>(factory->the_hole_value())
   2355       : Add<HConstant>(nan_double);
   2356 
   2357   // Special loop unfolding case
   2358   static const int kLoopUnfoldLimit = 8;
   2359   STATIC_ASSERT(JSArray::kPreallocatedArrayElements <= kLoopUnfoldLimit);
   2360   int initial_capacity = -1;
   2361   if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
   2362     int constant_from = from->GetInteger32Constant();
   2363     int constant_to = to->GetInteger32Constant();
   2364 
   2365     if (constant_from == 0 && constant_to <= kLoopUnfoldLimit) {
   2366       initial_capacity = constant_to;
   2367     }
   2368   }
   2369 
   2370   // Since we're about to store a hole value, the store instruction below must
   2371   // assume an elements kind that supports heap object values.
   2372   if (IsFastSmiOrObjectElementsKind(elements_kind)) {
   2373     elements_kind = FAST_HOLEY_ELEMENTS;
   2374   }
   2375 
   2376   if (initial_capacity >= 0) {
   2377     for (int i = 0; i < initial_capacity; i++) {
   2378       HInstruction* key = Add<HConstant>(i);
   2379       Add<HStoreKeyed>(elements, key, hole, elements_kind);
   2380     }
   2381   } else {
   2382     LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
   2383 
   2384     HValue* key = builder.BeginBody(from, to, Token::LT);
   2385 
   2386     Add<HStoreKeyed>(elements, key, hole, elements_kind);
   2387 
   2388     builder.EndBody();
   2389   }
   2390 }
   2391 
   2392 
   2393 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
   2394                                       ElementsKind from_elements_kind,
   2395                                       HValue* to_elements,
   2396                                       ElementsKind to_elements_kind,
   2397                                       HValue* length,
   2398                                       HValue* capacity) {
   2399   bool pre_fill_with_holes =
   2400       IsFastDoubleElementsKind(from_elements_kind) &&
   2401       IsFastObjectElementsKind(to_elements_kind);
   2402 
   2403   if (pre_fill_with_holes) {
   2404     // If the copy might trigger a GC, make sure that the FixedArray is
   2405     // pre-initialized with holes to make sure that it's always in a consistent
   2406     // state.
   2407     BuildFillElementsWithHole(to_elements, to_elements_kind,
   2408                               graph()->GetConstant0(), capacity);
   2409   }
   2410 
   2411   LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
   2412 
   2413   HValue* key = builder.BeginBody(graph()->GetConstant0(), length, Token::LT);
   2414 
   2415   HValue* element = Add<HLoadKeyed>(from_elements, key,
   2416                                     static_cast<HValue*>(NULL),
   2417                                     from_elements_kind,
   2418                                     ALLOW_RETURN_HOLE);
   2419 
   2420   ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
   2421                        IsFastSmiElementsKind(to_elements_kind))
   2422       ? FAST_HOLEY_ELEMENTS : to_elements_kind;
   2423 
   2424   if (IsHoleyElementsKind(from_elements_kind) &&
   2425       from_elements_kind != to_elements_kind) {
   2426     IfBuilder if_hole(this);
   2427     if_hole.If<HCompareHoleAndBranch>(element);
   2428     if_hole.Then();
   2429     HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
   2430         ? Add<HConstant>(FixedDoubleArray::hole_nan_as_double())
   2431         : graph()->GetConstantHole();
   2432     Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
   2433     if_hole.Else();
   2434     HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
   2435     store->SetFlag(HValue::kAllowUndefinedAsNaN);
   2436     if_hole.End();
   2437   } else {
   2438     HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
   2439     store->SetFlag(HValue::kAllowUndefinedAsNaN);
   2440   }
   2441 
   2442   builder.EndBody();
   2443 
   2444   if (!pre_fill_with_holes && length != capacity) {
   2445     // Fill unused capacity with the hole.
   2446     BuildFillElementsWithHole(to_elements, to_elements_kind,
   2447                               key, capacity);
   2448   }
   2449 }
   2450 
   2451 
   2452 HValue* HGraphBuilder::BuildCloneShallowArray(HValue* boilerplate,
   2453                                               HValue* allocation_site,
   2454                                               AllocationSiteMode mode,
   2455                                               ElementsKind kind,
   2456                                               int length) {
   2457   NoObservableSideEffectsScope no_effects(this);
   2458 
   2459   // All sizes here are multiples of kPointerSize.
   2460   int size = JSArray::kSize;
   2461   if (mode == TRACK_ALLOCATION_SITE) {
   2462     size += AllocationMemento::kSize;
   2463   }
   2464 
   2465   HValue* size_in_bytes = Add<HConstant>(size);
   2466   HInstruction* object = Add<HAllocate>(size_in_bytes,
   2467                                         HType::JSObject(),
   2468                                         NOT_TENURED,
   2469                                         JS_OBJECT_TYPE);
   2470 
   2471   // Copy the JS array part.
   2472   for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
   2473     if ((i != JSArray::kElementsOffset) || (length == 0)) {
   2474       HObjectAccess access = HObjectAccess::ForJSArrayOffset(i);
   2475       Add<HStoreNamedField>(object, access,
   2476                             Add<HLoadNamedField>(boilerplate, access));
   2477     }
   2478   }
   2479 
   2480   // Create an allocation site info if requested.
   2481   if (mode == TRACK_ALLOCATION_SITE) {
   2482     BuildCreateAllocationMemento(
   2483         object, Add<HConstant>(JSArray::kSize), allocation_site);
   2484   }
   2485 
   2486   if (length > 0) {
   2487     HValue* boilerplate_elements = AddLoadElements(boilerplate);
   2488     HValue* object_elements;
   2489     if (IsFastDoubleElementsKind(kind)) {
   2490       HValue* elems_size = Add<HConstant>(FixedDoubleArray::SizeFor(length));
   2491       object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
   2492           NOT_TENURED, FIXED_DOUBLE_ARRAY_TYPE);
   2493     } else {
   2494       HValue* elems_size = Add<HConstant>(FixedArray::SizeFor(length));
   2495       object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
   2496           NOT_TENURED, FIXED_ARRAY_TYPE);
   2497     }
   2498     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
   2499                           object_elements);
   2500 
   2501     // Copy the elements array header.
   2502     for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
   2503       HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
   2504       Add<HStoreNamedField>(object_elements, access,
   2505                             Add<HLoadNamedField>(boilerplate_elements, access));
   2506     }
   2507 
   2508     // Copy the elements array contents.
   2509     // TODO(mstarzinger): Teach HGraphBuilder::BuildCopyElements to unfold
   2510     // copying loops with constant length up to a given boundary and use this
   2511     // helper here instead.
   2512     for (int i = 0; i < length; i++) {
   2513       HValue* key_constant = Add<HConstant>(i);
   2514       HInstruction* value = Add<HLoadKeyed>(boilerplate_elements, key_constant,
   2515                                             static_cast<HValue*>(NULL), kind);
   2516       Add<HStoreKeyed>(object_elements, key_constant, value, kind);
   2517     }
   2518   }
   2519 
   2520   return object;
   2521 }
   2522 
   2523 
   2524 void HGraphBuilder::BuildCompareNil(
   2525     HValue* value,
   2526     Handle<Type> type,
   2527     HIfContinuation* continuation) {
   2528   IfBuilder if_nil(this);
   2529   bool some_case_handled = false;
   2530   bool some_case_missing = false;
   2531 
   2532   if (type->Maybe(Type::Null())) {
   2533     if (some_case_handled) if_nil.Or();
   2534     if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
   2535     some_case_handled = true;
   2536   } else {
   2537     some_case_missing = true;
   2538   }
   2539 
   2540   if (type->Maybe(Type::Undefined())) {
   2541     if (some_case_handled) if_nil.Or();
   2542     if_nil.If<HCompareObjectEqAndBranch>(value,
   2543                                          graph()->GetConstantUndefined());
   2544     some_case_handled = true;
   2545   } else {
   2546     some_case_missing = true;
   2547   }
   2548 
   2549   if (type->Maybe(Type::Undetectable())) {
   2550     if (some_case_handled) if_nil.Or();
   2551     if_nil.If<HIsUndetectableAndBranch>(value);
   2552     some_case_handled = true;
   2553   } else {
   2554     some_case_missing = true;
   2555   }
   2556 
   2557   if (some_case_missing) {
   2558     if_nil.Then();
   2559     if_nil.Else();
   2560     if (type->NumClasses() == 1) {
   2561       BuildCheckHeapObject(value);
   2562       // For ICs, the map checked below is a sentinel map that gets replaced by
   2563       // the monomorphic map when the code is used as a template to generate a
   2564       // new IC. For optimized functions, there is no sentinel map, the map
   2565       // emitted below is the actual monomorphic map.
   2566       BuildCheckMap(value, type->Classes().Current());
   2567     } else {
   2568       if_nil.Deopt("Too many undetectable types");
   2569     }
   2570   }
   2571 
   2572   if_nil.CaptureContinuation(continuation);
   2573 }
   2574 
   2575 
   2576 void HGraphBuilder::BuildCreateAllocationMemento(
   2577     HValue* previous_object,
   2578     HValue* previous_object_size,
   2579     HValue* allocation_site) {
   2580   ASSERT(allocation_site != NULL);
   2581   HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
   2582       previous_object, previous_object_size);
   2583   AddStoreMapConstant(
   2584       allocation_memento, isolate()->factory()->allocation_memento_map());
   2585   Add<HStoreNamedField>(
   2586       allocation_memento,
   2587       HObjectAccess::ForAllocationMementoSite(),
   2588       allocation_site);
   2589   if (FLAG_allocation_site_pretenuring) {
   2590     HValue* memento_create_count = Add<HLoadNamedField>(
   2591         allocation_site, HObjectAccess::ForAllocationSiteOffset(
   2592             AllocationSite::kMementoCreateCountOffset));
   2593     memento_create_count = AddUncasted<HAdd>(
   2594         memento_create_count, graph()->GetConstant1());
   2595     HStoreNamedField* store = Add<HStoreNamedField>(
   2596         allocation_site, HObjectAccess::ForAllocationSiteOffset(
   2597             AllocationSite::kMementoCreateCountOffset), memento_create_count);
   2598     // No write barrier needed to store a smi.
   2599     store->SkipWriteBarrier();
   2600   }
   2601 }
   2602 
   2603 
   2604 HInstruction* HGraphBuilder::BuildGetNativeContext() {
   2605   // Get the global context, then the native context
   2606   HInstruction* global_object = Add<HGlobalObject>();
   2607   HObjectAccess access = HObjectAccess::ForJSObjectOffset(
   2608       GlobalObject::kNativeContextOffset);
   2609   return Add<HLoadNamedField>(global_object, access);
   2610 }
   2611 
   2612 
   2613 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
   2614   HInstruction* native_context = BuildGetNativeContext();
   2615   HInstruction* index =
   2616       Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
   2617   return Add<HLoadKeyed>(
   2618       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
   2619 }
   2620 
   2621 
   2622 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
   2623     ElementsKind kind,
   2624     HValue* allocation_site_payload,
   2625     HValue* constructor_function,
   2626     AllocationSiteOverrideMode override_mode) :
   2627         builder_(builder),
   2628         kind_(kind),
   2629         allocation_site_payload_(allocation_site_payload),
   2630         constructor_function_(constructor_function) {
   2631   mode_ = override_mode == DISABLE_ALLOCATION_SITES
   2632       ? DONT_TRACK_ALLOCATION_SITE
   2633       : AllocationSite::GetMode(kind);
   2634 }
   2635 
   2636 
   2637 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
   2638                                               ElementsKind kind,
   2639                                               HValue* constructor_function) :
   2640     builder_(builder),
   2641     kind_(kind),
   2642     mode_(DONT_TRACK_ALLOCATION_SITE),
   2643     allocation_site_payload_(NULL),
   2644     constructor_function_(constructor_function) {
   2645 }
   2646 
   2647 
   2648 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
   2649   if (!builder()->top_info()->IsStub()) {
   2650     // A constant map is fine.
   2651     Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
   2652                     builder()->isolate());
   2653     return builder()->Add<HConstant>(map);
   2654   }
   2655 
   2656   if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
   2657     // No need for a context lookup if the kind_ matches the initial
   2658     // map, because we can just load the map in that case.
   2659     HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
   2660     return builder()->AddLoadNamedField(constructor_function_, access);
   2661   }
   2662 
   2663   HInstruction* native_context = builder()->BuildGetNativeContext();
   2664   HInstruction* index = builder()->Add<HConstant>(
   2665       static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
   2666 
   2667   HInstruction* map_array = builder()->Add<HLoadKeyed>(
   2668       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
   2669 
   2670   HInstruction* kind_index = builder()->Add<HConstant>(kind_);
   2671 
   2672   return builder()->Add<HLoadKeyed>(
   2673       map_array, kind_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
   2674 }
   2675 
   2676 
   2677 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
   2678   // Find the map near the constructor function
   2679   HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
   2680   return builder()->AddLoadNamedField(constructor_function_, access);
   2681 }
   2682 
   2683 
   2684 HValue* HGraphBuilder::JSArrayBuilder::EstablishAllocationSize(
   2685     HValue* length_node) {
   2686   ASSERT(length_node != NULL);
   2687 
   2688   int base_size = JSArray::kSize;
   2689   if (mode_ == TRACK_ALLOCATION_SITE) {
   2690     base_size += AllocationMemento::kSize;
   2691   }
   2692 
   2693   STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
   2694   base_size += FixedArray::kHeaderSize;
   2695 
   2696   HInstruction* elements_size_value =
   2697       builder()->Add<HConstant>(elements_size());
   2698   HInstruction* mul = HMul::NewImul(builder()->zone(), builder()->context(),
   2699                                     length_node, elements_size_value);
   2700   builder()->AddInstruction(mul);
   2701   HInstruction* base = builder()->Add<HConstant>(base_size);
   2702   HInstruction* total_size = HAdd::New(builder()->zone(), builder()->context(),
   2703                                        base, mul);
   2704   total_size->ClearFlag(HValue::kCanOverflow);
   2705   builder()->AddInstruction(total_size);
   2706   return total_size;
   2707 }
   2708 
   2709 
   2710 HValue* HGraphBuilder::JSArrayBuilder::EstablishEmptyArrayAllocationSize() {
   2711   int base_size = JSArray::kSize;
   2712   if (mode_ == TRACK_ALLOCATION_SITE) {
   2713     base_size += AllocationMemento::kSize;
   2714   }
   2715 
   2716   base_size += IsFastDoubleElementsKind(kind_)
   2717       ? FixedDoubleArray::SizeFor(initial_capacity())
   2718       : FixedArray::SizeFor(initial_capacity());
   2719 
   2720   return builder()->Add<HConstant>(base_size);
   2721 }
   2722 
   2723 
   2724 HValue* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
   2725   HValue* size_in_bytes = EstablishEmptyArrayAllocationSize();
   2726   HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
   2727   return AllocateArray(size_in_bytes,
   2728                        capacity,
   2729                        builder()->graph()->GetConstant0());
   2730 }
   2731 
   2732 
   2733 HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* capacity,
   2734                                                      HValue* length_field,
   2735                                                      FillMode fill_mode) {
   2736   HValue* size_in_bytes = EstablishAllocationSize(capacity);
   2737   return AllocateArray(size_in_bytes, capacity, length_field, fill_mode);
   2738 }
   2739 
   2740 
   2741 HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* size_in_bytes,
   2742                                                      HValue* capacity,
   2743                                                      HValue* length_field,
   2744                                                      FillMode fill_mode) {
   2745   // These HForceRepresentations are because we store these as fields in the
   2746   // objects we construct, and an int32-to-smi HChange could deopt. Accept
   2747   // the deopt possibility now, before allocation occurs.
   2748   capacity =
   2749       builder()->AddUncasted<HForceRepresentation>(capacity,
   2750                                                    Representation::Smi());
   2751   length_field =
   2752       builder()->AddUncasted<HForceRepresentation>(length_field,
   2753                                                    Representation::Smi());
   2754   // Allocate (dealing with failure appropriately)
   2755   HAllocate* new_object = builder()->Add<HAllocate>(size_in_bytes,
   2756       HType::JSArray(), NOT_TENURED, JS_ARRAY_TYPE);
   2757 
   2758   // Folded array allocation should be aligned if it has fast double elements.
   2759   if (IsFastDoubleElementsKind(kind_)) {
   2760      new_object->MakeDoubleAligned();
   2761   }
   2762 
   2763   // Fill in the fields: map, properties, length
   2764   HValue* map;
   2765   if (allocation_site_payload_ == NULL) {
   2766     map = EmitInternalMapCode();
   2767   } else {
   2768     map = EmitMapCode();
   2769   }
   2770   elements_location_ = builder()->BuildJSArrayHeader(new_object,
   2771                                                      map,
   2772                                                      mode_,
   2773                                                      kind_,
   2774                                                      allocation_site_payload_,
   2775                                                      length_field);
   2776 
   2777   // Initialize the elements
   2778   builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
   2779 
   2780   if (fill_mode == FILL_WITH_HOLE) {
   2781     builder()->BuildFillElementsWithHole(elements_location_, kind_,
   2782                                          graph()->GetConstant0(), capacity);
   2783   }
   2784 
   2785   return new_object;
   2786 }
   2787 
   2788 
   2789 HStoreNamedField* HGraphBuilder::AddStoreMapConstant(HValue *object,
   2790                                                      Handle<Map> map) {
   2791   return Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
   2792                                Add<HConstant>(map));
   2793 }
   2794 
   2795 
   2796 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
   2797   HGlobalObject* global_object = Add<HGlobalObject>();
   2798   HObjectAccess access = HObjectAccess::ForJSObjectOffset(
   2799       GlobalObject::kBuiltinsOffset);
   2800   HValue* builtins = Add<HLoadNamedField>(global_object, access);
   2801   HObjectAccess function_access = HObjectAccess::ForJSObjectOffset(
   2802       JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
   2803   return Add<HLoadNamedField>(builtins, function_access);
   2804 }
   2805 
   2806 
   2807 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
   2808     : HGraphBuilder(info),
   2809       function_state_(NULL),
   2810       initial_function_state_(this, info, NORMAL_RETURN),
   2811       ast_context_(NULL),
   2812       break_scope_(NULL),
   2813       inlined_count_(0),
   2814       globals_(10, info->zone()),
   2815       inline_bailout_(false),
   2816       osr_(new(info->zone()) HOsrBuilder(this)) {
   2817   // This is not initialized in the initializer list because the
   2818   // constructor for the initial state relies on function_state_ == NULL
   2819   // to know it's the initial state.
   2820   function_state_= &initial_function_state_;
   2821   InitializeAstVisitor(info->isolate());
   2822   if (FLAG_emit_opt_code_positions) {
   2823     SetSourcePosition(info->shared_info()->start_position());
   2824   }
   2825 }
   2826 
   2827 
   2828 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
   2829                                                 HBasicBlock* second,
   2830                                                 BailoutId join_id) {
   2831   if (first == NULL) {
   2832     return second;
   2833   } else if (second == NULL) {
   2834     return first;
   2835   } else {
   2836     HBasicBlock* join_block = graph()->CreateBasicBlock();
   2837     Goto(first, join_block);
   2838     Goto(second, join_block);
   2839     join_block->SetJoinId(join_id);
   2840     return join_block;
   2841   }
   2842 }
   2843 
   2844 
   2845 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
   2846                                                   HBasicBlock* exit_block,
   2847                                                   HBasicBlock* continue_block) {
   2848   if (continue_block != NULL) {
   2849     if (exit_block != NULL) Goto(exit_block, continue_block);
   2850     continue_block->SetJoinId(statement->ContinueId());
   2851     return continue_block;
   2852   }
   2853   return exit_block;
   2854 }
   2855 
   2856 
   2857 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
   2858                                                 HBasicBlock* loop_entry,
   2859                                                 HBasicBlock* body_exit,
   2860                                                 HBasicBlock* loop_successor,
   2861                                                 HBasicBlock* break_block) {
   2862   if (body_exit != NULL) Goto(body_exit, loop_entry);
   2863   loop_entry->PostProcessLoopHeader(statement);
   2864   if (break_block != NULL) {
   2865     if (loop_successor != NULL) Goto(loop_successor, break_block);
   2866     break_block->SetJoinId(statement->ExitId());
   2867     return break_block;
   2868   }
   2869   return loop_successor;
   2870 }
   2871 
   2872 
   2873 // Build a new loop header block and set it as the current block.
   2874 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
   2875   HBasicBlock* loop_entry = CreateLoopHeaderBlock();
   2876   Goto(loop_entry);
   2877   set_current_block(loop_entry);
   2878   return loop_entry;
   2879 }
   2880 
   2881 
   2882 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
   2883     IterationStatement* statement) {
   2884   HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
   2885       ? osr()->BuildOsrLoopEntry(statement)
   2886       : BuildLoopEntry();
   2887   return loop_entry;
   2888 }
   2889 
   2890 
   2891 void HBasicBlock::FinishExit(HControlInstruction* instruction, int position) {
   2892   Finish(instruction, position);
   2893   ClearEnvironment();
   2894 }
   2895 
   2896 
   2897 HGraph::HGraph(CompilationInfo* info)
   2898     : isolate_(info->isolate()),
   2899       next_block_id_(0),
   2900       entry_block_(NULL),
   2901       blocks_(8, info->zone()),
   2902       values_(16, info->zone()),
   2903       phi_list_(NULL),
   2904       uint32_instructions_(NULL),
   2905       osr_(NULL),
   2906       info_(info),
   2907       zone_(info->zone()),
   2908       is_recursive_(false),
   2909       use_optimistic_licm_(false),
   2910       depends_on_empty_array_proto_elements_(false),
   2911       type_change_checksum_(0),
   2912       maximum_environment_size_(0),
   2913       no_side_effects_scope_count_(0),
   2914       disallow_adding_new_values_(false) {
   2915   if (info->IsStub()) {
   2916     HydrogenCodeStub* stub = info->code_stub();
   2917     CodeStubInterfaceDescriptor* descriptor =
   2918         stub->GetInterfaceDescriptor(isolate_);
   2919     start_environment_ =
   2920         new(zone_) HEnvironment(zone_, descriptor->environment_length());
   2921   } else {
   2922     start_environment_ =
   2923         new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
   2924   }
   2925   start_environment_->set_ast_id(BailoutId::FunctionEntry());
   2926   entry_block_ = CreateBasicBlock();
   2927   entry_block_->SetInitialEnvironment(start_environment_);
   2928 }
   2929 
   2930 
   2931 HBasicBlock* HGraph::CreateBasicBlock() {
   2932   HBasicBlock* result = new(zone()) HBasicBlock(this);
   2933   blocks_.Add(result, zone());
   2934   return result;
   2935 }
   2936 
   2937 
   2938 void HGraph::FinalizeUniqueness() {
   2939   DisallowHeapAllocation no_gc;
   2940   ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
   2941   for (int i = 0; i < blocks()->length(); ++i) {
   2942     for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
   2943       it.Current()->FinalizeUniqueness();
   2944     }
   2945   }
   2946 }
   2947 
   2948 
   2949 // Block ordering was implemented with two mutually recursive methods,
   2950 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
   2951 // The recursion could lead to stack overflow so the algorithm has been
   2952 // implemented iteratively.
   2953 // At a high level the algorithm looks like this:
   2954 //
   2955 // Postorder(block, loop_header) : {
   2956 //   if (block has already been visited or is of another loop) return;
   2957 //   mark block as visited;
   2958 //   if (block is a loop header) {
   2959 //     VisitLoopMembers(block, loop_header);
   2960 //     VisitSuccessorsOfLoopHeader(block);
   2961 //   } else {
   2962 //     VisitSuccessors(block)
   2963 //   }
   2964 //   put block in result list;
   2965 // }
   2966 //
   2967 // VisitLoopMembers(block, outer_loop_header) {
   2968 //   foreach (block b in block loop members) {
   2969 //     VisitSuccessorsOfLoopMember(b, outer_loop_header);
   2970 //     if (b is loop header) VisitLoopMembers(b);
   2971 //   }
   2972 // }
   2973 //
   2974 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
   2975 //   foreach (block b in block successors) Postorder(b, outer_loop_header)
   2976 // }
   2977 //
   2978 // VisitSuccessorsOfLoopHeader(block) {
   2979 //   foreach (block b in block successors) Postorder(b, block)
   2980 // }
   2981 //
   2982 // VisitSuccessors(block, loop_header) {
   2983 //   foreach (block b in block successors) Postorder(b, loop_header)
   2984 // }
   2985 //
   2986 // The ordering is started calling Postorder(entry, NULL).
   2987 //
   2988 // Each instance of PostorderProcessor represents the "stack frame" of the
   2989 // recursion, and particularly keeps the state of the loop (iteration) of the
   2990 // "Visit..." function it represents.
   2991 // To recycle memory we keep all the frames in a double linked list but
   2992 // this means that we cannot use constructors to initialize the frames.
   2993 //
   2994 class PostorderProcessor : public ZoneObject {
   2995  public:
   2996   // Back link (towards the stack bottom).
   2997   PostorderProcessor* parent() {return father_; }
   2998   // Forward link (towards the stack top).
   2999   PostorderProcessor* child() {return child_; }
   3000   HBasicBlock* block() { return block_; }
   3001   HLoopInformation* loop() { return loop_; }
   3002   HBasicBlock* loop_header() { return loop_header_; }
   3003 
   3004   static PostorderProcessor* CreateEntryProcessor(Zone* zone,
   3005                                                   HBasicBlock* block,
   3006                                                   BitVector* visited) {
   3007     PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
   3008     return result->SetupSuccessors(zone, block, NULL, visited);
   3009   }
   3010 
   3011   PostorderProcessor* PerformStep(Zone* zone,
   3012                                   BitVector* visited,
   3013                                   ZoneList<HBasicBlock*>* order) {
   3014     PostorderProcessor* next =
   3015         PerformNonBacktrackingStep(zone, visited, order);
   3016     if (next != NULL) {
   3017       return next;
   3018     } else {
   3019       return Backtrack(zone, visited, order);
   3020     }
   3021   }
   3022 
   3023  private:
   3024   explicit PostorderProcessor(PostorderProcessor* father)
   3025       : father_(father), child_(NULL), successor_iterator(NULL) { }
   3026 
   3027   // Each enum value states the cycle whose state is kept by this instance.
   3028   enum LoopKind {
   3029     NONE,
   3030     SUCCESSORS,
   3031     SUCCESSORS_OF_LOOP_HEADER,
   3032     LOOP_MEMBERS,
   3033     SUCCESSORS_OF_LOOP_MEMBER
   3034   };
   3035 
   3036   // Each "Setup..." method is like a constructor for a cycle state.
   3037   PostorderProcessor* SetupSuccessors(Zone* zone,
   3038                                       HBasicBlock* block,
   3039                                       HBasicBlock* loop_header,
   3040                                       BitVector* visited) {
   3041     if (block == NULL || visited->Contains(block->block_id()) ||
   3042         block->parent_loop_header() != loop_header) {
   3043       kind_ = NONE;
   3044       block_ = NULL;
   3045       loop_ = NULL;
   3046       loop_header_ = NULL;
   3047       return this;
   3048     } else {
   3049       block_ = block;
   3050       loop_ = NULL;
   3051       visited->Add(block->block_id());
   3052 
   3053       if (block->IsLoopHeader()) {
   3054         kind_ = SUCCESSORS_OF_LOOP_HEADER;
   3055         loop_header_ = block;
   3056         InitializeSuccessors();
   3057         PostorderProcessor* result = Push(zone);
   3058         return result->SetupLoopMembers(zone, block, block->loop_information(),
   3059                                         loop_header);
   3060       } else {
   3061         ASSERT(block->IsFinished());
   3062         kind_ = SUCCESSORS;
   3063         loop_header_ = loop_header;
   3064         InitializeSuccessors();
   3065         return this;
   3066       }
   3067     }
   3068   }
   3069 
   3070   PostorderProcessor* SetupLoopMembers(Zone* zone,
   3071                                        HBasicBlock* block,
   3072                                        HLoopInformation* loop,
   3073                                        HBasicBlock* loop_header) {
   3074     kind_ = LOOP_MEMBERS;
   3075     block_ = block;
   3076     loop_ = loop;
   3077     loop_header_ = loop_header;
   3078     InitializeLoopMembers();
   3079     return this;
   3080   }
   3081 
   3082   PostorderProcessor* SetupSuccessorsOfLoopMember(
   3083       HBasicBlock* block,
   3084       HLoopInformation* loop,
   3085       HBasicBlock* loop_header) {
   3086     kind_ = SUCCESSORS_OF_LOOP_MEMBER;
   3087     block_ = block;
   3088     loop_ = loop;
   3089     loop_header_ = loop_header;
   3090     InitializeSuccessors();
   3091     return this;
   3092   }
   3093 
   3094   // This method "allocates" a new stack frame.
   3095   PostorderProcessor* Push(Zone* zone) {
   3096     if (child_ == NULL) {
   3097       child_ = new(zone) PostorderProcessor(this);
   3098     }
   3099     return child_;
   3100   }
   3101 
   3102   void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
   3103     ASSERT(block_->end()->FirstSuccessor() == NULL ||
   3104            order->Contains(block_->end()->FirstSuccessor()) ||
   3105            block_->end()->FirstSuccessor()->IsLoopHeader());
   3106     ASSERT(block_->end()->SecondSuccessor() == NULL ||
   3107            order->Contains(block_->end()->SecondSuccessor()) ||
   3108            block_->end()->SecondSuccessor()->IsLoopHeader());
   3109     order->Add(block_, zone);
   3110   }
   3111 
   3112   // This method is the basic block to walk up the stack.
   3113   PostorderProcessor* Pop(Zone* zone,
   3114                           BitVector* visited,
   3115                           ZoneList<HBasicBlock*>* order) {
   3116     switch (kind_) {
   3117       case SUCCESSORS:
   3118       case SUCCESSORS_OF_LOOP_HEADER:
   3119         ClosePostorder(order, zone);
   3120         return father_;
   3121       case LOOP_MEMBERS:
   3122         return father_;
   3123       case SUCCESSORS_OF_LOOP_MEMBER:
   3124         if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
   3125           // In this case we need to perform a LOOP_MEMBERS cycle so we
   3126           // initialize it and return this instead of father.
   3127           return SetupLoopMembers(zone, block(),
   3128                                   block()->loop_information(), loop_header_);
   3129         } else {
   3130           return father_;
   3131         }
   3132       case NONE:
   3133         return father_;
   3134     }
   3135     UNREACHABLE();
   3136     return NULL;
   3137   }
   3138 
   3139   // Walks up the stack.
   3140   PostorderProcessor* Backtrack(Zone* zone,
   3141                                 BitVector* visited,
   3142                                 ZoneList<HBasicBlock*>* order) {
   3143     PostorderProcessor* parent = Pop(zone, visited, order);
   3144     while (parent != NULL) {
   3145       PostorderProcessor* next =
   3146           parent->PerformNonBacktrackingStep(zone, visited, order);
   3147       if (next != NULL) {
   3148         return next;
   3149       } else {
   3150         parent = parent->Pop(zone, visited, order);
   3151       }
   3152     }
   3153     return NULL;
   3154   }
   3155 
   3156   PostorderProcessor* PerformNonBacktrackingStep(
   3157       Zone* zone,
   3158       BitVector* visited,
   3159       ZoneList<HBasicBlock*>* order) {
   3160     HBasicBlock* next_block;
   3161     switch (kind_) {
   3162       case SUCCESSORS:
   3163         next_block = AdvanceSuccessors();
   3164         if (next_block != NULL) {
   3165           PostorderProcessor* result = Push(zone);
   3166           return result->SetupSuccessors(zone, next_block,
   3167                                          loop_header_, visited);
   3168         }
   3169         break;
   3170       case SUCCESSORS_OF_LOOP_HEADER:
   3171         next_block = AdvanceSuccessors();
   3172         if (next_block != NULL) {
   3173           PostorderProcessor* result = Push(zone);
   3174           return result->SetupSuccessors(zone, next_block,
   3175                                          block(), visited);
   3176         }
   3177         break;
   3178       case LOOP_MEMBERS:
   3179         next_block = AdvanceLoopMembers();
   3180         if (next_block != NULL) {
   3181           PostorderProcessor* result = Push(zone);
   3182           return result->SetupSuccessorsOfLoopMember(next_block,
   3183                                                      loop_, loop_header_);
   3184         }
   3185         break;
   3186       case SUCCESSORS_OF_LOOP_MEMBER:
   3187         next_block = AdvanceSuccessors();
   3188         if (next_block != NULL) {
   3189           PostorderProcessor* result = Push(zone);
   3190           return result->SetupSuccessors(zone, next_block,
   3191                                          loop_header_, visited);
   3192         }
   3193         break;
   3194       case NONE:
   3195         return NULL;
   3196     }
   3197     return NULL;
   3198   }
   3199 
   3200   // The following two methods implement a "foreach b in successors" cycle.
   3201   void InitializeSuccessors() {
   3202     loop_index = 0;
   3203     loop_length = 0;
   3204     successor_iterator = HSuccessorIterator(block_->end());
   3205   }
   3206 
   3207   HBasicBlock* AdvanceSuccessors() {
   3208     if (!successor_iterator.Done()) {
   3209       HBasicBlock* result = successor_iterator.Current();
   3210       successor_iterator.Advance();
   3211       return result;
   3212     }
   3213     return NULL;
   3214   }
   3215 
   3216   // The following two methods implement a "foreach b in loop members" cycle.
   3217   void InitializeLoopMembers() {
   3218     loop_index = 0;
   3219     loop_length = loop_->blocks()->length();
   3220   }
   3221 
   3222   HBasicBlock* AdvanceLoopMembers() {
   3223     if (loop_index < loop_length) {
   3224       HBasicBlock* result = loop_->blocks()->at(loop_index);
   3225       loop_index++;
   3226       return result;
   3227     } else {
   3228       return NULL;
   3229     }
   3230   }
   3231 
   3232   LoopKind kind_;
   3233   PostorderProcessor* father_;
   3234   PostorderProcessor* child_;
   3235   HLoopInformation* loop_;
   3236   HBasicBlock* block_;
   3237   HBasicBlock* loop_header_;
   3238   int loop_index;
   3239   int loop_length;
   3240   HSuccessorIterator successor_iterator;
   3241 };
   3242 
   3243 
   3244 void HGraph::OrderBlocks() {
   3245   CompilationPhase phase("H_Block ordering", info());
   3246   BitVector visited(blocks_.length(), zone());
   3247 
   3248   ZoneList<HBasicBlock*> reverse_result(8, zone());
   3249   HBasicBlock* start = blocks_[0];
   3250   PostorderProcessor* postorder =
   3251       PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
   3252   while (postorder != NULL) {
   3253     postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
   3254   }
   3255   blocks_.Rewind(0);
   3256   int index = 0;
   3257   for (int i = reverse_result.length() - 1; i >= 0; --i) {
   3258     HBasicBlock* b = reverse_result[i];
   3259     blocks_.Add(b, zone());
   3260     b->set_block_id(index++);
   3261   }
   3262 }
   3263 
   3264 
   3265 void HGraph::AssignDominators() {
   3266   HPhase phase("H_Assign dominators", this);
   3267   for (int i = 0; i < blocks_.length(); ++i) {
   3268     HBasicBlock* block = blocks_[i];
   3269     if (block->IsLoopHeader()) {
   3270       // Only the first predecessor of a loop header is from outside the loop.
   3271       // All others are back edges, and thus cannot dominate the loop header.
   3272       block->AssignCommonDominator(block->predecessors()->first());
   3273       block->AssignLoopSuccessorDominators();
   3274     } else {
   3275       for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
   3276         blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
   3277       }
   3278     }
   3279   }
   3280 }
   3281 
   3282 
   3283 bool HGraph::CheckArgumentsPhiUses() {
   3284   int block_count = blocks_.length();
   3285   for (int i = 0; i < block_count; ++i) {
   3286     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
   3287       HPhi* phi = blocks_[i]->phis()->at(j);
   3288       // We don't support phi uses of arguments for now.
   3289       if (phi->CheckFlag(HValue::kIsArguments)) return false;
   3290     }
   3291   }
   3292   return true;
   3293 }
   3294 
   3295 
   3296 bool HGraph::CheckConstPhiUses() {
   3297   int block_count = blocks_.length();
   3298   for (int i = 0; i < block_count; ++i) {
   3299     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
   3300       HPhi* phi = blocks_[i]->phis()->at(j);
   3301       // Check for the hole value (from an uninitialized const).
   3302       for (int k = 0; k < phi->OperandCount(); k++) {
   3303         if (phi->OperandAt(k) == GetConstantHole()) return false;
   3304       }
   3305     }
   3306   }
   3307   return true;
   3308 }
   3309 
   3310 
   3311 void HGraph::CollectPhis() {
   3312   int block_count = blocks_.length();
   3313   phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
   3314   for (int i = 0; i < block_count; ++i) {
   3315     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
   3316       HPhi* phi = blocks_[i]->phis()->at(j);
   3317       phi_list_->Add(phi, zone());
   3318     }
   3319   }
   3320 }
   3321 
   3322 
   3323 // Implementation of utility class to encapsulate the translation state for
   3324 // a (possibly inlined) function.
   3325 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
   3326                              CompilationInfo* info,
   3327                              InliningKind inlining_kind)
   3328     : owner_(owner),
   3329       compilation_info_(info),
   3330       call_context_(NULL),
   3331       inlining_kind_(inlining_kind),
   3332       function_return_(NULL),
   3333       test_context_(NULL),
   3334       entry_(NULL),
   3335       arguments_object_(NULL),
   3336       arguments_elements_(NULL),
   3337       outer_(owner->function_state()) {
   3338   if (outer_ != NULL) {
   3339     // State for an inline function.
   3340     if (owner->ast_context()->IsTest()) {
   3341       HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
   3342       HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
   3343       if_true->MarkAsInlineReturnTarget(owner->current_block());
   3344       if_false->MarkAsInlineReturnTarget(owner->current_block());
   3345       TestContext* outer_test_context = TestContext::cast(owner->ast_context());
   3346       Expression* cond = outer_test_context->condition();
   3347       // The AstContext constructor pushed on the context stack.  This newed
   3348       // instance is the reason that AstContext can't be BASE_EMBEDDED.
   3349       test_context_ = new TestContext(owner, cond, if_true, if_false);
   3350     } else {
   3351       function_return_ = owner->graph()->CreateBasicBlock();
   3352       function_return()->MarkAsInlineReturnTarget(owner->current_block());
   3353     }
   3354     // Set this after possibly allocating a new TestContext above.
   3355     call_context_ = owner->ast_context();
   3356   }
   3357 
   3358   // Push on the state stack.
   3359   owner->set_function_state(this);
   3360 }
   3361 
   3362 
   3363 FunctionState::~FunctionState() {
   3364   delete test_context_;
   3365   owner_->set_function_state(outer_);
   3366 }
   3367 
   3368 
   3369 // Implementation of utility classes to represent an expression's context in
   3370 // the AST.
   3371 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
   3372     : owner_(owner),
   3373       kind_(kind),
   3374       outer_(owner->ast_context()),
   3375       for_typeof_(false) {
   3376   owner->set_ast_context(this);  // Push.
   3377 #ifdef DEBUG
   3378   ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
   3379   original_length_ = owner->environment()->length();
   3380 #endif
   3381 }
   3382 
   3383 
   3384 AstContext::~AstContext() {
   3385   owner_->set_ast_context(outer_);  // Pop.
   3386 }
   3387 
   3388 
   3389 EffectContext::~EffectContext() {
   3390   ASSERT(owner()->HasStackOverflow() ||
   3391          owner()->current_block() == NULL ||
   3392          (owner()->environment()->length() == original_length_ &&
   3393           owner()->environment()->frame_type() == JS_FUNCTION));
   3394 }
   3395 
   3396 
   3397 ValueContext::~ValueContext() {
   3398   ASSERT(owner()->HasStackOverflow() ||
   3399          owner()->current_block() == NULL ||
   3400          (owner()->environment()->length() == original_length_ + 1 &&
   3401           owner()->environment()->frame_type() == JS_FUNCTION));
   3402 }
   3403 
   3404 
   3405 void EffectContext::ReturnValue(HValue* value) {
   3406   // The value is simply ignored.
   3407 }
   3408 
   3409 
   3410 void ValueContext::ReturnValue(HValue* value) {
   3411   // The value is tracked in the bailout environment, and communicated
   3412   // through the environment as the result of the expression.
   3413   if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
   3414     owner()->Bailout(kBadValueContextForArgumentsValue);
   3415   }
   3416   owner()->Push(value);
   3417 }
   3418 
   3419 
   3420 void TestContext::ReturnValue(HValue* value) {
   3421   BuildBranch(value);
   3422 }
   3423 
   3424 
   3425 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
   3426   ASSERT(!instr->IsControlInstruction());
   3427   owner()->AddInstruction(instr);
   3428   if (instr->HasObservableSideEffects()) {
   3429     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   3430   }
   3431 }
   3432 
   3433 
   3434 void EffectContext::ReturnControl(HControlInstruction* instr,
   3435                                   BailoutId ast_id) {
   3436   ASSERT(!instr->HasObservableSideEffects());
   3437   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
   3438   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
   3439   instr->SetSuccessorAt(0, empty_true);
   3440   instr->SetSuccessorAt(1, empty_false);
   3441   owner()->FinishCurrentBlock(instr);
   3442   HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
   3443   owner()->set_current_block(join);
   3444 }
   3445 
   3446 
   3447 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
   3448                                        BailoutId ast_id) {
   3449   HBasicBlock* true_branch = NULL;
   3450   HBasicBlock* false_branch = NULL;
   3451   continuation->Continue(&true_branch, &false_branch);
   3452   if (!continuation->IsTrueReachable()) {
   3453     owner()->set_current_block(false_branch);
   3454   } else if (!continuation->IsFalseReachable()) {
   3455     owner()->set_current_block(true_branch);
   3456   } else {
   3457     HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
   3458     owner()->set_current_block(join);
   3459   }
   3460 }
   3461 
   3462 
   3463 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
   3464   ASSERT(!instr->IsControlInstruction());
   3465   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
   3466     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
   3467   }
   3468   owner()->AddInstruction(instr);
   3469   owner()->Push(instr);
   3470   if (instr->HasObservableSideEffects()) {
   3471     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   3472   }
   3473 }
   3474 
   3475 
   3476 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
   3477   ASSERT(!instr->HasObservableSideEffects());
   3478   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
   3479     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
   3480   }
   3481   HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
   3482   HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
   3483   instr->SetSuccessorAt(0, materialize_true);
   3484   instr->SetSuccessorAt(1, materialize_false);
   3485   owner()->FinishCurrentBlock(instr);
   3486   owner()->set_current_block(materialize_true);
   3487   owner()->Push(owner()->graph()->GetConstantTrue());
   3488   owner()->set_current_block(materialize_false);
   3489   owner()->Push(owner()->graph()->GetConstantFalse());
   3490   HBasicBlock* join =
   3491     owner()->CreateJoin(materialize_true, materialize_false, ast_id);
   3492   owner()->set_current_block(join);
   3493 }
   3494 
   3495 
   3496 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
   3497                                       BailoutId ast_id) {
   3498   HBasicBlock* materialize_true = NULL;
   3499   HBasicBlock* materialize_false = NULL;
   3500   continuation->Continue(&materialize_true, &materialize_false);
   3501   if (continuation->IsTrueReachable()) {
   3502     owner()->set_current_block(materialize_true);
   3503     owner()->Push(owner()->graph()->GetConstantTrue());
   3504     owner()->set_current_block(materialize_true);
   3505   }
   3506   if (continuation->IsFalseReachable()) {
   3507     owner()->set_current_block(materialize_false);
   3508     owner()->Push(owner()->graph()->GetConstantFalse());
   3509     owner()->set_current_block(materialize_false);
   3510   }
   3511   if (continuation->TrueAndFalseReachable()) {
   3512     HBasicBlock* join =
   3513         owner()->CreateJoin(materialize_true, materialize_false, ast_id);
   3514     owner()->set_current_block(join);
   3515   }
   3516 }
   3517 
   3518 
   3519 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
   3520   ASSERT(!instr->IsControlInstruction());
   3521   HOptimizedGraphBuilder* builder = owner();
   3522   builder->AddInstruction(instr);
   3523   // We expect a simulate after every expression with side effects, though
   3524   // this one isn't actually needed (and wouldn't work if it were targeted).
   3525   if (instr->HasObservableSideEffects()) {
   3526     builder->Push(instr);
   3527     builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   3528     builder->Pop();
   3529   }
   3530   BuildBranch(instr);
   3531 }
   3532 
   3533 
   3534 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
   3535   ASSERT(!instr->HasObservableSideEffects());
   3536   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
   3537   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
   3538   instr->SetSuccessorAt(0, empty_true);
   3539   instr->SetSuccessorAt(1, empty_false);
   3540   owner()->FinishCurrentBlock(instr);
   3541   owner()->Goto(empty_true, if_true(), owner()->function_state());
   3542   owner()->Goto(empty_false, if_false(), owner()->function_state());
   3543   owner()->set_current_block(NULL);
   3544 }
   3545 
   3546 
   3547 void TestContext::ReturnContinuation(HIfContinuation* continuation,
   3548                                      BailoutId ast_id) {
   3549   HBasicBlock* true_branch = NULL;
   3550   HBasicBlock* false_branch = NULL;
   3551   continuation->Continue(&true_branch, &false_branch);
   3552   if (continuation->IsTrueReachable()) {
   3553     owner()->Goto(true_branch, if_true(), owner()->function_state());
   3554   }
   3555   if (continuation->IsFalseReachable()) {
   3556     owner()->Goto(false_branch, if_false(), owner()->function_state());
   3557   }
   3558   owner()->set_current_block(NULL);
   3559 }
   3560 
   3561 
   3562 void TestContext::BuildBranch(HValue* value) {
   3563   // We expect the graph to be in edge-split form: there is no edge that
   3564   // connects a branch node to a join node.  We conservatively ensure that
   3565   // property by always adding an empty block on the outgoing edges of this
   3566   // branch.
   3567   HOptimizedGraphBuilder* builder = owner();
   3568   if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
   3569     builder->Bailout(kArgumentsObjectValueInATestContext);
   3570   }
   3571   ToBooleanStub::Types expected(condition()->to_boolean_types());
   3572   ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
   3573 }
   3574 
   3575 
   3576 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
   3577 #define CHECK_BAILOUT(call)                     \
   3578   do {                                          \
   3579     call;                                       \
   3580     if (HasStackOverflow()) return;             \
   3581   } while (false)
   3582 
   3583 
   3584 #define CHECK_ALIVE(call)                                       \
   3585   do {                                                          \
   3586     call;                                                       \
   3587     if (HasStackOverflow() || current_block() == NULL) return;  \
   3588   } while (false)
   3589 
   3590 
   3591 #define CHECK_ALIVE_OR_RETURN(call, value)                            \
   3592   do {                                                                \
   3593     call;                                                             \
   3594     if (HasStackOverflow() || current_block() == NULL) return value;  \
   3595   } while (false)
   3596 
   3597 
   3598 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
   3599   current_info()->set_bailout_reason(reason);
   3600   SetStackOverflow();
   3601 }
   3602 
   3603 
   3604 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
   3605   EffectContext for_effect(this);
   3606   Visit(expr);
   3607 }
   3608 
   3609 
   3610 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
   3611                                            ArgumentsAllowedFlag flag) {
   3612   ValueContext for_value(this, flag);
   3613   Visit(expr);
   3614 }
   3615 
   3616 
   3617 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
   3618   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
   3619   for_value.set_for_typeof(true);
   3620   Visit(expr);
   3621 }
   3622 
   3623 
   3624 
   3625 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
   3626                                              HBasicBlock* true_block,
   3627                                              HBasicBlock* false_block) {
   3628   TestContext for_test(this, expr, true_block, false_block);
   3629   Visit(expr);
   3630 }
   3631 
   3632 
   3633 void HOptimizedGraphBuilder::VisitArgument(Expression* expr) {
   3634   CHECK_ALIVE(VisitForValue(expr));
   3635   Push(Add<HPushArgument>(Pop()));
   3636 }
   3637 
   3638 
   3639 void HOptimizedGraphBuilder::VisitArgumentList(
   3640     ZoneList<Expression*>* arguments) {
   3641   for (int i = 0; i < arguments->length(); i++) {
   3642     CHECK_ALIVE(VisitArgument(arguments->at(i)));
   3643   }
   3644 }
   3645 
   3646 
   3647 void HOptimizedGraphBuilder::VisitExpressions(
   3648     ZoneList<Expression*>* exprs) {
   3649   for (int i = 0; i < exprs->length(); ++i) {
   3650     CHECK_ALIVE(VisitForValue(exprs->at(i)));
   3651   }
   3652 }
   3653 
   3654 
   3655 bool HOptimizedGraphBuilder::BuildGraph() {
   3656   if (current_info()->function()->is_generator()) {
   3657     Bailout(kFunctionIsAGenerator);
   3658     return false;
   3659   }
   3660   Scope* scope = current_info()->scope();
   3661   if (scope->HasIllegalRedeclaration()) {
   3662     Bailout(kFunctionWithIllegalRedeclaration);
   3663     return false;
   3664   }
   3665   if (scope->calls_eval()) {
   3666     Bailout(kFunctionCallsEval);
   3667     return false;
   3668   }
   3669   SetUpScope(scope);
   3670 
   3671   // Add an edge to the body entry.  This is warty: the graph's start
   3672   // environment will be used by the Lithium translation as the initial
   3673   // environment on graph entry, but it has now been mutated by the
   3674   // Hydrogen translation of the instructions in the start block.  This
   3675   // environment uses values which have not been defined yet.  These
   3676   // Hydrogen instructions will then be replayed by the Lithium
   3677   // translation, so they cannot have an environment effect.  The edge to
   3678   // the body's entry block (along with some special logic for the start
   3679   // block in HInstruction::InsertAfter) seals the start block from
   3680   // getting unwanted instructions inserted.
   3681   //
   3682   // TODO(kmillikin): Fix this.  Stop mutating the initial environment.
   3683   // Make the Hydrogen instructions in the initial block into Hydrogen
   3684   // values (but not instructions), present in the initial environment and
   3685   // not replayed by the Lithium translation.
   3686   HEnvironment* initial_env = environment()->CopyWithoutHistory();
   3687   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
   3688   Goto(body_entry);
   3689   body_entry->SetJoinId(BailoutId::FunctionEntry());
   3690   set_current_block(body_entry);
   3691 
   3692   // Handle implicit declaration of the function name in named function
   3693   // expressions before other declarations.
   3694   if (scope->is_function_scope() && scope->function() != NULL) {
   3695     VisitVariableDeclaration(scope->function());
   3696   }
   3697   VisitDeclarations(scope->declarations());
   3698   Add<HSimulate>(BailoutId::Declarations());
   3699 
   3700   Add<HStackCheck>(HStackCheck::kFunctionEntry);
   3701 
   3702   VisitStatements(current_info()->function()->body());
   3703   if (HasStackOverflow()) return false;
   3704 
   3705   if (current_block() != NULL) {
   3706     Add<HReturn>(graph()->GetConstantUndefined());
   3707     set_current_block(NULL);
   3708   }
   3709 
   3710   // If the checksum of the number of type info changes is the same as the
   3711   // last time this function was compiled, then this recompile is likely not
   3712   // due to missing/inadequate type feedback, but rather too aggressive
   3713   // optimization. Disable optimistic LICM in that case.
   3714   Handle<Code> unoptimized_code(current_info()->shared_info()->code());
   3715   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
   3716   Handle<TypeFeedbackInfo> type_info(
   3717       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
   3718   int checksum = type_info->own_type_change_checksum();
   3719   int composite_checksum = graph()->update_type_change_checksum(checksum);
   3720   graph()->set_use_optimistic_licm(
   3721       !type_info->matches_inlined_type_change_checksum(composite_checksum));
   3722   type_info->set_inlined_type_change_checksum(composite_checksum);
   3723 
   3724   // Perform any necessary OSR-specific cleanups or changes to the graph.
   3725   osr()->FinishGraph();
   3726 
   3727   return true;
   3728 }
   3729 
   3730 
   3731 bool HGraph::Optimize(BailoutReason* bailout_reason) {
   3732   OrderBlocks();
   3733   AssignDominators();
   3734 
   3735   // We need to create a HConstant "zero" now so that GVN will fold every
   3736   // zero-valued constant in the graph together.
   3737   // The constant is needed to make idef-based bounds check work: the pass
   3738   // evaluates relations with "zero" and that zero cannot be created after GVN.
   3739   GetConstant0();
   3740 
   3741 #ifdef DEBUG
   3742   // Do a full verify after building the graph and computing dominators.
   3743   Verify(true);
   3744 #endif
   3745 
   3746   if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
   3747     Run<HEnvironmentLivenessAnalysisPhase>();
   3748   }
   3749 
   3750   if (!CheckConstPhiUses()) {
   3751     *bailout_reason = kUnsupportedPhiUseOfConstVariable;
   3752     return false;
   3753   }
   3754   Run<HRedundantPhiEliminationPhase>();
   3755   if (!CheckArgumentsPhiUses()) {
   3756     *bailout_reason = kUnsupportedPhiUseOfArguments;
   3757     return false;
   3758   }
   3759 
   3760   // Find and mark unreachable code to simplify optimizations, especially gvn,
   3761   // where unreachable code could unnecessarily defeat LICM.
   3762   Run<HMarkUnreachableBlocksPhase>();
   3763 
   3764   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
   3765   if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
   3766 
   3767   if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
   3768 
   3769   CollectPhis();
   3770 
   3771   if (has_osr()) osr()->FinishOsrValues();
   3772 
   3773   Run<HInferRepresentationPhase>();
   3774 
   3775   // Remove HSimulate instructions that have turned out not to be needed
   3776   // after all by folding them into the following HSimulate.
   3777   // This must happen after inferring representations.
   3778   Run<HMergeRemovableSimulatesPhase>();
   3779 
   3780   Run<HMarkDeoptimizeOnUndefinedPhase>();
   3781   Run<HRepresentationChangesPhase>();
   3782 
   3783   Run<HInferTypesPhase>();
   3784 
   3785   // Must be performed before canonicalization to ensure that Canonicalize
   3786   // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
   3787   // zero.
   3788   if (FLAG_opt_safe_uint32_operations) Run<HUint32AnalysisPhase>();
   3789 
   3790   if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
   3791 
   3792   if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
   3793 
   3794   if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
   3795 
   3796   if (FLAG_use_range) Run<HRangeAnalysisPhase>();
   3797 
   3798   Run<HComputeChangeUndefinedToNaN>();
   3799   Run<HComputeMinusZeroChecksPhase>();
   3800 
   3801   // Eliminate redundant stack checks on backwards branches.
   3802   Run<HStackCheckEliminationPhase>();
   3803 
   3804   if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
   3805   if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
   3806   if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
   3807   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
   3808 
   3809   RestoreActualValues();
   3810 
   3811   // Find unreachable code a second time, GVN and other optimizations may have
   3812   // made blocks unreachable that were previously reachable.
   3813   Run<HMarkUnreachableBlocksPhase>();
   3814 
   3815   return true;
   3816 }
   3817 
   3818 
   3819 void HGraph::RestoreActualValues() {
   3820   HPhase phase("H_Restore actual values", this);
   3821 
   3822   for (int block_index = 0; block_index < blocks()->length(); block_index++) {
   3823     HBasicBlock* block = blocks()->at(block_index);
   3824 
   3825 #ifdef DEBUG
   3826     for (int i = 0; i < block->phis()->length(); i++) {
   3827       HPhi* phi = block->phis()->at(i);
   3828       ASSERT(phi->ActualValue() == phi);
   3829     }
   3830 #endif
   3831 
   3832     for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
   3833       HInstruction* instruction = it.Current();
   3834       if (instruction->ActualValue() != instruction) {
   3835         ASSERT(instruction->IsInformativeDefinition());
   3836         if (instruction->IsPurelyInformativeDefinition()) {
   3837           instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
   3838         } else {
   3839           instruction->ReplaceAllUsesWith(instruction->ActualValue());
   3840         }
   3841       }
   3842     }
   3843   }
   3844 }
   3845 
   3846 
   3847 template <class Instruction>
   3848 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
   3849   int count = call->argument_count();
   3850   ZoneList<HValue*> arguments(count, zone());
   3851   for (int i = 0; i < count; ++i) {
   3852     arguments.Add(Pop(), zone());
   3853   }
   3854 
   3855   while (!arguments.is_empty()) {
   3856     Add<HPushArgument>(arguments.RemoveLast());
   3857   }
   3858   return call;
   3859 }
   3860 
   3861 
   3862 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
   3863   // First special is HContext.
   3864   HInstruction* context = Add<HContext>();
   3865   environment()->BindContext(context);
   3866 
   3867   // Create an arguments object containing the initial parameters.  Set the
   3868   // initial values of parameters including "this" having parameter index 0.
   3869   ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
   3870   HArgumentsObject* arguments_object =
   3871       New<HArgumentsObject>(environment()->parameter_count());
   3872   for (int i = 0; i < environment()->parameter_count(); ++i) {
   3873     HInstruction* parameter = Add<HParameter>(i);
   3874     arguments_object->AddArgument(parameter, zone());
   3875     environment()->Bind(i, parameter);
   3876   }
   3877   AddInstruction(arguments_object);
   3878   graph()->SetArgumentsObject(arguments_object);
   3879 
   3880   HConstant* undefined_constant = graph()->GetConstantUndefined();
   3881   // Initialize specials and locals to undefined.
   3882   for (int i = environment()->parameter_count() + 1;
   3883        i < environment()->length();
   3884        ++i) {
   3885     environment()->Bind(i, undefined_constant);
   3886   }
   3887 
   3888   // Handle the arguments and arguments shadow variables specially (they do
   3889   // not have declarations).
   3890   if (scope->arguments() != NULL) {
   3891     if (!scope->arguments()->IsStackAllocated()) {
   3892       return Bailout(kContextAllocatedArguments);
   3893     }
   3894 
   3895     environment()->Bind(scope->arguments(),
   3896                         graph()->GetArgumentsObject());
   3897   }
   3898 }
   3899 
   3900 
   3901 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
   3902   for (int i = 0; i < statements->length(); i++) {
   3903     Statement* stmt = statements->at(i);
   3904     CHECK_ALIVE(Visit(stmt));
   3905     if (stmt->IsJump()) break;
   3906   }
   3907 }
   3908 
   3909 
   3910 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
   3911   ASSERT(!HasStackOverflow());
   3912   ASSERT(current_block() != NULL);
   3913   ASSERT(current_block()->HasPredecessor());
   3914   if (stmt->scope() != NULL) {
   3915     return Bailout(kScopedBlock);
   3916   }
   3917   BreakAndContinueInfo break_info(stmt);
   3918   { BreakAndContinueScope push(&break_info, this);
   3919     CHECK_BAILOUT(VisitStatements(stmt->statements()));
   3920   }
   3921   HBasicBlock* break_block = break_info.break_block();
   3922   if (break_block != NULL) {
   3923     if (current_block() != NULL) Goto(break_block);
   3924     break_block->SetJoinId(stmt->ExitId());
   3925     set_current_block(break_block);
   3926   }
   3927 }
   3928 
   3929 
   3930 void HOptimizedGraphBuilder::VisitExpressionStatement(
   3931     ExpressionStatement* stmt) {
   3932   ASSERT(!HasStackOverflow());
   3933   ASSERT(current_block() != NULL);
   3934   ASSERT(current_block()->HasPredecessor());
   3935   VisitForEffect(stmt->expression());
   3936 }
   3937 
   3938 
   3939 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
   3940   ASSERT(!HasStackOverflow());
   3941   ASSERT(current_block() != NULL);
   3942   ASSERT(current_block()->HasPredecessor());
   3943 }
   3944 
   3945 
   3946 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
   3947   ASSERT(!HasStackOverflow());
   3948   ASSERT(current_block() != NULL);
   3949   ASSERT(current_block()->HasPredecessor());
   3950   if (stmt->condition()->ToBooleanIsTrue()) {
   3951     Add<HSimulate>(stmt->ThenId());
   3952     Visit(stmt->then_statement());
   3953   } else if (stmt->condition()->ToBooleanIsFalse()) {
   3954     Add<HSimulate>(stmt->ElseId());
   3955     Visit(stmt->else_statement());
   3956   } else {
   3957     HBasicBlock* cond_true = graph()->CreateBasicBlock();
   3958     HBasicBlock* cond_false = graph()->CreateBasicBlock();
   3959     CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
   3960 
   3961     if (cond_true->HasPredecessor()) {
   3962       cond_true->SetJoinId(stmt->ThenId());
   3963       set_current_block(cond_true);
   3964       CHECK_BAILOUT(Visit(stmt->then_statement()));
   3965       cond_true = current_block();
   3966     } else {
   3967       cond_true = NULL;
   3968     }
   3969 
   3970     if (cond_false->HasPredecessor()) {
   3971       cond_false->SetJoinId(stmt->ElseId());
   3972       set_current_block(cond_false);
   3973       CHECK_BAILOUT(Visit(stmt->else_statement()));
   3974       cond_false = current_block();
   3975     } else {
   3976       cond_false = NULL;
   3977     }
   3978 
   3979     HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
   3980     set_current_block(join);
   3981   }
   3982 }
   3983 
   3984 
   3985 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
   3986     BreakableStatement* stmt,
   3987     BreakType type,
   3988     int* drop_extra) {
   3989   *drop_extra = 0;
   3990   BreakAndContinueScope* current = this;
   3991   while (current != NULL && current->info()->target() != stmt) {
   3992     *drop_extra += current->info()->drop_extra();
   3993     current = current->next();
   3994   }
   3995   ASSERT(current != NULL);  // Always found (unless stack is malformed).
   3996 
   3997   if (type == BREAK) {
   3998     *drop_extra += current->info()->drop_extra();
   3999   }
   4000 
   4001   HBasicBlock* block = NULL;
   4002   switch (type) {
   4003     case BREAK:
   4004       block = current->info()->break_block();
   4005       if (block == NULL) {
   4006         block = current->owner()->graph()->CreateBasicBlock();
   4007         current->info()->set_break_block(block);
   4008       }
   4009       break;
   4010 
   4011     case CONTINUE:
   4012       block = current->info()->continue_block();
   4013       if (block == NULL) {
   4014         block = current->owner()->graph()->CreateBasicBlock();
   4015         current->info()->set_continue_block(block);
   4016       }
   4017       break;
   4018   }
   4019 
   4020   return block;
   4021 }
   4022 
   4023 
   4024 void HOptimizedGraphBuilder::VisitContinueStatement(
   4025     ContinueStatement* stmt) {
   4026   ASSERT(!HasStackOverflow());
   4027   ASSERT(current_block() != NULL);
   4028   ASSERT(current_block()->HasPredecessor());
   4029   int drop_extra = 0;
   4030   HBasicBlock* continue_block = break_scope()->Get(
   4031       stmt->target(), BreakAndContinueScope::CONTINUE, &drop_extra);
   4032   Drop(drop_extra);
   4033   Goto(continue_block);
   4034   set_current_block(NULL);
   4035 }
   4036 
   4037 
   4038 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
   4039   ASSERT(!HasStackOverflow());
   4040   ASSERT(current_block() != NULL);
   4041   ASSERT(current_block()->HasPredecessor());
   4042   int drop_extra = 0;
   4043   HBasicBlock* break_block = break_scope()->Get(
   4044       stmt->target(), BreakAndContinueScope::BREAK, &drop_extra);
   4045   Drop(drop_extra);
   4046   Goto(break_block);
   4047   set_current_block(NULL);
   4048 }
   4049 
   4050 
   4051 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
   4052   ASSERT(!HasStackOverflow());
   4053   ASSERT(current_block() != NULL);
   4054   ASSERT(current_block()->HasPredecessor());
   4055   FunctionState* state = function_state();
   4056   AstContext* context = call_context();
   4057   if (context == NULL) {
   4058     // Not an inlined return, so an actual one.
   4059     CHECK_ALIVE(VisitForValue(stmt->expression()));
   4060     HValue* result = environment()->Pop();
   4061     Add<HReturn>(result);
   4062   } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
   4063     // Return from an inlined construct call. In a test context the return value
   4064     // will always evaluate to true, in a value context the return value needs
   4065     // to be a JSObject.
   4066     if (context->IsTest()) {
   4067       TestContext* test = TestContext::cast(context);
   4068       CHECK_ALIVE(VisitForEffect(stmt->expression()));
   4069       Goto(test->if_true(), state);
   4070     } else if (context->IsEffect()) {
   4071       CHECK_ALIVE(VisitForEffect(stmt->expression()));
   4072       Goto(function_return(), state);
   4073     } else {
   4074       ASSERT(context->IsValue());
   4075       CHECK_ALIVE(VisitForValue(stmt->expression()));
   4076       HValue* return_value = Pop();
   4077       HValue* receiver = environment()->arguments_environment()->Lookup(0);
   4078       HHasInstanceTypeAndBranch* typecheck =
   4079           New<HHasInstanceTypeAndBranch>(return_value,
   4080                                          FIRST_SPEC_OBJECT_TYPE,
   4081                                          LAST_SPEC_OBJECT_TYPE);
   4082       HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
   4083       HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
   4084       typecheck->SetSuccessorAt(0, if_spec_object);
   4085       typecheck->SetSuccessorAt(1, not_spec_object);
   4086       FinishCurrentBlock(typecheck);
   4087       AddLeaveInlined(if_spec_object, return_value, state);
   4088       AddLeaveInlined(not_spec_object, receiver, state);
   4089     }
   4090   } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
   4091     // Return from an inlined setter call. The returned value is never used, the
   4092     // value of an assignment is always the value of the RHS of the assignment.
   4093     CHECK_ALIVE(VisitForEffect(stmt->expression()));
   4094     if (context->IsTest()) {
   4095       HValue* rhs = environment()->arguments_environment()->Lookup(1);
   4096       context->ReturnValue(rhs);
   4097     } else if (context->IsEffect()) {
   4098       Goto(function_return(), state);
   4099     } else {
   4100       ASSERT(context->IsValue());
   4101       HValue* rhs = environment()->arguments_environment()->Lookup(1);
   4102       AddLeaveInlined(rhs, state);
   4103     }
   4104   } else {
   4105     // Return from a normal inlined function. Visit the subexpression in the
   4106     // expression context of the call.
   4107     if (context->IsTest()) {
   4108       TestContext* test = TestContext::cast(context);
   4109       VisitForControl(stmt->expression(), test->if_true(), test->if_false());
   4110     } else if (context->IsEffect()) {
   4111       CHECK_ALIVE(VisitForEffect(stmt->expression()));
   4112       Goto(function_return(), state);
   4113     } else {
   4114       ASSERT(context->IsValue());
   4115       CHECK_ALIVE(VisitForValue(stmt->expression()));
   4116       AddLeaveInlined(Pop(), state);
   4117     }
   4118   }
   4119   set_current_block(NULL);
   4120 }
   4121 
   4122 
   4123 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
   4124   ASSERT(!HasStackOverflow());
   4125   ASSERT(current_block() != NULL);
   4126   ASSERT(current_block()->HasPredecessor());
   4127   return Bailout(kWithStatement);
   4128 }
   4129 
   4130 
   4131 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
   4132   ASSERT(!HasStackOverflow());
   4133   ASSERT(current_block() != NULL);
   4134   ASSERT(current_block()->HasPredecessor());
   4135 
   4136   // We only optimize switch statements with smi-literal smi comparisons,
   4137   // with a bounded number of clauses.
   4138   const int kCaseClauseLimit = 128;
   4139   ZoneList<CaseClause*>* clauses = stmt->cases();
   4140   int clause_count = clauses->length();
   4141   if (clause_count > kCaseClauseLimit) {
   4142     return Bailout(kSwitchStatementTooManyClauses);
   4143   }
   4144 
   4145   ASSERT(stmt->switch_type() != SwitchStatement::UNKNOWN_SWITCH);
   4146   if (stmt->switch_type() == SwitchStatement::GENERIC_SWITCH) {
   4147     return Bailout(kSwitchStatementMixedOrNonLiteralSwitchLabels);
   4148   }
   4149 
   4150   CHECK_ALIVE(VisitForValue(stmt->tag()));
   4151   Add<HSimulate>(stmt->EntryId());
   4152   HValue* tag_value = Pop();
   4153   HBasicBlock* first_test_block = current_block();
   4154 
   4155   HUnaryControlInstruction* string_check = NULL;
   4156   HBasicBlock* not_string_block = NULL;
   4157 
   4158   // Test switch's tag value if all clauses are string literals
   4159   if (stmt->switch_type() == SwitchStatement::STRING_SWITCH) {
   4160     first_test_block = graph()->CreateBasicBlock();
   4161     not_string_block = graph()->CreateBasicBlock();
   4162     string_check = New<HIsStringAndBranch>(
   4163         tag_value, first_test_block, not_string_block);
   4164     FinishCurrentBlock(string_check);
   4165 
   4166     set_current_block(first_test_block);
   4167   }
   4168 
   4169   // 1. Build all the tests, with dangling true branches
   4170   BailoutId default_id = BailoutId::None();
   4171   for (int i = 0; i < clause_count; ++i) {
   4172     CaseClause* clause = clauses->at(i);
   4173     if (clause->is_default()) {
   4174       default_id = clause->EntryId();
   4175       continue;
   4176     }
   4177 
   4178     // Generate a compare and branch.
   4179     CHECK_ALIVE(VisitForValue(clause->label()));
   4180     HValue* label_value = Pop();
   4181 
   4182     HBasicBlock* next_test_block = graph()->CreateBasicBlock();
   4183     HBasicBlock* body_block = graph()->CreateBasicBlock();
   4184 
   4185     HControlInstruction* compare;
   4186 
   4187     if (stmt->switch_type() == SwitchStatement::SMI_SWITCH) {
   4188       if (!clause->compare_type()->Is(Type::Smi())) {
   4189         Add<HDeoptimize>("Non-smi switch type", Deoptimizer::SOFT);
   4190       }
   4191 
   4192       HCompareNumericAndBranch* compare_ =
   4193           New<HCompareNumericAndBranch>(tag_value,
   4194                                         label_value,
   4195                                         Token::EQ_STRICT);
   4196       compare_->set_observed_input_representation(
   4197           Representation::Smi(), Representation::Smi());
   4198       compare = compare_;
   4199     } else {
   4200       compare = New<HStringCompareAndBranch>(tag_value,
   4201                                              label_value,
   4202                                              Token::EQ_STRICT);
   4203     }
   4204 
   4205     compare->SetSuccessorAt(0, body_block);
   4206     compare->SetSuccessorAt(1, next_test_block);
   4207     FinishCurrentBlock(compare);
   4208 
   4209     set_current_block(next_test_block);
   4210   }
   4211 
   4212   // Save the current block to use for the default or to join with the
   4213   // exit.
   4214   HBasicBlock* last_block = current_block();
   4215 
   4216   if (not_string_block != NULL) {
   4217     BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId();
   4218     last_block = CreateJoin(last_block, not_string_block, join_id);
   4219   }
   4220 
   4221   // 2. Loop over the clauses and the linked list of tests in lockstep,
   4222   // translating the clause bodies.
   4223   HBasicBlock* curr_test_block = first_test_block;
   4224   HBasicBlock* fall_through_block = NULL;
   4225 
   4226   BreakAndContinueInfo break_info(stmt);
   4227   { BreakAndContinueScope push(&break_info, this);
   4228     for (int i = 0; i < clause_count; ++i) {
   4229       CaseClause* clause = clauses->at(i);
   4230 
   4231       // Identify the block where normal (non-fall-through) control flow
   4232       // goes to.
   4233       HBasicBlock* normal_block = NULL;
   4234       if (clause->is_default()) {
   4235         if (last_block != NULL) {
   4236           normal_block = last_block;
   4237           last_block = NULL;  // Cleared to indicate we've handled it.
   4238         }
   4239       } else {
   4240         // If the current test block is deoptimizing due to an unhandled clause
   4241         // of the switch, the test instruction is in the next block since the
   4242         // deopt must end the current block.
   4243         if (curr_test_block->IsDeoptimizing()) {
   4244           ASSERT(curr_test_block->end()->SecondSuccessor() == NULL);
   4245           curr_test_block = curr_test_block->end()->FirstSuccessor();
   4246         }
   4247         normal_block = curr_test_block->end()->FirstSuccessor();
   4248         curr_test_block = curr_test_block->end()->SecondSuccessor();
   4249       }
   4250 
   4251       // Identify a block to emit the body into.
   4252       if (normal_block == NULL) {
   4253         if (fall_through_block == NULL) {
   4254           // (a) Unreachable.
   4255           if (clause->is_default()) {
   4256             continue;  // Might still be reachable clause bodies.
   4257           } else {
   4258             break;
   4259           }
   4260         } else {
   4261           // (b) Reachable only as fall through.
   4262           set_current_block(fall_through_block);
   4263         }
   4264       } else if (fall_through_block == NULL) {
   4265         // (c) Reachable only normally.
   4266         set_current_block(normal_block);
   4267       } else {
   4268         // (d) Reachable both ways.
   4269         HBasicBlock* join = CreateJoin(fall_through_block,
   4270                                        normal_block,
   4271                                        clause->EntryId());
   4272         set_current_block(join);
   4273       }
   4274 
   4275       CHECK_BAILOUT(VisitStatements(clause->statements()));
   4276       fall_through_block = current_block();
   4277     }
   4278   }
   4279 
   4280   // Create an up-to-3-way join.  Use the break block if it exists since
   4281   // it's already a join block.
   4282   HBasicBlock* break_block = break_info.break_block();
   4283   if (break_block == NULL) {
   4284     set_current_block(CreateJoin(fall_through_block,
   4285                                  last_block,
   4286                                  stmt->ExitId()));
   4287   } else {
   4288     if (fall_through_block != NULL) Goto(fall_through_block, break_block);
   4289     if (last_block != NULL) Goto(last_block, break_block);
   4290     break_block->SetJoinId(stmt->ExitId());
   4291     set_current_block(break_block);
   4292   }
   4293 }
   4294 
   4295 
   4296 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
   4297                                            HBasicBlock* loop_entry,
   4298                                            BreakAndContinueInfo* break_info) {
   4299   BreakAndContinueScope push(break_info, this);
   4300   Add<HSimulate>(stmt->StackCheckId());
   4301   HStackCheck* stack_check =
   4302       HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
   4303   ASSERT(loop_entry->IsLoopHeader());
   4304   loop_entry->loop_information()->set_stack_check(stack_check);
   4305   CHECK_BAILOUT(Visit(stmt->body()));
   4306 }
   4307 
   4308 
   4309 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
   4310   ASSERT(!HasStackOverflow());
   4311   ASSERT(current_block() != NULL);
   4312   ASSERT(current_block()->HasPredecessor());
   4313   ASSERT(current_block() != NULL);
   4314   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
   4315 
   4316   BreakAndContinueInfo break_info(stmt);
   4317   CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
   4318   HBasicBlock* body_exit =
   4319       JoinContinue(stmt, current_block(), break_info.continue_block());
   4320   HBasicBlock* loop_successor = NULL;
   4321   if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
   4322     set_current_block(body_exit);
   4323     // The block for a true condition, the actual predecessor block of the
   4324     // back edge.
   4325     body_exit = graph()->CreateBasicBlock();
   4326     loop_successor = graph()->CreateBasicBlock();
   4327     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
   4328     if (body_exit->HasPredecessor()) {
   4329       body_exit->SetJoinId(stmt->BackEdgeId());
   4330     } else {
   4331       body_exit = NULL;
   4332     }
   4333     if (loop_successor->HasPredecessor()) {
   4334       loop_successor->SetJoinId(stmt->ExitId());
   4335     } else {
   4336       loop_successor = NULL;
   4337     }
   4338   }
   4339   HBasicBlock* loop_exit = CreateLoop(stmt,
   4340                                       loop_entry,
   4341                                       body_exit,
   4342                                       loop_successor,
   4343                                       break_info.break_block());
   4344   set_current_block(loop_exit);
   4345 }
   4346 
   4347 
   4348 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
   4349   ASSERT(!HasStackOverflow());
   4350   ASSERT(current_block() != NULL);
   4351   ASSERT(current_block()->HasPredecessor());
   4352   ASSERT(current_block() != NULL);
   4353   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
   4354 
   4355   // If the condition is constant true, do not generate a branch.
   4356   HBasicBlock* loop_successor = NULL;
   4357   if (!stmt->cond()->ToBooleanIsTrue()) {
   4358     HBasicBlock* body_entry = graph()->CreateBasicBlock();
   4359     loop_successor = graph()->CreateBasicBlock();
   4360     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
   4361     if (body_entry->HasPredecessor()) {
   4362       body_entry->SetJoinId(stmt->BodyId());
   4363       set_current_block(body_entry);
   4364     }
   4365     if (loop_successor->HasPredecessor()) {
   4366       loop_successor->SetJoinId(stmt->ExitId());
   4367     } else {
   4368       loop_successor = NULL;
   4369     }
   4370   }
   4371 
   4372   BreakAndContinueInfo break_info(stmt);
   4373   if (current_block() != NULL) {
   4374     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
   4375   }
   4376   HBasicBlock* body_exit =
   4377       JoinContinue(stmt, current_block(), break_info.continue_block());
   4378   HBasicBlock* loop_exit = CreateLoop(stmt,
   4379                                       loop_entry,
   4380                                       body_exit,
   4381                                       loop_successor,
   4382                                       break_info.break_block());
   4383   set_current_block(loop_exit);
   4384 }
   4385 
   4386 
   4387 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
   4388   ASSERT(!HasStackOverflow());
   4389   ASSERT(current_block() != NULL);
   4390   ASSERT(current_block()->HasPredecessor());
   4391   if (stmt->init() != NULL) {
   4392     CHECK_ALIVE(Visit(stmt->init()));
   4393   }
   4394   ASSERT(current_block() != NULL);
   4395   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
   4396 
   4397   HBasicBlock* loop_successor = NULL;
   4398   if (stmt->cond() != NULL) {
   4399     HBasicBlock* body_entry = graph()->CreateBasicBlock();
   4400     loop_successor = graph()->CreateBasicBlock();
   4401     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
   4402     if (body_entry->HasPredecessor()) {
   4403       body_entry->SetJoinId(stmt->BodyId());
   4404       set_current_block(body_entry);
   4405     }
   4406     if (loop_successor->HasPredecessor()) {
   4407       loop_successor->SetJoinId(stmt->ExitId());
   4408     } else {
   4409       loop_successor = NULL;
   4410     }
   4411   }
   4412 
   4413   BreakAndContinueInfo break_info(stmt);
   4414   if (current_block() != NULL) {
   4415     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
   4416   }
   4417   HBasicBlock* body_exit =
   4418       JoinContinue(stmt, current_block(), break_info.continue_block());
   4419 
   4420   if (stmt->next() != NULL && body_exit != NULL) {
   4421     set_current_block(body_exit);
   4422     CHECK_BAILOUT(Visit(stmt->next()));
   4423     body_exit = current_block();
   4424   }
   4425 
   4426   HBasicBlock* loop_exit = CreateLoop(stmt,
   4427                                       loop_entry,
   4428                                       body_exit,
   4429                                       loop_successor,
   4430                                       break_info.break_block());
   4431   set_current_block(loop_exit);
   4432 }
   4433 
   4434 
   4435 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
   4436   ASSERT(!HasStackOverflow());
   4437   ASSERT(current_block() != NULL);
   4438   ASSERT(current_block()->HasPredecessor());
   4439 
   4440   if (!FLAG_optimize_for_in) {
   4441     return Bailout(kForInStatementOptimizationIsDisabled);
   4442   }
   4443 
   4444   if (stmt->for_in_type() != ForInStatement::FAST_FOR_IN) {
   4445     return Bailout(kForInStatementIsNotFastCase);
   4446   }
   4447 
   4448   if (!stmt->each()->IsVariableProxy() ||
   4449       !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
   4450     return Bailout(kForInStatementWithNonLocalEachVariable);
   4451   }
   4452 
   4453   Variable* each_var = stmt->each()->AsVariableProxy()->var();
   4454 
   4455   CHECK_ALIVE(VisitForValue(stmt->enumerable()));
   4456   HValue* enumerable = Top();  // Leave enumerable at the top.
   4457 
   4458   HInstruction* map = Add<HForInPrepareMap>(enumerable);
   4459   Add<HSimulate>(stmt->PrepareId());
   4460 
   4461   HInstruction* array = Add<HForInCacheArray>(
   4462       enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex);
   4463 
   4464   HInstruction* enum_length = Add<HMapEnumLength>(map);
   4465 
   4466   HInstruction* start_index = Add<HConstant>(0);
   4467 
   4468   Push(map);
   4469   Push(array);
   4470   Push(enum_length);
   4471   Push(start_index);
   4472 
   4473   HInstruction* index_cache = Add<HForInCacheArray>(
   4474       enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
   4475   HForInCacheArray::cast(array)->set_index_cache(
   4476       HForInCacheArray::cast(index_cache));
   4477 
   4478   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
   4479 
   4480   HValue* index = environment()->ExpressionStackAt(0);
   4481   HValue* limit = environment()->ExpressionStackAt(1);
   4482 
   4483   // Check that we still have more keys.
   4484   HCompareNumericAndBranch* compare_index =
   4485       New<HCompareNumericAndBranch>(index, limit, Token::LT);
   4486   compare_index->set_observed_input_representation(
   4487       Representation::Smi(), Representation::Smi());
   4488 
   4489   HBasicBlock* loop_body = graph()->CreateBasicBlock();
   4490   HBasicBlock* loop_successor = graph()->CreateBasicBlock();
   4491 
   4492   compare_index->SetSuccessorAt(0, loop_body);
   4493   compare_index->SetSuccessorAt(1, loop_successor);
   4494   FinishCurrentBlock(compare_index);
   4495 
   4496   set_current_block(loop_successor);
   4497   Drop(5);
   4498 
   4499   set_current_block(loop_body);
   4500 
   4501   HValue* key = Add<HLoadKeyed>(
   4502       environment()->ExpressionStackAt(2),  // Enum cache.
   4503       environment()->ExpressionStackAt(0),  // Iteration index.
   4504       environment()->ExpressionStackAt(0),
   4505       FAST_ELEMENTS);
   4506 
   4507   // Check if the expected map still matches that of the enumerable.
   4508   // If not just deoptimize.
   4509   Add<HCheckMapValue>(environment()->ExpressionStackAt(4),
   4510                       environment()->ExpressionStackAt(3));
   4511 
   4512   Bind(each_var, key);
   4513 
   4514   BreakAndContinueInfo break_info(stmt, 5);
   4515   CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
   4516 
   4517   HBasicBlock* body_exit =
   4518       JoinContinue(stmt, current_block(), break_info.continue_block());
   4519 
   4520   if (body_exit != NULL) {
   4521     set_current_block(body_exit);
   4522 
   4523     HValue* current_index = Pop();
   4524     Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
   4525     body_exit = current_block();
   4526   }
   4527 
   4528   HBasicBlock* loop_exit = CreateLoop(stmt,
   4529                                       loop_entry,
   4530                                       body_exit,
   4531                                       loop_successor,
   4532                                       break_info.break_block());
   4533 
   4534   set_current_block(loop_exit);
   4535 }
   4536 
   4537 
   4538 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
   4539   ASSERT(!HasStackOverflow());
   4540   ASSERT(current_block() != NULL);
   4541   ASSERT(current_block()->HasPredecessor());
   4542   return Bailout(kForOfStatement);
   4543 }
   4544 
   4545 
   4546 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
   4547   ASSERT(!HasStackOverflow());
   4548   ASSERT(current_block() != NULL);
   4549   ASSERT(current_block()->HasPredecessor());
   4550   return Bailout(kTryCatchStatement);
   4551 }
   4552 
   4553 
   4554 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
   4555     TryFinallyStatement* stmt) {
   4556   ASSERT(!HasStackOverflow());
   4557   ASSERT(current_block() != NULL);
   4558   ASSERT(current_block()->HasPredecessor());
   4559   return Bailout(kTryFinallyStatement);
   4560 }
   4561 
   4562 
   4563 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
   4564   ASSERT(!HasStackOverflow());
   4565   ASSERT(current_block() != NULL);
   4566   ASSERT(current_block()->HasPredecessor());
   4567   return Bailout(kDebuggerStatement);
   4568 }
   4569 
   4570 
   4571 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
   4572   UNREACHABLE();
   4573 }
   4574 
   4575 
   4576 static Handle<SharedFunctionInfo> SearchSharedFunctionInfo(
   4577     Code* unoptimized_code, FunctionLiteral* expr) {
   4578   int start_position = expr->start_position();
   4579   for (RelocIterator it(unoptimized_code); !it.done(); it.next()) {
   4580     RelocInfo* rinfo = it.rinfo();
   4581     if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
   4582     Object* obj = rinfo->target_object();
   4583     if (obj->IsSharedFunctionInfo()) {
   4584       SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
   4585       if (shared->start_position() == start_position) {
   4586         return Handle<SharedFunctionInfo>(shared);
   4587       }
   4588     }
   4589   }
   4590 
   4591   return Handle<SharedFunctionInfo>();
   4592 }
   4593 
   4594 
   4595 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
   4596   ASSERT(!HasStackOverflow());
   4597   ASSERT(current_block() != NULL);
   4598   ASSERT(current_block()->HasPredecessor());
   4599   Handle<SharedFunctionInfo> shared_info =
   4600       SearchSharedFunctionInfo(current_info()->shared_info()->code(), expr);
   4601   if (shared_info.is_null()) {
   4602     shared_info = Compiler::BuildFunctionInfo(expr, current_info()->script());
   4603   }
   4604   // We also have a stack overflow if the recursive compilation did.
   4605   if (HasStackOverflow()) return;
   4606   HFunctionLiteral* instr =
   4607       New<HFunctionLiteral>(shared_info, expr->pretenure());
   4608   return ast_context()->ReturnInstruction(instr, expr->id());
   4609 }
   4610 
   4611 
   4612 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
   4613     NativeFunctionLiteral* expr) {
   4614   ASSERT(!HasStackOverflow());
   4615   ASSERT(current_block() != NULL);
   4616   ASSERT(current_block()->HasPredecessor());
   4617   return Bailout(kNativeFunctionLiteral);
   4618 }
   4619 
   4620 
   4621 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
   4622   ASSERT(!HasStackOverflow());
   4623   ASSERT(current_block() != NULL);
   4624   ASSERT(current_block()->HasPredecessor());
   4625   HBasicBlock* cond_true = graph()->CreateBasicBlock();
   4626   HBasicBlock* cond_false = graph()->CreateBasicBlock();
   4627   CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
   4628 
   4629   // Visit the true and false subexpressions in the same AST context as the
   4630   // whole expression.
   4631   if (cond_true->HasPredecessor()) {
   4632     cond_true->SetJoinId(expr->ThenId());
   4633     set_current_block(cond_true);
   4634     CHECK_BAILOUT(Visit(expr->then_expression()));
   4635     cond_true = current_block();
   4636   } else {
   4637     cond_true = NULL;
   4638   }
   4639 
   4640   if (cond_false->HasPredecessor()) {
   4641     cond_false->SetJoinId(expr->ElseId());
   4642     set_current_block(cond_false);
   4643     CHECK_BAILOUT(Visit(expr->else_expression()));
   4644     cond_false = current_block();
   4645   } else {
   4646     cond_false = NULL;
   4647   }
   4648 
   4649   if (!ast_context()->IsTest()) {
   4650     HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
   4651     set_current_block(join);
   4652     if (join != NULL && !ast_context()->IsEffect()) {
   4653       return ast_context()->ReturnValue(Pop());
   4654     }
   4655   }
   4656 }
   4657 
   4658 
   4659 HOptimizedGraphBuilder::GlobalPropertyAccess
   4660     HOptimizedGraphBuilder::LookupGlobalProperty(
   4661         Variable* var, LookupResult* lookup, bool is_store) {
   4662   if (var->is_this() || !current_info()->has_global_object()) {
   4663     return kUseGeneric;
   4664   }
   4665   Handle<GlobalObject> global(current_info()->global_object());
   4666   global->Lookup(*var->name(), lookup);
   4667   if (!lookup->IsNormal() ||
   4668       (is_store && lookup->IsReadOnly()) ||
   4669       lookup->holder() != *global) {
   4670     return kUseGeneric;
   4671   }
   4672 
   4673   return kUseCell;
   4674 }
   4675 
   4676 
   4677 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
   4678   ASSERT(var->IsContextSlot());
   4679   HValue* context = environment()->context();
   4680   int length = current_info()->scope()->ContextChainLength(var->scope());
   4681   while (length-- > 0) {
   4682     context = Add<HOuterContext>(context);
   4683   }
   4684   return context;
   4685 }
   4686 
   4687 
   4688 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
   4689   ASSERT(!HasStackOverflow());
   4690   ASSERT(current_block() != NULL);
   4691   ASSERT(current_block()->HasPredecessor());
   4692   Variable* variable = expr->var();
   4693   switch (variable->location()) {
   4694     case Variable::UNALLOCATED: {
   4695       if (IsLexicalVariableMode(variable->mode())) {
   4696         // TODO(rossberg): should this be an ASSERT?
   4697         return Bailout(kReferenceToGlobalLexicalVariable);
   4698       }
   4699       // Handle known global constants like 'undefined' specially to avoid a
   4700       // load from a global cell for them.
   4701       Handle<Object> constant_value =
   4702           isolate()->factory()->GlobalConstantFor(variable->name());
   4703       if (!constant_value.is_null()) {
   4704         HConstant* instr = New<HConstant>(constant_value);
   4705         return ast_context()->ReturnInstruction(instr, expr->id());
   4706       }
   4707 
   4708       LookupResult lookup(isolate());
   4709       GlobalPropertyAccess type =
   4710           LookupGlobalProperty(variable, &lookup, false);
   4711 
   4712       if (type == kUseCell &&
   4713           current_info()->global_object()->IsAccessCheckNeeded()) {
   4714         type = kUseGeneric;
   4715       }
   4716 
   4717       if (type == kUseCell) {
   4718         Handle<GlobalObject> global(current_info()->global_object());
   4719         Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
   4720         if (cell->type()->IsConstant()) {
   4721           cell->AddDependentCompilationInfo(top_info());
   4722           Handle<Object> constant_object = cell->type()->AsConstant();
   4723           if (constant_object->IsConsString()) {
   4724             constant_object =
   4725                 FlattenGetString(Handle<String>::cast(constant_object));
   4726           }
   4727           HConstant* constant = New<HConstant>(constant_object);
   4728           return ast_context()->ReturnInstruction(constant, expr->id());
   4729         } else {
   4730           HLoadGlobalCell* instr =
   4731               New<HLoadGlobalCell>(cell, lookup.GetPropertyDetails());
   4732           return ast_context()->ReturnInstruction(instr, expr->id());
   4733         }
   4734       } else {
   4735         HGlobalObject* global_object = Add<HGlobalObject>();
   4736         HLoadGlobalGeneric* instr =
   4737             New<HLoadGlobalGeneric>(global_object,
   4738                                     variable->name(),
   4739                                     ast_context()->is_for_typeof());
   4740         return ast_context()->ReturnInstruction(instr, expr->id());
   4741       }
   4742     }
   4743 
   4744     case Variable::PARAMETER:
   4745     case Variable::LOCAL: {
   4746       HValue* value = LookupAndMakeLive(variable);
   4747       if (value == graph()->GetConstantHole()) {
   4748         ASSERT(IsDeclaredVariableMode(variable->mode()) &&
   4749                variable->mode() != VAR);
   4750         return Bailout(kReferenceToUninitializedVariable);
   4751       }
   4752       return ast_context()->ReturnValue(value);
   4753     }
   4754 
   4755     case Variable::CONTEXT: {
   4756       HValue* context = BuildContextChainWalk(variable);
   4757       HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
   4758       return ast_context()->ReturnInstruction(instr, expr->id());
   4759     }
   4760 
   4761     case Variable::LOOKUP:
   4762       return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
   4763   }
   4764 }
   4765 
   4766 
   4767 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
   4768   ASSERT(!HasStackOverflow());
   4769   ASSERT(current_block() != NULL);
   4770   ASSERT(current_block()->HasPredecessor());
   4771   HConstant* instr = New<HConstant>(expr->value());
   4772   return ast_context()->ReturnInstruction(instr, expr->id());
   4773 }
   4774 
   4775 
   4776 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
   4777   ASSERT(!HasStackOverflow());
   4778   ASSERT(current_block() != NULL);
   4779   ASSERT(current_block()->HasPredecessor());
   4780   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
   4781   Handle<FixedArray> literals(closure->literals());
   4782   HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
   4783                                               expr->pattern(),
   4784                                               expr->flags(),
   4785                                               expr->literal_index());
   4786   return ast_context()->ReturnInstruction(instr, expr->id());
   4787 }
   4788 
   4789 
   4790 static bool CanInlinePropertyAccess(Map* type) {
   4791   return type->IsJSObjectMap() &&
   4792       !type->is_dictionary_map() &&
   4793       !type->has_named_interceptor();
   4794 }
   4795 
   4796 
   4797 static void LookupInPrototypes(Handle<Map> map,
   4798                                Handle<String> name,
   4799                                LookupResult* lookup) {
   4800   while (map->prototype()->IsJSObject()) {
   4801     Handle<JSObject> holder(JSObject::cast(map->prototype()));
   4802     map = Handle<Map>(holder->map());
   4803     if (!CanInlinePropertyAccess(*map)) break;
   4804     map->LookupDescriptor(*holder, *name, lookup);
   4805     if (lookup->IsFound()) return;
   4806   }
   4807   lookup->NotFound();
   4808 }
   4809 
   4810 
   4811 // Tries to find a JavaScript accessor of the given name in the prototype chain
   4812 // starting at the given map. Return true iff there is one, including the
   4813 // corresponding AccessorPair plus its holder (which could be null when the
   4814 // accessor is found directly in the given map).
   4815 static bool LookupAccessorPair(Handle<Map> map,
   4816                                Handle<String> name,
   4817                                Handle<AccessorPair>* accessors,
   4818                                Handle<JSObject>* holder) {
   4819   Isolate* isolate = map->GetIsolate();
   4820   LookupResult lookup(isolate);
   4821 
   4822   // Check for a JavaScript accessor directly in the map.
   4823   map->LookupDescriptor(NULL, *name, &lookup);
   4824   if (lookup.IsPropertyCallbacks()) {
   4825     Handle<Object> callback(lookup.GetValueFromMap(*map), isolate);
   4826     if (!callback->IsAccessorPair()) return false;
   4827     *accessors = Handle<AccessorPair>::cast(callback);
   4828     *holder = Handle<JSObject>();
   4829     return true;
   4830   }
   4831 
   4832   // Everything else, e.g. a field, can't be an accessor call.
   4833   if (lookup.IsFound()) return false;
   4834 
   4835   // Check for a JavaScript accessor somewhere in the proto chain.
   4836   LookupInPrototypes(map, name, &lookup);
   4837   if (lookup.IsPropertyCallbacks()) {
   4838     Handle<Object> callback(lookup.GetValue(), isolate);
   4839     if (!callback->IsAccessorPair()) return false;
   4840     *accessors = Handle<AccessorPair>::cast(callback);
   4841     *holder = Handle<JSObject>(lookup.holder());
   4842     return true;
   4843   }
   4844 
   4845   // We haven't found a JavaScript accessor anywhere.
   4846   return false;
   4847 }
   4848 
   4849 
   4850 static bool LookupSetter(Handle<Map> map,
   4851                          Handle<String> name,
   4852                          Handle<JSFunction>* setter,
   4853                          Handle<JSObject>* holder) {
   4854   Handle<AccessorPair> accessors;
   4855   if (LookupAccessorPair(map, name, &accessors, holder) &&
   4856       accessors->setter()->IsJSFunction()) {
   4857     Handle<JSFunction> func(JSFunction::cast(accessors->setter()));
   4858     CallOptimization call_optimization(func);
   4859     // TODO(dcarney): temporary hack unless crankshaft can handle api calls.
   4860     if (call_optimization.is_simple_api_call()) return false;
   4861     *setter = func;
   4862     return true;
   4863   }
   4864   return false;
   4865 }
   4866 
   4867 
   4868 // Determines whether the given array or object literal boilerplate satisfies
   4869 // all limits to be considered for fast deep-copying and computes the total
   4870 // size of all objects that are part of the graph.
   4871 static bool IsFastLiteral(Handle<JSObject> boilerplate,
   4872                           int max_depth,
   4873                           int* max_properties) {
   4874   if (boilerplate->map()->is_deprecated()) {
   4875     Handle<Object> result = JSObject::TryMigrateInstance(boilerplate);
   4876     if (result.is_null()) return false;
   4877   }
   4878 
   4879   ASSERT(max_depth >= 0 && *max_properties >= 0);
   4880   if (max_depth == 0) return false;
   4881 
   4882   Isolate* isolate = boilerplate->GetIsolate();
   4883   Handle<FixedArrayBase> elements(boilerplate->elements());
   4884   if (elements->length() > 0 &&
   4885       elements->map() != isolate->heap()->fixed_cow_array_map()) {
   4886     if (boilerplate->HasFastObjectElements()) {
   4887       Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
   4888       int length = elements->length();
   4889       for (int i = 0; i < length; i++) {
   4890         if ((*max_properties)-- == 0) return false;
   4891         Handle<Object> value(fast_elements->get(i), isolate);
   4892         if (value->IsJSObject()) {
   4893           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
   4894           if (!IsFastLiteral(value_object,
   4895                              max_depth - 1,
   4896                              max_properties)) {
   4897             return false;
   4898           }
   4899         }
   4900       }
   4901     } else if (!boilerplate->HasFastDoubleElements()) {
   4902       return false;
   4903     }
   4904   }
   4905 
   4906   Handle<FixedArray> properties(boilerplate->properties());
   4907   if (properties->length() > 0) {
   4908     return false;
   4909   } else {
   4910     Handle<DescriptorArray> descriptors(
   4911         boilerplate->map()->instance_descriptors());
   4912     int limit = boilerplate->map()->NumberOfOwnDescriptors();
   4913     for (int i = 0; i < limit; i++) {
   4914       PropertyDetails details = descriptors->GetDetails(i);
   4915       if (details.type() != FIELD) continue;
   4916       int index = descriptors->GetFieldIndex(i);
   4917       if ((*max_properties)-- == 0) return false;
   4918       Handle<Object> value(boilerplate->InObjectPropertyAt(index), isolate);
   4919       if (value->IsJSObject()) {
   4920         Handle<JSObject> value_object = Handle<JSObject>::cast(value);
   4921         if (!IsFastLiteral(value_object,
   4922                            max_depth - 1,
   4923                            max_properties)) {
   4924           return false;
   4925         }
   4926       }
   4927     }
   4928   }
   4929   return true;
   4930 }
   4931 
   4932 
   4933 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
   4934   ASSERT(!HasStackOverflow());
   4935   ASSERT(current_block() != NULL);
   4936   ASSERT(current_block()->HasPredecessor());
   4937   expr->BuildConstantProperties(isolate());
   4938   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
   4939   HInstruction* literal;
   4940 
   4941   // Check whether to use fast or slow deep-copying for boilerplate.
   4942   int max_properties = kMaxFastLiteralProperties;
   4943   Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
   4944                                isolate());
   4945   Handle<AllocationSite> site;
   4946   Handle<JSObject> boilerplate;
   4947   if (!literals_cell->IsUndefined()) {
   4948     // Retrieve the boilerplate
   4949     site = Handle<AllocationSite>::cast(literals_cell);
   4950     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
   4951                                    isolate());
   4952   }
   4953 
   4954   if (!boilerplate.is_null() &&
   4955       IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
   4956     AllocationSiteUsageContext usage_context(isolate(), site, false);
   4957     usage_context.EnterNewScope();
   4958     literal = BuildFastLiteral(boilerplate, &usage_context);
   4959     usage_context.ExitScope(site, boilerplate);
   4960   } else {
   4961     NoObservableSideEffectsScope no_effects(this);
   4962     Handle<FixedArray> closure_literals(closure->literals(), isolate());
   4963     Handle<FixedArray> constant_properties = expr->constant_properties();
   4964     int literal_index = expr->literal_index();
   4965     int flags = expr->fast_elements()
   4966         ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags;
   4967     flags |= expr->has_function()
   4968         ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags;
   4969 
   4970     Add<HPushArgument>(Add<HConstant>(closure_literals));
   4971     Add<HPushArgument>(Add<HConstant>(literal_index));
   4972     Add<HPushArgument>(Add<HConstant>(constant_properties));
   4973     Add<HPushArgument>(Add<HConstant>(flags));
   4974 
   4975     // TODO(mvstanton): Add a flag to turn off creation of any
   4976     // AllocationMementos for this call: we are in crankshaft and should have
   4977     // learned enough about transition behavior to stop emitting mementos.
   4978     Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
   4979     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
   4980                                 Runtime::FunctionForId(function_id),
   4981                                 4);
   4982   }
   4983 
   4984   // The object is expected in the bailout environment during computation
   4985   // of the property values and is the value of the entire expression.
   4986   Push(literal);
   4987 
   4988   expr->CalculateEmitStore(zone());
   4989 
   4990   for (int i = 0; i < expr->properties()->length(); i++) {
   4991     ObjectLiteral::Property* property = expr->properties()->at(i);
   4992     if (property->IsCompileTimeValue()) continue;
   4993 
   4994     Literal* key = property->key();
   4995     Expression* value = property->value();
   4996 
   4997     switch (property->kind()) {
   4998       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
   4999         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
   5000         // Fall through.
   5001       case ObjectLiteral::Property::COMPUTED:
   5002         if (key->value()->IsInternalizedString()) {
   5003           if (property->emit_store()) {
   5004             CHECK_ALIVE(VisitForValue(value));
   5005             HValue* value = Pop();
   5006             Handle<Map> map = property->GetReceiverType();
   5007             Handle<String> name = property->key()->AsPropertyName();
   5008             HInstruction* store;
   5009             if (map.is_null()) {
   5010               // If we don't know the monomorphic type, do a generic store.
   5011               CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
   5012             } else {
   5013 #if DEBUG
   5014               Handle<JSFunction> setter;
   5015               Handle<JSObject> holder;
   5016               ASSERT(!LookupSetter(map, name, &setter, &holder));
   5017 #endif
   5018               CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
   5019                                                              name,
   5020                                                              value,
   5021                                                              map));
   5022             }
   5023             AddInstruction(store);
   5024             if (store->HasObservableSideEffects()) {
   5025               Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
   5026             }
   5027           } else {
   5028             CHECK_ALIVE(VisitForEffect(value));
   5029           }
   5030           break;
   5031         }
   5032         // Fall through.
   5033       case ObjectLiteral::Property::PROTOTYPE:
   5034       case ObjectLiteral::Property::SETTER:
   5035       case ObjectLiteral::Property::GETTER:
   5036         return Bailout(kObjectLiteralWithComplexProperty);
   5037       default: UNREACHABLE();
   5038     }
   5039   }
   5040 
   5041   if (expr->has_function()) {
   5042     // Return the result of the transformation to fast properties
   5043     // instead of the original since this operation changes the map
   5044     // of the object. This makes sure that the original object won't
   5045     // be used by other optimized code before it is transformed
   5046     // (e.g. because of code motion).
   5047     HToFastProperties* result = Add<HToFastProperties>(Pop());
   5048     return ast_context()->ReturnValue(result);
   5049   } else {
   5050     return ast_context()->ReturnValue(Pop());
   5051   }
   5052 }
   5053 
   5054 
   5055 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
   5056   ASSERT(!HasStackOverflow());
   5057   ASSERT(current_block() != NULL);
   5058   ASSERT(current_block()->HasPredecessor());
   5059   expr->BuildConstantElements(isolate());
   5060   ZoneList<Expression*>* subexprs = expr->values();
   5061   int length = subexprs->length();
   5062   HInstruction* literal;
   5063 
   5064   Handle<AllocationSite> site;
   5065   Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
   5066   bool uninitialized = false;
   5067   Handle<Object> literals_cell(literals->get(expr->literal_index()),
   5068                                isolate());
   5069   Handle<JSObject> boilerplate_object;
   5070   if (literals_cell->IsUndefined()) {
   5071     uninitialized = true;
   5072     Handle<Object> raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
   5073         isolate(), literals, expr->constant_elements());
   5074     if (raw_boilerplate.is_null()) {
   5075       return Bailout(kArrayBoilerplateCreationFailed);
   5076     }
   5077 
   5078     boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
   5079     AllocationSiteCreationContext creation_context(isolate());
   5080     site = creation_context.EnterNewScope();
   5081     if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
   5082       return Bailout(kArrayBoilerplateCreationFailed);
   5083     }
   5084     creation_context.ExitScope(site, boilerplate_object);
   5085     literals->set(expr->literal_index(), *site);
   5086 
   5087     if (boilerplate_object->elements()->map() ==
   5088         isolate()->heap()->fixed_cow_array_map()) {
   5089       isolate()->counters()->cow_arrays_created_runtime()->Increment();
   5090     }
   5091   } else {
   5092     ASSERT(literals_cell->IsAllocationSite());
   5093     site = Handle<AllocationSite>::cast(literals_cell);
   5094     boilerplate_object = Handle<JSObject>(
   5095         JSObject::cast(site->transition_info()), isolate());
   5096   }
   5097 
   5098   ASSERT(!boilerplate_object.is_null());
   5099   ASSERT(site->SitePointsToLiteral());
   5100 
   5101   ElementsKind boilerplate_elements_kind =
   5102       boilerplate_object->GetElementsKind();
   5103 
   5104   // Check whether to use fast or slow deep-copying for boilerplate.
   5105   int max_properties = kMaxFastLiteralProperties;
   5106   if (IsFastLiteral(boilerplate_object,
   5107                     kMaxFastLiteralDepth,
   5108                     &max_properties)) {
   5109     AllocationSiteUsageContext usage_context(isolate(), site, false);
   5110     usage_context.EnterNewScope();
   5111     literal = BuildFastLiteral(boilerplate_object, &usage_context);
   5112     usage_context.ExitScope(site, boilerplate_object);
   5113   } else {
   5114     NoObservableSideEffectsScope no_effects(this);
   5115     // Boilerplate already exists and constant elements are never accessed,
   5116     // pass an empty fixed array to the runtime function instead.
   5117     Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
   5118     int literal_index = expr->literal_index();
   5119     int flags = expr->depth() == 1
   5120         ? ArrayLiteral::kShallowElements
   5121         : ArrayLiteral::kNoFlags;
   5122     flags |= ArrayLiteral::kDisableMementos;
   5123 
   5124     Add<HPushArgument>(Add<HConstant>(literals));
   5125     Add<HPushArgument>(Add<HConstant>(literal_index));
   5126     Add<HPushArgument>(Add<HConstant>(constants));
   5127     Add<HPushArgument>(Add<HConstant>(flags));
   5128 
   5129     // TODO(mvstanton): Consider a flag to turn off creation of any
   5130     // AllocationMementos for this call: we are in crankshaft and should have
   5131     // learned enough about transition behavior to stop emitting mementos.
   5132     Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
   5133     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
   5134                                 Runtime::FunctionForId(function_id),
   5135                                 4);
   5136 
   5137     // De-opt if elements kind changed from boilerplate_elements_kind.
   5138     Handle<Map> map = Handle<Map>(boilerplate_object->map(), isolate());
   5139     literal = Add<HCheckMaps>(literal, map, top_info());
   5140   }
   5141 
   5142   // The array is expected in the bailout environment during computation
   5143   // of the property values and is the value of the entire expression.
   5144   Push(literal);
   5145   // The literal index is on the stack, too.
   5146   Push(Add<HConstant>(expr->literal_index()));
   5147 
   5148   HInstruction* elements = NULL;
   5149 
   5150   for (int i = 0; i < length; i++) {
   5151     Expression* subexpr = subexprs->at(i);
   5152     // If the subexpression is a literal or a simple materialized literal it
   5153     // is already set in the cloned array.
   5154     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
   5155 
   5156     CHECK_ALIVE(VisitForValue(subexpr));
   5157     HValue* value = Pop();
   5158     if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
   5159 
   5160     elements = AddLoadElements(literal);
   5161 
   5162     HValue* key = Add<HConstant>(i);
   5163 
   5164     switch (boilerplate_elements_kind) {
   5165       case FAST_SMI_ELEMENTS:
   5166       case FAST_HOLEY_SMI_ELEMENTS:
   5167       case FAST_ELEMENTS:
   5168       case FAST_HOLEY_ELEMENTS:
   5169       case FAST_DOUBLE_ELEMENTS:
   5170       case FAST_HOLEY_DOUBLE_ELEMENTS: {
   5171         HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
   5172                                               boilerplate_elements_kind);
   5173         instr->SetUninitialized(uninitialized);
   5174         break;
   5175       }
   5176       default:
   5177         UNREACHABLE();
   5178         break;
   5179     }
   5180 
   5181     Add<HSimulate>(expr->GetIdForElement(i));
   5182   }
   5183 
   5184   Drop(1);  // array literal index
   5185   return ast_context()->ReturnValue(Pop());
   5186 }
   5187 
   5188 
   5189 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
   5190                                                 Handle<Map> map) {
   5191   BuildCheckHeapObject(object);
   5192   return Add<HCheckMaps>(object, map, top_info());
   5193 }
   5194 
   5195 
   5196 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
   5197     HValue* checked_object,
   5198     Handle<String> name,
   5199     HValue* value,
   5200     Handle<Map> map,
   5201     LookupResult* lookup) {
   5202   ASSERT(lookup->IsFound());
   5203   // If the property does not exist yet, we have to check that it wasn't made
   5204   // readonly or turned into a setter by some meanwhile modifications on the
   5205   // prototype chain.
   5206   if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
   5207     Object* proto = map->prototype();
   5208     // First check that the prototype chain isn't affected already.
   5209     LookupResult proto_result(isolate());
   5210     proto->Lookup(*name, &proto_result);
   5211     if (proto_result.IsProperty()) {
   5212       // If the inherited property could induce readonly-ness, bail out.
   5213       if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
   5214         Bailout(kImproperObjectOnPrototypeChainForStore);
   5215         return NULL;
   5216       }
   5217       // We only need to check up to the preexisting property.
   5218       proto = proto_result.holder();
   5219     } else {
   5220       // Otherwise, find the top prototype.
   5221       while (proto->GetPrototype(isolate())->IsJSObject()) {
   5222         proto = proto->GetPrototype(isolate());
   5223       }
   5224       ASSERT(proto->GetPrototype(isolate())->IsNull());
   5225     }
   5226     ASSERT(proto->IsJSObject());
   5227     BuildCheckPrototypeMaps(
   5228         Handle<JSObject>(JSObject::cast(map->prototype())),
   5229         Handle<JSObject>(JSObject::cast(proto)));
   5230   }
   5231 
   5232   HObjectAccess field_access = HObjectAccess::ForField(map, lookup, name);
   5233   bool transition_to_field = lookup->IsTransitionToField();
   5234 
   5235   HStoreNamedField *instr;
   5236   if (FLAG_track_double_fields && field_access.representation().IsDouble()) {
   5237     HObjectAccess heap_number_access =
   5238         field_access.WithRepresentation(Representation::Tagged());
   5239     if (transition_to_field) {
   5240       // The store requires a mutable HeapNumber to be allocated.
   5241       NoObservableSideEffectsScope no_side_effects(this);
   5242       HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
   5243       HInstruction* heap_number = Add<HAllocate>(heap_number_size,
   5244           HType::HeapNumber(), isolate()->heap()->GetPretenureMode(),
   5245           HEAP_NUMBER_TYPE);
   5246       AddStoreMapConstant(heap_number, isolate()->factory()->heap_number_map());
   5247       Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
   5248                             value);
   5249       instr = New<HStoreNamedField>(checked_object->ActualValue(),
   5250                                     heap_number_access,
   5251                                     heap_number);
   5252     } else {
   5253       // Already holds a HeapNumber; load the box and write its value field.
   5254       HInstruction* heap_number = Add<HLoadNamedField>(checked_object,
   5255                                                        heap_number_access);
   5256       heap_number->set_type(HType::HeapNumber());
   5257       instr = New<HStoreNamedField>(heap_number,
   5258                                     HObjectAccess::ForHeapNumberValue(),
   5259                                     value);
   5260     }
   5261   } else {
   5262     // This is a normal store.
   5263     instr = New<HStoreNamedField>(checked_object->ActualValue(),
   5264                                   field_access,
   5265                                   value);
   5266   }
   5267 
   5268   if (transition_to_field) {
   5269     Handle<Map> transition(lookup->GetTransitionTarget());
   5270     HConstant* transition_constant = Add<HConstant>(transition);
   5271     instr->SetTransition(transition_constant, top_info());
   5272     // TODO(fschneider): Record the new map type of the object in the IR to
   5273     // enable elimination of redundant checks after the transition store.
   5274     instr->SetGVNFlag(kChangesMaps);
   5275   }
   5276   return instr;
   5277 }
   5278 
   5279 
   5280 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric(
   5281     HValue* object,
   5282     Handle<String> name,
   5283     HValue* value) {
   5284   return New<HStoreNamedGeneric>(
   5285                          object,
   5286                          name,
   5287                          value,
   5288                          function_strict_mode_flag());
   5289 }
   5290 
   5291 
   5292 // Sets the lookup result and returns true if the load/store can be inlined.
   5293 static bool ComputeStoreField(Handle<Map> type,
   5294                               Handle<String> name,
   5295                               LookupResult* lookup,
   5296                               bool lookup_transition = true) {
   5297   ASSERT(!type->is_observed());
   5298   if (!CanInlinePropertyAccess(*type)) {
   5299     lookup->NotFound();
   5300     return false;
   5301   }
   5302   // If we directly find a field, the access can be inlined.
   5303   type->LookupDescriptor(NULL, *name, lookup);
   5304   if (lookup->IsField()) return true;
   5305 
   5306   if (!lookup_transition) return false;
   5307 
   5308   type->LookupTransition(NULL, *name, lookup);
   5309   return lookup->IsTransitionToField() &&
   5310       (type->unused_property_fields() > 0);
   5311 }
   5312 
   5313 
   5314 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic(
   5315     HValue* object,
   5316     Handle<String> name,
   5317     HValue* value,
   5318     Handle<Map> map) {
   5319   // Handle a store to a known field.
   5320   LookupResult lookup(isolate());
   5321   if (ComputeStoreField(map, name, &lookup)) {
   5322     HCheckMaps* checked_object = AddCheckMap(object, map);
   5323     return BuildStoreNamedField(checked_object, name, value, map, &lookup);
   5324   }
   5325 
   5326   // No luck, do a generic store.
   5327   return BuildStoreNamedGeneric(object, name, value);
   5328 }
   5329 
   5330 
   5331 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatibleForLoad(
   5332     PropertyAccessInfo* info) {
   5333   if (!CanInlinePropertyAccess(*map_)) return false;
   5334 
   5335   if (!LookupDescriptor()) return false;
   5336 
   5337   if (!lookup_.IsFound()) {
   5338     return (!info->lookup_.IsFound() || info->has_holder()) &&
   5339         map_->prototype() == info->map_->prototype();
   5340   }
   5341 
   5342   // Mismatch if the other access info found the property in the prototype
   5343   // chain.
   5344   if (info->has_holder()) return false;
   5345 
   5346   if (lookup_.IsPropertyCallbacks()) {
   5347     return accessor_.is_identical_to(info->accessor_);
   5348   }
   5349 
   5350   if (lookup_.IsConstant()) {
   5351     return constant_.is_identical_to(info->constant_);
   5352   }
   5353 
   5354   ASSERT(lookup_.IsField());
   5355   if (!info->lookup_.IsField()) return false;
   5356 
   5357   Representation r = access_.representation();
   5358   if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
   5359   if (info->access_.offset() != access_.offset()) return false;
   5360   if (info->access_.IsInobject() != access_.IsInobject()) return false;
   5361   info->GeneralizeRepresentation(r);
   5362   return true;
   5363 }
   5364 
   5365 
   5366 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
   5367   map_->LookupDescriptor(NULL, *name_, &lookup_);
   5368   return LoadResult(map_);
   5369 }
   5370 
   5371 
   5372 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
   5373   if (lookup_.IsField()) {
   5374     access_ = HObjectAccess::ForField(map, &lookup_, name_);
   5375   } else if (lookup_.IsPropertyCallbacks()) {
   5376     Handle<Object> callback(lookup_.GetValueFromMap(*map), isolate());
   5377     if (!callback->IsAccessorPair()) return false;
   5378     Object* getter = Handle<AccessorPair>::cast(callback)->getter();
   5379     if (!getter->IsJSFunction()) return false;
   5380     Handle<JSFunction> accessor = handle(JSFunction::cast(getter));
   5381     CallOptimization call_optimization(accessor);
   5382     // TODO(dcarney): temporary hack unless crankshaft can handle api calls.
   5383     if (call_optimization.is_simple_api_call()) return false;
   5384     accessor_ = accessor;
   5385   } else if (lookup_.IsConstant()) {
   5386     constant_ = handle(lookup_.GetConstantFromMap(*map), isolate());
   5387   }
   5388 
   5389   return true;
   5390 }
   5391 
   5392 
   5393 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
   5394   Handle<Map> map = map_;
   5395   while (map->prototype()->IsJSObject()) {
   5396     holder_ = handle(JSObject::cast(map->prototype()));
   5397     if (holder_->map()->is_deprecated()) {
   5398       JSObject::TryMigrateInstance(holder_);
   5399     }
   5400     map = Handle<Map>(holder_->map());
   5401     if (!CanInlinePropertyAccess(*map)) {
   5402       lookup_.NotFound();
   5403       return false;
   5404     }
   5405     map->LookupDescriptor(*holder_, *name_, &lookup_);
   5406     if (lookup_.IsFound()) return LoadResult(map);
   5407   }
   5408   lookup_.NotFound();
   5409   return true;
   5410 }
   5411 
   5412 
   5413 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadMonomorphic() {
   5414   if (!CanInlinePropertyAccess(*map_)) return IsStringLength();
   5415   if (IsJSObjectFieldAccessor()) return true;
   5416   if (!LookupDescriptor()) return false;
   5417   if (lookup_.IsFound()) return true;
   5418   return LookupInPrototypes();
   5419 }
   5420 
   5421 
   5422 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadAsMonomorphic(
   5423     SmallMapList* types) {
   5424   ASSERT(map_.is_identical_to(types->first()));
   5425   if (!CanLoadMonomorphic()) return false;
   5426   if (types->length() > kMaxLoadPolymorphism) return false;
   5427 
   5428   if (IsStringLength()) {
   5429     for (int i = 1; i < types->length(); ++i) {
   5430       if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
   5431     }
   5432     return true;
   5433   }
   5434 
   5435   if (IsArrayLength()) {
   5436     bool is_fast = IsFastElementsKind(map_->elements_kind());
   5437     for (int i = 1; i < types->length(); ++i) {
   5438       Handle<Map> test_map = types->at(i);
   5439       if (test_map->instance_type() != JS_ARRAY_TYPE) return false;
   5440       if (IsFastElementsKind(test_map->elements_kind()) != is_fast) {
   5441         return false;
   5442       }
   5443     }
   5444     return true;
   5445   }
   5446 
   5447   if (IsJSObjectFieldAccessor()) {
   5448     InstanceType instance_type = map_->instance_type();
   5449     for (int i = 1; i < types->length(); ++i) {
   5450       if (types->at(i)->instance_type() != instance_type) return false;
   5451     }
   5452     return true;
   5453   }
   5454 
   5455   for (int i = 1; i < types->length(); ++i) {
   5456     PropertyAccessInfo test_info(isolate(), types->at(i), name_);
   5457     if (!test_info.IsCompatibleForLoad(this)) return false;
   5458   }
   5459 
   5460   return true;
   5461 }
   5462 
   5463 
   5464 HInstruction* HOptimizedGraphBuilder::BuildLoadMonomorphic(
   5465     PropertyAccessInfo* info,
   5466     HValue* object,
   5467     HInstruction* checked_object,
   5468     BailoutId ast_id,
   5469     BailoutId return_id,
   5470     bool can_inline_accessor) {
   5471 
   5472   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
   5473   if (info->GetJSObjectFieldAccess(&access)) {
   5474     return New<HLoadNamedField>(checked_object, access);
   5475   }
   5476 
   5477   HValue* checked_holder = checked_object;
   5478   if (info->has_holder()) {
   5479     Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
   5480     checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
   5481   }
   5482 
   5483   if (!info->lookup()->IsFound()) return graph()->GetConstantUndefined();
   5484 
   5485   if (info->lookup()->IsField()) {
   5486     return BuildLoadNamedField(checked_holder, info->access());
   5487   }
   5488 
   5489   if (info->lookup()->IsPropertyCallbacks()) {
   5490     Push(checked_object);
   5491     if (FLAG_inline_accessors &&
   5492         can_inline_accessor &&
   5493         TryInlineGetter(info->accessor(), ast_id, return_id)) {
   5494       return NULL;
   5495     }
   5496     Add<HPushArgument>(Pop());
   5497     return New<HCallConstantFunction>(info->accessor(), 1);
   5498   }
   5499 
   5500   ASSERT(info->lookup()->IsConstant());
   5501   return New<HConstant>(info->constant());
   5502 }
   5503 
   5504 
   5505 void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField(
   5506     BailoutId ast_id,
   5507     BailoutId return_id,
   5508     HValue* object,
   5509     SmallMapList* types,
   5510     Handle<String> name) {
   5511   // Something did not match; must use a polymorphic load.
   5512   int count = 0;
   5513   HBasicBlock* join = NULL;
   5514   for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
   5515     PropertyAccessInfo info(isolate(), types->at(i), name);
   5516     if (info.CanLoadMonomorphic()) {
   5517       if (count == 0) {
   5518         BuildCheckHeapObject(object);
   5519         join = graph()->CreateBasicBlock();
   5520       }
   5521       ++count;
   5522       HBasicBlock* if_true = graph()->CreateBasicBlock();
   5523       HBasicBlock* if_false = graph()->CreateBasicBlock();
   5524       HCompareMap* compare = New<HCompareMap>(
   5525           object, info.map(),  if_true, if_false);
   5526       FinishCurrentBlock(compare);
   5527 
   5528       set_current_block(if_true);
   5529 
   5530       HInstruction* load = BuildLoadMonomorphic(
   5531           &info, object, compare, ast_id, return_id, FLAG_polymorphic_inlining);
   5532       if (load == NULL) {
   5533         if (HasStackOverflow()) return;
   5534       } else {
   5535         if (!load->IsLinked()) {
   5536           AddInstruction(load);
   5537         }
   5538         if (!ast_context()->IsEffect()) Push(load);
   5539       }
   5540 
   5541       if (current_block() != NULL) Goto(join);
   5542       set_current_block(if_false);
   5543     }
   5544   }
   5545 
   5546   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
   5547   // know about and do not want to handle ones we've never seen.  Otherwise
   5548   // use a generic IC.
   5549   if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
   5550     // Because the deopt may be the only path in the polymorphic load, make sure
   5551     // that the environment stack matches the depth on deopt that it otherwise
   5552     // would have had after a successful load.
   5553     if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
   5554     FinishExitWithHardDeoptimization("Unknown map in polymorphic load", join);
   5555   } else {
   5556     HInstruction* load = Add<HLoadNamedGeneric>(object, name);
   5557     if (!ast_context()->IsEffect()) Push(load);
   5558 
   5559     if (join != NULL) {
   5560       Goto(join);
   5561     } else {
   5562       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   5563       if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
   5564       return;
   5565     }
   5566   }
   5567 
   5568   ASSERT(join != NULL);
   5569   join->SetJoinId(ast_id);
   5570   set_current_block(join);
   5571   if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
   5572 }
   5573 
   5574 
   5575 bool HOptimizedGraphBuilder::TryStorePolymorphicAsMonomorphic(
   5576     BailoutId assignment_id,
   5577     HValue* object,
   5578     HValue* value,
   5579     SmallMapList* types,
   5580     Handle<String> name) {
   5581   // Use monomorphic store if property lookup results in the same field index
   5582   // for all maps. Requires special map check on the set of all handled maps.
   5583   if (types->length() > kMaxStorePolymorphism) return false;
   5584 
   5585   LookupResult lookup(isolate());
   5586   int count;
   5587   Representation representation = Representation::None();
   5588   HObjectAccess access = HObjectAccess::ForMap();  // initial value unused.
   5589   for (count = 0; count < types->length(); ++count) {
   5590     Handle<Map> map = types->at(count);
   5591     // Pass false to ignore transitions.
   5592     if (!ComputeStoreField(map, name, &lookup, false)) break;
   5593     ASSERT(!map->is_observed());
   5594 
   5595     HObjectAccess new_access = HObjectAccess::ForField(map, &lookup, name);
   5596     Representation new_representation = new_access.representation();
   5597 
   5598     if (count == 0) {
   5599       // First time through the loop; set access and representation.
   5600       access = new_access;
   5601       representation = new_representation;
   5602     } else if (!representation.IsCompatibleForStore(new_representation)) {
   5603       // Representations did not match.
   5604       break;
   5605     } else if (access.offset() != new_access.offset()) {
   5606       // Offsets did not match.
   5607       break;
   5608     } else if (access.IsInobject() != new_access.IsInobject()) {
   5609       // In-objectness did not match.
   5610       break;
   5611     }
   5612   }
   5613 
   5614   if (count != types->length()) return false;
   5615 
   5616   // Everything matched; can use monomorphic store.
   5617   BuildCheckHeapObject(object);
   5618   HCheckMaps* checked_object = Add<HCheckMaps>(object, types);
   5619   HInstruction* store;
   5620   CHECK_ALIVE_OR_RETURN(
   5621       store = BuildStoreNamedField(
   5622           checked_object, name, value, types->at(count - 1), &lookup),
   5623       true);
   5624   if (!ast_context()->IsEffect()) Push(value);
   5625   AddInstruction(store);
   5626   Add<HSimulate>(assignment_id);
   5627   if (!ast_context()->IsEffect()) Drop(1);
   5628   ast_context()->ReturnValue(value);
   5629   return true;
   5630 }
   5631 
   5632 
   5633 void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField(
   5634     BailoutId assignment_id,
   5635     HValue* object,
   5636     HValue* value,
   5637     SmallMapList* types,
   5638     Handle<String> name) {
   5639   if (TryStorePolymorphicAsMonomorphic(
   5640           assignment_id, object, value, types, name)) {
   5641     return;
   5642   }
   5643 
   5644   // TODO(ager): We should recognize when the prototype chains for different
   5645   // maps are identical. In that case we can avoid repeatedly generating the
   5646   // same prototype map checks.
   5647   int count = 0;
   5648   HBasicBlock* join = NULL;
   5649   for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
   5650     Handle<Map> map = types->at(i);
   5651     LookupResult lookup(isolate());
   5652     if (ComputeStoreField(map, name, &lookup)) {
   5653       if (count == 0) {
   5654         BuildCheckHeapObject(object);
   5655         join = graph()->CreateBasicBlock();
   5656       }
   5657       ++count;
   5658       HBasicBlock* if_true = graph()->CreateBasicBlock();
   5659       HBasicBlock* if_false = graph()->CreateBasicBlock();
   5660       HCompareMap* compare = New<HCompareMap>(object, map,  if_true, if_false);
   5661       FinishCurrentBlock(compare);
   5662 
   5663       set_current_block(if_true);
   5664       HInstruction* instr;
   5665       CHECK_ALIVE(instr = BuildStoreNamedField(
   5666           compare, name, value, map, &lookup));
   5667       // Goto will add the HSimulate for the store.
   5668       AddInstruction(instr);
   5669       if (!ast_context()->IsEffect()) Push(value);
   5670       Goto(join);
   5671 
   5672       set_current_block(if_false);
   5673     }
   5674   }
   5675 
   5676   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
   5677   // know about and do not want to handle ones we've never seen.  Otherwise
   5678   // use a generic IC.
   5679   if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
   5680     FinishExitWithHardDeoptimization("Unknown map in polymorphic store", join);
   5681   } else {
   5682     HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
   5683     AddInstruction(instr);
   5684 
   5685     if (join != NULL) {
   5686       if (!ast_context()->IsEffect()) {
   5687         Push(value);
   5688       }
   5689       Goto(join);
   5690     } else {
   5691       // The HSimulate for the store should not see the stored value in
   5692       // effect contexts (it is not materialized at expr->id() in the
   5693       // unoptimized code).
   5694       if (instr->HasObservableSideEffects()) {
   5695         if (ast_context()->IsEffect()) {
   5696           Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
   5697         } else {
   5698           Push(value);
   5699           Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
   5700           Drop(1);
   5701         }
   5702       }
   5703       return ast_context()->ReturnValue(value);
   5704     }
   5705   }
   5706 
   5707   ASSERT(join != NULL);
   5708   join->SetJoinId(assignment_id);
   5709   set_current_block(join);
   5710   if (!ast_context()->IsEffect()) {
   5711     ast_context()->ReturnValue(Pop());
   5712   }
   5713 }
   5714 
   5715 
   5716 static bool ComputeReceiverTypes(Expression* expr,
   5717                                  HValue* receiver,
   5718                                  SmallMapList** t) {
   5719   SmallMapList* types = expr->GetReceiverTypes();
   5720   *t = types;
   5721   bool monomorphic = expr->IsMonomorphic();
   5722   if (types != NULL && receiver->HasMonomorphicJSObjectType()) {
   5723     Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
   5724     types->FilterForPossibleTransitions(root_map);
   5725     monomorphic = types->length() == 1;
   5726   }
   5727   return monomorphic && CanInlinePropertyAccess(*types->first());
   5728 }
   5729 
   5730 
   5731 void HOptimizedGraphBuilder::BuildStore(Expression* expr,
   5732                                         Property* prop,
   5733                                         BailoutId ast_id,
   5734                                         BailoutId return_id,
   5735                                         bool is_uninitialized) {
   5736   HValue* value = environment()->ExpressionStackAt(0);
   5737 
   5738   if (!prop->key()->IsPropertyName()) {
   5739     // Keyed store.
   5740     HValue* key = environment()->ExpressionStackAt(1);
   5741     HValue* object = environment()->ExpressionStackAt(2);
   5742     bool has_side_effects = false;
   5743     HandleKeyedElementAccess(object, key, value, expr,
   5744                              true,  // is_store
   5745                              &has_side_effects);
   5746     Drop(3);
   5747     Push(value);
   5748     Add<HSimulate>(return_id, REMOVABLE_SIMULATE);
   5749     return ast_context()->ReturnValue(Pop());
   5750   }
   5751 
   5752   // Named store.
   5753   HValue* object = environment()->ExpressionStackAt(1);
   5754 
   5755   if (is_uninitialized) {
   5756     Add<HDeoptimize>("Insufficient type feedback for property assignment",
   5757                      Deoptimizer::SOFT);
   5758   }
   5759 
   5760   Literal* key = prop->key()->AsLiteral();
   5761   Handle<String> name = Handle<String>::cast(key->value());
   5762   ASSERT(!name.is_null());
   5763 
   5764   HInstruction* instr = NULL;
   5765 
   5766   SmallMapList* types;
   5767   bool monomorphic = ComputeReceiverTypes(expr, object, &types);
   5768 
   5769   if (monomorphic) {
   5770     Handle<Map> map = types->first();
   5771     Handle<JSFunction> setter;
   5772     Handle<JSObject> holder;
   5773     if (LookupSetter(map, name, &setter, &holder)) {
   5774       AddCheckConstantFunction(holder, object, map);
   5775       if (FLAG_inline_accessors &&
   5776           TryInlineSetter(setter, ast_id, return_id, value)) {
   5777         return;
   5778       }
   5779       Drop(2);
   5780       Add<HPushArgument>(object);
   5781       Add<HPushArgument>(value);
   5782       instr = New<HCallConstantFunction>(setter, 2);
   5783     } else {
   5784       Drop(2);
   5785       CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
   5786                                                      name,
   5787                                                      value,
   5788                                                      map));
   5789     }
   5790   } else if (types != NULL && types->length() > 1) {
   5791     Drop(2);
   5792     return HandlePolymorphicStoreNamedField(ast_id, object, value, types, name);
   5793   } else {
   5794     Drop(2);
   5795     instr = BuildStoreNamedGeneric(object, name, value);
   5796   }
   5797 
   5798   if (!ast_context()->IsEffect()) Push(value);
   5799   AddInstruction(instr);
   5800   if (instr->HasObservableSideEffects()) {
   5801     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   5802   }
   5803   if (!ast_context()->IsEffect()) Drop(1);
   5804   return ast_context()->ReturnValue(value);
   5805 }
   5806 
   5807 
   5808 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
   5809   Property* prop = expr->target()->AsProperty();
   5810   ASSERT(prop != NULL);
   5811   CHECK_ALIVE(VisitForValue(prop->obj()));
   5812   if (!prop->key()->IsPropertyName()) {
   5813     CHECK_ALIVE(VisitForValue(prop->key()));
   5814   }
   5815   CHECK_ALIVE(VisitForValue(expr->value()));
   5816   BuildStore(expr, prop, expr->id(),
   5817              expr->AssignmentId(), expr->IsUninitialized());
   5818 }
   5819 
   5820 
   5821 // Because not every expression has a position and there is not common
   5822 // superclass of Assignment and CountOperation, we cannot just pass the
   5823 // owning expression instead of position and ast_id separately.
   5824 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
   5825     Variable* var,
   5826     HValue* value,
   5827     BailoutId ast_id) {
   5828   LookupResult lookup(isolate());
   5829   GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
   5830   if (type == kUseCell) {
   5831     Handle<GlobalObject> global(current_info()->global_object());
   5832     Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
   5833     if (cell->type()->IsConstant()) {
   5834       IfBuilder builder(this);
   5835       HValue* constant = Add<HConstant>(cell->type()->AsConstant());
   5836       if (cell->type()->AsConstant()->IsNumber()) {
   5837         builder.If<HCompareNumericAndBranch>(value, constant, Token::EQ);
   5838       } else {
   5839         builder.If<HCompareObjectEqAndBranch>(value, constant);
   5840       }
   5841       builder.Then();
   5842       builder.Else();
   5843       Add<HDeoptimize>("Constant global variable assignment",
   5844                        Deoptimizer::EAGER);
   5845       builder.End();
   5846     }
   5847     HInstruction* instr =
   5848         Add<HStoreGlobalCell>(value, cell, lookup.GetPropertyDetails());
   5849     if (instr->HasObservableSideEffects()) {
   5850       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   5851     }
   5852   } else {
   5853     HGlobalObject* global_object = Add<HGlobalObject>();
   5854     HStoreGlobalGeneric* instr =
   5855         Add<HStoreGlobalGeneric>(global_object, var->name(),
   5856                                  value, function_strict_mode_flag());
   5857     USE(instr);
   5858     ASSERT(instr->HasObservableSideEffects());
   5859     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   5860   }
   5861 }
   5862 
   5863 
   5864 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
   5865   Expression* target = expr->target();
   5866   VariableProxy* proxy = target->AsVariableProxy();
   5867   Property* prop = target->AsProperty();
   5868   ASSERT(proxy == NULL || prop == NULL);
   5869 
   5870   // We have a second position recorded in the FullCodeGenerator to have
   5871   // type feedback for the binary operation.
   5872   BinaryOperation* operation = expr->binary_operation();
   5873 
   5874   if (proxy != NULL) {
   5875     Variable* var = proxy->var();
   5876     if (var->mode() == LET)  {
   5877       return Bailout(kUnsupportedLetCompoundAssignment);
   5878     }
   5879 
   5880     CHECK_ALIVE(VisitForValue(operation));
   5881 
   5882     switch (var->location()) {
   5883       case Variable::UNALLOCATED:
   5884         HandleGlobalVariableAssignment(var,
   5885                                        Top(),
   5886                                        expr->AssignmentId());
   5887         break;
   5888 
   5889       case Variable::PARAMETER:
   5890       case Variable::LOCAL:
   5891         if (var->mode() == CONST)  {
   5892           return Bailout(kUnsupportedConstCompoundAssignment);
   5893         }
   5894         BindIfLive(var, Top());
   5895         break;
   5896 
   5897       case Variable::CONTEXT: {
   5898         // Bail out if we try to mutate a parameter value in a function
   5899         // using the arguments object.  We do not (yet) correctly handle the
   5900         // arguments property of the function.
   5901         if (current_info()->scope()->arguments() != NULL) {
   5902           // Parameters will be allocated to context slots.  We have no
   5903           // direct way to detect that the variable is a parameter so we do
   5904           // a linear search of the parameter variables.
   5905           int count = current_info()->scope()->num_parameters();
   5906           for (int i = 0; i < count; ++i) {
   5907             if (var == current_info()->scope()->parameter(i)) {
   5908               Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
   5909             }
   5910           }
   5911         }
   5912 
   5913         HStoreContextSlot::Mode mode;
   5914 
   5915         switch (var->mode()) {
   5916           case LET:
   5917             mode = HStoreContextSlot::kCheckDeoptimize;
   5918             break;
   5919           case CONST:
   5920             return ast_context()->ReturnValue(Pop());
   5921           case CONST_HARMONY:
   5922             // This case is checked statically so no need to
   5923             // perform checks here
   5924             UNREACHABLE();
   5925           default:
   5926             mode = HStoreContextSlot::kNoCheck;
   5927         }
   5928 
   5929         HValue* context = BuildContextChainWalk(var);
   5930         HStoreContextSlot* instr = Add<HStoreContextSlot>(
   5931             context, var->index(), mode, Top());
   5932         if (instr->HasObservableSideEffects()) {
   5933           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
   5934         }
   5935         break;
   5936       }
   5937 
   5938       case Variable::LOOKUP:
   5939         return Bailout(kCompoundAssignmentToLookupSlot);
   5940     }
   5941     return ast_context()->ReturnValue(Pop());
   5942 
   5943   } else if (prop != NULL) {
   5944     CHECK_ALIVE(VisitForValue(prop->obj()));
   5945     HValue* object = Top();
   5946     HValue* key = NULL;
   5947     if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
   5948         prop->IsStringAccess()) {
   5949       CHECK_ALIVE(VisitForValue(prop->key()));
   5950       key = Top();
   5951     }
   5952 
   5953     CHECK_ALIVE(PushLoad(prop, object, key));
   5954 
   5955     CHECK_ALIVE(VisitForValue(expr->value()));
   5956     HValue* right = Pop();
   5957     HValue* left = Pop();
   5958 
   5959     Push(BuildBinaryOperation(operation, left, right));
   5960     BuildStore(expr, prop, expr->id(),
   5961                expr->AssignmentId(), expr->IsUninitialized());
   5962   } else {
   5963     return Bailout(kInvalidLhsInCompoundAssignment);
   5964   }
   5965 }
   5966 
   5967 
   5968 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
   5969   ASSERT(!HasStackOverflow());
   5970   ASSERT(current_block() != NULL);
   5971   ASSERT(current_block()->HasPredecessor());
   5972   VariableProxy* proxy = expr->target()->AsVariableProxy();
   5973   Property* prop = expr->target()->AsProperty();
   5974   ASSERT(proxy == NULL || prop == NULL);
   5975 
   5976   if (expr->is_compound()) {
   5977     HandleCompoundAssignment(expr);
   5978     return;
   5979   }
   5980 
   5981   if (prop != NULL) {
   5982     HandlePropertyAssignment(expr);
   5983   } else if (proxy != NULL) {
   5984     Variable* var = proxy->var();
   5985 
   5986     if (var->mode() == CONST) {
   5987       if (expr->op() != Token::INIT_CONST) {
   5988         CHECK_ALIVE(VisitForValue(expr->value()));
   5989         return ast_context()->ReturnValue(Pop());
   5990       }
   5991 
   5992       if (var->IsStackAllocated()) {
   5993         // We insert a use of the old value to detect unsupported uses of const
   5994         // variables (e.g. initialization inside a loop).
   5995         HValue* old_value = environment()->Lookup(var);
   5996         Add<HUseConst>(old_value);
   5997       }
   5998     } else if (var->mode() == CONST_HARMONY) {
   5999       if (expr->op() != Token::INIT_CONST_HARMONY) {
   6000         return Bailout(kNonInitializerAssignmentToConst);
   6001       }
   6002     }
   6003 
   6004     if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
   6005 
   6006     // Handle the assignment.
   6007     switch (var->location()) {
   6008       case Variable::UNALLOCATED:
   6009         CHECK_ALIVE(VisitForValue(expr->value()));
   6010         HandleGlobalVariableAssignment(var,
   6011                                        Top(),
   6012                                        expr->AssignmentId());
   6013         return ast_context()->ReturnValue(Pop());
   6014 
   6015       case Variable::PARAMETER:
   6016       case Variable::LOCAL: {
   6017         // Perform an initialization check for let declared variables
   6018         // or parameters.
   6019         if (var->mode() == LET && expr->op() == Token::ASSIGN) {
   6020           HValue* env_value = environment()->Lookup(var);
   6021           if (env_value == graph()->GetConstantHole()) {
   6022             return Bailout(kAssignmentToLetVariableBeforeInitialization);
   6023           }
   6024         }
   6025         // We do not allow the arguments object to occur in a context where it
   6026         // may escape, but assignments to stack-allocated locals are
   6027         // permitted.
   6028         CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
   6029         HValue* value = Pop();
   6030         BindIfLive(var, value);
   6031         return ast_context()->ReturnValue(value);
   6032       }
   6033 
   6034       case Variable::CONTEXT: {
   6035         // Bail out if we try to mutate a parameter value in a function using
   6036         // the arguments object.  We do not (yet) correctly handle the
   6037         // arguments property of the function.
   6038         if (current_info()->scope()->arguments() != NULL) {
   6039           // Parameters will rewrite to context slots.  We have no direct way
   6040           // to detect that the variable is a parameter.
   6041           int count = current_info()->scope()->num_parameters();
   6042           for (int i = 0; i < count; ++i) {
   6043             if (var == current_info()->scope()->parameter(i)) {
   6044               return Bailout(kAssignmentToParameterInArgumentsObject);
   6045             }
   6046           }
   6047         }
   6048 
   6049         CHECK_ALIVE(VisitForValue(expr->value()));
   6050         HStoreContextSlot::Mode mode;
   6051         if (expr->op() == Token::ASSIGN) {
   6052           switch (var->mode()) {
   6053             case LET:
   6054               mode = HStoreContextSlot::kCheckDeoptimize;
   6055               break;
   6056             case CONST:
   6057               return ast_context()->ReturnValue(Pop());
   6058             case CONST_HARMONY:
   6059               // This case is checked statically so no need to
   6060               // perform checks here
   6061               UNREACHABLE();
   6062             default:
   6063               mode = HStoreContextSlot::kNoCheck;
   6064           }
   6065         } else if (expr->op() == Token::INIT_VAR ||
   6066                    expr->op() == Token::INIT_LET ||
   6067                    expr->op() == Token::INIT_CONST_HARMONY) {
   6068           mode = HStoreContextSlot::kNoCheck;
   6069         } else {
   6070           ASSERT(expr->op() == Token::INIT_CONST);
   6071 
   6072           mode = HStoreContextSlot::kCheckIgnoreAssignment;
   6073         }
   6074 
   6075         HValue* context = BuildContextChainWalk(var);
   6076         HStoreContextSlot* instr = Add<HStoreContextSlot>(
   6077             context, var->index(), mode, Top());
   6078         if (instr->HasObservableSideEffects()) {
   6079           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
   6080         }
   6081         return ast_context()->ReturnValue(Pop());
   6082       }
   6083 
   6084       case Variable::LOOKUP:
   6085         return Bailout(kAssignmentToLOOKUPVariable);
   6086     }
   6087   } else {
   6088     return Bailout(kInvalidLeftHandSideInAssignment);
   6089   }
   6090 }
   6091 
   6092 
   6093 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
   6094   // Generators are not optimized, so we should never get here.
   6095   UNREACHABLE();
   6096 }
   6097 
   6098 
   6099 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
   6100   ASSERT(!HasStackOverflow());
   6101   ASSERT(current_block() != NULL);
   6102   ASSERT(current_block()->HasPredecessor());
   6103   // We don't optimize functions with invalid left-hand sides in
   6104   // assignments, count operations, or for-in.  Consequently throw can
   6105   // currently only occur in an effect context.
   6106   ASSERT(ast_context()->IsEffect());
   6107   CHECK_ALIVE(VisitForValue(expr->exception()));
   6108 
   6109   HValue* value = environment()->Pop();
   6110   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   6111   Add<HThrow>(value);
   6112   Add<HSimulate>(expr->id());
   6113 
   6114   // If the throw definitely exits the function, we can finish with a dummy
   6115   // control flow at this point.  This is not the case if the throw is inside
   6116   // an inlined function which may be replaced.
   6117   if (call_context() == NULL) {
   6118     FinishExitCurrentBlock(New<HAbnormalExit>());
   6119   }
   6120 }
   6121 
   6122 
   6123 HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object,
   6124                                                     HObjectAccess access) {
   6125   if (FLAG_track_double_fields && access.representation().IsDouble()) {
   6126     // load the heap number
   6127     HLoadNamedField* heap_number = Add<HLoadNamedField>(
   6128         object, access.WithRepresentation(Representation::Tagged()));
   6129     heap_number->set_type(HType::HeapNumber());
   6130     // load the double value from it
   6131     return New<HLoadNamedField>(
   6132         heap_number, HObjectAccess::ForHeapNumberValue());
   6133   }
   6134   return New<HLoadNamedField>(object, access);
   6135 }
   6136 
   6137 
   6138 HInstruction* HGraphBuilder::AddLoadNamedField(HValue* object,
   6139                                                HObjectAccess access) {
   6140   return AddInstruction(BuildLoadNamedField(object, access));
   6141 }
   6142 
   6143 
   6144 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* object,
   6145                                                    HValue* checked_string) {
   6146   if (FLAG_fold_constants && object->IsConstant()) {
   6147     HConstant* constant = HConstant::cast(object);
   6148     if (constant->HasStringValue()) {
   6149       return New<HConstant>(constant->StringValue()->length());
   6150     }
   6151   }
   6152   return BuildLoadNamedField(checked_string, HObjectAccess::ForStringLength());
   6153 }
   6154 
   6155 
   6156 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric(
   6157     HValue* object,
   6158     Handle<String> name,
   6159     Property* expr) {
   6160   if (expr->IsUninitialized()) {
   6161     Add<HDeoptimize>("Insufficient type feedback for generic named load",
   6162                      Deoptimizer::SOFT);
   6163   }
   6164   return New<HLoadNamedGeneric>(object, name);
   6165 }
   6166 
   6167 
   6168 
   6169 HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
   6170                                                             HValue* key) {
   6171   return New<HLoadKeyedGeneric>(object, key);
   6172 }
   6173 
   6174 
   6175 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
   6176   // Loads from a "stock" fast holey double arrays can elide the hole check.
   6177   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
   6178   if (*map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS) &&
   6179       isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
   6180     Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
   6181     Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
   6182     BuildCheckPrototypeMaps(prototype, object_prototype);
   6183     load_mode = ALLOW_RETURN_HOLE;
   6184     graph()->MarkDependsOnEmptyArrayProtoElements();
   6185   }
   6186 
   6187   return load_mode;
   6188 }
   6189 
   6190 
   6191 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
   6192     HValue* object,
   6193     HValue* key,
   6194     HValue* val,
   6195     HValue* dependency,
   6196     Handle<Map> map,
   6197     bool is_store,
   6198     KeyedAccessStoreMode store_mode) {
   6199   HCheckMaps* checked_object = Add<HCheckMaps>(object, map, top_info(),
   6200                                                dependency);
   6201   if (dependency) {
   6202     checked_object->ClearGVNFlag(kDependsOnElementsKind);
   6203   }
   6204 
   6205   if (is_store && map->prototype()->IsJSObject()) {
   6206     // monomorphic stores need a prototype chain check because shape
   6207     // changes could allow callbacks on elements in the chain that
   6208     // aren't compatible with monomorphic keyed stores.
   6209     Handle<JSObject> prototype(JSObject::cast(map->prototype()));
   6210     Object* holder = map->prototype();
   6211     while (holder->GetPrototype(isolate())->IsJSObject()) {
   6212       holder = holder->GetPrototype(isolate());
   6213     }
   6214     ASSERT(holder->GetPrototype(isolate())->IsNull());
   6215 
   6216     BuildCheckPrototypeMaps(prototype,
   6217                             Handle<JSObject>(JSObject::cast(holder)));
   6218   }
   6219 
   6220   LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
   6221   return BuildUncheckedMonomorphicElementAccess(
   6222       checked_object, key, val,
   6223       map->instance_type() == JS_ARRAY_TYPE,
   6224       map->elements_kind(), is_store,
   6225       load_mode, store_mode);
   6226 }
   6227 
   6228 
   6229 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
   6230     HValue* object,
   6231     HValue* key,
   6232     HValue* val,
   6233     SmallMapList* maps) {
   6234   // For polymorphic loads of similar elements kinds (i.e. all tagged or all
   6235   // double), always use the "worst case" code without a transition.  This is
   6236   // much faster than transitioning the elements to the worst case, trading a
   6237   // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
   6238   bool has_double_maps = false;
   6239   bool has_smi_or_object_maps = false;
   6240   bool has_js_array_access = false;
   6241   bool has_non_js_array_access = false;
   6242   bool has_seen_holey_elements = false;
   6243   Handle<Map> most_general_consolidated_map;
   6244   for (int i = 0; i < maps->length(); ++i) {
   6245     Handle<Map> map = maps->at(i);
   6246     if (!map->IsJSObjectMap()) return NULL;
   6247     // Don't allow mixing of JSArrays with JSObjects.
   6248     if (map->instance_type() == JS_ARRAY_TYPE) {
   6249       if (has_non_js_array_access) return NULL;
   6250       has_js_array_access = true;
   6251     } else if (has_js_array_access) {
   6252       return NULL;
   6253     } else {
   6254       has_non_js_array_access = true;
   6255     }
   6256     // Don't allow mixed, incompatible elements kinds.
   6257     if (map->has_fast_double_elements()) {
   6258       if (has_smi_or_object_maps) return NULL;
   6259       has_double_maps = true;
   6260     } else if (map->has_fast_smi_or_object_elements()) {
   6261       if (has_double_maps) return NULL;
   6262       has_smi_or_object_maps = true;
   6263     } else {
   6264       return NULL;
   6265     }
   6266     // Remember if we've ever seen holey elements.
   6267     if (IsHoleyElementsKind(map->elements_kind())) {
   6268       has_seen_holey_elements = true;
   6269     }
   6270     // Remember the most general elements kind, the code for its load will
   6271     // properly handle all of the more specific cases.
   6272     if ((i == 0) || IsMoreGeneralElementsKindTransition(
   6273             most_general_consolidated_map->elements_kind(),
   6274             map->elements_kind())) {
   6275       most_general_consolidated_map = map;
   6276     }
   6277   }
   6278   if (!has_double_maps && !has_smi_or_object_maps) return NULL;
   6279 
   6280   HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
   6281   // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
   6282   // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
   6283   ElementsKind consolidated_elements_kind = has_seen_holey_elements
   6284       ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
   6285       : most_general_consolidated_map->elements_kind();
   6286   HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
   6287       checked_object, key, val,
   6288       most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
   6289       consolidated_elements_kind,
   6290       false, NEVER_RETURN_HOLE, STANDARD_STORE);
   6291   return instr;
   6292 }
   6293 
   6294 
   6295 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
   6296     HValue* object,
   6297     HValue* key,
   6298     HValue* val,
   6299     SmallMapList* maps,
   6300     bool is_store,
   6301     KeyedAccessStoreMode store_mode,
   6302     bool* has_side_effects) {
   6303   *has_side_effects = false;
   6304   BuildCheckHeapObject(object);
   6305 
   6306   if (!is_store) {
   6307     HInstruction* consolidated_load =
   6308         TryBuildConsolidatedElementLoad(object, key, val, maps);
   6309     if (consolidated_load != NULL) {
   6310       *has_side_effects |= consolidated_load->HasObservableSideEffects();
   6311       return consolidated_load;
   6312     }
   6313   }
   6314 
   6315   // Elements_kind transition support.
   6316   MapHandleList transition_target(maps->length());
   6317   // Collect possible transition targets.
   6318   MapHandleList possible_transitioned_maps(maps->length());
   6319   for (int i = 0; i < maps->length(); ++i) {
   6320     Handle<Map> map = maps->at(i);
   6321     ElementsKind elements_kind = map->elements_kind();
   6322     if (IsFastElementsKind(elements_kind) &&
   6323         elements_kind != GetInitialFastElementsKind()) {
   6324       possible_transitioned_maps.Add(map);
   6325     }
   6326   }
   6327   // Get transition target for each map (NULL == no transition).
   6328   for (int i = 0; i < maps->length(); ++i) {
   6329     Handle<Map> map = maps->at(i);
   6330     Handle<Map> transitioned_map =
   6331         map->FindTransitionedMap(&possible_transitioned_maps);
   6332     transition_target.Add(transitioned_map);
   6333   }
   6334 
   6335   MapHandleList untransitionable_maps(maps->length());
   6336   HTransitionElementsKind* transition = NULL;
   6337   for (int i = 0; i < maps->length(); ++i) {
   6338     Handle<Map> map = maps->at(i);
   6339     ASSERT(map->IsMap());
   6340     if (!transition_target.at(i).is_null()) {
   6341       ASSERT(Map::IsValidElementsTransition(
   6342           map->elements_kind(),
   6343           transition_target.at(i)->elements_kind()));
   6344       transition = Add<HTransitionElementsKind>(object, map,
   6345                                                 transition_target.at(i));
   6346     } else {
   6347       untransitionable_maps.Add(map);
   6348     }
   6349   }
   6350 
   6351   // If only one map is left after transitioning, handle this case
   6352   // monomorphically.
   6353   ASSERT(untransitionable_maps.length() >= 1);
   6354   if (untransitionable_maps.length() == 1) {
   6355     Handle<Map> untransitionable_map = untransitionable_maps[0];
   6356     HInstruction* instr = NULL;
   6357     if (untransitionable_map->has_slow_elements_kind() ||
   6358         !untransitionable_map->IsJSObjectMap()) {
   6359       instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
   6360                                       : BuildLoadKeyedGeneric(object, key));
   6361     } else {
   6362       instr = BuildMonomorphicElementAccess(
   6363           object, key, val, transition, untransitionable_map, is_store,
   6364           store_mode);
   6365     }
   6366     *has_side_effects |= instr->HasObservableSideEffects();
   6367     return is_store ? NULL : instr;
   6368   }
   6369 
   6370   HBasicBlock* join = graph()->CreateBasicBlock();
   6371 
   6372   for (int i = 0; i < untransitionable_maps.length(); ++i) {
   6373     Handle<Map> map = untransitionable_maps[i];
   6374     if (!map->IsJSObjectMap()) continue;
   6375     ElementsKind elements_kind = map->elements_kind();
   6376     HBasicBlock* this_map = graph()->CreateBasicBlock();
   6377     HBasicBlock* other_map = graph()->CreateBasicBlock();
   6378     HCompareMap* mapcompare =
   6379         New<HCompareMap>(object, map, this_map, other_map);
   6380     FinishCurrentBlock(mapcompare);
   6381 
   6382     set_current_block(this_map);
   6383     HInstruction* access = NULL;
   6384     if (IsDictionaryElementsKind(elements_kind)) {
   6385       access = is_store
   6386           ? AddInstruction(BuildStoreKeyedGeneric(object, key, val))
   6387           : AddInstruction(BuildLoadKeyedGeneric(object, key));
   6388     } else {
   6389       ASSERT(IsFastElementsKind(elements_kind) ||
   6390              IsExternalArrayElementsKind(elements_kind));
   6391       LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
   6392       // Happily, mapcompare is a checked object.
   6393       access = BuildUncheckedMonomorphicElementAccess(
   6394           mapcompare, key, val,
   6395           map->instance_type() == JS_ARRAY_TYPE,
   6396           elements_kind, is_store,
   6397           load_mode,
   6398           store_mode);
   6399     }
   6400     *has_side_effects |= access->HasObservableSideEffects();
   6401     // The caller will use has_side_effects and add a correct Simulate.
   6402     access->SetFlag(HValue::kHasNoObservableSideEffects);
   6403     if (!is_store) {
   6404       Push(access);
   6405     }
   6406     NoObservableSideEffectsScope scope(this);
   6407     GotoNoSimulate(join);
   6408     set_current_block(other_map);
   6409   }
   6410 
   6411   // Deopt if none of the cases matched.
   6412   NoObservableSideEffectsScope scope(this);
   6413   FinishExitWithHardDeoptimization("Unknown map in polymorphic element access",
   6414                                    join);
   6415   set_current_block(join);
   6416   return is_store ? NULL : Pop();
   6417 }
   6418 
   6419 
   6420 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
   6421     HValue* obj,
   6422     HValue* key,
   6423     HValue* val,
   6424     Expression* expr,
   6425     bool is_store,
   6426     bool* has_side_effects) {
   6427   ASSERT(!expr->IsPropertyName());
   6428   HInstruction* instr = NULL;
   6429 
   6430   SmallMapList* types;
   6431   bool monomorphic = ComputeReceiverTypes(expr, obj, &types);
   6432 
   6433   bool force_generic = false;
   6434   if (is_store && (monomorphic || (types != NULL && !types->is_empty()))) {
   6435     // Stores can't be mono/polymorphic if their prototype chain has dictionary
   6436     // elements. However a receiver map that has dictionary elements itself
   6437     // should be left to normal mono/poly behavior (the other maps may benefit
   6438     // from highly optimized stores).
   6439     for (int i = 0; i < types->length(); i++) {
   6440       Handle<Map> current_map = types->at(i);
   6441       if (current_map->DictionaryElementsInPrototypeChainOnly()) {
   6442         force_generic = true;
   6443         monomorphic = false;
   6444         break;
   6445       }
   6446     }
   6447   }
   6448 
   6449   if (monomorphic) {
   6450     Handle<Map> map = types->first();
   6451     if (map->has_slow_elements_kind()) {
   6452       instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
   6453                        : BuildLoadKeyedGeneric(obj, key);
   6454       AddInstruction(instr);
   6455     } else {
   6456       BuildCheckHeapObject(obj);
   6457       instr = BuildMonomorphicElementAccess(
   6458           obj, key, val, NULL, map, is_store, expr->GetStoreMode());
   6459     }
   6460   } else if (!force_generic && (types != NULL && !types->is_empty())) {
   6461     return HandlePolymorphicElementAccess(
   6462         obj, key, val, types, is_store,
   6463         expr->GetStoreMode(), has_side_effects);
   6464   } else {
   6465     if (is_store) {
   6466       if (expr->IsAssignment() &&
   6467           expr->AsAssignment()->HasNoTypeInformation()) {
   6468         Add<HDeoptimize>("Insufficient type feedback for keyed store",
   6469                          Deoptimizer::SOFT);
   6470       }
   6471       instr = BuildStoreKeyedGeneric(obj, key, val);
   6472     } else {
   6473       if (expr->AsProperty()->HasNoTypeInformation()) {
   6474         Add<HDeoptimize>("Insufficient type feedback for keyed load",
   6475                          Deoptimizer::SOFT);
   6476       }
   6477       instr = BuildLoadKeyedGeneric(obj, key);
   6478     }
   6479     AddInstruction(instr);
   6480   }
   6481   *has_side_effects = instr->HasObservableSideEffects();
   6482   return instr;
   6483 }
   6484 
   6485 
   6486 HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric(
   6487     HValue* object,
   6488     HValue* key,
   6489     HValue* value) {
   6490   return New<HStoreKeyedGeneric>(
   6491                          object,
   6492                          key,
   6493                          value,
   6494                          function_strict_mode_flag());
   6495 }
   6496 
   6497 
   6498 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
   6499   // Outermost function already has arguments on the stack.
   6500   if (function_state()->outer() == NULL) return;
   6501 
   6502   if (function_state()->arguments_pushed()) return;
   6503 
   6504   // Push arguments when entering inlined function.
   6505   HEnterInlined* entry = function_state()->entry();
   6506   entry->set_arguments_pushed();
   6507 
   6508   HArgumentsObject* arguments = entry->arguments_object();
   6509   const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
   6510 
   6511   HInstruction* insert_after = entry;
   6512   for (int i = 0; i < arguments_values->length(); i++) {
   6513     HValue* argument = arguments_values->at(i);
   6514     HInstruction* push_argument = New<HPushArgument>(argument);
   6515     push_argument->InsertAfter(insert_after);
   6516     insert_after = push_argument;
   6517   }
   6518 
   6519   HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
   6520   arguments_elements->ClearFlag(HValue::kUseGVN);
   6521   arguments_elements->InsertAfter(insert_after);
   6522   function_state()->set_arguments_elements(arguments_elements);
   6523 }
   6524 
   6525 
   6526 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
   6527   VariableProxy* proxy = expr->obj()->AsVariableProxy();
   6528   if (proxy == NULL) return false;
   6529   if (!proxy->var()->IsStackAllocated()) return false;
   6530   if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
   6531     return false;
   6532   }
   6533 
   6534   HInstruction* result = NULL;
   6535   if (expr->key()->IsPropertyName()) {
   6536     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
   6537     if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
   6538 
   6539     if (function_state()->outer() == NULL) {
   6540       HInstruction* elements = Add<HArgumentsElements>(false);
   6541       result = New<HArgumentsLength>(elements);
   6542     } else {
   6543       // Number of arguments without receiver.
   6544       int argument_count = environment()->
   6545           arguments_environment()->parameter_count() - 1;
   6546       result = New<HConstant>(argument_count);
   6547     }
   6548   } else {
   6549     Push(graph()->GetArgumentsObject());
   6550     CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
   6551     HValue* key = Pop();
   6552     Drop(1);  // Arguments object.
   6553     if (function_state()->outer() == NULL) {
   6554       HInstruction* elements = Add<HArgumentsElements>(false);
   6555       HInstruction* length = Add<HArgumentsLength>(elements);
   6556       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
   6557       result = New<HAccessArgumentsAt>(elements, length, checked_key);
   6558     } else {
   6559       EnsureArgumentsArePushedForAccess();
   6560 
   6561       // Number of arguments without receiver.
   6562       HInstruction* elements = function_state()->arguments_elements();
   6563       int argument_count = environment()->
   6564           arguments_environment()->parameter_count() - 1;
   6565       HInstruction* length = Add<HConstant>(argument_count);
   6566       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
   6567       result = New<HAccessArgumentsAt>(elements, length, checked_key);
   6568     }
   6569   }
   6570   ast_context()->ReturnInstruction(result, expr->id());
   6571   return true;
   6572 }
   6573 
   6574 
   6575 void HOptimizedGraphBuilder::PushLoad(Property* expr,
   6576                                       HValue* object,
   6577                                       HValue* key) {
   6578   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
   6579   Push(object);
   6580   if (key != NULL) Push(key);
   6581   BuildLoad(expr, expr->LoadId());
   6582 }
   6583 
   6584 
   6585 static bool AreStringTypes(SmallMapList* types) {
   6586   for (int i = 0; i < types->length(); i++) {
   6587     if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
   6588   }
   6589   return true;
   6590 }
   6591 
   6592 
   6593 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
   6594                                        BailoutId ast_id) {
   6595   HInstruction* instr = NULL;
   6596   if (expr->IsStringAccess()) {
   6597     HValue* index = Pop();
   6598     HValue* string = Pop();
   6599     HInstruction* char_code = BuildStringCharCodeAt(string, index);
   6600     AddInstruction(char_code);
   6601     instr = NewUncasted<HStringCharFromCode>(char_code);
   6602 
   6603   } else if (expr->IsFunctionPrototype()) {
   6604     HValue* function = Pop();
   6605     BuildCheckHeapObject(function);
   6606     instr = New<HLoadFunctionPrototype>(function);
   6607 
   6608   } else if (expr->key()->IsPropertyName()) {
   6609     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
   6610     HValue* object = Pop();
   6611 
   6612     SmallMapList* types;
   6613     ComputeReceiverTypes(expr, object, &types);
   6614     ASSERT(types != NULL);
   6615 
   6616     if (types->length() > 0) {
   6617       PropertyAccessInfo info(isolate(), types->first(), name);
   6618       if (!info.CanLoadAsMonomorphic(types)) {
   6619         return HandlePolymorphicLoadNamedField(
   6620             ast_id, expr->LoadId(), object, types, name);
   6621       }
   6622 
   6623       BuildCheckHeapObject(object);
   6624       HInstruction* checked_object;
   6625       if (AreStringTypes(types)) {
   6626         checked_object =
   6627             Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
   6628       } else {
   6629         checked_object = Add<HCheckMaps>(object, types);
   6630       }
   6631       instr = BuildLoadMonomorphic(
   6632           &info, object, checked_object, ast_id, expr->LoadId());
   6633       if (instr == NULL) return;
   6634       if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
   6635     } else {
   6636       instr = BuildLoadNamedGeneric(object, name, expr);
   6637     }
   6638 
   6639   } else {
   6640     HValue* key = Pop();
   6641     HValue* obj = Pop();
   6642 
   6643     bool has_side_effects = false;
   6644     HValue* load = HandleKeyedElementAccess(
   6645         obj, key, NULL, expr,
   6646         false,  // is_store
   6647         &has_side_effects);
   6648     if (has_side_effects) {
   6649       if (ast_context()->IsEffect()) {
   6650         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   6651       } else {
   6652         Push(load);
   6653         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
   6654         Drop(1);
   6655       }
   6656     }
   6657     return ast_context()->ReturnValue(load);
   6658   }
   6659   return ast_context()->ReturnInstruction(instr, ast_id);
   6660 }
   6661 
   6662 
   6663 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
   6664   ASSERT(!HasStackOverflow());
   6665   ASSERT(current_block() != NULL);
   6666   ASSERT(current_block()->HasPredecessor());
   6667 
   6668   if (TryArgumentsAccess(expr)) return;
   6669 
   6670   CHECK_ALIVE(VisitForValue(expr->obj()));
   6671   if ((!expr->IsFunctionPrototype() && !expr->key()->IsPropertyName()) ||
   6672       expr->IsStringAccess()) {
   6673     CHECK_ALIVE(VisitForValue(expr->key()));
   6674   }
   6675 
   6676   BuildLoad(expr, expr->id());
   6677 }
   6678 
   6679 
   6680 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant,
   6681                                                    CompilationInfo* info) {
   6682   HConstant* constant_value = New<HConstant>(constant);
   6683 
   6684   if (constant->map()->CanOmitMapChecks()) {
   6685     constant->map()->AddDependentCompilationInfo(
   6686         DependentCode::kPrototypeCheckGroup, info);
   6687     return constant_value;
   6688   }
   6689 
   6690   AddInstruction(constant_value);
   6691   HCheckMaps* check =
   6692       Add<HCheckMaps>(constant_value, handle(constant->map()), info);
   6693   check->ClearGVNFlag(kDependsOnElementsKind);
   6694   return check;
   6695 }
   6696 
   6697 
   6698 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
   6699                                                      Handle<JSObject> holder) {
   6700   while (!prototype.is_identical_to(holder)) {
   6701     BuildConstantMapCheck(prototype, top_info());
   6702     prototype = handle(JSObject::cast(prototype->GetPrototype()));
   6703   }
   6704 
   6705   HInstruction* checked_object = BuildConstantMapCheck(prototype, top_info());
   6706   if (!checked_object->IsLinked()) AddInstruction(checked_object);
   6707   return checked_object;
   6708 }
   6709 
   6710 
   6711 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
   6712                                                    Handle<Map> receiver_map) {
   6713   if (!holder.is_null()) {
   6714     Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
   6715     BuildCheckPrototypeMaps(prototype, holder);
   6716   }
   6717 }
   6718 
   6719 
   6720 void HOptimizedGraphBuilder::AddCheckConstantFunction(
   6721     Handle<JSObject> holder,
   6722     HValue* receiver,
   6723     Handle<Map> receiver_map) {
   6724   // Constant functions have the nice property that the map will change if they
   6725   // are overwritten.  Therefore it is enough to check the map of the holder and
   6726   // its prototypes.
   6727   AddCheckMap(receiver, receiver_map);
   6728   AddCheckPrototypeMaps(holder, receiver_map);
   6729 }
   6730 
   6731 
   6732 class FunctionSorter {
   6733  public:
   6734   FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
   6735   FunctionSorter(int index, int ticks, int ast_length, int src_length)
   6736       : index_(index),
   6737         ticks_(ticks),
   6738         ast_length_(ast_length),
   6739         src_length_(src_length) { }
   6740 
   6741   int index() const { return index_; }
   6742   int ticks() const { return ticks_; }
   6743   int ast_length() const { return ast_length_; }
   6744   int src_length() const { return src_length_; }
   6745 
   6746  private:
   6747   int index_;
   6748   int ticks_;
   6749   int ast_length_;
   6750   int src_length_;
   6751 };
   6752 
   6753 
   6754 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
   6755   int diff = lhs.ticks() - rhs.ticks();
   6756   if (diff != 0) return diff > 0;
   6757   diff = lhs.ast_length() - rhs.ast_length();
   6758   if (diff != 0) return diff < 0;
   6759   return lhs.src_length() < rhs.src_length();
   6760 }
   6761 
   6762 
   6763 bool HOptimizedGraphBuilder::TryCallPolymorphicAsMonomorphic(
   6764     Call* expr,
   6765     HValue* receiver,
   6766     SmallMapList* types,
   6767     Handle<String> name) {
   6768   if (types->length() > kMaxCallPolymorphism) return false;
   6769 
   6770   PropertyAccessInfo info(isolate(), types->at(0), name);
   6771   if (!info.CanLoadAsMonomorphic(types)) return false;
   6772   if (!expr->ComputeTarget(info.map(), name)) return false;
   6773 
   6774   BuildCheckHeapObject(receiver);
   6775   Add<HCheckMaps>(receiver, types);
   6776   AddCheckPrototypeMaps(expr->holder(), info.map());
   6777   if (FLAG_trace_inlining) {
   6778     Handle<JSFunction> caller = current_info()->closure();
   6779     SmartArrayPointer<char> caller_name =
   6780         caller->shared()->DebugName()->ToCString();
   6781     PrintF("Trying to inline the polymorphic call to %s from %s\n",
   6782            *name->ToCString(), *caller_name);
   6783   }
   6784 
   6785   if (!TryInlineCall(expr)) {
   6786     int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
   6787     HCallConstantFunction* call =
   6788       New<HCallConstantFunction>(expr->target(), argument_count);
   6789     PreProcessCall(call);
   6790     AddInstruction(call);
   6791     if (!ast_context()->IsEffect()) Push(call);
   6792     Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
   6793     if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
   6794   }
   6795 
   6796   return true;
   6797 }
   6798 
   6799 
   6800 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
   6801     Call* expr,
   6802     HValue* receiver,
   6803     SmallMapList* types,
   6804     Handle<String> name) {
   6805   if (TryCallPolymorphicAsMonomorphic(expr, receiver, types, name)) return;
   6806 
   6807   int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
   6808   HBasicBlock* join = NULL;
   6809   FunctionSorter order[kMaxCallPolymorphism];
   6810   int ordered_functions = 0;
   6811 
   6812   Handle<Map> initial_string_map(
   6813       isolate()->native_context()->string_function()->initial_map());
   6814   Handle<Map> string_marker_map(
   6815       JSObject::cast(initial_string_map->prototype())->map());
   6816   Handle<Map> initial_number_map(
   6817       isolate()->native_context()->number_function()->initial_map());
   6818   Handle<Map> number_marker_map(
   6819       JSObject::cast(initial_number_map->prototype())->map());
   6820   Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
   6821 
   6822   bool handle_smi = false;
   6823 
   6824   for (int i = 0;
   6825        i < types->length() && ordered_functions < kMaxCallPolymorphism;
   6826        ++i) {
   6827     Handle<Map> map = types->at(i);
   6828     if (expr->ComputeTarget(map, name)) {
   6829       if (map.is_identical_to(number_marker_map)) handle_smi = true;
   6830       order[ordered_functions++] =
   6831           FunctionSorter(i,
   6832                          expr->target()->shared()->profiler_ticks(),
   6833                          InliningAstSize(expr->target()),
   6834                          expr->target()->shared()->SourceSize());
   6835     }
   6836   }
   6837 
   6838   std::sort(order, order + ordered_functions);
   6839 
   6840   HBasicBlock* number_block = NULL;
   6841 
   6842   for (int fn = 0; fn < ordered_functions; ++fn) {
   6843     int i = order[fn].index();
   6844     Handle<Map> map = types->at(i);
   6845     if (fn == 0) {
   6846       // Only needed once.
   6847       join = graph()->CreateBasicBlock();
   6848       if (handle_smi) {
   6849         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
   6850         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
   6851         number_block = graph()->CreateBasicBlock();
   6852         FinishCurrentBlock(New<HIsSmiAndBranch>(
   6853                 receiver, empty_smi_block, not_smi_block));
   6854         Goto(empty_smi_block, number_block);
   6855         set_current_block(not_smi_block);
   6856       } else {
   6857         BuildCheckHeapObject(receiver);
   6858       }
   6859     }
   6860     HBasicBlock* if_true = graph()->CreateBasicBlock();
   6861     HBasicBlock* if_false = graph()->CreateBasicBlock();
   6862     HUnaryControlInstruction* compare;
   6863 
   6864     if (handle_smi && map.is_identical_to(number_marker_map)) {
   6865       compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
   6866       map = initial_number_map;
   6867       expr->set_number_check(
   6868           Handle<JSObject>(JSObject::cast(map->prototype())));
   6869     } else if (map.is_identical_to(string_marker_map)) {
   6870       compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
   6871       map = initial_string_map;
   6872       expr->set_string_check(
   6873           Handle<JSObject>(JSObject::cast(map->prototype())));
   6874     } else {
   6875       compare = New<HCompareMap>(receiver, map, if_true, if_false);
   6876       expr->set_map_check();
   6877     }
   6878 
   6879     FinishCurrentBlock(compare);
   6880 
   6881     if (expr->check_type() == NUMBER_CHECK) {
   6882       Goto(if_true, number_block);
   6883       if_true = number_block;
   6884       number_block->SetJoinId(expr->id());
   6885     }
   6886     set_current_block(if_true);
   6887 
   6888     expr->ComputeTarget(map, name);
   6889     AddCheckPrototypeMaps(expr->holder(), map);
   6890     if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
   6891       Handle<JSFunction> caller = current_info()->closure();
   6892       SmartArrayPointer<char> caller_name =
   6893           caller->shared()->DebugName()->ToCString();
   6894       PrintF("Trying to inline the polymorphic call to %s from %s\n",
   6895              *name->ToCString(),
   6896              *caller_name);
   6897     }
   6898     if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
   6899       // Trying to inline will signal that we should bailout from the
   6900       // entire compilation by setting stack overflow on the visitor.
   6901       if (HasStackOverflow()) return;
   6902     } else {
   6903       HCallConstantFunction* call =
   6904           New<HCallConstantFunction>(expr->target(), argument_count);
   6905       PreProcessCall(call);
   6906       AddInstruction(call);
   6907       if (!ast_context()->IsEffect()) Push(call);
   6908     }
   6909 
   6910     if (current_block() != NULL) Goto(join);
   6911     set_current_block(if_false);
   6912   }
   6913 
   6914   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
   6915   // know about and do not want to handle ones we've never seen.  Otherwise
   6916   // use a generic IC.
   6917   if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
   6918     // Because the deopt may be the only path in the polymorphic call, make sure
   6919     // that the environment stack matches the depth on deopt that it otherwise
   6920     // would have had after a successful call.
   6921     Drop(argument_count);
   6922     if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
   6923     FinishExitWithHardDeoptimization("Unknown map in polymorphic call", join);
   6924   } else {
   6925     HCallNamed* call = New<HCallNamed>(name, argument_count);
   6926     PreProcessCall(call);
   6927 
   6928     if (join != NULL) {
   6929       AddInstruction(call);
   6930       if (!ast_context()->IsEffect()) Push(call);
   6931       Goto(join);
   6932     } else {
   6933       return ast_context()->ReturnInstruction(call, expr->id());
   6934     }
   6935   }
   6936 
   6937   // We assume that control flow is always live after an expression.  So
   6938   // even without predecessors to the join block, we set it as the exit
   6939   // block and continue by adding instructions there.
   6940   ASSERT(join != NULL);
   6941   if (join->HasPredecessor()) {
   6942     set_current_block(join);
   6943     join->SetJoinId(expr->id());
   6944     if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
   6945   } else {
   6946     set_current_block(NULL);
   6947   }
   6948 }
   6949 
   6950 
   6951 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
   6952                                          Handle<JSFunction> caller,
   6953                                          const char* reason) {
   6954   if (FLAG_trace_inlining) {
   6955     SmartArrayPointer<char> target_name =
   6956         target->shared()->DebugName()->ToCString();
   6957     SmartArrayPointer<char> caller_name =
   6958         caller->shared()->DebugName()->ToCString();
   6959     if (reason == NULL) {
   6960       PrintF("Inlined %s called from %s.\n", *target_name, *caller_name);
   6961     } else {
   6962       PrintF("Did not inline %s called from %s (%s).\n",
   6963              *target_name, *caller_name, reason);
   6964     }
   6965   }
   6966 }
   6967 
   6968 
   6969 static const int kNotInlinable = 1000000000;
   6970 
   6971 
   6972 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
   6973   if (!FLAG_use_inlining) return kNotInlinable;
   6974 
   6975   // Precondition: call is monomorphic and we have found a target with the
   6976   // appropriate arity.
   6977   Handle<JSFunction> caller = current_info()->closure();
   6978   Handle<SharedFunctionInfo> target_shared(target->shared());
   6979 
   6980   // Always inline builtins marked for inlining.
   6981   if (target->IsBuiltin()) {
   6982     return target_shared->inline_builtin() ? 0 : kNotInlinable;
   6983   }
   6984 
   6985   // Do a quick check on source code length to avoid parsing large
   6986   // inlining candidates.
   6987   if (target_shared->SourceSize() >
   6988       Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
   6989     TraceInline(target, caller, "target text too big");
   6990     return kNotInlinable;
   6991   }
   6992 
   6993   // Target must be inlineable.
   6994   if (!target_shared->IsInlineable()) {
   6995     TraceInline(target, caller, "target not inlineable");
   6996     return kNotInlinable;
   6997   }
   6998   if (target_shared->dont_inline() || target_shared->dont_optimize()) {
   6999     TraceInline(target, caller, "target contains unsupported syntax [early]");
   7000     return kNotInlinable;
   7001   }
   7002 
   7003   int nodes_added = target_shared->ast_node_count();
   7004   return nodes_added;
   7005 }
   7006 
   7007 
   7008 bool HOptimizedGraphBuilder::TryInline(CallKind call_kind,
   7009                                        Handle<JSFunction> target,
   7010                                        int arguments_count,
   7011                                        HValue* implicit_return_value,
   7012                                        BailoutId ast_id,
   7013                                        BailoutId return_id,
   7014                                        InliningKind inlining_kind) {
   7015   int nodes_added = InliningAstSize(target);
   7016   if (nodes_added == kNotInlinable) return false;
   7017 
   7018   Handle<JSFunction> caller = current_info()->closure();
   7019 
   7020   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
   7021     TraceInline(target, caller, "target AST is too large [early]");
   7022     return false;
   7023   }
   7024 
   7025   // Don't inline deeper than the maximum number of inlining levels.
   7026   HEnvironment* env = environment();
   7027   int current_level = 1;
   7028   while (env->outer() != NULL) {
   7029     if (current_level == FLAG_max_inlining_levels) {
   7030       TraceInline(target, caller, "inline depth limit reached");
   7031       return false;
   7032     }
   7033     if (env->outer()->frame_type() == JS_FUNCTION) {
   7034       current_level++;
   7035     }
   7036     env = env->outer();
   7037   }
   7038 
   7039   // Don't inline recursive functions.
   7040   for (FunctionState* state = function_state();
   7041        state != NULL;
   7042        state = state->outer()) {
   7043     if (*state->compilation_info()->closure() == *target) {
   7044       TraceInline(target, caller, "target is recursive");
   7045       return false;
   7046     }
   7047   }
   7048 
   7049   // We don't want to add more than a certain number of nodes from inlining.
   7050   if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
   7051                            kUnlimitedMaxInlinedNodesCumulative)) {
   7052     TraceInline(target, caller, "cumulative AST node limit reached");
   7053     return false;
   7054   }
   7055 
   7056   // Parse and allocate variables.
   7057   CompilationInfo target_info(target, zone());
   7058   Handle<SharedFunctionInfo> target_shared(target->shared());
   7059   if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
   7060     if (target_info.isolate()->has_pending_exception()) {
   7061       // Parse or scope error, never optimize this function.
   7062       SetStackOverflow();
   7063       target_shared->DisableOptimization(kParseScopeError);
   7064     }
   7065     TraceInline(target, caller, "parse failure");
   7066     return false;
   7067   }
   7068 
   7069   if (target_info.scope()->num_heap_slots() > 0) {
   7070     TraceInline(target, caller, "target has context-allocated variables");
   7071     return false;
   7072   }
   7073   FunctionLiteral* function = target_info.function();
   7074 
   7075   // The following conditions must be checked again after re-parsing, because
   7076   // earlier the information might not have been complete due to lazy parsing.
   7077   nodes_added = function->ast_node_count();
   7078   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
   7079     TraceInline(target, caller, "target AST is too large [late]");
   7080     return false;
   7081   }
   7082   AstProperties::Flags* flags(function->flags());
   7083   if (flags->Contains(kDontInline) || function->dont_optimize()) {
   7084     TraceInline(target, caller, "target contains unsupported syntax [late]");
   7085     return false;
   7086   }
   7087 
   7088   // If the function uses the arguments object check that inlining of functions
   7089   // with arguments object is enabled and the arguments-variable is
   7090   // stack allocated.
   7091   if (function->scope()->arguments() != NULL) {
   7092     if (!FLAG_inline_arguments) {
   7093       TraceInline(target, caller, "target uses arguments object");
   7094       return false;
   7095     }
   7096 
   7097     if (!function->scope()->arguments()->IsStackAllocated()) {
   7098       TraceInline(target,
   7099                   caller,
   7100                   "target uses non-stackallocated arguments object");
   7101       return false;
   7102     }
   7103   }
   7104 
   7105   // All declarations must be inlineable.
   7106   ZoneList<Declaration*>* decls = target_info.scope()->declarations();
   7107   int decl_count = decls->length();
   7108   for (int i = 0; i < decl_count; ++i) {
   7109     if (!decls->at(i)->IsInlineable()) {
   7110       TraceInline(target, caller, "target has non-trivial declaration");
   7111       return false;
   7112     }
   7113   }
   7114 
   7115   // Generate the deoptimization data for the unoptimized version of
   7116   // the target function if we don't already have it.
   7117   if (!target_shared->has_deoptimization_support()) {
   7118     // Note that we compile here using the same AST that we will use for
   7119     // generating the optimized inline code.
   7120     target_info.EnableDeoptimizationSupport();
   7121     if (!FullCodeGenerator::MakeCode(&target_info)) {
   7122       TraceInline(target, caller, "could not generate deoptimization info");
   7123       return false;
   7124     }
   7125     if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
   7126       // The scope info might not have been set if a lazily compiled
   7127       // function is inlined before being called for the first time.
   7128       Handle<ScopeInfo> target_scope_info =
   7129           ScopeInfo::Create(target_info.scope(), zone());
   7130       target_shared->set_scope_info(*target_scope_info);
   7131     }
   7132     target_shared->EnableDeoptimizationSupport(*target_info.code());
   7133     Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
   7134                                         &target_info,
   7135                                         target_shared);
   7136   }
   7137 
   7138   // ----------------------------------------------------------------
   7139   // After this point, we've made a decision to inline this function (so
   7140   // TryInline should always return true).
   7141 
   7142   // Type-check the inlined function.
   7143   ASSERT(target_shared->has_deoptimization_support());
   7144   AstTyper::Run(&target_info);
   7145 
   7146   // Save the pending call context. Set up new one for the inlined function.
   7147   // The function state is new-allocated because we need to delete it
   7148   // in two different places.
   7149   FunctionState* target_state = new FunctionState(
   7150       this, &target_info, inlining_kind);
   7151 
   7152   HConstant* undefined = graph()->GetConstantUndefined();
   7153   bool undefined_receiver = HEnvironment::UseUndefinedReceiver(
   7154       target, function, call_kind, inlining_kind);
   7155   HEnvironment* inner_env =
   7156       environment()->CopyForInlining(target,
   7157                                      arguments_count,
   7158                                      function,
   7159                                      undefined,
   7160                                      function_state()->inlining_kind(),
   7161                                      undefined_receiver);
   7162 
   7163   HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
   7164   inner_env->BindContext(context);
   7165 
   7166   Add<HSimulate>(return_id);
   7167   current_block()->UpdateEnvironment(inner_env);
   7168   HArgumentsObject* arguments_object = NULL;
   7169 
   7170   // If the function uses arguments object create and bind one, also copy
   7171   // current arguments values to use them for materialization.
   7172   if (function->scope()->arguments() != NULL) {
   7173     ASSERT(function->scope()->arguments()->IsStackAllocated());
   7174     HEnvironment* arguments_env = inner_env->arguments_environment();
   7175     int arguments_count = arguments_env->parameter_count();
   7176     arguments_object = Add<HArgumentsObject>(arguments_count);
   7177     inner_env->Bind(function->scope()->arguments(), arguments_object);
   7178     for (int i = 0; i < arguments_count; i++) {
   7179       arguments_object->AddArgument(arguments_env->Lookup(i), zone());
   7180     }
   7181   }
   7182 
   7183   HEnterInlined* enter_inlined =
   7184       Add<HEnterInlined>(target, arguments_count, function,
   7185                          function_state()->inlining_kind(),
   7186                          function->scope()->arguments(),
   7187                          arguments_object, undefined_receiver);
   7188   function_state()->set_entry(enter_inlined);
   7189 
   7190   VisitDeclarations(target_info.scope()->declarations());
   7191   VisitStatements(function->body());
   7192   if (HasStackOverflow()) {
   7193     // Bail out if the inline function did, as we cannot residualize a call
   7194     // instead.
   7195     TraceInline(target, caller, "inline graph construction failed");
   7196     target_shared->DisableOptimization(kInliningBailedOut);
   7197     inline_bailout_ = true;
   7198     delete target_state;
   7199     return true;
   7200   }
   7201 
   7202   // Update inlined nodes count.
   7203   inlined_count_ += nodes_added;
   7204 
   7205   Handle<Code> unoptimized_code(target_shared->code());
   7206   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
   7207   Handle<TypeFeedbackInfo> type_info(
   7208       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
   7209   graph()->update_type_change_checksum(type_info->own_type_change_checksum());
   7210 
   7211   TraceInline(target, caller, NULL);
   7212 
   7213   if (current_block() != NULL) {
   7214     FunctionState* state = function_state();
   7215     if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
   7216       // Falling off the end of an inlined construct call. In a test context the
   7217       // return value will always evaluate to true, in a value context the
   7218       // return value is the newly allocated receiver.
   7219       if (call_context()->IsTest()) {
   7220         Goto(inlined_test_context()->if_true(), state);
   7221       } else if (call_context()->IsEffect()) {
   7222         Goto(function_return(), state);
   7223       } else {
   7224         ASSERT(call_context()->IsValue());
   7225         AddLeaveInlined(implicit_return_value, state);
   7226       }
   7227     } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
   7228       // Falling off the end of an inlined setter call. The returned value is
   7229       // never used, the value of an assignment is always the value of the RHS
   7230       // of the assignment.
   7231       if (call_context()->IsTest()) {
   7232         inlined_test_context()->ReturnValue(implicit_return_value);
   7233       } else if (call_context()->IsEffect()) {
   7234         Goto(function_return(), state);
   7235       } else {
   7236         ASSERT(call_context()->IsValue());
   7237         AddLeaveInlined(implicit_return_value, state);
   7238       }
   7239     } else {
   7240       // Falling off the end of a normal inlined function. This basically means
   7241       // returning undefined.
   7242       if (call_context()->IsTest()) {
   7243         Goto(inlined_test_context()->if_false(), state);
   7244       } else if (call_context()->IsEffect()) {
   7245         Goto(function_return(), state);
   7246       } else {
   7247         ASSERT(call_context()->IsValue());
   7248         AddLeaveInlined(undefined, state);
   7249       }
   7250     }
   7251   }
   7252 
   7253   // Fix up the function exits.
   7254   if (inlined_test_context() != NULL) {
   7255     HBasicBlock* if_true = inlined_test_context()->if_true();
   7256     HBasicBlock* if_false = inlined_test_context()->if_false();
   7257 
   7258     HEnterInlined* entry = function_state()->entry();
   7259 
   7260     // Pop the return test context from the expression context stack.
   7261     ASSERT(ast_context() == inlined_test_context());
   7262     ClearInlinedTestContext();
   7263     delete target_state;
   7264 
   7265     // Forward to the real test context.
   7266     if (if_true->HasPredecessor()) {
   7267       entry->RegisterReturnTarget(if_true, zone());
   7268       if_true->SetJoinId(ast_id);
   7269       HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
   7270       Goto(if_true, true_target, function_state());
   7271     }
   7272     if (if_false->HasPredecessor()) {
   7273       entry->RegisterReturnTarget(if_false, zone());
   7274       if_false->SetJoinId(ast_id);
   7275       HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
   7276       Goto(if_false, false_target, function_state());
   7277     }
   7278     set_current_block(NULL);
   7279     return true;
   7280 
   7281   } else if (function_return()->HasPredecessor()) {
   7282     function_state()->entry()->RegisterReturnTarget(function_return(), zone());
   7283     function_return()->SetJoinId(ast_id);
   7284     set_current_block(function_return());
   7285   } else {
   7286     set_current_block(NULL);
   7287   }
   7288   delete target_state;
   7289   return true;
   7290 }
   7291 
   7292 
   7293 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
   7294   // The function call we are inlining is a method call if the call
   7295   // is a property call.
   7296   CallKind call_kind = (expr->expression()->AsProperty() == NULL)
   7297       ? CALL_AS_FUNCTION
   7298       : CALL_AS_METHOD;
   7299 
   7300   return TryInline(call_kind,
   7301                    expr->target(),
   7302                    expr->arguments()->length(),
   7303                    NULL,
   7304                    expr->id(),
   7305                    expr->ReturnId(),
   7306                    drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
   7307 }
   7308 
   7309 
   7310 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
   7311                                                 HValue* implicit_return_value) {
   7312   return TryInline(CALL_AS_FUNCTION,
   7313                    expr->target(),
   7314                    expr->arguments()->length(),
   7315                    implicit_return_value,
   7316                    expr->id(),
   7317                    expr->ReturnId(),
   7318                    CONSTRUCT_CALL_RETURN);
   7319 }
   7320 
   7321 
   7322 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
   7323                                              BailoutId ast_id,
   7324                                              BailoutId return_id) {
   7325   return TryInline(CALL_AS_METHOD,
   7326                    getter,
   7327                    0,
   7328                    NULL,
   7329                    ast_id,
   7330                    return_id,
   7331                    GETTER_CALL_RETURN);
   7332 }
   7333 
   7334 
   7335 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
   7336                                              BailoutId id,
   7337                                              BailoutId assignment_id,
   7338                                              HValue* implicit_return_value) {
   7339   return TryInline(CALL_AS_METHOD,
   7340                    setter,
   7341                    1,
   7342                    implicit_return_value,
   7343                    id, assignment_id,
   7344                    SETTER_CALL_RETURN);
   7345 }
   7346 
   7347 
   7348 bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
   7349                                             Call* expr,
   7350                                             int arguments_count) {
   7351   return TryInline(CALL_AS_METHOD,
   7352                    function,
   7353                    arguments_count,
   7354                    NULL,
   7355                    expr->id(),
   7356                    expr->ReturnId(),
   7357                    NORMAL_RETURN);
   7358 }
   7359 
   7360 
   7361 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr,
   7362                                                           bool drop_extra) {
   7363   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
   7364   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
   7365   switch (id) {
   7366     case kMathExp:
   7367       if (!FLAG_fast_math) break;
   7368       // Fall through if FLAG_fast_math.
   7369     case kMathRound:
   7370     case kMathFloor:
   7371     case kMathAbs:
   7372     case kMathSqrt:
   7373     case kMathLog:
   7374       if (expr->arguments()->length() == 1) {
   7375         HValue* argument = Pop();
   7376         Drop(1);  // Receiver.
   7377         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
   7378         if (drop_extra) Drop(1);  // Optionally drop the function.
   7379         ast_context()->ReturnInstruction(op, expr->id());
   7380         return true;
   7381       }
   7382       break;
   7383     case kMathImul:
   7384       if (expr->arguments()->length() == 2) {
   7385         HValue* right = Pop();
   7386         HValue* left = Pop();
   7387         Drop(1);  // Receiver.
   7388         HInstruction* op = HMul::NewImul(zone(), context(), left, right);
   7389         if (drop_extra) Drop(1);  // Optionally drop the function.
   7390         ast_context()->ReturnInstruction(op, expr->id());
   7391         return true;
   7392       }
   7393       break;
   7394     default:
   7395       // Not supported for inlining yet.
   7396       break;
   7397   }
   7398   return false;
   7399 }
   7400 
   7401 
   7402 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
   7403     Call* expr,
   7404     HValue* receiver,
   7405     Handle<Map> receiver_map,
   7406     CheckType check_type) {
   7407   ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
   7408   // Try to inline calls like Math.* as operations in the calling function.
   7409   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
   7410   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
   7411   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
   7412   switch (id) {
   7413     case kStringCharCodeAt:
   7414     case kStringCharAt:
   7415       if (argument_count == 2 && check_type == STRING_CHECK) {
   7416         HValue* index = Pop();
   7417         HValue* string = Pop();
   7418         ASSERT(!expr->holder().is_null());
   7419         BuildCheckPrototypeMaps(Call::GetPrototypeForPrimitiveCheck(
   7420                 STRING_CHECK, expr->holder()->GetIsolate()),
   7421             expr->holder());
   7422         HInstruction* char_code =
   7423             BuildStringCharCodeAt(string, index);
   7424         if (id == kStringCharCodeAt) {
   7425           ast_context()->ReturnInstruction(char_code, expr->id());
   7426           return true;
   7427         }
   7428         AddInstruction(char_code);
   7429         HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
   7430         ast_context()->ReturnInstruction(result, expr->id());
   7431         return true;
   7432       }
   7433       break;
   7434     case kStringFromCharCode:
   7435       if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
   7436         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
   7437         HValue* argument = Pop();
   7438         Drop(1);  // Receiver.
   7439         HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
   7440         ast_context()->ReturnInstruction(result, expr->id());
   7441         return true;
   7442       }
   7443       break;
   7444     case kMathExp:
   7445       if (!FLAG_fast_math) break;
   7446       // Fall through if FLAG_fast_math.
   7447     case kMathRound:
   7448     case kMathFloor:
   7449     case kMathAbs:
   7450     case kMathSqrt:
   7451     case kMathLog:
   7452       if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
   7453         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
   7454         HValue* argument = Pop();
   7455         Drop(1);  // Receiver.
   7456         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
   7457         ast_context()->ReturnInstruction(op, expr->id());
   7458         return true;
   7459       }
   7460       break;
   7461     case kMathPow:
   7462       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
   7463         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
   7464         HValue* right = Pop();
   7465         HValue* left = Pop();
   7466         Pop();  // Pop receiver.
   7467         HInstruction* result = NULL;
   7468         // Use sqrt() if exponent is 0.5 or -0.5.
   7469         if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
   7470           double exponent = HConstant::cast(right)->DoubleValue();
   7471           if (exponent == 0.5) {
   7472             result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
   7473           } else if (exponent == -0.5) {
   7474             HValue* one = graph()->GetConstant1();
   7475             HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
   7476                 left, kMathPowHalf);
   7477             // MathPowHalf doesn't have side effects so there's no need for
   7478             // an environment simulation here.
   7479             ASSERT(!sqrt->HasObservableSideEffects());
   7480             result = NewUncasted<HDiv>(one, sqrt);
   7481           } else if (exponent == 2.0) {
   7482             result = NewUncasted<HMul>(left, left);
   7483           }
   7484         }
   7485 
   7486         if (result == NULL) {
   7487           result = NewUncasted<HPower>(left, right);
   7488         }
   7489         ast_context()->ReturnInstruction(result, expr->id());
   7490         return true;
   7491       }
   7492       break;
   7493     case kMathMax:
   7494     case kMathMin:
   7495       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
   7496         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
   7497         HValue* right = Pop();
   7498         HValue* left = Pop();
   7499         Drop(1);  // Receiver.
   7500         HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
   7501                                                      : HMathMinMax::kMathMax;
   7502         HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
   7503         ast_context()->ReturnInstruction(result, expr->id());
   7504         return true;
   7505       }
   7506       break;
   7507     case kMathImul:
   7508       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
   7509         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
   7510         HValue* right = Pop();
   7511         HValue* left = Pop();
   7512         Drop(1);  // Receiver.
   7513         HInstruction* result = HMul::NewImul(zone(), context(), left, right);
   7514         ast_context()->ReturnInstruction(result, expr->id());
   7515         return true;
   7516       }
   7517       break;
   7518     default:
   7519       // Not yet supported for inlining.
   7520       break;
   7521   }
   7522   return false;
   7523 }
   7524 
   7525 
   7526 bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
   7527   Expression* callee = expr->expression();
   7528   Property* prop = callee->AsProperty();
   7529   ASSERT(prop != NULL);
   7530 
   7531   if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
   7532     return false;
   7533   }
   7534   Handle<Map> function_map = expr->GetReceiverTypes()->first();
   7535   if (function_map->instance_type() != JS_FUNCTION_TYPE ||
   7536       !expr->target()->shared()->HasBuiltinFunctionId() ||
   7537       expr->target()->shared()->builtin_function_id() != kFunctionApply) {
   7538     return false;
   7539   }
   7540 
   7541   if (current_info()->scope()->arguments() == NULL) return false;
   7542 
   7543   ZoneList<Expression*>* args = expr->arguments();
   7544   if (args->length() != 2) return false;
   7545 
   7546   VariableProxy* arg_two = args->at(1)->AsVariableProxy();
   7547   if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
   7548   HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
   7549   if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
   7550 
   7551   // Found pattern f.apply(receiver, arguments).
   7552   CHECK_ALIVE_OR_RETURN(VisitForValue(prop->obj()), true);
   7553   HValue* function = Top();
   7554 
   7555   AddCheckConstantFunction(expr->holder(), function, function_map);
   7556   Drop(1);
   7557 
   7558   CHECK_ALIVE_OR_RETURN(VisitForValue(args->at(0)), true);
   7559   HValue* receiver = Pop();
   7560 
   7561   if (function_state()->outer() == NULL) {
   7562     HInstruction* elements = Add<HArgumentsElements>(false);
   7563     HInstruction* length = Add<HArgumentsLength>(elements);
   7564     HValue* wrapped_receiver = BuildWrapReceiver(receiver, function);
   7565     HInstruction* result = New<HApplyArguments>(function,
   7566                                                 wrapped_receiver,
   7567                                                 length,
   7568                                                 elements);
   7569     ast_context()->ReturnInstruction(result, expr->id());
   7570     return true;
   7571   } else {
   7572     // We are inside inlined function and we know exactly what is inside
   7573     // arguments object. But we need to be able to materialize at deopt.
   7574     ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
   7575               function_state()->entry()->arguments_object()->arguments_count());
   7576     HArgumentsObject* args = function_state()->entry()->arguments_object();
   7577     const ZoneList<HValue*>* arguments_values = args->arguments_values();
   7578     int arguments_count = arguments_values->length();
   7579     Push(BuildWrapReceiver(receiver, function));
   7580     for (int i = 1; i < arguments_count; i++) {
   7581       Push(arguments_values->at(i));
   7582     }
   7583 
   7584     Handle<JSFunction> known_function;
   7585     if (function->IsConstant() &&
   7586         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
   7587       known_function = Handle<JSFunction>::cast(
   7588           HConstant::cast(function)->handle(isolate()));
   7589       int args_count = arguments_count - 1;  // Excluding receiver.
   7590       if (TryInlineApply(known_function, expr, args_count)) return true;
   7591     }
   7592 
   7593     Drop(arguments_count - 1);
   7594     Push(Add<HPushArgument>(Pop()));
   7595     for (int i = 1; i < arguments_count; i++) {
   7596       Push(Add<HPushArgument>(arguments_values->at(i)));
   7597     }
   7598 
   7599     HInvokeFunction* call = New<HInvokeFunction>(function,
   7600                                                  known_function,
   7601                                                  arguments_count);
   7602     Drop(arguments_count);
   7603     ast_context()->ReturnInstruction(call, expr->id());
   7604     return true;
   7605   }
   7606 }
   7607 
   7608 
   7609 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
   7610   ASSERT(!HasStackOverflow());
   7611   ASSERT(current_block() != NULL);
   7612   ASSERT(current_block()->HasPredecessor());
   7613   Expression* callee = expr->expression();
   7614   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
   7615   HInstruction* call = NULL;
   7616 
   7617   Property* prop = callee->AsProperty();
   7618   if (prop != NULL) {
   7619     if (!prop->key()->IsPropertyName()) {
   7620       // Keyed function call.
   7621       CHECK_ALIVE(VisitForValue(prop->obj()));
   7622       CHECK_ALIVE(VisitForValue(prop->key()));
   7623 
   7624       // Push receiver and key like the non-optimized code generator expects it.
   7625       HValue* key = Pop();
   7626       HValue* receiver = Pop();
   7627       Push(key);
   7628       Push(Add<HPushArgument>(receiver));
   7629       CHECK_ALIVE(VisitArgumentList(expr->arguments()));
   7630 
   7631       if (expr->IsMonomorphic()) {
   7632         BuildCheckHeapObject(receiver);
   7633         ElementsKind kind = expr->KeyedArrayCallIsHoley()
   7634             ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
   7635 
   7636         Handle<Map> map(isolate()->get_initial_js_array_map(kind));
   7637 
   7638         HValue* function = BuildMonomorphicElementAccess(
   7639             receiver, key, NULL, NULL, map, false, STANDARD_STORE);
   7640 
   7641         call = New<HCallFunction>(function, argument_count);
   7642       } else {
   7643         call = New<HCallKeyed>(key, argument_count);
   7644       }
   7645       Drop(argument_count + 1);  // 1 is the key.
   7646       return ast_context()->ReturnInstruction(call, expr->id());
   7647     }
   7648 
   7649     // Named function call.
   7650     if (TryCallApply(expr)) return;
   7651 
   7652     CHECK_ALIVE(VisitForValue(prop->obj()));
   7653     CHECK_ALIVE(VisitExpressions(expr->arguments()));
   7654 
   7655     Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
   7656     HValue* receiver =
   7657         environment()->ExpressionStackAt(expr->arguments()->length());
   7658 
   7659     SmallMapList* types;
   7660     bool was_monomorphic = expr->IsMonomorphic();
   7661     bool monomorphic = ComputeReceiverTypes(expr, receiver, &types);
   7662     if (!was_monomorphic && monomorphic) {
   7663       monomorphic = expr->ComputeTarget(types->first(), name);
   7664     }
   7665 
   7666     if (monomorphic) {
   7667       Handle<Map> map = types->first();
   7668       if (TryInlineBuiltinMethodCall(expr, receiver, map, expr->check_type())) {
   7669         if (FLAG_trace_inlining) {
   7670           PrintF("Inlining builtin ");
   7671           expr->target()->ShortPrint();
   7672           PrintF("\n");
   7673         }
   7674         return;
   7675       }
   7676 
   7677       if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
   7678           expr->check_type() != RECEIVER_MAP_CHECK) {
   7679         // When the target has a custom call IC generator, use the IC,
   7680         // because it is likely to generate better code.  Also use the IC
   7681         // when a primitive receiver check is required.
   7682         call = PreProcessCall(New<HCallNamed>(name, argument_count));
   7683       } else {
   7684         AddCheckConstantFunction(expr->holder(), receiver, map);
   7685 
   7686         if (TryInlineCall(expr)) return;
   7687         call = PreProcessCall(
   7688             New<HCallConstantFunction>(expr->target(), argument_count));
   7689       }
   7690     } else if (types != NULL && types->length() > 1) {
   7691       ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
   7692       HandlePolymorphicCallNamed(expr, receiver, types, name);
   7693       return;
   7694 
   7695     } else {
   7696       call = PreProcessCall(New<HCallNamed>(name, argument_count));
   7697     }
   7698   } else {
   7699     VariableProxy* proxy = expr->expression()->AsVariableProxy();
   7700     if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
   7701       return Bailout(kPossibleDirectCallToEval);
   7702     }
   7703 
   7704     bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
   7705     if (global_call) {
   7706       Variable* var = proxy->var();
   7707       bool known_global_function = false;
   7708       // If there is a global property cell for the name at compile time and
   7709       // access check is not enabled we assume that the function will not change
   7710       // and generate optimized code for calling the function.
   7711       LookupResult lookup(isolate());
   7712       GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
   7713       if (type == kUseCell &&
   7714           !current_info()->global_object()->IsAccessCheckNeeded()) {
   7715         Handle<GlobalObject> global(current_info()->global_object());
   7716         known_global_function = expr->ComputeGlobalTarget(global, &lookup);
   7717       }
   7718       if (known_global_function) {
   7719         // Push the global object instead of the global receiver because
   7720         // code generated by the full code generator expects it.
   7721         HGlobalObject* global_object = Add<HGlobalObject>();
   7722         Push(global_object);
   7723         CHECK_ALIVE(VisitExpressions(expr->arguments()));
   7724 
   7725         CHECK_ALIVE(VisitForValue(expr->expression()));
   7726         HValue* function = Pop();
   7727         Add<HCheckValue>(function, expr->target());
   7728 
   7729         // Replace the global object with the global receiver.
   7730         HGlobalReceiver* global_receiver = Add<HGlobalReceiver>(global_object);
   7731         // Index of the receiver from the top of the expression stack.
   7732         const int receiver_index = argument_count - 1;
   7733         ASSERT(environment()->ExpressionStackAt(receiver_index)->
   7734                IsGlobalObject());
   7735         environment()->SetExpressionStackAt(receiver_index, global_receiver);
   7736 
   7737         if (TryInlineBuiltinFunctionCall(expr, false)) {  // Nothing to drop.
   7738           if (FLAG_trace_inlining) {
   7739             PrintF("Inlining builtin ");
   7740             expr->target()->ShortPrint();
   7741             PrintF("\n");
   7742           }
   7743           return;
   7744         }
   7745         if (TryInlineCall(expr)) return;
   7746 
   7747         if (expr->target().is_identical_to(current_info()->closure())) {
   7748           graph()->MarkRecursive();
   7749         }
   7750 
   7751         if (CallStubCompiler::HasCustomCallGenerator(expr->target())) {
   7752           // When the target has a custom call IC generator, use the IC,
   7753           // because it is likely to generate better code.
   7754           call = PreProcessCall(New<HCallNamed>(var->name(), argument_count));
   7755         } else {
   7756           call = PreProcessCall(New<HCallKnownGlobal>(
   7757               expr->target(), argument_count));
   7758         }
   7759       } else {
   7760         HGlobalObject* receiver = Add<HGlobalObject>();
   7761         Push(Add<HPushArgument>(receiver));
   7762         CHECK_ALIVE(VisitArgumentList(expr->arguments()));
   7763 
   7764         call = New<HCallGlobal>(var->name(), argument_count);
   7765         Drop(argument_count);
   7766       }
   7767 
   7768     } else if (expr->IsMonomorphic()) {
   7769       // The function is on the stack in the unoptimized code during
   7770       // evaluation of the arguments.
   7771       CHECK_ALIVE(VisitForValue(expr->expression()));
   7772       HValue* function = Top();
   7773       HGlobalObject* global = Add<HGlobalObject>();
   7774       HGlobalReceiver* receiver = Add<HGlobalReceiver>(global);
   7775       Push(receiver);
   7776       CHECK_ALIVE(VisitExpressions(expr->arguments()));
   7777       Add<HCheckValue>(function, expr->target());
   7778 
   7779       if (TryInlineBuiltinFunctionCall(expr, true)) {  // Drop the function.
   7780         if (FLAG_trace_inlining) {
   7781           PrintF("Inlining builtin ");
   7782           expr->target()->ShortPrint();
   7783           PrintF("\n");
   7784         }
   7785         return;
   7786       }
   7787 
   7788       if (TryInlineCall(expr, true)) {   // Drop function from environment.
   7789         return;
   7790       } else {
   7791         call = PreProcessCall(New<HInvokeFunction>(function, expr->target(),
   7792                                                    argument_count));
   7793         Drop(1);  // The function.
   7794       }
   7795 
   7796     } else {
   7797       CHECK_ALIVE(VisitForValue(expr->expression()));
   7798       HValue* function = Top();
   7799       HGlobalObject* global_object = Add<HGlobalObject>();
   7800       HGlobalReceiver* receiver = Add<HGlobalReceiver>(global_object);
   7801       Push(Add<HPushArgument>(receiver));
   7802       CHECK_ALIVE(VisitArgumentList(expr->arguments()));
   7803 
   7804       call = New<HCallFunction>(function, argument_count);
   7805       Drop(argument_count + 1);
   7806     }
   7807   }
   7808 
   7809   return ast_context()->ReturnInstruction(call, expr->id());
   7810 }
   7811 
   7812 
   7813 void HOptimizedGraphBuilder::BuildInlinedCallNewArray(CallNew* expr) {
   7814   NoObservableSideEffectsScope no_effects(this);
   7815 
   7816   int argument_count = expr->arguments()->length();
   7817   // We should at least have the constructor on the expression stack.
   7818   HValue* constructor = environment()->ExpressionStackAt(argument_count);
   7819 
   7820   ElementsKind kind = expr->elements_kind();
   7821   Handle<Cell> cell = expr->allocation_info_cell();
   7822   AllocationSite* site = AllocationSite::cast(cell->value());
   7823 
   7824   // Register on the site for deoptimization if the cell value changes.
   7825   site->AddDependentCompilationInfo(AllocationSite::TRANSITIONS, top_info());
   7826   HInstruction* cell_instruction = Add<HConstant>(cell);
   7827 
   7828   // In the single constant argument case, we may have to adjust elements kind
   7829   // to avoid creating a packed non-empty array.
   7830   if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
   7831     HValue* argument = environment()->Top();
   7832     if (argument->IsConstant()) {
   7833       HConstant* constant_argument = HConstant::cast(argument);
   7834       ASSERT(constant_argument->HasSmiValue());
   7835       int constant_array_size = constant_argument->Integer32Value();
   7836       if (constant_array_size != 0) {
   7837         kind = GetHoleyElementsKind(kind);
   7838       }
   7839     }
   7840   }
   7841 
   7842   // Build the array.
   7843   JSArrayBuilder array_builder(this,
   7844                                kind,
   7845                                cell_instruction,
   7846                                constructor,
   7847                                DISABLE_ALLOCATION_SITES);
   7848   HValue* new_object;
   7849   if (argument_count == 0) {
   7850     new_object = array_builder.AllocateEmptyArray();
   7851   } else if (argument_count == 1) {
   7852     HValue* argument = environment()->Top();
   7853     new_object = BuildAllocateArrayFromLength(&array_builder, argument);
   7854   } else {
   7855     HValue* length = Add<HConstant>(argument_count);
   7856     // Smi arrays need to initialize array elements with the hole because
   7857     // bailout could occur if the arguments don't fit in a smi.
   7858     //
   7859     // TODO(mvstanton): If all the arguments are constants in smi range, then
   7860     // we could set fill_with_hole to false and save a few instructions.
   7861     JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind)
   7862         ? JSArrayBuilder::FILL_WITH_HOLE
   7863         : JSArrayBuilder::DONT_FILL_WITH_HOLE;
   7864     new_object = array_builder.AllocateArray(length, length, fill_mode);
   7865     HValue* elements = array_builder.GetElementsLocation();
   7866     for (int i = 0; i < argument_count; i++) {
   7867       HValue* value = environment()->ExpressionStackAt(argument_count - i - 1);
   7868       HValue* constant_i = Add<HConstant>(i);
   7869       Add<HStoreKeyed>(elements, constant_i, value, kind);
   7870     }
   7871   }
   7872 
   7873   Drop(argument_count + 1);  // drop constructor and args.
   7874   ast_context()->ReturnValue(new_object);
   7875 }
   7876 
   7877 
   7878 // Checks whether allocation using the given constructor can be inlined.
   7879 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
   7880   return constructor->has_initial_map() &&
   7881       constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
   7882       constructor->initial_map()->instance_size() < HAllocate::kMaxInlineSize &&
   7883       constructor->initial_map()->InitialPropertiesLength() == 0;
   7884 }
   7885 
   7886 
   7887 bool HOptimizedGraphBuilder::IsCallNewArrayInlineable(CallNew* expr) {
   7888   bool inline_ok = false;
   7889   Handle<JSFunction> caller = current_info()->closure();
   7890   Handle<JSFunction> target(isolate()->global_context()->array_function(),
   7891                             isolate());
   7892   int argument_count = expr->arguments()->length();
   7893   // We should have the function plus array arguments on the environment stack.
   7894   ASSERT(environment()->length() >= (argument_count + 1));
   7895   Handle<Cell> cell = expr->allocation_info_cell();
   7896   AllocationSite* site = AllocationSite::cast(cell->value());
   7897   if (site->CanInlineCall()) {
   7898     // We also want to avoid inlining in certain 1 argument scenarios.
   7899     if (argument_count == 1) {
   7900       HValue* argument = Top();
   7901       if (argument->IsConstant()) {
   7902         // Do not inline if the constant length argument is not a smi or
   7903         // outside the valid range for a fast array.
   7904         HConstant* constant_argument = HConstant::cast(argument);
   7905         if (constant_argument->HasSmiValue()) {
   7906           int value = constant_argument->Integer32Value();
   7907           inline_ok = value >= 0 &&
   7908               value < JSObject::kInitialMaxFastElementArray;
   7909           if (!inline_ok) {
   7910             TraceInline(target, caller,
   7911                         "Length outside of valid array range");
   7912           }
   7913         }
   7914       } else {
   7915         inline_ok = true;
   7916       }
   7917     } else {
   7918       inline_ok = true;
   7919     }
   7920   } else {
   7921     TraceInline(target, caller, "AllocationSite requested no inlining.");
   7922   }
   7923 
   7924   if (inline_ok) {
   7925     TraceInline(target, caller, NULL);
   7926   }
   7927   return inline_ok;
   7928 }
   7929 
   7930 
   7931 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
   7932   ASSERT(!HasStackOverflow());
   7933   ASSERT(current_block() != NULL);
   7934   ASSERT(current_block()->HasPredecessor());
   7935   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   7936   int argument_count = expr->arguments()->length() + 1;  // Plus constructor.
   7937   Factory* factory = isolate()->factory();
   7938 
   7939   // The constructor function is on the stack in the unoptimized code
   7940   // during evaluation of the arguments.
   7941   CHECK_ALIVE(VisitForValue(expr->expression()));
   7942   HValue* function = Top();
   7943   CHECK_ALIVE(VisitExpressions(expr->arguments()));
   7944 
   7945   if (FLAG_inline_construct &&
   7946       expr->IsMonomorphic() &&
   7947       IsAllocationInlineable(expr->target())) {
   7948     Handle<JSFunction> constructor = expr->target();
   7949     HValue* check = Add<HCheckValue>(function, constructor);
   7950 
   7951     // Force completion of inobject slack tracking before generating
   7952     // allocation code to finalize instance size.
   7953     if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
   7954       constructor->shared()->CompleteInobjectSlackTracking();
   7955     }
   7956 
   7957     // Calculate instance size from initial map of constructor.
   7958     ASSERT(constructor->has_initial_map());
   7959     Handle<Map> initial_map(constructor->initial_map());
   7960     int instance_size = initial_map->instance_size();
   7961     ASSERT(initial_map->InitialPropertiesLength() == 0);
   7962 
   7963     // Allocate an instance of the implicit receiver object.
   7964     HValue* size_in_bytes = Add<HConstant>(instance_size);
   7965     PretenureFlag pretenure_flag =
   7966         (FLAG_pretenuring_call_new &&
   7967             isolate()->heap()->GetPretenureMode() == TENURED)
   7968                 ? TENURED : NOT_TENURED;
   7969     HAllocate* receiver =
   7970         Add<HAllocate>(size_in_bytes, HType::JSObject(), pretenure_flag,
   7971         JS_OBJECT_TYPE);
   7972     receiver->set_known_initial_map(initial_map);
   7973 
   7974     // Load the initial map from the constructor.
   7975     HValue* constructor_value = Add<HConstant>(constructor);
   7976     HValue* initial_map_value =
   7977       Add<HLoadNamedField>(constructor_value, HObjectAccess::ForJSObjectOffset(
   7978             JSFunction::kPrototypeOrInitialMapOffset));
   7979 
   7980     // Initialize map and fields of the newly allocated object.
   7981     { NoObservableSideEffectsScope no_effects(this);
   7982       ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
   7983       Add<HStoreNamedField>(receiver,
   7984           HObjectAccess::ForJSObjectOffset(JSObject::kMapOffset),
   7985           initial_map_value);
   7986       HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
   7987       Add<HStoreNamedField>(receiver,
   7988           HObjectAccess::ForJSObjectOffset(JSObject::kPropertiesOffset),
   7989           empty_fixed_array);
   7990       Add<HStoreNamedField>(receiver,
   7991           HObjectAccess::ForJSObjectOffset(JSObject::kElementsOffset),
   7992           empty_fixed_array);
   7993       if (initial_map->inobject_properties() != 0) {
   7994         HConstant* undefined = graph()->GetConstantUndefined();
   7995         for (int i = 0; i < initial_map->inobject_properties(); i++) {
   7996           int property_offset = JSObject::kHeaderSize + i * kPointerSize;
   7997           Add<HStoreNamedField>(receiver,
   7998               HObjectAccess::ForJSObjectOffset(property_offset),
   7999               undefined);
   8000         }
   8001       }
   8002     }
   8003 
   8004     // Replace the constructor function with a newly allocated receiver using
   8005     // the index of the receiver from the top of the expression stack.
   8006     const int receiver_index = argument_count - 1;
   8007     ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
   8008     environment()->SetExpressionStackAt(receiver_index, receiver);
   8009 
   8010     if (TryInlineConstruct(expr, receiver)) return;
   8011 
   8012     // TODO(mstarzinger): For now we remove the previous HAllocate and all
   8013     // corresponding instructions and instead add HPushArgument for the
   8014     // arguments in case inlining failed.  What we actually should do is for
   8015     // inlining to try to build a subgraph without mutating the parent graph.
   8016     HInstruction* instr = current_block()->last();
   8017     while (instr != initial_map_value) {
   8018       HInstruction* prev_instr = instr->previous();
   8019       instr->DeleteAndReplaceWith(NULL);
   8020       instr = prev_instr;
   8021     }
   8022     initial_map_value->DeleteAndReplaceWith(NULL);
   8023     receiver->DeleteAndReplaceWith(NULL);
   8024     check->DeleteAndReplaceWith(NULL);
   8025     environment()->SetExpressionStackAt(receiver_index, function);
   8026     HInstruction* call =
   8027       PreProcessCall(New<HCallNew>(function, argument_count));
   8028     return ast_context()->ReturnInstruction(call, expr->id());
   8029   } else {
   8030     // The constructor function is both an operand to the instruction and an
   8031     // argument to the construct call.
   8032     Handle<JSFunction> array_function(
   8033         isolate()->global_context()->array_function(), isolate());
   8034     bool use_call_new_array = expr->target().is_identical_to(array_function);
   8035     Handle<Cell> cell = expr->allocation_info_cell();
   8036     if (use_call_new_array && IsCallNewArrayInlineable(expr)) {
   8037       // Verify we are still calling the array function for our native context.
   8038       Add<HCheckValue>(function, array_function);
   8039       BuildInlinedCallNewArray(expr);
   8040       return;
   8041     }
   8042 
   8043     HBinaryCall* call;
   8044     if (use_call_new_array) {
   8045       Add<HCheckValue>(function, array_function);
   8046       call = New<HCallNewArray>(function, argument_count, cell,
   8047                                 expr->elements_kind());
   8048     } else {
   8049       call = New<HCallNew>(function, argument_count);
   8050     }
   8051     PreProcessCall(call);
   8052     return ast_context()->ReturnInstruction(call, expr->id());
   8053   }
   8054 }
   8055 
   8056 
   8057 // Support for generating inlined runtime functions.
   8058 
   8059 // Lookup table for generators for runtime calls that are generated inline.
   8060 // Elements of the table are member pointers to functions of
   8061 // HOptimizedGraphBuilder.
   8062 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)  \
   8063     &HOptimizedGraphBuilder::Generate##Name,
   8064 
   8065 const HOptimizedGraphBuilder::InlineFunctionGenerator
   8066     HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
   8067         INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
   8068         INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
   8069 };
   8070 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
   8071 
   8072 
   8073 template <class ViewClass>
   8074 void HGraphBuilder::BuildArrayBufferViewInitialization(
   8075     HValue* obj,
   8076     HValue* buffer,
   8077     HValue* byte_offset,
   8078     HValue* byte_length) {
   8079 
   8080   for (int offset = ViewClass::kSize;
   8081        offset < ViewClass::kSizeWithInternalFields;
   8082        offset += kPointerSize) {
   8083     Add<HStoreNamedField>(obj,
   8084         HObjectAccess::ForJSObjectOffset(offset),
   8085         Add<HConstant>(static_cast<int32_t>(0)));
   8086   }
   8087 
   8088   Add<HStoreNamedField>(
   8089       obj,
   8090       HObjectAccess::ForJSArrayBufferViewBuffer(), buffer);
   8091   Add<HStoreNamedField>(
   8092       obj,
   8093       HObjectAccess::ForJSArrayBufferViewByteOffset(),
   8094       byte_offset);
   8095   Add<HStoreNamedField>(
   8096       obj,
   8097       HObjectAccess::ForJSArrayBufferViewByteLength(),
   8098       byte_length);
   8099 
   8100   HObjectAccess weak_first_view_access =
   8101       HObjectAccess::ForJSArrayBufferWeakFirstView();
   8102   Add<HStoreNamedField>(obj,
   8103       HObjectAccess::ForJSArrayBufferViewWeakNext(),
   8104       Add<HLoadNamedField>(buffer, weak_first_view_access));
   8105   Add<HStoreNamedField>(buffer, weak_first_view_access, obj);
   8106 }
   8107 
   8108 
   8109 void HOptimizedGraphBuilder::VisitDataViewInitialize(
   8110     CallRuntime* expr) {
   8111   ZoneList<Expression*>* arguments = expr->arguments();
   8112 
   8113   NoObservableSideEffectsScope scope(this);
   8114   ASSERT(arguments->length()== 4);
   8115   CHECK_ALIVE(VisitForValue(arguments->at(0)));
   8116   HValue* obj = Pop();
   8117 
   8118   CHECK_ALIVE(VisitForValue(arguments->at(1)));
   8119   HValue* buffer = Pop();
   8120 
   8121   CHECK_ALIVE(VisitForValue(arguments->at(2)));
   8122   HValue* byte_offset = Pop();
   8123 
   8124   CHECK_ALIVE(VisitForValue(arguments->at(3)));
   8125   HValue* byte_length = Pop();
   8126 
   8127   BuildArrayBufferViewInitialization<JSDataView>(
   8128       obj, buffer, byte_offset, byte_length);
   8129 }
   8130 
   8131 
   8132 void HOptimizedGraphBuilder::VisitTypedArrayInitialize(
   8133     CallRuntime* expr) {
   8134   ZoneList<Expression*>* arguments = expr->arguments();
   8135 
   8136   NoObservableSideEffectsScope scope(this);
   8137   static const int kObjectArg = 0;
   8138   static const int kArrayIdArg = 1;
   8139   static const int kBufferArg = 2;
   8140   static const int kByteOffsetArg = 3;
   8141   static const int kByteLengthArg = 4;
   8142   static const int kArgsLength = 5;
   8143   ASSERT(arguments->length() == kArgsLength);
   8144 
   8145 
   8146   CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
   8147   HValue* obj = Pop();
   8148 
   8149   ASSERT(arguments->at(kArrayIdArg)->node_type() == AstNode::kLiteral);
   8150   Handle<Object> value =
   8151       static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
   8152   ASSERT(value->IsSmi());
   8153   int array_id = Smi::cast(*value)->value();
   8154 
   8155   CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
   8156   HValue* buffer = Pop();
   8157 
   8158   HValue* byte_offset;
   8159   bool is_zero_byte_offset;
   8160 
   8161   if (arguments->at(kByteOffsetArg)->node_type() == AstNode::kLiteral
   8162       && Smi::FromInt(0) ==
   8163       *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
   8164     byte_offset = Add<HConstant>(static_cast<int32_t>(0));
   8165     is_zero_byte_offset = true;
   8166   } else {
   8167     CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
   8168     byte_offset = Pop();
   8169     is_zero_byte_offset = false;
   8170   }
   8171 
   8172   CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
   8173   HValue* byte_length = Pop();
   8174 
   8175   IfBuilder byte_offset_smi(this);
   8176 
   8177   if (!is_zero_byte_offset) {
   8178     byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
   8179     byte_offset_smi.Then();
   8180   }
   8181 
   8182   { //  byte_offset is Smi.
   8183     BuildArrayBufferViewInitialization<JSTypedArray>(
   8184         obj, buffer, byte_offset, byte_length);
   8185 
   8186     ExternalArrayType array_type = kExternalByteArray;  // Bogus initialization.
   8187     size_t element_size = 1;  // Bogus initialization.
   8188     Runtime::ArrayIdToTypeAndSize(array_id, &array_type, &element_size);
   8189 
   8190     HInstruction* length = AddUncasted<HDiv>(byte_length,
   8191         Add<HConstant>(static_cast<int32_t>(element_size)));
   8192 
   8193     Add<HStoreNamedField>(obj,
   8194         HObjectAccess::ForJSTypedArrayLength(),
   8195         length);
   8196 
   8197     HValue* elements =
   8198         Add<HAllocate>(
   8199             Add<HConstant>(ExternalArray::kAlignedSize),
   8200             HType::JSArray(),
   8201             NOT_TENURED,
   8202             static_cast<InstanceType>(FIRST_EXTERNAL_ARRAY_TYPE + array_type));
   8203 
   8204     Handle<Map> external_array_map(
   8205         isolate()->heap()->MapForExternalArrayType(array_type));
   8206     Add<HStoreNamedField>(elements,
   8207         HObjectAccess::ForMap(),
   8208         Add<HConstant>(external_array_map));
   8209 
   8210     HValue* backing_store = Add<HLoadNamedField>(
   8211         buffer, HObjectAccess::ForJSArrayBufferBackingStore());
   8212 
   8213     HValue* typed_array_start;
   8214     if (is_zero_byte_offset) {
   8215       typed_array_start = backing_store;
   8216     } else {
   8217       HInstruction* external_pointer =
   8218           AddUncasted<HAdd>(backing_store, byte_offset);
   8219       // Arguments are checked prior to call to TypedArrayInitialize,
   8220       // including byte_offset.
   8221       external_pointer->ClearFlag(HValue::kCanOverflow);
   8222       typed_array_start = external_pointer;
   8223     }
   8224 
   8225     Add<HStoreNamedField>(elements,
   8226         HObjectAccess::ForExternalArrayExternalPointer(),
   8227         typed_array_start);
   8228     Add<HStoreNamedField>(elements,
   8229         HObjectAccess::ForFixedArrayLength(),
   8230         length);
   8231     Add<HStoreNamedField>(
   8232         obj, HObjectAccess::ForElementsPointer(), elements);
   8233   }
   8234 
   8235   if (!is_zero_byte_offset) {
   8236     byte_offset_smi.Else();
   8237     { //  byte_offset is not Smi.
   8238       Push(Add<HPushArgument>(obj));
   8239       VisitArgument(arguments->at(kArrayIdArg));
   8240       Push(Add<HPushArgument>(buffer));
   8241       Push(Add<HPushArgument>(byte_offset));
   8242       Push(Add<HPushArgument>(byte_length));
   8243       Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
   8244       Drop(kArgsLength);
   8245     }
   8246   }
   8247   byte_offset_smi.End();
   8248 }
   8249 
   8250 
   8251 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
   8252   ASSERT(!HasStackOverflow());
   8253   ASSERT(current_block() != NULL);
   8254   ASSERT(current_block()->HasPredecessor());
   8255   if (expr->is_jsruntime()) {
   8256     return Bailout(kCallToAJavaScriptRuntimeFunction);
   8257   }
   8258 
   8259   const Runtime::Function* function = expr->function();
   8260   ASSERT(function != NULL);
   8261 
   8262   if (function->function_id == Runtime::kDataViewInitialize) {
   8263       return VisitDataViewInitialize(expr);
   8264   }
   8265 
   8266   if (function->function_id == Runtime::kTypedArrayInitialize) {
   8267     return VisitTypedArrayInitialize(expr);
   8268   }
   8269 
   8270   if (function->function_id == Runtime::kMaxSmi) {
   8271     ASSERT(expr->arguments()->length() == 0);
   8272     HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
   8273     return ast_context()->ReturnInstruction(max_smi, expr->id());
   8274   }
   8275 
   8276   if (function->intrinsic_type == Runtime::INLINE) {
   8277     ASSERT(expr->name()->length() > 0);
   8278     ASSERT(expr->name()->Get(0) == '_');
   8279     // Call to an inline function.
   8280     int lookup_index = static_cast<int>(function->function_id) -
   8281         static_cast<int>(Runtime::kFirstInlineFunction);
   8282     ASSERT(lookup_index >= 0);
   8283     ASSERT(static_cast<size_t>(lookup_index) <
   8284            ARRAY_SIZE(kInlineFunctionGenerators));
   8285     InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
   8286 
   8287     // Call the inline code generator using the pointer-to-member.
   8288     (this->*generator)(expr);
   8289   } else {
   8290     ASSERT(function->intrinsic_type == Runtime::RUNTIME);
   8291     CHECK_ALIVE(VisitArgumentList(expr->arguments()));
   8292 
   8293     Handle<String> name = expr->name();
   8294     int argument_count = expr->arguments()->length();
   8295     HCallRuntime* call = New<HCallRuntime>(name, function,
   8296                                            argument_count);
   8297     Drop(argument_count);
   8298     return ast_context()->ReturnInstruction(call, expr->id());
   8299   }
   8300 }
   8301 
   8302 
   8303 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
   8304   ASSERT(!HasStackOverflow());
   8305   ASSERT(current_block() != NULL);
   8306   ASSERT(current_block()->HasPredecessor());
   8307   switch (expr->op()) {
   8308     case Token::DELETE: return VisitDelete(expr);
   8309     case Token::VOID: return VisitVoid(expr);
   8310     case Token::TYPEOF: return VisitTypeof(expr);
   8311     case Token::NOT: return VisitNot(expr);
   8312     default: UNREACHABLE();
   8313   }
   8314 }
   8315 
   8316 
   8317 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
   8318   Property* prop = expr->expression()->AsProperty();
   8319   VariableProxy* proxy = expr->expression()->AsVariableProxy();
   8320   if (prop != NULL) {
   8321     CHECK_ALIVE(VisitForValue(prop->obj()));
   8322     CHECK_ALIVE(VisitForValue(prop->key()));
   8323     HValue* key = Pop();
   8324     HValue* obj = Pop();
   8325     HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
   8326     Add<HPushArgument>(obj);
   8327     Add<HPushArgument>(key);
   8328     Add<HPushArgument>(Add<HConstant>(function_strict_mode_flag()));
   8329     // TODO(olivf) InvokeFunction produces a check for the parameter count,
   8330     // even though we are certain to pass the correct number of arguments here.
   8331     HInstruction* instr = New<HInvokeFunction>(function, 3);
   8332     return ast_context()->ReturnInstruction(instr, expr->id());
   8333   } else if (proxy != NULL) {
   8334     Variable* var = proxy->var();
   8335     if (var->IsUnallocated()) {
   8336       Bailout(kDeleteWithGlobalVariable);
   8337     } else if (var->IsStackAllocated() || var->IsContextSlot()) {
   8338       // Result of deleting non-global variables is false.  'this' is not
   8339       // really a variable, though we implement it as one.  The
   8340       // subexpression does not have side effects.
   8341       HValue* value = var->is_this()
   8342           ? graph()->GetConstantTrue()
   8343           : graph()->GetConstantFalse();
   8344       return ast_context()->ReturnValue(value);
   8345     } else {
   8346       Bailout(kDeleteWithNonGlobalVariable);
   8347     }
   8348   } else {
   8349     // Result of deleting non-property, non-variable reference is true.
   8350     // Evaluate the subexpression for side effects.
   8351     CHECK_ALIVE(VisitForEffect(expr->expression()));
   8352     return ast_context()->ReturnValue(graph()->GetConstantTrue());
   8353   }
   8354 }
   8355 
   8356 
   8357 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
   8358   CHECK_ALIVE(VisitForEffect(expr->expression()));
   8359   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
   8360 }
   8361 
   8362 
   8363 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
   8364   CHECK_ALIVE(VisitForTypeOf(expr->expression()));
   8365   HValue* value = Pop();
   8366   HInstruction* instr = New<HTypeof>(value);
   8367   return ast_context()->ReturnInstruction(instr, expr->id());
   8368 }
   8369 
   8370 
   8371 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
   8372   if (ast_context()->IsTest()) {
   8373     TestContext* context = TestContext::cast(ast_context());
   8374     VisitForControl(expr->expression(),
   8375                     context->if_false(),
   8376                     context->if_true());
   8377     return;
   8378   }
   8379 
   8380   if (ast_context()->IsEffect()) {
   8381     VisitForEffect(expr->expression());
   8382     return;
   8383   }
   8384 
   8385   ASSERT(ast_context()->IsValue());
   8386   HBasicBlock* materialize_false = graph()->CreateBasicBlock();
   8387   HBasicBlock* materialize_true = graph()->CreateBasicBlock();
   8388   CHECK_BAILOUT(VisitForControl(expr->expression(),
   8389                                 materialize_false,
   8390                                 materialize_true));
   8391 
   8392   if (materialize_false->HasPredecessor()) {
   8393     materialize_false->SetJoinId(expr->MaterializeFalseId());
   8394     set_current_block(materialize_false);
   8395     Push(graph()->GetConstantFalse());
   8396   } else {
   8397     materialize_false = NULL;
   8398   }
   8399 
   8400   if (materialize_true->HasPredecessor()) {
   8401     materialize_true->SetJoinId(expr->MaterializeTrueId());
   8402     set_current_block(materialize_true);
   8403     Push(graph()->GetConstantTrue());
   8404   } else {
   8405     materialize_true = NULL;
   8406   }
   8407 
   8408   HBasicBlock* join =
   8409     CreateJoin(materialize_false, materialize_true, expr->id());
   8410   set_current_block(join);
   8411   if (join != NULL) return ast_context()->ReturnValue(Pop());
   8412 }
   8413 
   8414 
   8415 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
   8416     bool returns_original_input,
   8417     CountOperation* expr) {
   8418   // The input to the count operation is on top of the expression stack.
   8419   Handle<Type> info = expr->type();
   8420   Representation rep = Representation::FromType(info);
   8421   if (rep.IsNone() || rep.IsTagged()) {
   8422     rep = Representation::Smi();
   8423   }
   8424 
   8425   if (returns_original_input) {
   8426     // We need an explicit HValue representing ToNumber(input).  The
   8427     // actual HChange instruction we need is (sometimes) added in a later
   8428     // phase, so it is not available now to be used as an input to HAdd and
   8429     // as the return value.
   8430     HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
   8431     if (!rep.IsDouble()) {
   8432       number_input->SetFlag(HInstruction::kFlexibleRepresentation);
   8433       number_input->SetFlag(HInstruction::kCannotBeTagged);
   8434     }
   8435     Push(number_input);
   8436   }
   8437 
   8438   // The addition has no side effects, so we do not need
   8439   // to simulate the expression stack after this instruction.
   8440   // Any later failures deopt to the load of the input or earlier.
   8441   HConstant* delta = (expr->op() == Token::INC)
   8442       ? graph()->GetConstant1()
   8443       : graph()->GetConstantMinus1();
   8444   HInstruction* instr = AddUncasted<HAdd>(Top(), delta);
   8445   if (instr->IsAdd()) {
   8446     HAdd* add = HAdd::cast(instr);
   8447     add->set_observed_input_representation(1, rep);
   8448     add->set_observed_input_representation(2, Representation::Smi());
   8449   }
   8450   instr->SetFlag(HInstruction::kCannotBeTagged);
   8451   instr->ClearAllSideEffects();
   8452   return instr;
   8453 }
   8454 
   8455 
   8456 void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
   8457                                                  Property* prop,
   8458                                                  BailoutId ast_id,
   8459                                                  BailoutId return_id,
   8460                                                  HValue* object,
   8461                                                  HValue* key,
   8462                                                  HValue* value) {
   8463   EffectContext for_effect(this);
   8464   Push(object);
   8465   if (key != NULL) Push(key);
   8466   Push(value);
   8467   BuildStore(expr, prop, ast_id, return_id);
   8468 }
   8469 
   8470 
   8471 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
   8472   ASSERT(!HasStackOverflow());
   8473   ASSERT(current_block() != NULL);
   8474   ASSERT(current_block()->HasPredecessor());
   8475   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   8476   Expression* target = expr->expression();
   8477   VariableProxy* proxy = target->AsVariableProxy();
   8478   Property* prop = target->AsProperty();
   8479   if (proxy == NULL && prop == NULL) {
   8480     return Bailout(kInvalidLhsInCountOperation);
   8481   }
   8482 
   8483   // Match the full code generator stack by simulating an extra stack
   8484   // element for postfix operations in a non-effect context.  The return
   8485   // value is ToNumber(input).
   8486   bool returns_original_input =
   8487       expr->is_postfix() && !ast_context()->IsEffect();
   8488   HValue* input = NULL;  // ToNumber(original_input).
   8489   HValue* after = NULL;  // The result after incrementing or decrementing.
   8490 
   8491   if (proxy != NULL) {
   8492     Variable* var = proxy->var();
   8493     if (var->mode() == CONST)  {
   8494       return Bailout(kUnsupportedCountOperationWithConst);
   8495     }
   8496     // Argument of the count operation is a variable, not a property.
   8497     ASSERT(prop == NULL);
   8498     CHECK_ALIVE(VisitForValue(target));
   8499 
   8500     after = BuildIncrement(returns_original_input, expr);
   8501     input = returns_original_input ? Top() : Pop();
   8502     Push(after);
   8503 
   8504     switch (var->location()) {
   8505       case Variable::UNALLOCATED:
   8506         HandleGlobalVariableAssignment(var,
   8507                                        after,
   8508                                        expr->AssignmentId());
   8509         break;
   8510 
   8511       case Variable::PARAMETER:
   8512       case Variable::LOCAL:
   8513         BindIfLive(var, after);
   8514         break;
   8515 
   8516       case Variable::CONTEXT: {
   8517         // Bail out if we try to mutate a parameter value in a function
   8518         // using the arguments object.  We do not (yet) correctly handle the
   8519         // arguments property of the function.
   8520         if (current_info()->scope()->arguments() != NULL) {
   8521           // Parameters will rewrite to context slots.  We have no direct
   8522           // way to detect that the variable is a parameter so we use a
   8523           // linear search of the parameter list.
   8524           int count = current_info()->scope()->num_parameters();
   8525           for (int i = 0; i < count; ++i) {
   8526             if (var == current_info()->scope()->parameter(i)) {
   8527               return Bailout(kAssignmentToParameterInArgumentsObject);
   8528             }
   8529           }
   8530         }
   8531 
   8532         HValue* context = BuildContextChainWalk(var);
   8533         HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
   8534             ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
   8535         HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
   8536                                                           mode, after);
   8537         if (instr->HasObservableSideEffects()) {
   8538           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
   8539         }
   8540         break;
   8541       }
   8542 
   8543       case Variable::LOOKUP:
   8544         return Bailout(kLookupVariableInCountOperation);
   8545     }
   8546 
   8547     Drop(returns_original_input ? 2 : 1);
   8548     return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
   8549   }
   8550 
   8551   // Argument of the count operation is a property.
   8552   ASSERT(prop != NULL);
   8553   if (returns_original_input) Push(graph()->GetConstantUndefined());
   8554 
   8555   CHECK_ALIVE(VisitForValue(prop->obj()));
   8556   HValue* object = Top();
   8557 
   8558   HValue* key = NULL;
   8559   if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
   8560       prop->IsStringAccess()) {
   8561     CHECK_ALIVE(VisitForValue(prop->key()));
   8562     key = Top();
   8563   }
   8564 
   8565   CHECK_ALIVE(PushLoad(prop, object, key));
   8566 
   8567   after = BuildIncrement(returns_original_input, expr);
   8568 
   8569   if (returns_original_input) {
   8570     input = Pop();
   8571     // Drop object and key to push it again in the effect context below.
   8572     Drop(key == NULL ? 1 : 2);
   8573     environment()->SetExpressionStackAt(0, input);
   8574     CHECK_ALIVE(BuildStoreForEffect(
   8575         expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
   8576     return ast_context()->ReturnValue(Pop());
   8577   }
   8578 
   8579   environment()->SetExpressionStackAt(0, after);
   8580   return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
   8581 }
   8582 
   8583 
   8584 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
   8585     HValue* string,
   8586     HValue* index) {
   8587   if (string->IsConstant() && index->IsConstant()) {
   8588     HConstant* c_string = HConstant::cast(string);
   8589     HConstant* c_index = HConstant::cast(index);
   8590     if (c_string->HasStringValue() && c_index->HasNumberValue()) {
   8591       int32_t i = c_index->NumberValueAsInteger32();
   8592       Handle<String> s = c_string->StringValue();
   8593       if (i < 0 || i >= s->length()) {
   8594         return New<HConstant>(OS::nan_value());
   8595       }
   8596       return New<HConstant>(s->Get(i));
   8597     }
   8598   }
   8599   BuildCheckHeapObject(string);
   8600   HValue* checkstring =
   8601       Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
   8602   HInstruction* length = BuildLoadStringLength(string, checkstring);
   8603   AddInstruction(length);
   8604   HInstruction* checked_index = Add<HBoundsCheck>(index, length);
   8605   return New<HStringCharCodeAt>(string, checked_index);
   8606 }
   8607 
   8608 
   8609 // Checks if the given shift amounts have following forms:
   8610 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
   8611 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
   8612                                              HValue* const32_minus_sa) {
   8613   if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
   8614     const HConstant* c1 = HConstant::cast(sa);
   8615     const HConstant* c2 = HConstant::cast(const32_minus_sa);
   8616     return c1->HasInteger32Value() && c2->HasInteger32Value() &&
   8617         (c1->Integer32Value() + c2->Integer32Value() == 32);
   8618   }
   8619   if (!const32_minus_sa->IsSub()) return false;
   8620   HSub* sub = HSub::cast(const32_minus_sa);
   8621   if (sa != sub->right()) return false;
   8622   HValue* const32 = sub->left();
   8623   if (!const32->IsConstant() ||
   8624       HConstant::cast(const32)->Integer32Value() != 32) {
   8625     return false;
   8626   }
   8627   return (sub->right() == sa);
   8628 }
   8629 
   8630 
   8631 // Checks if the left and the right are shift instructions with the oposite
   8632 // directions that can be replaced by one rotate right instruction or not.
   8633 // Returns the operand and the shift amount for the rotate instruction in the
   8634 // former case.
   8635 bool HGraphBuilder::MatchRotateRight(HValue* left,
   8636                                      HValue* right,
   8637                                      HValue** operand,
   8638                                      HValue** shift_amount) {
   8639   HShl* shl;
   8640   HShr* shr;
   8641   if (left->IsShl() && right->IsShr()) {
   8642     shl = HShl::cast(left);
   8643     shr = HShr::cast(right);
   8644   } else if (left->IsShr() && right->IsShl()) {
   8645     shl = HShl::cast(right);
   8646     shr = HShr::cast(left);
   8647   } else {
   8648     return false;
   8649   }
   8650   if (shl->left() != shr->left()) return false;
   8651 
   8652   if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
   8653       !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
   8654     return false;
   8655   }
   8656   *operand= shr->left();
   8657   *shift_amount = shr->right();
   8658   return true;
   8659 }
   8660 
   8661 
   8662 bool CanBeZero(HValue* right) {
   8663   if (right->IsConstant()) {
   8664     HConstant* right_const = HConstant::cast(right);
   8665     if (right_const->HasInteger32Value() &&
   8666        (right_const->Integer32Value() & 0x1f) != 0) {
   8667       return false;
   8668     }
   8669   }
   8670   return true;
   8671 }
   8672 
   8673 
   8674 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
   8675                                          Handle<Type> expected) {
   8676   if (expected->Is(Type::Smi())) {
   8677     return AddUncasted<HForceRepresentation>(number, Representation::Smi());
   8678   }
   8679   if (expected->Is(Type::Signed32())) {
   8680     return AddUncasted<HForceRepresentation>(number,
   8681                                              Representation::Integer32());
   8682   }
   8683   return number;
   8684 }
   8685 
   8686 
   8687 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Handle<Type>* expected) {
   8688   if (value->IsConstant()) {
   8689     HConstant* constant = HConstant::cast(value);
   8690     Maybe<HConstant*> number = constant->CopyToTruncatedNumber(zone());
   8691     if (number.has_value) {
   8692       *expected = handle(Type::Number(), isolate());
   8693       return AddInstruction(number.value);
   8694     }
   8695   }
   8696 
   8697   // We put temporary values on the stack, which don't correspond to anything
   8698   // in baseline code. Since nothing is observable we avoid recording those
   8699   // pushes with a NoObservableSideEffectsScope.
   8700   NoObservableSideEffectsScope no_effects(this);
   8701 
   8702   Handle<Type> expected_type = *expected;
   8703 
   8704   // Separate the number type from the rest.
   8705   Handle<Type> expected_obj = handle(Type::Intersect(
   8706       expected_type, handle(Type::NonNumber(), isolate())), isolate());
   8707   Handle<Type> expected_number = handle(Type::Intersect(
   8708       expected_type, handle(Type::Number(), isolate())), isolate());
   8709 
   8710   // We expect to get a number.
   8711   // (We need to check first, since Type::None->Is(Type::Any()) == true.
   8712   if (expected_obj->Is(Type::None())) {
   8713     ASSERT(!expected_number->Is(Type::None()));
   8714     return value;
   8715   }
   8716 
   8717   if (expected_obj->Is(Type::Undefined())) {
   8718     // This is already done by HChange.
   8719     *expected = handle(Type::Union(
   8720           expected_number, handle(Type::Double(), isolate())), isolate());
   8721     return value;
   8722   }
   8723 
   8724   return value;
   8725 }
   8726 
   8727 
   8728 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
   8729     BinaryOperation* expr,
   8730     HValue* left,
   8731     HValue* right) {
   8732   Handle<Type> left_type = expr->left()->bounds().lower;
   8733   Handle<Type> right_type = expr->right()->bounds().lower;
   8734   Handle<Type> result_type = expr->bounds().lower;
   8735   Maybe<int> fixed_right_arg = expr->fixed_right_arg();
   8736 
   8737   HValue* result = HGraphBuilder::BuildBinaryOperation(
   8738       expr->op(), left, right, left_type, right_type,
   8739       result_type, fixed_right_arg);
   8740   // Add a simulate after instructions with observable side effects, and
   8741   // after phis, which are the result of BuildBinaryOperation when we
   8742   // inlined some complex subgraph.
   8743   if (result->HasObservableSideEffects() || result->IsPhi()) {
   8744     Push(result);
   8745     Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
   8746     Drop(1);
   8747   }
   8748   return result;
   8749 }
   8750 
   8751 
   8752 HValue* HGraphBuilder::BuildBinaryOperation(
   8753     Token::Value op,
   8754     HValue* left,
   8755     HValue* right,
   8756     Handle<Type> left_type,
   8757     Handle<Type> right_type,
   8758     Handle<Type> result_type,
   8759     Maybe<int> fixed_right_arg) {
   8760 
   8761   Representation left_rep = Representation::FromType(left_type);
   8762   Representation right_rep = Representation::FromType(right_type);
   8763 
   8764   bool maybe_string_add = op == Token::ADD &&
   8765                           (left_type->Maybe(Type::String()) ||
   8766                            right_type->Maybe(Type::String()));
   8767 
   8768   if (left_type->Is(Type::None())) {
   8769     Add<HDeoptimize>("Insufficient type feedback for LHS of binary operation",
   8770                      Deoptimizer::SOFT);
   8771     // TODO(rossberg): we should be able to get rid of non-continuous
   8772     // defaults.
   8773     left_type = handle(Type::Any(), isolate());
   8774   } else {
   8775     if (!maybe_string_add) left = TruncateToNumber(left, &left_type);
   8776     left_rep = Representation::FromType(left_type);
   8777   }
   8778 
   8779   if (right_type->Is(Type::None())) {
   8780     Add<HDeoptimize>("Insufficient type feedback for RHS of binary operation",
   8781                      Deoptimizer::SOFT);
   8782     right_type = handle(Type::Any(), isolate());
   8783   } else {
   8784     if (!maybe_string_add) right = TruncateToNumber(right, &right_type);
   8785     right_rep = Representation::FromType(right_type);
   8786   }
   8787 
   8788   // Special case for string addition here.
   8789   if (op == Token::ADD &&
   8790       (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
   8791     // Validate type feedback for left argument.
   8792     if (left_type->Is(Type::String())) {
   8793       left = BuildCheckString(left);
   8794     }
   8795 
   8796     // Validate type feedback for right argument.
   8797     if (right_type->Is(Type::String())) {
   8798       right = BuildCheckString(right);
   8799     }
   8800 
   8801     // Convert left argument as necessary.
   8802     if (left_type->Is(Type::Number())) {
   8803       ASSERT(right_type->Is(Type::String()));
   8804       left = BuildNumberToString(left, left_type);
   8805     } else if (!left_type->Is(Type::String())) {
   8806       ASSERT(right_type->Is(Type::String()));
   8807       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
   8808       Add<HPushArgument>(left);
   8809       Add<HPushArgument>(right);
   8810       return AddUncasted<HInvokeFunction>(function, 2);
   8811     }
   8812 
   8813     // Convert right argument as necessary.
   8814     if (right_type->Is(Type::Number())) {
   8815       ASSERT(left_type->Is(Type::String()));
   8816       right = BuildNumberToString(right, right_type);
   8817     } else if (!right_type->Is(Type::String())) {
   8818       ASSERT(left_type->Is(Type::String()));
   8819       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
   8820       Add<HPushArgument>(left);
   8821       Add<HPushArgument>(right);
   8822       return AddUncasted<HInvokeFunction>(function, 2);
   8823     }
   8824 
   8825     return AddUncasted<HStringAdd>(left, right, STRING_ADD_CHECK_NONE);
   8826   }
   8827 
   8828   if (graph()->info()->IsStub()) {
   8829     left = EnforceNumberType(left, left_type);
   8830     right = EnforceNumberType(right, right_type);
   8831   }
   8832 
   8833   Representation result_rep = Representation::FromType(result_type);
   8834 
   8835   bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
   8836                           (right_rep.IsTagged() && !right_rep.IsSmi());
   8837 
   8838   HInstruction* instr = NULL;
   8839   // Only the stub is allowed to call into the runtime, since otherwise we would
   8840   // inline several instructions (including the two pushes) for every tagged
   8841   // operation in optimized code, which is more expensive, than a stub call.
   8842   if (graph()->info()->IsStub() && is_non_primitive) {
   8843     HValue* function = AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op));
   8844     Add<HPushArgument>(left);
   8845     Add<HPushArgument>(right);
   8846     instr = AddUncasted<HInvokeFunction>(function, 2);
   8847   } else {
   8848     switch (op) {
   8849       case Token::ADD:
   8850         instr = AddUncasted<HAdd>(left, right);
   8851         break;
   8852       case Token::SUB:
   8853         instr = AddUncasted<HSub>(left, right);
   8854         break;
   8855       case Token::MUL:
   8856         instr = AddUncasted<HMul>(left, right);
   8857         break;
   8858       case Token::MOD: {
   8859         if (fixed_right_arg.has_value) {
   8860           if (right->IsConstant()) {
   8861             HConstant* c_right = HConstant::cast(right);
   8862             if (c_right->HasInteger32Value()) {
   8863               ASSERT_EQ(fixed_right_arg.value, c_right->Integer32Value());
   8864             }
   8865           } else {
   8866             HConstant* fixed_right = Add<HConstant>(
   8867                 static_cast<int>(fixed_right_arg.value));
   8868             IfBuilder if_same(this);
   8869             if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
   8870             if_same.Then();
   8871             if_same.ElseDeopt("Unexpected RHS of binary operation");
   8872             right = fixed_right;
   8873           }
   8874         }
   8875         instr = AddUncasted<HMod>(left, right);
   8876         break;
   8877       }
   8878       case Token::DIV:
   8879         instr = AddUncasted<HDiv>(left, right);
   8880         break;
   8881       case Token::BIT_XOR:
   8882       case Token::BIT_AND:
   8883         instr = AddUncasted<HBitwise>(op, left, right);
   8884         break;
   8885       case Token::BIT_OR: {
   8886         HValue* operand, *shift_amount;
   8887         if (left_type->Is(Type::Signed32()) &&
   8888             right_type->Is(Type::Signed32()) &&
   8889             MatchRotateRight(left, right, &operand, &shift_amount)) {
   8890           instr = AddUncasted<HRor>(operand, shift_amount);
   8891         } else {
   8892           instr = AddUncasted<HBitwise>(op, left, right);
   8893         }
   8894         break;
   8895       }
   8896       case Token::SAR:
   8897         instr = AddUncasted<HSar>(left, right);
   8898         break;
   8899       case Token::SHR:
   8900         instr = AddUncasted<HShr>(left, right);
   8901         if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
   8902             CanBeZero(right)) {
   8903           graph()->RecordUint32Instruction(instr);
   8904         }
   8905         break;
   8906       case Token::SHL:
   8907         instr = AddUncasted<HShl>(left, right);
   8908         break;
   8909       default:
   8910         UNREACHABLE();
   8911     }
   8912   }
   8913 
   8914   if (instr->IsBinaryOperation()) {
   8915     HBinaryOperation* binop = HBinaryOperation::cast(instr);
   8916     binop->set_observed_input_representation(1, left_rep);
   8917     binop->set_observed_input_representation(2, right_rep);
   8918     binop->initialize_output_representation(result_rep);
   8919     if (graph()->info()->IsStub()) {
   8920       // Stub should not call into stub.
   8921       instr->SetFlag(HValue::kCannotBeTagged);
   8922       // And should truncate on HForceRepresentation already.
   8923       if (left->IsForceRepresentation()) {
   8924         left->CopyFlag(HValue::kTruncatingToSmi, instr);
   8925         left->CopyFlag(HValue::kTruncatingToInt32, instr);
   8926       }
   8927       if (right->IsForceRepresentation()) {
   8928         right->CopyFlag(HValue::kTruncatingToSmi, instr);
   8929         right->CopyFlag(HValue::kTruncatingToInt32, instr);
   8930       }
   8931     }
   8932   }
   8933   return instr;
   8934 }
   8935 
   8936 
   8937 // Check for the form (%_ClassOf(foo) === 'BarClass').
   8938 static bool IsClassOfTest(CompareOperation* expr) {
   8939   if (expr->op() != Token::EQ_STRICT) return false;
   8940   CallRuntime* call = expr->left()->AsCallRuntime();
   8941   if (call == NULL) return false;
   8942   Literal* literal = expr->right()->AsLiteral();
   8943   if (literal == NULL) return false;
   8944   if (!literal->value()->IsString()) return false;
   8945   if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
   8946     return false;
   8947   }
   8948   ASSERT(call->arguments()->length() == 1);
   8949   return true;
   8950 }
   8951 
   8952 
   8953 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
   8954   ASSERT(!HasStackOverflow());
   8955   ASSERT(current_block() != NULL);
   8956   ASSERT(current_block()->HasPredecessor());
   8957   switch (expr->op()) {
   8958     case Token::COMMA:
   8959       return VisitComma(expr);
   8960     case Token::OR:
   8961     case Token::AND:
   8962       return VisitLogicalExpression(expr);
   8963     default:
   8964       return VisitArithmeticExpression(expr);
   8965   }
   8966 }
   8967 
   8968 
   8969 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
   8970   CHECK_ALIVE(VisitForEffect(expr->left()));
   8971   // Visit the right subexpression in the same AST context as the entire
   8972   // expression.
   8973   Visit(expr->right());
   8974 }
   8975 
   8976 
   8977 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
   8978   bool is_logical_and = expr->op() == Token::AND;
   8979   if (ast_context()->IsTest()) {
   8980     TestContext* context = TestContext::cast(ast_context());
   8981     // Translate left subexpression.
   8982     HBasicBlock* eval_right = graph()->CreateBasicBlock();
   8983     if (is_logical_and) {
   8984       CHECK_BAILOUT(VisitForControl(expr->left(),
   8985                                     eval_right,
   8986                                     context->if_false()));
   8987     } else {
   8988       CHECK_BAILOUT(VisitForControl(expr->left(),
   8989                                     context->if_true(),
   8990                                     eval_right));
   8991     }
   8992 
   8993     // Translate right subexpression by visiting it in the same AST
   8994     // context as the entire expression.
   8995     if (eval_right->HasPredecessor()) {
   8996       eval_right->SetJoinId(expr->RightId());
   8997       set_current_block(eval_right);
   8998       Visit(expr->right());
   8999     }
   9000 
   9001   } else if (ast_context()->IsValue()) {
   9002     CHECK_ALIVE(VisitForValue(expr->left()));
   9003     ASSERT(current_block() != NULL);
   9004     HValue* left_value = Top();
   9005 
   9006     // Short-circuit left values that always evaluate to the same boolean value.
   9007     if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
   9008       // l (evals true)  && r -> r
   9009       // l (evals true)  || r -> l
   9010       // l (evals false) && r -> l
   9011       // l (evals false) || r -> r
   9012       if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
   9013         Drop(1);
   9014         CHECK_ALIVE(VisitForValue(expr->right()));
   9015       }
   9016       return ast_context()->ReturnValue(Pop());
   9017     }
   9018 
   9019     // We need an extra block to maintain edge-split form.
   9020     HBasicBlock* empty_block = graph()->CreateBasicBlock();
   9021     HBasicBlock* eval_right = graph()->CreateBasicBlock();
   9022     ToBooleanStub::Types expected(expr->left()->to_boolean_types());
   9023     HBranch* test = is_logical_and
   9024         ? New<HBranch>(left_value, expected, eval_right, empty_block)
   9025         : New<HBranch>(left_value, expected, empty_block, eval_right);
   9026     FinishCurrentBlock(test);
   9027 
   9028     set_current_block(eval_right);
   9029     Drop(1);  // Value of the left subexpression.
   9030     CHECK_BAILOUT(VisitForValue(expr->right()));
   9031 
   9032     HBasicBlock* join_block =
   9033       CreateJoin(empty_block, current_block(), expr->id());
   9034     set_current_block(join_block);
   9035     return ast_context()->ReturnValue(Pop());
   9036 
   9037   } else {
   9038     ASSERT(ast_context()->IsEffect());
   9039     // In an effect context, we don't need the value of the left subexpression,
   9040     // only its control flow and side effects.  We need an extra block to
   9041     // maintain edge-split form.
   9042     HBasicBlock* empty_block = graph()->CreateBasicBlock();
   9043     HBasicBlock* right_block = graph()->CreateBasicBlock();
   9044     if (is_logical_and) {
   9045       CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
   9046     } else {
   9047       CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
   9048     }
   9049 
   9050     // TODO(kmillikin): Find a way to fix this.  It's ugly that there are
   9051     // actually two empty blocks (one here and one inserted by
   9052     // TestContext::BuildBranch, and that they both have an HSimulate though the
   9053     // second one is not a merge node, and that we really have no good AST ID to
   9054     // put on that first HSimulate.
   9055 
   9056     if (empty_block->HasPredecessor()) {
   9057       empty_block->SetJoinId(expr->id());
   9058     } else {
   9059       empty_block = NULL;
   9060     }
   9061 
   9062     if (right_block->HasPredecessor()) {
   9063       right_block->SetJoinId(expr->RightId());
   9064       set_current_block(right_block);
   9065       CHECK_BAILOUT(VisitForEffect(expr->right()));
   9066       right_block = current_block();
   9067     } else {
   9068       right_block = NULL;
   9069     }
   9070 
   9071     HBasicBlock* join_block =
   9072       CreateJoin(empty_block, right_block, expr->id());
   9073     set_current_block(join_block);
   9074     // We did not materialize any value in the predecessor environments,
   9075     // so there is no need to handle it here.
   9076   }
   9077 }
   9078 
   9079 
   9080 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
   9081   CHECK_ALIVE(VisitForValue(expr->left()));
   9082   CHECK_ALIVE(VisitForValue(expr->right()));
   9083   SetSourcePosition(expr->position());
   9084   HValue* right = Pop();
   9085   HValue* left = Pop();
   9086   HValue* result = BuildBinaryOperation(expr, left, right);
   9087   if (FLAG_emit_opt_code_positions && result->IsBinaryOperation()) {
   9088     HBinaryOperation::cast(result)->SetOperandPositions(
   9089         zone(), expr->left()->position(), expr->right()->position());
   9090   }
   9091   return ast_context()->ReturnValue(result);
   9092 }
   9093 
   9094 
   9095 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
   9096                                                         Expression* sub_expr,
   9097                                                         Handle<String> check) {
   9098   CHECK_ALIVE(VisitForTypeOf(sub_expr));
   9099   SetSourcePosition(expr->position());
   9100   HValue* value = Pop();
   9101   HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
   9102   return ast_context()->ReturnControl(instr, expr->id());
   9103 }
   9104 
   9105 
   9106 static bool IsLiteralCompareBool(Isolate* isolate,
   9107                                  HValue* left,
   9108                                  Token::Value op,
   9109                                  HValue* right) {
   9110   return op == Token::EQ_STRICT &&
   9111       ((left->IsConstant() &&
   9112           HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
   9113        (right->IsConstant() &&
   9114            HConstant::cast(right)->handle(isolate)->IsBoolean()));
   9115 }
   9116 
   9117 
   9118 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
   9119   ASSERT(!HasStackOverflow());
   9120   ASSERT(current_block() != NULL);
   9121   ASSERT(current_block()->HasPredecessor());
   9122 
   9123   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   9124 
   9125   // Check for a few fast cases. The AST visiting behavior must be in sync
   9126   // with the full codegen: We don't push both left and right values onto
   9127   // the expression stack when one side is a special-case literal.
   9128   Expression* sub_expr = NULL;
   9129   Handle<String> check;
   9130   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
   9131     return HandleLiteralCompareTypeof(expr, sub_expr, check);
   9132   }
   9133   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
   9134     return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
   9135   }
   9136   if (expr->IsLiteralCompareNull(&sub_expr)) {
   9137     return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
   9138   }
   9139 
   9140   if (IsClassOfTest(expr)) {
   9141     CallRuntime* call = expr->left()->AsCallRuntime();
   9142     ASSERT(call->arguments()->length() == 1);
   9143     CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9144     HValue* value = Pop();
   9145     Literal* literal = expr->right()->AsLiteral();
   9146     Handle<String> rhs = Handle<String>::cast(literal->value());
   9147     HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
   9148     return ast_context()->ReturnControl(instr, expr->id());
   9149   }
   9150 
   9151   Handle<Type> left_type = expr->left()->bounds().lower;
   9152   Handle<Type> right_type = expr->right()->bounds().lower;
   9153   Handle<Type> combined_type = expr->combined_type();
   9154   Representation combined_rep = Representation::FromType(combined_type);
   9155   Representation left_rep = Representation::FromType(left_type);
   9156   Representation right_rep = Representation::FromType(right_type);
   9157 
   9158   CHECK_ALIVE(VisitForValue(expr->left()));
   9159   CHECK_ALIVE(VisitForValue(expr->right()));
   9160 
   9161   if (FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   9162 
   9163   HValue* right = Pop();
   9164   HValue* left = Pop();
   9165   Token::Value op = expr->op();
   9166 
   9167   if (IsLiteralCompareBool(isolate(), left, op, right)) {
   9168     HCompareObjectEqAndBranch* result =
   9169         New<HCompareObjectEqAndBranch>(left, right);
   9170     return ast_context()->ReturnControl(result, expr->id());
   9171   }
   9172 
   9173   if (op == Token::INSTANCEOF) {
   9174     // Check to see if the rhs of the instanceof is a global function not
   9175     // residing in new space. If it is we assume that the function will stay the
   9176     // same.
   9177     Handle<JSFunction> target = Handle<JSFunction>::null();
   9178     VariableProxy* proxy = expr->right()->AsVariableProxy();
   9179     bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
   9180     if (global_function &&
   9181         current_info()->has_global_object() &&
   9182         !current_info()->global_object()->IsAccessCheckNeeded()) {
   9183       Handle<String> name = proxy->name();
   9184       Handle<GlobalObject> global(current_info()->global_object());
   9185       LookupResult lookup(isolate());
   9186       global->Lookup(*name, &lookup);
   9187       if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
   9188         Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
   9189         // If the function is in new space we assume it's more likely to
   9190         // change and thus prefer the general IC code.
   9191         if (!isolate()->heap()->InNewSpace(*candidate)) {
   9192           target = candidate;
   9193         }
   9194       }
   9195     }
   9196 
   9197     // If the target is not null we have found a known global function that is
   9198     // assumed to stay the same for this instanceof.
   9199     if (target.is_null()) {
   9200       HInstanceOf* result = New<HInstanceOf>(left, right);
   9201       return ast_context()->ReturnInstruction(result, expr->id());
   9202     } else {
   9203       Add<HCheckValue>(right, target);
   9204       HInstanceOfKnownGlobal* result =
   9205         New<HInstanceOfKnownGlobal>(left, target);
   9206       return ast_context()->ReturnInstruction(result, expr->id());
   9207     }
   9208 
   9209     // Code below assumes that we don't fall through.
   9210     UNREACHABLE();
   9211   } else if (op == Token::IN) {
   9212     HValue* function = AddLoadJSBuiltin(Builtins::IN);
   9213     Add<HPushArgument>(left);
   9214     Add<HPushArgument>(right);
   9215     // TODO(olivf) InvokeFunction produces a check for the parameter count,
   9216     // even though we are certain to pass the correct number of arguments here.
   9217     HInstruction* result = New<HInvokeFunction>(function, 2);
   9218     return ast_context()->ReturnInstruction(result, expr->id());
   9219   }
   9220 
   9221   // Cases handled below depend on collected type feedback. They should
   9222   // soft deoptimize when there is no type feedback.
   9223   if (combined_type->Is(Type::None())) {
   9224     Add<HDeoptimize>("Insufficient type feedback for combined type "
   9225                      "of binary operation",
   9226                      Deoptimizer::SOFT);
   9227     combined_type = left_type = right_type = handle(Type::Any(), isolate());
   9228   }
   9229 
   9230   if (combined_type->Is(Type::Receiver())) {
   9231     switch (op) {
   9232       case Token::EQ:
   9233       case Token::EQ_STRICT: {
   9234         // Can we get away with map check and not instance type check?
   9235         if (combined_type->IsClass()) {
   9236           Handle<Map> map = combined_type->AsClass();
   9237           AddCheckMap(left, map);
   9238           AddCheckMap(right, map);
   9239           HCompareObjectEqAndBranch* result =
   9240               New<HCompareObjectEqAndBranch>(left, right);
   9241           if (FLAG_emit_opt_code_positions) {
   9242             result->set_operand_position(zone(), 0, expr->left()->position());
   9243             result->set_operand_position(zone(), 1, expr->right()->position());
   9244           }
   9245           return ast_context()->ReturnControl(result, expr->id());
   9246         } else {
   9247           BuildCheckHeapObject(left);
   9248           Add<HCheckInstanceType>(left, HCheckInstanceType::IS_SPEC_OBJECT);
   9249           BuildCheckHeapObject(right);
   9250           Add<HCheckInstanceType>(right, HCheckInstanceType::IS_SPEC_OBJECT);
   9251           HCompareObjectEqAndBranch* result =
   9252               New<HCompareObjectEqAndBranch>(left, right);
   9253           return ast_context()->ReturnControl(result, expr->id());
   9254         }
   9255       }
   9256       default:
   9257         return Bailout(kUnsupportedNonPrimitiveCompare);
   9258     }
   9259   } else if (combined_type->Is(Type::InternalizedString()) &&
   9260              Token::IsEqualityOp(op)) {
   9261     BuildCheckHeapObject(left);
   9262     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
   9263     BuildCheckHeapObject(right);
   9264     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
   9265     HCompareObjectEqAndBranch* result =
   9266         New<HCompareObjectEqAndBranch>(left, right);
   9267     return ast_context()->ReturnControl(result, expr->id());
   9268   } else if (combined_type->Is(Type::String())) {
   9269     BuildCheckHeapObject(left);
   9270     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
   9271     BuildCheckHeapObject(right);
   9272     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
   9273     HStringCompareAndBranch* result =
   9274         New<HStringCompareAndBranch>(left, right, op);
   9275     return ast_context()->ReturnControl(result, expr->id());
   9276   } else {
   9277     if (combined_rep.IsTagged() || combined_rep.IsNone()) {
   9278       HCompareGeneric* result = New<HCompareGeneric>(left, right, op);
   9279       result->set_observed_input_representation(1, left_rep);
   9280       result->set_observed_input_representation(2, right_rep);
   9281       return ast_context()->ReturnInstruction(result, expr->id());
   9282     } else {
   9283       HCompareNumericAndBranch* result =
   9284           New<HCompareNumericAndBranch>(left, right, op);
   9285       result->set_observed_input_representation(left_rep, right_rep);
   9286       if (FLAG_emit_opt_code_positions) {
   9287         result->SetOperandPositions(zone(),
   9288                                     expr->left()->position(),
   9289                                     expr->right()->position());
   9290       }
   9291       return ast_context()->ReturnControl(result, expr->id());
   9292     }
   9293   }
   9294 }
   9295 
   9296 
   9297 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
   9298                                                      Expression* sub_expr,
   9299                                                      NilValue nil) {
   9300   ASSERT(!HasStackOverflow());
   9301   ASSERT(current_block() != NULL);
   9302   ASSERT(current_block()->HasPredecessor());
   9303   ASSERT(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
   9304   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
   9305   CHECK_ALIVE(VisitForValue(sub_expr));
   9306   HValue* value = Pop();
   9307   if (expr->op() == Token::EQ_STRICT) {
   9308     HConstant* nil_constant = nil == kNullValue
   9309         ? graph()->GetConstantNull()
   9310         : graph()->GetConstantUndefined();
   9311     HCompareObjectEqAndBranch* instr =
   9312         New<HCompareObjectEqAndBranch>(value, nil_constant);
   9313     return ast_context()->ReturnControl(instr, expr->id());
   9314   } else {
   9315     ASSERT_EQ(Token::EQ, expr->op());
   9316     Handle<Type> type = expr->combined_type()->Is(Type::None())
   9317         ? handle(Type::Any(), isolate_)
   9318         : expr->combined_type();
   9319     HIfContinuation continuation;
   9320     BuildCompareNil(value, type, &continuation);
   9321     return ast_context()->ReturnContinuation(&continuation, expr->id());
   9322   }
   9323 }
   9324 
   9325 
   9326 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
   9327   // If we share optimized code between different closures, the
   9328   // this-function is not a constant, except inside an inlined body.
   9329   if (function_state()->outer() != NULL) {
   9330       return New<HConstant>(
   9331           function_state()->compilation_info()->closure());
   9332   } else {
   9333       return New<HThisFunction>();
   9334   }
   9335 }
   9336 
   9337 
   9338 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
   9339     Handle<JSObject> boilerplate_object,
   9340     AllocationSiteUsageContext* site_context) {
   9341   NoObservableSideEffectsScope no_effects(this);
   9342   InstanceType instance_type = boilerplate_object->map()->instance_type();
   9343   ASSERT(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
   9344 
   9345   HType type = instance_type == JS_ARRAY_TYPE
   9346       ? HType::JSArray() : HType::JSObject();
   9347   HValue* object_size_constant = Add<HConstant>(
   9348       boilerplate_object->map()->instance_size());
   9349 
   9350   // We should pull pre-tenure mode from the allocation site.
   9351   // For now, just see what it says, and remark on it if it sez
   9352   // we should pretenure. That means the rudimentary counting in the garbage
   9353   // collector is having an effect.
   9354   PretenureFlag pretenure_flag = isolate()->heap()->GetPretenureMode();
   9355   if (FLAG_allocation_site_pretenuring) {
   9356     pretenure_flag = site_context->current()->GetPretenureMode()
   9357         ? TENURED
   9358         : NOT_TENURED;
   9359   }
   9360 
   9361   HInstruction* object = Add<HAllocate>(object_size_constant, type,
   9362       pretenure_flag, instance_type, site_context->current());
   9363 
   9364   BuildEmitObjectHeader(boilerplate_object, object);
   9365 
   9366   Handle<FixedArrayBase> elements(boilerplate_object->elements());
   9367   int elements_size = (elements->length() > 0 &&
   9368       elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
   9369           elements->Size() : 0;
   9370 
   9371   HInstruction* object_elements = NULL;
   9372   if (elements_size > 0) {
   9373     HValue* object_elements_size = Add<HConstant>(elements_size);
   9374     if (boilerplate_object->HasFastDoubleElements()) {
   9375       object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
   9376           pretenure_flag, FIXED_DOUBLE_ARRAY_TYPE, site_context->current());
   9377     } else {
   9378       object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
   9379           pretenure_flag, FIXED_ARRAY_TYPE, site_context->current());
   9380     }
   9381   }
   9382   BuildInitElementsInObjectHeader(boilerplate_object, object, object_elements);
   9383 
   9384   // Copy object elements if non-COW.
   9385   if (object_elements != NULL) {
   9386     BuildEmitElements(boilerplate_object, elements, object_elements,
   9387                       site_context);
   9388   }
   9389 
   9390   // Copy in-object properties.
   9391   if (boilerplate_object->map()->NumberOfFields() != 0) {
   9392     BuildEmitInObjectProperties(boilerplate_object, object, site_context,
   9393                                 pretenure_flag);
   9394   }
   9395   return object;
   9396 }
   9397 
   9398 
   9399 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
   9400     Handle<JSObject> boilerplate_object,
   9401     HInstruction* object) {
   9402   ASSERT(boilerplate_object->properties()->length() == 0);
   9403 
   9404   Handle<Map> boilerplate_object_map(boilerplate_object->map());
   9405   AddStoreMapConstant(object, boilerplate_object_map);
   9406 
   9407   Handle<Object> properties_field =
   9408       Handle<Object>(boilerplate_object->properties(), isolate());
   9409   ASSERT(*properties_field == isolate()->heap()->empty_fixed_array());
   9410   HInstruction* properties = Add<HConstant>(properties_field);
   9411   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
   9412   Add<HStoreNamedField>(object, access, properties);
   9413 
   9414   if (boilerplate_object->IsJSArray()) {
   9415     Handle<JSArray> boilerplate_array =
   9416         Handle<JSArray>::cast(boilerplate_object);
   9417     Handle<Object> length_field =
   9418         Handle<Object>(boilerplate_array->length(), isolate());
   9419     HInstruction* length = Add<HConstant>(length_field);
   9420 
   9421     ASSERT(boilerplate_array->length()->IsSmi());
   9422     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
   9423         boilerplate_array->GetElementsKind()), length);
   9424   }
   9425 }
   9426 
   9427 
   9428 void HOptimizedGraphBuilder::BuildInitElementsInObjectHeader(
   9429     Handle<JSObject> boilerplate_object,
   9430     HInstruction* object,
   9431     HInstruction* object_elements) {
   9432   ASSERT(boilerplate_object->properties()->length() == 0);
   9433   if (object_elements == NULL) {
   9434     Handle<Object> elements_field =
   9435         Handle<Object>(boilerplate_object->elements(), isolate());
   9436     object_elements = Add<HConstant>(elements_field);
   9437   }
   9438   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
   9439       object_elements);
   9440 }
   9441 
   9442 
   9443 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
   9444     Handle<JSObject> boilerplate_object,
   9445     HInstruction* object,
   9446     AllocationSiteUsageContext* site_context,
   9447     PretenureFlag pretenure_flag) {
   9448   Handle<DescriptorArray> descriptors(
   9449       boilerplate_object->map()->instance_descriptors());
   9450   int limit = boilerplate_object->map()->NumberOfOwnDescriptors();
   9451 
   9452   int copied_fields = 0;
   9453   for (int i = 0; i < limit; i++) {
   9454     PropertyDetails details = descriptors->GetDetails(i);
   9455     if (details.type() != FIELD) continue;
   9456     copied_fields++;
   9457     int index = descriptors->GetFieldIndex(i);
   9458     int property_offset = boilerplate_object->GetInObjectPropertyOffset(index);
   9459     Handle<Name> name(descriptors->GetKey(i));
   9460     Handle<Object> value =
   9461         Handle<Object>(boilerplate_object->InObjectPropertyAt(index),
   9462         isolate());
   9463 
   9464     // The access for the store depends on the type of the boilerplate.
   9465     HObjectAccess access = boilerplate_object->IsJSArray() ?
   9466         HObjectAccess::ForJSArrayOffset(property_offset) :
   9467         HObjectAccess::ForJSObjectOffset(property_offset);
   9468 
   9469     if (value->IsJSObject()) {
   9470       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
   9471       Handle<AllocationSite> current_site = site_context->EnterNewScope();
   9472       HInstruction* result =
   9473           BuildFastLiteral(value_object, site_context);
   9474       site_context->ExitScope(current_site, value_object);
   9475       Add<HStoreNamedField>(object, access, result);
   9476     } else {
   9477       Representation representation = details.representation();
   9478       HInstruction* value_instruction;
   9479 
   9480       if (representation.IsDouble()) {
   9481         // Allocate a HeapNumber box and store the value into it.
   9482         HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
   9483         // This heap number alloc does not have a corresponding
   9484         // AllocationSite. That is okay because
   9485         // 1) it's a child object of another object with a valid allocation site
   9486         // 2) we can just use the mode of the parent object for pretenuring
   9487         HInstruction* double_box =
   9488             Add<HAllocate>(heap_number_constant, HType::HeapNumber(),
   9489                 pretenure_flag, HEAP_NUMBER_TYPE);
   9490         AddStoreMapConstant(double_box,
   9491             isolate()->factory()->heap_number_map());
   9492         Add<HStoreNamedField>(double_box, HObjectAccess::ForHeapNumberValue(),
   9493                               Add<HConstant>(value));
   9494         value_instruction = double_box;
   9495       } else if (representation.IsSmi()) {
   9496         value_instruction = value->IsUninitialized()
   9497             ? graph()->GetConstant0()
   9498             : Add<HConstant>(value);
   9499         // Ensure that value is stored as smi.
   9500         access = access.WithRepresentation(representation);
   9501       } else {
   9502         value_instruction = Add<HConstant>(value);
   9503       }
   9504 
   9505       Add<HStoreNamedField>(object, access, value_instruction);
   9506     }
   9507   }
   9508 
   9509   int inobject_properties = boilerplate_object->map()->inobject_properties();
   9510   HInstruction* value_instruction =
   9511       Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
   9512   for (int i = copied_fields; i < inobject_properties; i++) {
   9513     ASSERT(boilerplate_object->IsJSObject());
   9514     int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
   9515     HObjectAccess access = HObjectAccess::ForJSObjectOffset(property_offset);
   9516     Add<HStoreNamedField>(object, access, value_instruction);
   9517   }
   9518 }
   9519 
   9520 
   9521 void HOptimizedGraphBuilder::BuildEmitElements(
   9522     Handle<JSObject> boilerplate_object,
   9523     Handle<FixedArrayBase> elements,
   9524     HValue* object_elements,
   9525     AllocationSiteUsageContext* site_context) {
   9526   ElementsKind kind = boilerplate_object->map()->elements_kind();
   9527   int elements_length = elements->length();
   9528   HValue* object_elements_length = Add<HConstant>(elements_length);
   9529   BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
   9530 
   9531   // Copy elements backing store content.
   9532   if (elements->IsFixedDoubleArray()) {
   9533     BuildEmitFixedDoubleArray(elements, kind, object_elements);
   9534   } else if (elements->IsFixedArray()) {
   9535     BuildEmitFixedArray(elements, kind, object_elements,
   9536                         site_context);
   9537   } else {
   9538     UNREACHABLE();
   9539   }
   9540 }
   9541 
   9542 
   9543 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
   9544     Handle<FixedArrayBase> elements,
   9545     ElementsKind kind,
   9546     HValue* object_elements) {
   9547   HInstruction* boilerplate_elements = Add<HConstant>(elements);
   9548   int elements_length = elements->length();
   9549   for (int i = 0; i < elements_length; i++) {
   9550     HValue* key_constant = Add<HConstant>(i);
   9551     HInstruction* value_instruction =
   9552         Add<HLoadKeyed>(boilerplate_elements, key_constant,
   9553                         static_cast<HValue*>(NULL), kind,
   9554                         ALLOW_RETURN_HOLE);
   9555     HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
   9556                                            value_instruction, kind);
   9557     store->SetFlag(HValue::kAllowUndefinedAsNaN);
   9558   }
   9559 }
   9560 
   9561 
   9562 void HOptimizedGraphBuilder::BuildEmitFixedArray(
   9563     Handle<FixedArrayBase> elements,
   9564     ElementsKind kind,
   9565     HValue* object_elements,
   9566     AllocationSiteUsageContext* site_context) {
   9567   HInstruction* boilerplate_elements = Add<HConstant>(elements);
   9568   int elements_length = elements->length();
   9569   Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
   9570   for (int i = 0; i < elements_length; i++) {
   9571     Handle<Object> value(fast_elements->get(i), isolate());
   9572     HValue* key_constant = Add<HConstant>(i);
   9573     if (value->IsJSObject()) {
   9574       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
   9575       Handle<AllocationSite> current_site = site_context->EnterNewScope();
   9576       HInstruction* result =
   9577           BuildFastLiteral(value_object, site_context);
   9578       site_context->ExitScope(current_site, value_object);
   9579       Add<HStoreKeyed>(object_elements, key_constant, result, kind);
   9580     } else {
   9581       HInstruction* value_instruction =
   9582           Add<HLoadKeyed>(boilerplate_elements, key_constant,
   9583                           static_cast<HValue*>(NULL), kind,
   9584                           ALLOW_RETURN_HOLE);
   9585       Add<HStoreKeyed>(object_elements, key_constant, value_instruction, kind);
   9586     }
   9587   }
   9588 }
   9589 
   9590 
   9591 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
   9592   ASSERT(!HasStackOverflow());
   9593   ASSERT(current_block() != NULL);
   9594   ASSERT(current_block()->HasPredecessor());
   9595   HInstruction* instr = BuildThisFunction();
   9596   return ast_context()->ReturnInstruction(instr, expr->id());
   9597 }
   9598 
   9599 
   9600 void HOptimizedGraphBuilder::VisitDeclarations(
   9601     ZoneList<Declaration*>* declarations) {
   9602   ASSERT(globals_.is_empty());
   9603   AstVisitor::VisitDeclarations(declarations);
   9604   if (!globals_.is_empty()) {
   9605     Handle<FixedArray> array =
   9606        isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
   9607     for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
   9608     int flags = DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
   9609         DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
   9610         DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
   9611     Add<HDeclareGlobals>(array, flags);
   9612     globals_.Clear();
   9613   }
   9614 }
   9615 
   9616 
   9617 void HOptimizedGraphBuilder::VisitVariableDeclaration(
   9618     VariableDeclaration* declaration) {
   9619   VariableProxy* proxy = declaration->proxy();
   9620   VariableMode mode = declaration->mode();
   9621   Variable* variable = proxy->var();
   9622   bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
   9623   switch (variable->location()) {
   9624     case Variable::UNALLOCATED:
   9625       globals_.Add(variable->name(), zone());
   9626       globals_.Add(variable->binding_needs_init()
   9627                        ? isolate()->factory()->the_hole_value()
   9628                        : isolate()->factory()->undefined_value(), zone());
   9629       return;
   9630     case Variable::PARAMETER:
   9631     case Variable::LOCAL:
   9632       if (hole_init) {
   9633         HValue* value = graph()->GetConstantHole();
   9634         environment()->Bind(variable, value);
   9635       }
   9636       break;
   9637     case Variable::CONTEXT:
   9638       if (hole_init) {
   9639         HValue* value = graph()->GetConstantHole();
   9640         HValue* context = environment()->context();
   9641         HStoreContextSlot* store = Add<HStoreContextSlot>(
   9642             context, variable->index(), HStoreContextSlot::kNoCheck, value);
   9643         if (store->HasObservableSideEffects()) {
   9644           Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
   9645         }
   9646       }
   9647       break;
   9648     case Variable::LOOKUP:
   9649       return Bailout(kUnsupportedLookupSlotInDeclaration);
   9650   }
   9651 }
   9652 
   9653 
   9654 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
   9655     FunctionDeclaration* declaration) {
   9656   VariableProxy* proxy = declaration->proxy();
   9657   Variable* variable = proxy->var();
   9658   switch (variable->location()) {
   9659     case Variable::UNALLOCATED: {
   9660       globals_.Add(variable->name(), zone());
   9661       Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(
   9662           declaration->fun(), current_info()->script());
   9663       // Check for stack-overflow exception.
   9664       if (function.is_null()) return SetStackOverflow();
   9665       globals_.Add(function, zone());
   9666       return;
   9667     }
   9668     case Variable::PARAMETER:
   9669     case Variable::LOCAL: {
   9670       CHECK_ALIVE(VisitForValue(declaration->fun()));
   9671       HValue* value = Pop();
   9672       BindIfLive(variable, value);
   9673       break;
   9674     }
   9675     case Variable::CONTEXT: {
   9676       CHECK_ALIVE(VisitForValue(declaration->fun()));
   9677       HValue* value = Pop();
   9678       HValue* context = environment()->context();
   9679       HStoreContextSlot* store = Add<HStoreContextSlot>(
   9680           context, variable->index(), HStoreContextSlot::kNoCheck, value);
   9681       if (store->HasObservableSideEffects()) {
   9682         Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
   9683       }
   9684       break;
   9685     }
   9686     case Variable::LOOKUP:
   9687       return Bailout(kUnsupportedLookupSlotInDeclaration);
   9688   }
   9689 }
   9690 
   9691 
   9692 void HOptimizedGraphBuilder::VisitModuleDeclaration(
   9693     ModuleDeclaration* declaration) {
   9694   UNREACHABLE();
   9695 }
   9696 
   9697 
   9698 void HOptimizedGraphBuilder::VisitImportDeclaration(
   9699     ImportDeclaration* declaration) {
   9700   UNREACHABLE();
   9701 }
   9702 
   9703 
   9704 void HOptimizedGraphBuilder::VisitExportDeclaration(
   9705     ExportDeclaration* declaration) {
   9706   UNREACHABLE();
   9707 }
   9708 
   9709 
   9710 void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
   9711   UNREACHABLE();
   9712 }
   9713 
   9714 
   9715 void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
   9716   UNREACHABLE();
   9717 }
   9718 
   9719 
   9720 void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
   9721   UNREACHABLE();
   9722 }
   9723 
   9724 
   9725 void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
   9726   UNREACHABLE();
   9727 }
   9728 
   9729 
   9730 void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
   9731   UNREACHABLE();
   9732 }
   9733 
   9734 
   9735 // Generators for inline runtime functions.
   9736 // Support for types.
   9737 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
   9738   ASSERT(call->arguments()->length() == 1);
   9739   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9740   HValue* value = Pop();
   9741   HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
   9742   return ast_context()->ReturnControl(result, call->id());
   9743 }
   9744 
   9745 
   9746 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
   9747   ASSERT(call->arguments()->length() == 1);
   9748   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9749   HValue* value = Pop();
   9750   HHasInstanceTypeAndBranch* result =
   9751       New<HHasInstanceTypeAndBranch>(value,
   9752                                      FIRST_SPEC_OBJECT_TYPE,
   9753                                      LAST_SPEC_OBJECT_TYPE);
   9754   return ast_context()->ReturnControl(result, call->id());
   9755 }
   9756 
   9757 
   9758 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
   9759   ASSERT(call->arguments()->length() == 1);
   9760   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9761   HValue* value = Pop();
   9762   HHasInstanceTypeAndBranch* result =
   9763       New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
   9764   return ast_context()->ReturnControl(result, call->id());
   9765 }
   9766 
   9767 
   9768 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
   9769   ASSERT(call->arguments()->length() == 1);
   9770   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9771   HValue* value = Pop();
   9772   HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
   9773   return ast_context()->ReturnControl(result, call->id());
   9774 }
   9775 
   9776 
   9777 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
   9778   ASSERT(call->arguments()->length() == 1);
   9779   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9780   HValue* value = Pop();
   9781   HHasCachedArrayIndexAndBranch* result =
   9782       New<HHasCachedArrayIndexAndBranch>(value);
   9783   return ast_context()->ReturnControl(result, call->id());
   9784 }
   9785 
   9786 
   9787 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
   9788   ASSERT(call->arguments()->length() == 1);
   9789   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9790   HValue* value = Pop();
   9791   HHasInstanceTypeAndBranch* result =
   9792       New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
   9793   return ast_context()->ReturnControl(result, call->id());
   9794 }
   9795 
   9796 
   9797 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
   9798   ASSERT(call->arguments()->length() == 1);
   9799   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9800   HValue* value = Pop();
   9801   HHasInstanceTypeAndBranch* result =
   9802       New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
   9803   return ast_context()->ReturnControl(result, call->id());
   9804 }
   9805 
   9806 
   9807 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
   9808   ASSERT(call->arguments()->length() == 1);
   9809   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9810   HValue* value = Pop();
   9811   HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
   9812   return ast_context()->ReturnControl(result, call->id());
   9813 }
   9814 
   9815 
   9816 void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
   9817   return Bailout(kInlinedRuntimeFunctionIsNonNegativeSmi);
   9818 }
   9819 
   9820 
   9821 void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
   9822   ASSERT(call->arguments()->length() == 1);
   9823   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9824   HValue* value = Pop();
   9825   HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
   9826   return ast_context()->ReturnControl(result, call->id());
   9827 }
   9828 
   9829 
   9830 void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
   9831     CallRuntime* call) {
   9832   return Bailout(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf);
   9833 }
   9834 
   9835 
   9836 // Support for construct call checks.
   9837 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
   9838   ASSERT(call->arguments()->length() == 0);
   9839   if (function_state()->outer() != NULL) {
   9840     // We are generating graph for inlined function.
   9841     HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
   9842         ? graph()->GetConstantTrue()
   9843         : graph()->GetConstantFalse();
   9844     return ast_context()->ReturnValue(value);
   9845   } else {
   9846     return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
   9847                                         call->id());
   9848   }
   9849 }
   9850 
   9851 
   9852 // Support for arguments.length and arguments[?].
   9853 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
   9854   // Our implementation of arguments (based on this stack frame or an
   9855   // adapter below it) does not work for inlined functions.  This runtime
   9856   // function is blacklisted by AstNode::IsInlineable.
   9857   ASSERT(function_state()->outer() == NULL);
   9858   ASSERT(call->arguments()->length() == 0);
   9859   HInstruction* elements = Add<HArgumentsElements>(false);
   9860   HArgumentsLength* result = New<HArgumentsLength>(elements);
   9861   return ast_context()->ReturnInstruction(result, call->id());
   9862 }
   9863 
   9864 
   9865 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
   9866   // Our implementation of arguments (based on this stack frame or an
   9867   // adapter below it) does not work for inlined functions.  This runtime
   9868   // function is blacklisted by AstNode::IsInlineable.
   9869   ASSERT(function_state()->outer() == NULL);
   9870   ASSERT(call->arguments()->length() == 1);
   9871   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9872   HValue* index = Pop();
   9873   HInstruction* elements = Add<HArgumentsElements>(false);
   9874   HInstruction* length = Add<HArgumentsLength>(elements);
   9875   HInstruction* checked_index = Add<HBoundsCheck>(index, length);
   9876   HAccessArgumentsAt* result = New<HAccessArgumentsAt>(
   9877       elements, length, checked_index);
   9878   return ast_context()->ReturnInstruction(result, call->id());
   9879 }
   9880 
   9881 
   9882 // Support for accessing the class and value fields of an object.
   9883 void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
   9884   // The special form detected by IsClassOfTest is detected before we get here
   9885   // and does not cause a bailout.
   9886   return Bailout(kInlinedRuntimeFunctionClassOf);
   9887 }
   9888 
   9889 
   9890 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
   9891   ASSERT(call->arguments()->length() == 1);
   9892   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9893   HValue* value = Pop();
   9894   HValueOf* result = New<HValueOf>(value);
   9895   return ast_context()->ReturnInstruction(result, call->id());
   9896 }
   9897 
   9898 
   9899 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
   9900   ASSERT(call->arguments()->length() == 2);
   9901   ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
   9902   Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
   9903   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9904   HValue* date = Pop();
   9905   HDateField* result = New<HDateField>(date, index);
   9906   return ast_context()->ReturnInstruction(result, call->id());
   9907 }
   9908 
   9909 
   9910 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
   9911     CallRuntime* call) {
   9912   ASSERT(call->arguments()->length() == 3);
   9913   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9914   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   9915   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
   9916   HValue* value = Pop();
   9917   HValue* index = Pop();
   9918   HValue* string = Pop();
   9919   Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
   9920                          index, value);
   9921   Add<HSimulate>(call->id(), FIXED_SIMULATE);
   9922   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
   9923 }
   9924 
   9925 
   9926 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
   9927     CallRuntime* call) {
   9928   ASSERT(call->arguments()->length() == 3);
   9929   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9930   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   9931   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
   9932   HValue* value = Pop();
   9933   HValue* index = Pop();
   9934   HValue* string = Pop();
   9935   Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
   9936                          index, value);
   9937   Add<HSimulate>(call->id(), FIXED_SIMULATE);
   9938   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
   9939 }
   9940 
   9941 
   9942 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
   9943   ASSERT(call->arguments()->length() == 2);
   9944   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9945   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   9946   HValue* value = Pop();
   9947   HValue* object = Pop();
   9948   // Check if object is a not a smi.
   9949   HBasicBlock* if_smi = graph()->CreateBasicBlock();
   9950   HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
   9951   HBasicBlock* join = graph()->CreateBasicBlock();
   9952   FinishCurrentBlock(New<HIsSmiAndBranch>(object, if_smi, if_heap_object));
   9953   Goto(if_smi, join);
   9954 
   9955   // Check if object is a JSValue.
   9956   set_current_block(if_heap_object);
   9957   HHasInstanceTypeAndBranch* typecheck =
   9958       New<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
   9959   HBasicBlock* if_js_value = graph()->CreateBasicBlock();
   9960   HBasicBlock* not_js_value = graph()->CreateBasicBlock();
   9961   typecheck->SetSuccessorAt(0, if_js_value);
   9962   typecheck->SetSuccessorAt(1, not_js_value);
   9963   FinishCurrentBlock(typecheck);
   9964   Goto(not_js_value, join);
   9965 
   9966   // Create in-object property store to kValueOffset.
   9967   set_current_block(if_js_value);
   9968   Add<HStoreNamedField>(object,
   9969       HObjectAccess::ForJSObjectOffset(JSValue::kValueOffset), value);
   9970   Goto(if_js_value, join);
   9971   join->SetJoinId(call->id());
   9972   set_current_block(join);
   9973   return ast_context()->ReturnValue(value);
   9974 }
   9975 
   9976 
   9977 // Fast support for charCodeAt(n).
   9978 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
   9979   ASSERT(call->arguments()->length() == 2);
   9980   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9981   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   9982   HValue* index = Pop();
   9983   HValue* string = Pop();
   9984   HInstruction* result = BuildStringCharCodeAt(string, index);
   9985   return ast_context()->ReturnInstruction(result, call->id());
   9986 }
   9987 
   9988 
   9989 // Fast support for string.charAt(n) and string[n].
   9990 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
   9991   ASSERT(call->arguments()->length() == 1);
   9992   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   9993   HValue* char_code = Pop();
   9994   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
   9995   return ast_context()->ReturnInstruction(result, call->id());
   9996 }
   9997 
   9998 
   9999 // Fast support for string.charAt(n) and string[n].
   10000 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
   10001   ASSERT(call->arguments()->length() == 2);
   10002   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10003   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   10004   HValue* index = Pop();
   10005   HValue* string = Pop();
   10006   HInstruction* char_code = BuildStringCharCodeAt(string, index);
   10007   AddInstruction(char_code);
   10008   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
   10009   return ast_context()->ReturnInstruction(result, call->id());
   10010 }
   10011 
   10012 
   10013 // Fast support for object equality testing.
   10014 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
   10015   ASSERT(call->arguments()->length() == 2);
   10016   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10017   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   10018   HValue* right = Pop();
   10019   HValue* left = Pop();
   10020   HCompareObjectEqAndBranch* result =
   10021       New<HCompareObjectEqAndBranch>(left, right);
   10022   return ast_context()->ReturnControl(result, call->id());
   10023 }
   10024 
   10025 
   10026 void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) {
   10027   // %_Log is ignored in optimized code.
   10028   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
   10029 }
   10030 
   10031 
   10032 // Fast support for StringAdd.
   10033 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
   10034   ASSERT_EQ(2, call->arguments()->length());
   10035   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10036   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   10037   HValue* right = Pop();
   10038   HValue* left = Pop();
   10039   HInstruction* result =
   10040       NewUncasted<HStringAdd>(left, right, STRING_ADD_CHECK_BOTH);
   10041   return ast_context()->ReturnInstruction(result, call->id());
   10042 }
   10043 
   10044 
   10045 // Fast support for SubString.
   10046 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
   10047   ASSERT_EQ(3, call->arguments()->length());
   10048   CHECK_ALIVE(VisitArgumentList(call->arguments()));
   10049   HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
   10050   Drop(3);
   10051   return ast_context()->ReturnInstruction(result, call->id());
   10052 }
   10053 
   10054 
   10055 // Fast support for StringCompare.
   10056 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
   10057   ASSERT_EQ(2, call->arguments()->length());
   10058   CHECK_ALIVE(VisitArgumentList(call->arguments()));
   10059   HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
   10060   Drop(2);
   10061   return ast_context()->ReturnInstruction(result, call->id());
   10062 }
   10063 
   10064 
   10065 // Support for direct calls from JavaScript to native RegExp code.
   10066 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
   10067   ASSERT_EQ(4, call->arguments()->length());
   10068   CHECK_ALIVE(VisitArgumentList(call->arguments()));
   10069   HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
   10070   Drop(4);
   10071   return ast_context()->ReturnInstruction(result, call->id());
   10072 }
   10073 
   10074 
   10075 // Construct a RegExp exec result with two in-object properties.
   10076 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
   10077   ASSERT_EQ(3, call->arguments()->length());
   10078   CHECK_ALIVE(VisitArgumentList(call->arguments()));
   10079   HCallStub* result = New<HCallStub>(CodeStub::RegExpConstructResult, 3);
   10080   Drop(3);
   10081   return ast_context()->ReturnInstruction(result, call->id());
   10082 }
   10083 
   10084 
   10085 // Support for fast native caches.
   10086 void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
   10087   return Bailout(kInlinedRuntimeFunctionGetFromCache);
   10088 }
   10089 
   10090 
   10091 // Fast support for number to string.
   10092 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
   10093   ASSERT_EQ(1, call->arguments()->length());
   10094   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10095   HValue* number = Pop();
   10096   HValue* result = BuildNumberToString(
   10097       number, handle(Type::Number(), isolate()));
   10098   return ast_context()->ReturnValue(result);
   10099 }
   10100 
   10101 
   10102 // Fast call for custom callbacks.
   10103 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
   10104   // 1 ~ The function to call is not itself an argument to the call.
   10105   int arg_count = call->arguments()->length() - 1;
   10106   ASSERT(arg_count >= 1);  // There's always at least a receiver.
   10107 
   10108   for (int i = 0; i < arg_count; ++i) {
   10109     CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
   10110   }
   10111   CHECK_ALIVE(VisitForValue(call->arguments()->last()));
   10112 
   10113   HValue* function = Pop();
   10114 
   10115   // Branch for function proxies, or other non-functions.
   10116   HHasInstanceTypeAndBranch* typecheck =
   10117       New<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
   10118   HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
   10119   HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
   10120   HBasicBlock* join = graph()->CreateBasicBlock();
   10121   typecheck->SetSuccessorAt(0, if_jsfunction);
   10122   typecheck->SetSuccessorAt(1, if_nonfunction);
   10123   FinishCurrentBlock(typecheck);
   10124 
   10125   set_current_block(if_jsfunction);
   10126   HInstruction* invoke_result = Add<HInvokeFunction>(function, arg_count);
   10127   Drop(arg_count);
   10128   Push(invoke_result);
   10129   Goto(if_jsfunction, join);
   10130 
   10131   set_current_block(if_nonfunction);
   10132   HInstruction* call_result = Add<HCallFunction>(function, arg_count);
   10133   Drop(arg_count);
   10134   Push(call_result);
   10135   Goto(if_nonfunction, join);
   10136 
   10137   set_current_block(join);
   10138   join->SetJoinId(call->id());
   10139   return ast_context()->ReturnValue(Pop());
   10140 }
   10141 
   10142 
   10143 // Fast call to math functions.
   10144 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
   10145   ASSERT_EQ(2, call->arguments()->length());
   10146   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10147   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
   10148   HValue* right = Pop();
   10149   HValue* left = Pop();
   10150   HInstruction* result = NewUncasted<HPower>(left, right);
   10151   return ast_context()->ReturnInstruction(result, call->id());
   10152 }
   10153 
   10154 
   10155 void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
   10156   ASSERT_EQ(1, call->arguments()->length());
   10157   CHECK_ALIVE(VisitArgumentList(call->arguments()));
   10158   HCallStub* result = New<HCallStub>(CodeStub::TranscendentalCache, 1);
   10159   result->set_transcendental_type(TranscendentalCache::LOG);
   10160   Drop(1);
   10161   return ast_context()->ReturnInstruction(result, call->id());
   10162 }
   10163 
   10164 
   10165 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
   10166   ASSERT(call->arguments()->length() == 1);
   10167   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10168   HValue* value = Pop();
   10169   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
   10170   return ast_context()->ReturnInstruction(result, call->id());
   10171 }
   10172 
   10173 
   10174 // Check whether two RegExps are equivalent
   10175 void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
   10176   return Bailout(kInlinedRuntimeFunctionIsRegExpEquivalent);
   10177 }
   10178 
   10179 
   10180 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
   10181   ASSERT(call->arguments()->length() == 1);
   10182   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
   10183   HValue* value = Pop();
   10184   HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
   10185   return ast_context()->ReturnInstruction(result, call->id());
   10186 }
   10187 
   10188 
   10189 void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
   10190   return Bailout(kInlinedRuntimeFunctionFastAsciiArrayJoin);
   10191 }
   10192 
   10193 
   10194 // Support for generators.
   10195 void HOptimizedGraphBuilder::GenerateGeneratorNext(CallRuntime* call) {
   10196   return Bailout(kInlinedRuntimeFunctionGeneratorNext);
   10197 }
   10198 
   10199 
   10200 void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
   10201   return Bailout(kInlinedRuntimeFunctionGeneratorThrow);
   10202 }
   10203 
   10204 
   10205 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
   10206     CallRuntime* call) {
   10207   Add<HDebugBreak>();
   10208   return ast_context()->ReturnValue(graph()->GetConstant0());
   10209 }
   10210 
   10211 
   10212 #undef CHECK_BAILOUT
   10213 #undef CHECK_ALIVE
   10214 
   10215 
   10216 HEnvironment::HEnvironment(HEnvironment* outer,
   10217                            Scope* scope,
   10218                            Handle<JSFunction> closure,
   10219                            Zone* zone)
   10220     : closure_(closure),
   10221       values_(0, zone),
   10222       frame_type_(JS_FUNCTION),
   10223       parameter_count_(0),
   10224       specials_count_(1),
   10225       local_count_(0),
   10226       outer_(outer),
   10227       entry_(NULL),
   10228       pop_count_(0),
   10229       push_count_(0),
   10230       ast_id_(BailoutId::None()),
   10231       zone_(zone) {
   10232   Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
   10233 }
   10234 
   10235 
   10236 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
   10237     : values_(0, zone),
   10238       frame_type_(STUB),
   10239       parameter_count_(parameter_count),
   10240       specials_count_(1),
   10241       local_count_(0),
   10242       outer_(NULL),
   10243       entry_(NULL),
   10244       pop_count_(0),
   10245       push_count_(0),
   10246       ast_id_(BailoutId::None()),
   10247       zone_(zone) {
   10248   Initialize(parameter_count, 0, 0);
   10249 }
   10250 
   10251 
   10252 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
   10253     : values_(0, zone),
   10254       frame_type_(JS_FUNCTION),
   10255       parameter_count_(0),
   10256       specials_count_(0),
   10257       local_count_(0),
   10258       outer_(NULL),
   10259       entry_(NULL),
   10260       pop_count_(0),
   10261       push_count_(0),
   10262       ast_id_(other->ast_id()),
   10263       zone_(zone) {
   10264   Initialize(other);
   10265 }
   10266 
   10267 
   10268 HEnvironment::HEnvironment(HEnvironment* outer,
   10269                            Handle<JSFunction> closure,
   10270                            FrameType frame_type,
   10271                            int arguments,
   10272                            Zone* zone)
   10273     : closure_(closure),
   10274       values_(arguments, zone),
   10275       frame_type_(frame_type),
   10276       parameter_count_(arguments),
   10277       specials_count_(0),
   10278       local_count_(0),
   10279       outer_(outer),
   10280       entry_(NULL),
   10281       pop_count_(0),
   10282       push_count_(0),
   10283       ast_id_(BailoutId::None()),
   10284       zone_(zone) {
   10285 }
   10286 
   10287 
   10288 void HEnvironment::Initialize(int parameter_count,
   10289                               int local_count,
   10290                               int stack_height) {
   10291   parameter_count_ = parameter_count;
   10292   local_count_ = local_count;
   10293 
   10294   // Avoid reallocating the temporaries' backing store on the first Push.
   10295   int total = parameter_count + specials_count_ + local_count + stack_height;
   10296   values_.Initialize(total + 4, zone());
   10297   for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
   10298 }
   10299 
   10300 
   10301 void HEnvironment::Initialize(const HEnvironment* other) {
   10302   closure_ = other->closure();
   10303   values_.AddAll(other->values_, zone());
   10304   assigned_variables_.Union(other->assigned_variables_, zone());
   10305   frame_type_ = other->frame_type_;
   10306   parameter_count_ = other->parameter_count_;
   10307   local_count_ = other->local_count_;
   10308   if (other->outer_ != NULL) outer_ = other->outer_->Copy();  // Deep copy.
   10309   entry_ = other->entry_;
   10310   pop_count_ = other->pop_count_;
   10311   push_count_ = other->push_count_;
   10312   specials_count_ = other->specials_count_;
   10313   ast_id_ = other->ast_id_;
   10314 }
   10315 
   10316 
   10317 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
   10318   ASSERT(!block->IsLoopHeader());
   10319   ASSERT(values_.length() == other->values_.length());
   10320 
   10321   int length = values_.length();
   10322   for (int i = 0; i < length; ++i) {
   10323     HValue* value = values_[i];
   10324     if (value != NULL && value->IsPhi() && value->block() == block) {
   10325       // There is already a phi for the i'th value.
   10326       HPhi* phi = HPhi::cast(value);
   10327       // Assert index is correct and that we haven't missed an incoming edge.
   10328       ASSERT(phi->merged_index() == i || !phi->HasMergedIndex());
   10329       ASSERT(phi->OperandCount() == block->predecessors()->length());
   10330       phi->AddInput(other->values_[i]);
   10331     } else if (values_[i] != other->values_[i]) {
   10332       // There is a fresh value on the incoming edge, a phi is needed.
   10333       ASSERT(values_[i] != NULL && other->values_[i] != NULL);
   10334       HPhi* phi = block->AddNewPhi(i);
   10335       HValue* old_value = values_[i];
   10336       for (int j = 0; j < block->predecessors()->length(); j++) {
   10337         phi->AddInput(old_value);
   10338       }
   10339       phi->AddInput(other->values_[i]);
   10340       this->values_[i] = phi;
   10341     }
   10342   }
   10343 }
   10344 
   10345 
   10346 void HEnvironment::Bind(int index, HValue* value) {
   10347   ASSERT(value != NULL);
   10348   assigned_variables_.Add(index, zone());
   10349   values_[index] = value;
   10350 }
   10351 
   10352 
   10353 bool HEnvironment::HasExpressionAt(int index) const {
   10354   return index >= parameter_count_ + specials_count_ + local_count_;
   10355 }
   10356 
   10357 
   10358 bool HEnvironment::ExpressionStackIsEmpty() const {
   10359   ASSERT(length() >= first_expression_index());
   10360   return length() == first_expression_index();
   10361 }
   10362 
   10363 
   10364 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
   10365   int count = index_from_top + 1;
   10366   int index = values_.length() - count;
   10367   ASSERT(HasExpressionAt(index));
   10368   // The push count must include at least the element in question or else
   10369   // the new value will not be included in this environment's history.
   10370   if (push_count_ < count) {
   10371     // This is the same effect as popping then re-pushing 'count' elements.
   10372     pop_count_ += (count - push_count_);
   10373     push_count_ = count;
   10374   }
   10375   values_[index] = value;
   10376 }
   10377 
   10378 
   10379 void HEnvironment::Drop(int count) {
   10380   for (int i = 0; i < count; ++i) {
   10381     Pop();
   10382   }
   10383 }
   10384 
   10385 
   10386 HEnvironment* HEnvironment::Copy() const {
   10387   return new(zone()) HEnvironment(this, zone());
   10388 }
   10389 
   10390 
   10391 HEnvironment* HEnvironment::CopyWithoutHistory() const {
   10392   HEnvironment* result = Copy();
   10393   result->ClearHistory();
   10394   return result;
   10395 }
   10396 
   10397 
   10398 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
   10399   HEnvironment* new_env = Copy();
   10400   for (int i = 0; i < values_.length(); ++i) {
   10401     HPhi* phi = loop_header->AddNewPhi(i);
   10402     phi->AddInput(values_[i]);
   10403     new_env->values_[i] = phi;
   10404   }
   10405   new_env->ClearHistory();
   10406   return new_env;
   10407 }
   10408 
   10409 
   10410 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
   10411                                                   Handle<JSFunction> target,
   10412                                                   FrameType frame_type,
   10413                                                   int arguments) const {
   10414   HEnvironment* new_env =
   10415       new(zone()) HEnvironment(outer, target, frame_type,
   10416                                arguments + 1, zone());
   10417   for (int i = 0; i <= arguments; ++i) {  // Include receiver.
   10418     new_env->Push(ExpressionStackAt(arguments - i));
   10419   }
   10420   new_env->ClearHistory();
   10421   return new_env;
   10422 }
   10423 
   10424 
   10425 HEnvironment* HEnvironment::CopyForInlining(
   10426     Handle<JSFunction> target,
   10427     int arguments,
   10428     FunctionLiteral* function,
   10429     HConstant* undefined,
   10430     InliningKind inlining_kind,
   10431     bool undefined_receiver) const {
   10432   ASSERT(frame_type() == JS_FUNCTION);
   10433 
   10434   // Outer environment is a copy of this one without the arguments.
   10435   int arity = function->scope()->num_parameters();
   10436 
   10437   HEnvironment* outer = Copy();
   10438   outer->Drop(arguments + 1);  // Including receiver.
   10439   outer->ClearHistory();
   10440 
   10441   if (inlining_kind == CONSTRUCT_CALL_RETURN) {
   10442     // Create artificial constructor stub environment.  The receiver should
   10443     // actually be the constructor function, but we pass the newly allocated
   10444     // object instead, DoComputeConstructStubFrame() relies on that.
   10445     outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
   10446   } else if (inlining_kind == GETTER_CALL_RETURN) {
   10447     // We need an additional StackFrame::INTERNAL frame for restoring the
   10448     // correct context.
   10449     outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
   10450   } else if (inlining_kind == SETTER_CALL_RETURN) {
   10451     // We need an additional StackFrame::INTERNAL frame for temporarily saving
   10452     // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
   10453     outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
   10454   }
   10455 
   10456   if (arity != arguments) {
   10457     // Create artificial arguments adaptation environment.
   10458     outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
   10459   }
   10460 
   10461   HEnvironment* inner =
   10462       new(zone()) HEnvironment(outer, function->scope(), target, zone());
   10463   // Get the argument values from the original environment.
   10464   for (int i = 0; i <= arity; ++i) {  // Include receiver.
   10465     HValue* push = (i <= arguments) ?
   10466         ExpressionStackAt(arguments - i) : undefined;
   10467     inner->SetValueAt(i, push);
   10468   }
   10469   // If the function we are inlining is a strict mode function or a
   10470   // builtin function, pass undefined as the receiver for function
   10471   // calls (instead of the global receiver).
   10472   if (undefined_receiver) {
   10473     inner->SetValueAt(0, undefined);
   10474   }
   10475   inner->SetValueAt(arity + 1, context());
   10476   for (int i = arity + 2; i < inner->length(); ++i) {
   10477     inner->SetValueAt(i, undefined);
   10478   }
   10479 
   10480   inner->set_ast_id(BailoutId::FunctionEntry());
   10481   return inner;
   10482 }
   10483 
   10484 
   10485 void HEnvironment::PrintTo(StringStream* stream) {
   10486   for (int i = 0; i < length(); i++) {
   10487     if (i == 0) stream->Add("parameters\n");
   10488     if (i == parameter_count()) stream->Add("specials\n");
   10489     if (i == parameter_count() + specials_count()) stream->Add("locals\n");
   10490     if (i == parameter_count() + specials_count() + local_count()) {
   10491       stream->Add("expressions\n");
   10492     }
   10493     HValue* val = values_.at(i);
   10494     stream->Add("%d: ", i);
   10495     if (val != NULL) {
   10496       val->PrintNameTo(stream);
   10497     } else {
   10498       stream->Add("NULL");
   10499     }
   10500     stream->Add("\n");
   10501   }
   10502   PrintF("\n");
   10503 }
   10504 
   10505 
   10506 void HEnvironment::PrintToStd() {
   10507   HeapStringAllocator string_allocator;
   10508   StringStream trace(&string_allocator);
   10509   PrintTo(&trace);
   10510   PrintF("%s", *trace.ToCString());
   10511 }
   10512 
   10513 
   10514 void HTracer::TraceCompilation(CompilationInfo* info) {
   10515   Tag tag(this, "compilation");
   10516   if (info->IsOptimizing()) {
   10517     Handle<String> name = info->function()->debug_name();
   10518     PrintStringProperty("name", *name->ToCString());
   10519     PrintStringProperty("method", *name->ToCString());
   10520   } else {
   10521     CodeStub::Major major_key = info->code_stub()->MajorKey();
   10522     PrintStringProperty("name", CodeStub::MajorName(major_key, false));
   10523     PrintStringProperty("method", "stub");
   10524   }
   10525   PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
   10526 }
   10527 
   10528 
   10529 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
   10530   ASSERT(!chunk->isolate()->concurrent_recompilation_enabled());
   10531   AllowHandleDereference allow_deref;
   10532   AllowDeferredHandleDereference allow_deferred_deref;
   10533   Trace(name, chunk->graph(), chunk);
   10534 }
   10535 
   10536 
   10537 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
   10538   ASSERT(!graph->isolate()->concurrent_recompilation_enabled());
   10539   AllowHandleDereference allow_deref;
   10540   AllowDeferredHandleDereference allow_deferred_deref;
   10541   Trace(name, graph, NULL);
   10542 }
   10543 
   10544 
   10545 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
   10546   Tag tag(this, "cfg");
   10547   PrintStringProperty("name", name);
   10548   const ZoneList<HBasicBlock*>* blocks = graph->blocks();
   10549   for (int i = 0; i < blocks->length(); i++) {
   10550     HBasicBlock* current = blocks->at(i);
   10551     Tag block_tag(this, "block");
   10552     PrintBlockProperty("name", current->block_id());
   10553     PrintIntProperty("from_bci", -1);
   10554     PrintIntProperty("to_bci", -1);
   10555 
   10556     if (!current->predecessors()->is_empty()) {
   10557       PrintIndent();
   10558       trace_.Add("predecessors");
   10559       for (int j = 0; j < current->predecessors()->length(); ++j) {
   10560         trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
   10561       }
   10562       trace_.Add("\n");
   10563     } else {
   10564       PrintEmptyProperty("predecessors");
   10565     }
   10566 
   10567     if (current->end()->SuccessorCount() == 0) {
   10568       PrintEmptyProperty("successors");
   10569     } else  {
   10570       PrintIndent();
   10571       trace_.Add("successors");
   10572       for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
   10573         trace_.Add(" \"B%d\"", it.Current()->block_id());
   10574       }
   10575       trace_.Add("\n");
   10576     }
   10577 
   10578     PrintEmptyProperty("xhandlers");
   10579     const char* flags = current->IsLoopSuccessorDominator()
   10580         ? "dom-loop-succ"
   10581         : "";
   10582     PrintStringProperty("flags", flags);
   10583 
   10584     if (current->dominator() != NULL) {
   10585       PrintBlockProperty("dominator", current->dominator()->block_id());
   10586     }
   10587 
   10588     PrintIntProperty("loop_depth", current->LoopNestingDepth());
   10589 
   10590     if (chunk != NULL) {
   10591       int first_index = current->first_instruction_index();
   10592       int last_index = current->last_instruction_index();
   10593       PrintIntProperty(
   10594           "first_lir_id",
   10595           LifetimePosition::FromInstructionIndex(first_index).Value());
   10596       PrintIntProperty(
   10597           "last_lir_id",
   10598           LifetimePosition::FromInstructionIndex(last_index).Value());
   10599     }
   10600 
   10601     {
   10602       Tag states_tag(this, "states");
   10603       Tag locals_tag(this, "locals");
   10604       int total = current->phis()->length();
   10605       PrintIntProperty("size", current->phis()->length());
   10606       PrintStringProperty("method", "None");
   10607       for (int j = 0; j < total; ++j) {
   10608         HPhi* phi = current->phis()->at(j);
   10609         PrintIndent();
   10610         trace_.Add("%d ", phi->merged_index());
   10611         phi->PrintNameTo(&trace_);
   10612         trace_.Add(" ");
   10613         phi->PrintTo(&trace_);
   10614         trace_.Add("\n");
   10615       }
   10616     }
   10617 
   10618     {
   10619       Tag HIR_tag(this, "HIR");
   10620       for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
   10621         HInstruction* instruction = it.Current();
   10622         int bci = FLAG_emit_opt_code_positions && instruction->has_position() ?
   10623             instruction->position() : 0;
   10624         int uses = instruction->UseCount();
   10625         PrintIndent();
   10626         trace_.Add("%d %d ", bci, uses);
   10627         instruction->PrintNameTo(&trace_);
   10628         trace_.Add(" ");
   10629         instruction->PrintTo(&trace_);
   10630         trace_.Add(" <|@\n");
   10631       }
   10632     }
   10633 
   10634 
   10635     if (chunk != NULL) {
   10636       Tag LIR_tag(this, "LIR");
   10637       int first_index = current->first_instruction_index();
   10638       int last_index = current->last_instruction_index();
   10639       if (first_index != -1 && last_index != -1) {
   10640         const ZoneList<LInstruction*>* instructions = chunk->instructions();
   10641         for (int i = first_index; i <= last_index; ++i) {
   10642           LInstruction* linstr = instructions->at(i);
   10643           if (linstr != NULL) {
   10644             PrintIndent();
   10645             trace_.Add("%d ",
   10646                        LifetimePosition::FromInstructionIndex(i).Value());
   10647             linstr->PrintTo(&trace_);
   10648             trace_.Add(" [hir:");
   10649             linstr->hydrogen_value()->PrintNameTo(&trace_);
   10650             trace_.Add("]");
   10651             trace_.Add(" <|@\n");
   10652           }
   10653         }
   10654       }
   10655     }
   10656   }
   10657 }
   10658 
   10659 
   10660 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
   10661   Tag tag(this, "intervals");
   10662   PrintStringProperty("name", name);
   10663 
   10664   const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
   10665   for (int i = 0; i < fixed_d->length(); ++i) {
   10666     TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
   10667   }
   10668 
   10669   const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
   10670   for (int i = 0; i < fixed->length(); ++i) {
   10671     TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
   10672   }
   10673 
   10674   const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
   10675   for (int i = 0; i < live_ranges->length(); ++i) {
   10676     TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
   10677   }
   10678 }
   10679 
   10680 
   10681 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
   10682                              Zone* zone) {
   10683   if (range != NULL && !range->IsEmpty()) {
   10684     PrintIndent();
   10685     trace_.Add("%d %s", range->id(), type);
   10686     if (range->HasRegisterAssigned()) {
   10687       LOperand* op = range->CreateAssignedOperand(zone);
   10688       int assigned_reg = op->index();
   10689       if (op->IsDoubleRegister()) {
   10690         trace_.Add(" \"%s\"",
   10691                    DoubleRegister::AllocationIndexToString(assigned_reg));
   10692       } else {
   10693         ASSERT(op->IsRegister());
   10694         trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
   10695       }
   10696     } else if (range->IsSpilled()) {
   10697       LOperand* op = range->TopLevel()->GetSpillOperand();
   10698       if (op->IsDoubleStackSlot()) {
   10699         trace_.Add(" \"double_stack:%d\"", op->index());
   10700       } else {
   10701         ASSERT(op->IsStackSlot());
   10702         trace_.Add(" \"stack:%d\"", op->index());
   10703       }
   10704     }
   10705     int parent_index = -1;
   10706     if (range->IsChild()) {
   10707       parent_index = range->parent()->id();
   10708     } else {
   10709       parent_index = range->id();
   10710     }
   10711     LOperand* op = range->FirstHint();
   10712     int hint_index = -1;
   10713     if (op != NULL && op->IsUnallocated()) {
   10714       hint_index = LUnallocated::cast(op)->virtual_register();
   10715     }
   10716     trace_.Add(" %d %d", parent_index, hint_index);
   10717     UseInterval* cur_interval = range->first_interval();
   10718     while (cur_interval != NULL && range->Covers(cur_interval->start())) {
   10719       trace_.Add(" [%d, %d[",
   10720                  cur_interval->start().Value(),
   10721                  cur_interval->end().Value());
   10722       cur_interval = cur_interval->next();
   10723     }
   10724 
   10725     UsePosition* current_pos = range->first_pos();
   10726     while (current_pos != NULL) {
   10727       if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
   10728         trace_.Add(" %d M", current_pos->pos().Value());
   10729       }
   10730       current_pos = current_pos->next();
   10731     }
   10732 
   10733     trace_.Add(" \"\"\n");
   10734   }
   10735 }
   10736 
   10737 
   10738 void HTracer::FlushToFile() {
   10739   AppendChars(filename_.start(), *trace_.ToCString(), trace_.length(), false);
   10740   trace_.Reset();
   10741 }
   10742 
   10743 
   10744 void HStatistics::Initialize(CompilationInfo* info) {
   10745   if (info->shared_info().is_null()) return;
   10746   source_size_ += info->shared_info()->SourceSize();
   10747 }
   10748 
   10749 
   10750 void HStatistics::Print() {
   10751   PrintF("Timing results:\n");
   10752   TimeDelta sum;
   10753   for (int i = 0; i < times_.length(); ++i) {
   10754     sum += times_[i];
   10755   }
   10756 
   10757   for (int i = 0; i < names_.length(); ++i) {
   10758     PrintF("%32s", names_[i]);
   10759     double ms = times_[i].InMillisecondsF();
   10760     double percent = times_[i].PercentOf(sum);
   10761     PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
   10762 
   10763     unsigned size = sizes_[i];
   10764     double size_percent = static_cast<double>(size) * 100 / total_size_;
   10765     PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
   10766   }
   10767 
   10768   PrintF("----------------------------------------"
   10769          "---------------------------------------\n");
   10770   TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
   10771   PrintF("%32s %8.3f ms / %4.1f %% \n",
   10772          "Create graph",
   10773          create_graph_.InMillisecondsF(),
   10774          create_graph_.PercentOf(total));
   10775   PrintF("%32s %8.3f ms / %4.1f %% \n",
   10776          "Optimize graph",
   10777          optimize_graph_.InMillisecondsF(),
   10778          optimize_graph_.PercentOf(total));
   10779   PrintF("%32s %8.3f ms / %4.1f %% \n",
   10780          "Generate and install code",
   10781          generate_code_.InMillisecondsF(),
   10782          generate_code_.PercentOf(total));
   10783   PrintF("----------------------------------------"
   10784          "---------------------------------------\n");
   10785   PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
   10786          "Total",
   10787          total.InMillisecondsF(),
   10788          total.TimesOf(full_code_gen_));
   10789 
   10790   double source_size_in_kb = static_cast<double>(source_size_) / 1024;
   10791   double normalized_time =  source_size_in_kb > 0
   10792       ? total.InMillisecondsF() / source_size_in_kb
   10793       : 0;
   10794   double normalized_size_in_kb = source_size_in_kb > 0
   10795       ? total_size_ / 1024 / source_size_in_kb
   10796       : 0;
   10797   PrintF("%32s %8.3f ms           %7.3f kB allocated\n",
   10798          "Average per kB source",
   10799          normalized_time, normalized_size_in_kb);
   10800 }
   10801 
   10802 
   10803 void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
   10804   total_size_ += size;
   10805   for (int i = 0; i < names_.length(); ++i) {
   10806     if (strcmp(names_[i], name) == 0) {
   10807       times_[i] += time;
   10808       sizes_[i] += size;
   10809       return;
   10810     }
   10811   }
   10812   names_.Add(name);
   10813   times_.Add(time);
   10814   sizes_.Add(size);
   10815 }
   10816 
   10817 
   10818 HPhase::~HPhase() {
   10819   if (ShouldProduceTraceOutput()) {
   10820     isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
   10821   }
   10822 
   10823 #ifdef DEBUG
   10824   graph_->Verify(false);  // No full verify.
   10825 #endif
   10826 }
   10827 
   10828 } }  // namespace v8::internal
   10829