Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "misched"
     16 
     17 #include "HexagonMachineScheduler.h"
     18 #include "llvm/CodeGen/MachineLoopInfo.h"
     19 #include "llvm/IR/Function.h"
     20 
     21 using namespace llvm;
     22 
     23 /// Platform specific modifications to DAG.
     24 void VLIWMachineScheduler::postprocessDAG() {
     25   SUnit* LastSequentialCall = NULL;
     26   // Currently we only catch the situation when compare gets scheduled
     27   // before preceding call.
     28   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
     29     // Remember the call.
     30     if (SUnits[su].getInstr()->isCall())
     31       LastSequentialCall = &(SUnits[su]);
     32     // Look for a compare that defines a predicate.
     33     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
     34       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
     35   }
     36 }
     37 
     38 /// Check if scheduling of this SU is possible
     39 /// in the current packet.
     40 /// It is _not_ precise (statefull), it is more like
     41 /// another heuristic. Many corner cases are figured
     42 /// empirically.
     43 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
     44   if (!SU || !SU->getInstr())
     45     return false;
     46 
     47   // First see if the pipeline could receive this instruction
     48   // in the current cycle.
     49   switch (SU->getInstr()->getOpcode()) {
     50   default:
     51     if (!ResourcesModel->canReserveResources(SU->getInstr()))
     52       return false;
     53   case TargetOpcode::EXTRACT_SUBREG:
     54   case TargetOpcode::INSERT_SUBREG:
     55   case TargetOpcode::SUBREG_TO_REG:
     56   case TargetOpcode::REG_SEQUENCE:
     57   case TargetOpcode::IMPLICIT_DEF:
     58   case TargetOpcode::COPY:
     59   case TargetOpcode::INLINEASM:
     60     break;
     61   }
     62 
     63   // Now see if there are no other dependencies to instructions already
     64   // in the packet.
     65   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
     66     if (Packet[i]->Succs.size() == 0)
     67       continue;
     68     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
     69          E = Packet[i]->Succs.end(); I != E; ++I) {
     70       // Since we do not add pseudos to packets, might as well
     71       // ignore order dependencies.
     72       if (I->isCtrl())
     73         continue;
     74 
     75       if (I->getSUnit() == SU)
     76         return false;
     77     }
     78   }
     79   return true;
     80 }
     81 
     82 /// Keep track of available resources.
     83 bool VLIWResourceModel::reserveResources(SUnit *SU) {
     84   bool startNewCycle = false;
     85   // Artificially reset state.
     86   if (!SU) {
     87     ResourcesModel->clearResources();
     88     Packet.clear();
     89     TotalPackets++;
     90     return false;
     91   }
     92   // If this SU does not fit in the packet
     93   // start a new one.
     94   if (!isResourceAvailable(SU)) {
     95     ResourcesModel->clearResources();
     96     Packet.clear();
     97     TotalPackets++;
     98     startNewCycle = true;
     99   }
    100 
    101   switch (SU->getInstr()->getOpcode()) {
    102   default:
    103     ResourcesModel->reserveResources(SU->getInstr());
    104     break;
    105   case TargetOpcode::EXTRACT_SUBREG:
    106   case TargetOpcode::INSERT_SUBREG:
    107   case TargetOpcode::SUBREG_TO_REG:
    108   case TargetOpcode::REG_SEQUENCE:
    109   case TargetOpcode::IMPLICIT_DEF:
    110   case TargetOpcode::KILL:
    111   case TargetOpcode::PROLOG_LABEL:
    112   case TargetOpcode::EH_LABEL:
    113   case TargetOpcode::COPY:
    114   case TargetOpcode::INLINEASM:
    115     break;
    116   }
    117   Packet.push_back(SU);
    118 
    119 #ifndef NDEBUG
    120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
    121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    122     DEBUG(dbgs() << "\t[" << i << "] SU(");
    123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    124     DEBUG(Packet[i]->getInstr()->dump());
    125   }
    126 #endif
    127 
    128   // If packet is now full, reset the state so in the next cycle
    129   // we start fresh.
    130   if (Packet.size() >= SchedModel->getIssueWidth()) {
    131     ResourcesModel->clearResources();
    132     Packet.clear();
    133     TotalPackets++;
    134     startNewCycle = true;
    135   }
    136 
    137   return startNewCycle;
    138 }
    139 
    140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    143 void VLIWMachineScheduler::schedule() {
    144   DEBUG(dbgs()
    145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
    146         << " " << BB->getName()
    147         << " in_func " << BB->getParent()->getFunction()->getName()
    148         << " at loop depth "  << MLI.getLoopDepth(BB)
    149         << " \n");
    150 
    151   buildDAGWithRegPressure();
    152 
    153   // Postprocess the DAG to add platform specific artificial dependencies.
    154   postprocessDAG();
    155 
    156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    157   findRootsAndBiasEdges(TopRoots, BotRoots);
    158 
    159   // Initialize the strategy before modifying the DAG.
    160   SchedImpl->initialize(this);
    161 
    162   // To view Height/Depth correctly, they should be accessed at least once.
    163   //
    164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
    165   // depth/height could be computed directly from the roots and leaves.
    166   DEBUG(unsigned maxH = 0;
    167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    168           if (SUnits[su].getHeight() > maxH)
    169             maxH = SUnits[su].getHeight();
    170         dbgs() << "Max Height " << maxH << "\n";);
    171   DEBUG(unsigned maxD = 0;
    172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    173           if (SUnits[su].getDepth() > maxD)
    174             maxD = SUnits[su].getDepth();
    175         dbgs() << "Max Depth " << maxD << "\n";);
    176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    177           SUnits[su].dumpAll(this));
    178 
    179   initQueues(TopRoots, BotRoots);
    180 
    181   bool IsTopNode = false;
    182   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    183     if (!checkSchedLimit())
    184       break;
    185 
    186     scheduleMI(SU, IsTopNode);
    187 
    188     updateQueues(SU, IsTopNode);
    189   }
    190   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    191 
    192   placeDebugValues();
    193 }
    194 
    195 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
    196   DAG = static_cast<VLIWMachineScheduler*>(dag);
    197   SchedModel = DAG->getSchedModel();
    198 
    199   Top.init(DAG, SchedModel);
    200   Bot.init(DAG, SchedModel);
    201 
    202   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
    203   // are disabled, then these HazardRecs will be disabled.
    204   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
    205   const TargetMachine &TM = DAG->MF.getTarget();
    206   delete Top.HazardRec;
    207   delete Bot.HazardRec;
    208   Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
    209   Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
    210 
    211   delete Top.ResourceModel;
    212   delete Bot.ResourceModel;
    213   Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
    214   Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
    215 
    216   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
    217          "-misched-topdown incompatible with -misched-bottomup");
    218 }
    219 
    220 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
    221   if (SU->isScheduled)
    222     return;
    223 
    224   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    225        I != E; ++I) {
    226     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    227     unsigned MinLatency = I->getLatency();
    228 #ifndef NDEBUG
    229     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
    230 #endif
    231     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
    232       SU->TopReadyCycle = PredReadyCycle + MinLatency;
    233   }
    234   Top.releaseNode(SU, SU->TopReadyCycle);
    235 }
    236 
    237 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
    238   if (SU->isScheduled)
    239     return;
    240 
    241   assert(SU->getInstr() && "Scheduled SUnit must have instr");
    242 
    243   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    244        I != E; ++I) {
    245     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    246     unsigned MinLatency = I->getLatency();
    247 #ifndef NDEBUG
    248     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
    249 #endif
    250     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
    251       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
    252   }
    253   Bot.releaseNode(SU, SU->BotReadyCycle);
    254 }
    255 
    256 /// Does this SU have a hazard within the current instruction group.
    257 ///
    258 /// The scheduler supports two modes of hazard recognition. The first is the
    259 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
    260 /// supports highly complicated in-order reservation tables
    261 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
    262 ///
    263 /// The second is a streamlined mechanism that checks for hazards based on
    264 /// simple counters that the scheduler itself maintains. It explicitly checks
    265 /// for instruction dispatch limitations, including the number of micro-ops that
    266 /// can dispatch per cycle.
    267 ///
    268 /// TODO: Also check whether the SU must start a new group.
    269 bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
    270   if (HazardRec->isEnabled())
    271     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
    272 
    273   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
    274   if (IssueCount + uops > SchedModel->getIssueWidth())
    275     return true;
    276 
    277   return false;
    278 }
    279 
    280 void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
    281                                                      unsigned ReadyCycle) {
    282   if (ReadyCycle < MinReadyCycle)
    283     MinReadyCycle = ReadyCycle;
    284 
    285   // Check for interlocks first. For the purpose of other heuristics, an
    286   // instruction that cannot issue appears as if it's not in the ReadyQueue.
    287   if (ReadyCycle > CurrCycle || checkHazard(SU))
    288 
    289     Pending.push(SU);
    290   else
    291     Available.push(SU);
    292 }
    293 
    294 /// Move the boundary of scheduled code by one cycle.
    295 void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
    296   unsigned Width = SchedModel->getIssueWidth();
    297   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
    298 
    299   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
    300   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
    301 
    302   if (!HazardRec->isEnabled()) {
    303     // Bypass HazardRec virtual calls.
    304     CurrCycle = NextCycle;
    305   } else {
    306     // Bypass getHazardType calls in case of long latency.
    307     for (; CurrCycle != NextCycle; ++CurrCycle) {
    308       if (isTop())
    309         HazardRec->AdvanceCycle();
    310       else
    311         HazardRec->RecedeCycle();
    312     }
    313   }
    314   CheckPending = true;
    315 
    316   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
    317         << CurrCycle << '\n');
    318 }
    319 
    320 /// Move the boundary of scheduled code by one SUnit.
    321 void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
    322   bool startNewCycle = false;
    323 
    324   // Update the reservation table.
    325   if (HazardRec->isEnabled()) {
    326     if (!isTop() && SU->isCall) {
    327       // Calls are scheduled with their preceding instructions. For bottom-up
    328       // scheduling, clear the pipeline state before emitting.
    329       HazardRec->Reset();
    330     }
    331     HazardRec->EmitInstruction(SU);
    332   }
    333 
    334   // Update DFA model.
    335   startNewCycle = ResourceModel->reserveResources(SU);
    336 
    337   // Check the instruction group dispatch limit.
    338   // TODO: Check if this SU must end a dispatch group.
    339   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
    340   if (startNewCycle) {
    341     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    342     bumpCycle();
    343   }
    344   else
    345     DEBUG(dbgs() << "*** IssueCount " << IssueCount
    346           << " at cycle " << CurrCycle << '\n');
    347 }
    348 
    349 /// Release pending ready nodes in to the available queue. This makes them
    350 /// visible to heuristics.
    351 void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
    352   // If the available queue is empty, it is safe to reset MinReadyCycle.
    353   if (Available.empty())
    354     MinReadyCycle = UINT_MAX;
    355 
    356   // Check to see if any of the pending instructions are ready to issue.  If
    357   // so, add them to the available queue.
    358   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    359     SUnit *SU = *(Pending.begin()+i);
    360     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
    361 
    362     if (ReadyCycle < MinReadyCycle)
    363       MinReadyCycle = ReadyCycle;
    364 
    365     if (ReadyCycle > CurrCycle)
    366       continue;
    367 
    368     if (checkHazard(SU))
    369       continue;
    370 
    371     Available.push(SU);
    372     Pending.remove(Pending.begin()+i);
    373     --i; --e;
    374   }
    375   CheckPending = false;
    376 }
    377 
    378 /// Remove SU from the ready set for this boundary.
    379 void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
    380   if (Available.isInQueue(SU))
    381     Available.remove(Available.find(SU));
    382   else {
    383     assert(Pending.isInQueue(SU) && "bad ready count");
    384     Pending.remove(Pending.find(SU));
    385   }
    386 }
    387 
    388 /// If this queue only has one ready candidate, return it. As a side effect,
    389 /// advance the cycle until at least one node is ready. If multiple instructions
    390 /// are ready, return NULL.
    391 SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
    392   if (CheckPending)
    393     releasePending();
    394 
    395   for (unsigned i = 0; Available.empty(); ++i) {
    396     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
    397            "permanent hazard"); (void)i;
    398     ResourceModel->reserveResources(0);
    399     bumpCycle();
    400     releasePending();
    401   }
    402   if (Available.size() == 1)
    403     return *Available.begin();
    404   return NULL;
    405 }
    406 
    407 #ifndef NDEBUG
    408 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
    409                                              const ReadyQueue &Q,
    410                                              SUnit *SU, PressureElement P) {
    411   dbgs() << Label << " " << Q.getName() << " ";
    412   if (P.isValid())
    413     dbgs() << DAG->TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
    414            << " ";
    415   else
    416     dbgs() << "     ";
    417   SU->dump(DAG);
    418 }
    419 #endif
    420 
    421 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
    422 /// of SU, return it, otherwise return null.
    423 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
    424   SUnit *OnlyAvailablePred = 0;
    425   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    426        I != E; ++I) {
    427     SUnit &Pred = *I->getSUnit();
    428     if (!Pred.isScheduled) {
    429       // We found an available, but not scheduled, predecessor.  If it's the
    430       // only one we have found, keep track of it... otherwise give up.
    431       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
    432         return 0;
    433       OnlyAvailablePred = &Pred;
    434     }
    435   }
    436   return OnlyAvailablePred;
    437 }
    438 
    439 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
    440 /// of SU, return it, otherwise return null.
    441 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
    442   SUnit *OnlyAvailableSucc = 0;
    443   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    444        I != E; ++I) {
    445     SUnit &Succ = *I->getSUnit();
    446     if (!Succ.isScheduled) {
    447       // We found an available, but not scheduled, successor.  If it's the
    448       // only one we have found, keep track of it... otherwise give up.
    449       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
    450         return 0;
    451       OnlyAvailableSucc = &Succ;
    452     }
    453   }
    454   return OnlyAvailableSucc;
    455 }
    456 
    457 // Constants used to denote relative importance of
    458 // heuristic components for cost computation.
    459 static const unsigned PriorityOne = 200;
    460 static const unsigned PriorityTwo = 100;
    461 static const unsigned PriorityThree = 50;
    462 static const unsigned PriorityFour = 20;
    463 static const unsigned ScaleTwo = 10;
    464 static const unsigned FactorOne = 2;
    465 
    466 /// Single point to compute overall scheduling cost.
    467 /// TODO: More heuristics will be used soon.
    468 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
    469                                             SchedCandidate &Candidate,
    470                                             RegPressureDelta &Delta,
    471                                             bool verbose) {
    472   // Initial trivial priority.
    473   int ResCount = 1;
    474 
    475   // Do not waste time on a node that is already scheduled.
    476   if (!SU || SU->isScheduled)
    477     return ResCount;
    478 
    479   // Forced priority is high.
    480   if (SU->isScheduleHigh)
    481     ResCount += PriorityOne;
    482 
    483   // Critical path first.
    484   if (Q.getID() == TopQID) {
    485     ResCount += (SU->getHeight() * ScaleTwo);
    486 
    487     // If resources are available for it, multiply the
    488     // chance of scheduling.
    489     if (Top.ResourceModel->isResourceAvailable(SU))
    490       ResCount <<= FactorOne;
    491   } else {
    492     ResCount += (SU->getDepth() * ScaleTwo);
    493 
    494     // If resources are available for it, multiply the
    495     // chance of scheduling.
    496     if (Bot.ResourceModel->isResourceAvailable(SU))
    497       ResCount <<= FactorOne;
    498   }
    499 
    500   unsigned NumNodesBlocking = 0;
    501   if (Q.getID() == TopQID) {
    502     // How many SUs does it block from scheduling?
    503     // Look at all of the successors of this node.
    504     // Count the number of nodes that
    505     // this node is the sole unscheduled node for.
    506     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    507          I != E; ++I)
    508       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
    509         ++NumNodesBlocking;
    510   } else {
    511     // How many unscheduled predecessors block this node?
    512     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    513          I != E; ++I)
    514       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
    515         ++NumNodesBlocking;
    516   }
    517   ResCount += (NumNodesBlocking * ScaleTwo);
    518 
    519   // Factor in reg pressure as a heuristic.
    520   ResCount -= (Delta.Excess.UnitIncrease*PriorityThree);
    521   ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree);
    522 
    523   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
    524 
    525   return ResCount;
    526 }
    527 
    528 /// Pick the best candidate from the top queue.
    529 ///
    530 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
    531 /// DAG building. To adjust for the current scheduling location we need to
    532 /// maintain the number of vreg uses remaining to be top-scheduled.
    533 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
    534 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
    535                   SchedCandidate &Candidate) {
    536   DEBUG(Q.dump());
    537 
    538   // getMaxPressureDelta temporarily modifies the tracker.
    539   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
    540 
    541   // BestSU remains NULL if no top candidates beat the best existing candidate.
    542   CandResult FoundCandidate = NoCand;
    543   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    544     RegPressureDelta RPDelta;
    545     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
    546                                     DAG->getRegionCriticalPSets(),
    547                                     DAG->getRegPressure().MaxSetPressure);
    548 
    549     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
    550 
    551     // Initialize the candidate if needed.
    552     if (!Candidate.SU) {
    553       Candidate.SU = *I;
    554       Candidate.RPDelta = RPDelta;
    555       Candidate.SCost = CurrentCost;
    556       FoundCandidate = NodeOrder;
    557       continue;
    558     }
    559 
    560     // Best cost.
    561     if (CurrentCost > Candidate.SCost) {
    562       DEBUG(traceCandidate("CCAND", Q, *I));
    563       Candidate.SU = *I;
    564       Candidate.RPDelta = RPDelta;
    565       Candidate.SCost = CurrentCost;
    566       FoundCandidate = BestCost;
    567       continue;
    568     }
    569 
    570     // Fall through to original instruction order.
    571     // Only consider node order if Candidate was chosen from this Q.
    572     if (FoundCandidate == NoCand)
    573       continue;
    574   }
    575   return FoundCandidate;
    576 }
    577 
    578 /// Pick the best candidate node from either the top or bottom queue.
    579 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
    580   // Schedule as far as possible in the direction of no choice. This is most
    581   // efficient, but also provides the best heuristics for CriticalPSets.
    582   if (SUnit *SU = Bot.pickOnlyChoice()) {
    583     IsTopNode = false;
    584     return SU;
    585   }
    586   if (SUnit *SU = Top.pickOnlyChoice()) {
    587     IsTopNode = true;
    588     return SU;
    589   }
    590   SchedCandidate BotCand;
    591   // Prefer bottom scheduling when heuristics are silent.
    592   CandResult BotResult = pickNodeFromQueue(Bot.Available,
    593                                            DAG->getBotRPTracker(), BotCand);
    594   assert(BotResult != NoCand && "failed to find the first candidate");
    595 
    596   // If either Q has a single candidate that provides the least increase in
    597   // Excess pressure, we can immediately schedule from that Q.
    598   //
    599   // RegionCriticalPSets summarizes the pressure within the scheduled region and
    600   // affects picking from either Q. If scheduling in one direction must
    601   // increase pressure for one of the excess PSets, then schedule in that
    602   // direction first to provide more freedom in the other direction.
    603   if (BotResult == SingleExcess || BotResult == SingleCritical) {
    604     IsTopNode = false;
    605     return BotCand.SU;
    606   }
    607   // Check if the top Q has a better candidate.
    608   SchedCandidate TopCand;
    609   CandResult TopResult = pickNodeFromQueue(Top.Available,
    610                                            DAG->getTopRPTracker(), TopCand);
    611   assert(TopResult != NoCand && "failed to find the first candidate");
    612 
    613   if (TopResult == SingleExcess || TopResult == SingleCritical) {
    614     IsTopNode = true;
    615     return TopCand.SU;
    616   }
    617   // If either Q has a single candidate that minimizes pressure above the
    618   // original region's pressure pick it.
    619   if (BotResult == SingleMax) {
    620     IsTopNode = false;
    621     return BotCand.SU;
    622   }
    623   if (TopResult == SingleMax) {
    624     IsTopNode = true;
    625     return TopCand.SU;
    626   }
    627   if (TopCand.SCost > BotCand.SCost) {
    628     IsTopNode = true;
    629     return TopCand.SU;
    630   }
    631   // Otherwise prefer the bottom candidate in node order.
    632   IsTopNode = false;
    633   return BotCand.SU;
    634 }
    635 
    636 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
    637 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
    638   if (DAG->top() == DAG->bottom()) {
    639     assert(Top.Available.empty() && Top.Pending.empty() &&
    640            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    641     return NULL;
    642   }
    643   SUnit *SU;
    644   if (llvm::ForceTopDown) {
    645     SU = Top.pickOnlyChoice();
    646     if (!SU) {
    647       SchedCandidate TopCand;
    648       CandResult TopResult =
    649         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
    650       assert(TopResult != NoCand && "failed to find the first candidate");
    651       (void)TopResult;
    652       SU = TopCand.SU;
    653     }
    654     IsTopNode = true;
    655   } else if (llvm::ForceBottomUp) {
    656     SU = Bot.pickOnlyChoice();
    657     if (!SU) {
    658       SchedCandidate BotCand;
    659       CandResult BotResult =
    660         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
    661       assert(BotResult != NoCand && "failed to find the first candidate");
    662       (void)BotResult;
    663       SU = BotCand.SU;
    664     }
    665     IsTopNode = false;
    666   } else {
    667     SU = pickNodeBidrectional(IsTopNode);
    668   }
    669   if (SU->isTopReady())
    670     Top.removeReady(SU);
    671   if (SU->isBottomReady())
    672     Bot.removeReady(SU);
    673 
    674   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
    675         << " Scheduling Instruction in cycle "
    676         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
    677         SU->dump(DAG));
    678   return SU;
    679 }
    680 
    681 /// Update the scheduler's state after scheduling a node. This is the same node
    682 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
    683 /// to update it's state based on the current cycle before MachineSchedStrategy
    684 /// does.
    685 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
    686   if (IsTopNode) {
    687     SU->TopReadyCycle = Top.CurrCycle;
    688     Top.bumpNode(SU);
    689   } else {
    690     SU->BotReadyCycle = Bot.CurrCycle;
    691     Bot.bumpNode(SU);
    692   }
    693 }
    694