1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "phielim" 17 #include "llvm/CodeGen/Passes.h" 18 #include "PHIEliminationUtils.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 static cl::opt<bool> 39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 40 cl::Hidden, cl::desc("Disable critical edge splitting " 41 "during PHI elimination")); 42 43 static cl::opt<bool> 44 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 45 cl::Hidden, cl::desc("Split all critical edges during " 46 "PHI elimination")); 47 48 namespace { 49 class PHIElimination : public MachineFunctionPass { 50 MachineRegisterInfo *MRI; // Machine register information 51 LiveVariables *LV; 52 LiveIntervals *LIS; 53 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 PHIElimination() : MachineFunctionPass(ID) { 57 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 58 } 59 60 virtual bool runOnMachineFunction(MachineFunction &Fn); 61 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 62 63 private: 64 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 65 /// in predecessor basic blocks. 66 /// 67 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 68 void LowerPHINode(MachineBasicBlock &MBB, 69 MachineBasicBlock::iterator LastPHIIt); 70 71 /// analyzePHINodes - Gather information about the PHI nodes in 72 /// here. In particular, we want to map the number of uses of a virtual 73 /// register which is used in a PHI node. We map that to the BB the 74 /// vreg is coming from. This is used later to determine when the vreg 75 /// is killed in the BB. 76 /// 77 void analyzePHINodes(const MachineFunction& Fn); 78 79 /// Split critical edges where necessary for good coalescer performance. 80 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 81 MachineLoopInfo *MLI); 82 83 // These functions are temporary abstractions around LiveVariables and 84 // LiveIntervals, so they can go away when LiveVariables does. 85 bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB); 86 bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB); 87 88 typedef std::pair<unsigned, unsigned> BBVRegPair; 89 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 90 91 VRegPHIUse VRegPHIUseCount; 92 93 // Defs of PHI sources which are implicit_def. 94 SmallPtrSet<MachineInstr*, 4> ImpDefs; 95 96 // Map reusable lowered PHI node -> incoming join register. 97 typedef DenseMap<MachineInstr*, unsigned, 98 MachineInstrExpressionTrait> LoweredPHIMap; 99 LoweredPHIMap LoweredPHIs; 100 }; 101 } 102 103 STATISTIC(NumLowered, "Number of phis lowered"); 104 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 105 STATISTIC(NumReused, "Number of reused lowered phis"); 106 107 char PHIElimination::ID = 0; 108 char& llvm::PHIEliminationID = PHIElimination::ID; 109 110 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 111 "Eliminate PHI nodes for register allocation", 112 false, false) 113 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 114 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 115 "Eliminate PHI nodes for register allocation", false, false) 116 117 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.addPreserved<LiveVariables>(); 119 AU.addPreserved<SlotIndexes>(); 120 AU.addPreserved<LiveIntervals>(); 121 AU.addPreserved<MachineDominatorTree>(); 122 AU.addPreserved<MachineLoopInfo>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 127 MRI = &MF.getRegInfo(); 128 LV = getAnalysisIfAvailable<LiveVariables>(); 129 LIS = getAnalysisIfAvailable<LiveIntervals>(); 130 131 bool Changed = false; 132 133 // This pass takes the function out of SSA form. 134 MRI->leaveSSA(); 135 136 // Split critical edges to help the coalescer. This does not yet support 137 // updating LiveIntervals, so we disable it. 138 if (!DisableEdgeSplitting && (LV || LIS)) { 139 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 140 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 141 Changed |= SplitPHIEdges(MF, *I, MLI); 142 } 143 144 // Populate VRegPHIUseCount 145 analyzePHINodes(MF); 146 147 // Eliminate PHI instructions by inserting copies into predecessor blocks. 148 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 149 Changed |= EliminatePHINodes(MF, *I); 150 151 // Remove dead IMPLICIT_DEF instructions. 152 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), 153 E = ImpDefs.end(); I != E; ++I) { 154 MachineInstr *DefMI = *I; 155 unsigned DefReg = DefMI->getOperand(0).getReg(); 156 if (MRI->use_nodbg_empty(DefReg)) { 157 if (LIS) 158 LIS->RemoveMachineInstrFromMaps(DefMI); 159 DefMI->eraseFromParent(); 160 } 161 } 162 163 // Clean up the lowered PHI instructions. 164 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 165 I != E; ++I) { 166 if (LIS) 167 LIS->RemoveMachineInstrFromMaps(I->first); 168 MF.DeleteMachineInstr(I->first); 169 } 170 171 LoweredPHIs.clear(); 172 ImpDefs.clear(); 173 VRegPHIUseCount.clear(); 174 175 return Changed; 176 } 177 178 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 179 /// predecessor basic blocks. 180 /// 181 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 182 MachineBasicBlock &MBB) { 183 if (MBB.empty() || !MBB.front().isPHI()) 184 return false; // Quick exit for basic blocks without PHIs. 185 186 // Get an iterator to the first instruction after the last PHI node (this may 187 // also be the end of the basic block). 188 MachineBasicBlock::iterator LastPHIIt = 189 prior(MBB.SkipPHIsAndLabels(MBB.begin())); 190 191 while (MBB.front().isPHI()) 192 LowerPHINode(MBB, LastPHIIt); 193 194 return true; 195 } 196 197 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 198 /// This includes registers with no defs. 199 static bool isImplicitlyDefined(unsigned VirtReg, 200 const MachineRegisterInfo *MRI) { 201 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg), 202 DE = MRI->def_end(); DI != DE; ++DI) 203 if (!DI->isImplicitDef()) 204 return false; 205 return true; 206 } 207 208 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 209 /// are implicit_def's. 210 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 211 const MachineRegisterInfo *MRI) { 212 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 213 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 214 return false; 215 return true; 216 } 217 218 219 /// LowerPHINode - Lower the PHI node at the top of the specified block, 220 /// 221 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 222 MachineBasicBlock::iterator LastPHIIt) { 223 ++NumLowered; 224 225 MachineBasicBlock::iterator AfterPHIsIt = llvm::next(LastPHIIt); 226 227 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 228 MachineInstr *MPhi = MBB.remove(MBB.begin()); 229 230 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 231 unsigned DestReg = MPhi->getOperand(0).getReg(); 232 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 233 bool isDead = MPhi->getOperand(0).isDead(); 234 235 // Create a new register for the incoming PHI arguments. 236 MachineFunction &MF = *MBB.getParent(); 237 unsigned IncomingReg = 0; 238 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 239 240 // Insert a register to register copy at the top of the current block (but 241 // after any remaining phi nodes) which copies the new incoming register 242 // into the phi node destination. 243 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); 244 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 245 // If all sources of a PHI node are implicit_def, just emit an 246 // implicit_def instead of a copy. 247 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 248 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 249 else { 250 // Can we reuse an earlier PHI node? This only happens for critical edges, 251 // typically those created by tail duplication. 252 unsigned &entry = LoweredPHIs[MPhi]; 253 if (entry) { 254 // An identical PHI node was already lowered. Reuse the incoming register. 255 IncomingReg = entry; 256 reusedIncoming = true; 257 ++NumReused; 258 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 259 } else { 260 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 261 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 262 } 263 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 264 TII->get(TargetOpcode::COPY), DestReg) 265 .addReg(IncomingReg); 266 } 267 268 // Update live variable information if there is any. 269 if (LV) { 270 MachineInstr *PHICopy = prior(AfterPHIsIt); 271 272 if (IncomingReg) { 273 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 274 275 // Increment use count of the newly created virtual register. 276 LV->setPHIJoin(IncomingReg); 277 278 // When we are reusing the incoming register, it may already have been 279 // killed in this block. The old kill will also have been inserted at 280 // AfterPHIsIt, so it appears before the current PHICopy. 281 if (reusedIncoming) 282 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 283 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 284 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 285 DEBUG(MBB.dump()); 286 } 287 288 // Add information to LiveVariables to know that the incoming value is 289 // killed. Note that because the value is defined in several places (once 290 // each for each incoming block), the "def" block and instruction fields 291 // for the VarInfo is not filled in. 292 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 293 } 294 295 // Since we are going to be deleting the PHI node, if it is the last use of 296 // any registers, or if the value itself is dead, we need to move this 297 // information over to the new copy we just inserted. 298 LV->removeVirtualRegistersKilled(MPhi); 299 300 // If the result is dead, update LV. 301 if (isDead) { 302 LV->addVirtualRegisterDead(DestReg, PHICopy); 303 LV->removeVirtualRegisterDead(DestReg, MPhi); 304 } 305 } 306 307 // Update LiveIntervals for the new copy or implicit def. 308 if (LIS) { 309 MachineInstr *NewInstr = prior(AfterPHIsIt); 310 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr); 311 312 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 313 if (IncomingReg) { 314 // Add the region from the beginning of MBB to the copy instruction to 315 // IncomingReg's live interval. 316 LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg); 317 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 318 if (!IncomingVNI) 319 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 320 LIS->getVNInfoAllocator()); 321 IncomingLI.addRange(LiveRange(MBBStartIndex, 322 DestCopyIndex.getRegSlot(), 323 IncomingVNI)); 324 } 325 326 LiveInterval &DestLI = LIS->getInterval(DestReg); 327 assert(DestLI.begin() != DestLI.end() && 328 "PHIs should have nonempty LiveIntervals."); 329 if (DestLI.endIndex().isDead()) { 330 // A dead PHI's live range begins and ends at the start of the MBB, but 331 // the lowered copy, which will still be dead, needs to begin and end at 332 // the copy instruction. 333 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 334 assert(OrigDestVNI && "PHI destination should be live at block entry."); 335 DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot()); 336 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 337 LIS->getVNInfoAllocator()); 338 DestLI.removeValNo(OrigDestVNI); 339 } else { 340 // Otherwise, remove the region from the beginning of MBB to the copy 341 // instruction from DestReg's live interval. 342 DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot()); 343 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 344 assert(DestVNI && "PHI destination should be live at its definition."); 345 DestVNI->def = DestCopyIndex.getRegSlot(); 346 } 347 } 348 349 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 350 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 351 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 352 MPhi->getOperand(i).getReg())]; 353 354 // Now loop over all of the incoming arguments, changing them to copy into the 355 // IncomingReg register in the corresponding predecessor basic block. 356 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 357 for (int i = NumSrcs - 1; i >= 0; --i) { 358 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 359 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 360 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 361 isImplicitlyDefined(SrcReg, MRI); 362 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 363 "Machine PHI Operands must all be virtual registers!"); 364 365 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 366 // path the PHI. 367 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 368 369 // Check to make sure we haven't already emitted the copy for this block. 370 // This can happen because PHI nodes may have multiple entries for the same 371 // basic block. 372 if (!MBBsInsertedInto.insert(&opBlock)) 373 continue; // If the copy has already been emitted, we're done. 374 375 // Find a safe location to insert the copy, this may be the first terminator 376 // in the block (or end()). 377 MachineBasicBlock::iterator InsertPos = 378 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 379 380 // Insert the copy. 381 MachineInstr *NewSrcInstr = 0; 382 if (!reusedIncoming && IncomingReg) { 383 if (SrcUndef) { 384 // The source register is undefined, so there is no need for a real 385 // COPY, but we still need to ensure joint dominance by defs. 386 // Insert an IMPLICIT_DEF instruction. 387 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 388 TII->get(TargetOpcode::IMPLICIT_DEF), 389 IncomingReg); 390 391 // Clean up the old implicit-def, if there even was one. 392 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 393 if (DefMI->isImplicitDef()) 394 ImpDefs.insert(DefMI); 395 } else { 396 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 397 TII->get(TargetOpcode::COPY), IncomingReg) 398 .addReg(SrcReg, 0, SrcSubReg); 399 } 400 } 401 402 // We only need to update the LiveVariables kill of SrcReg if this was the 403 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 404 // out of the predecessor. We can also ignore undef sources. 405 if (LV && !SrcUndef && 406 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 407 !LV->isLiveOut(SrcReg, opBlock)) { 408 // We want to be able to insert a kill of the register if this PHI (aka, 409 // the copy we just inserted) is the last use of the source value. Live 410 // variable analysis conservatively handles this by saying that the value 411 // is live until the end of the block the PHI entry lives in. If the value 412 // really is dead at the PHI copy, there will be no successor blocks which 413 // have the value live-in. 414 415 // Okay, if we now know that the value is not live out of the block, we 416 // can add a kill marker in this block saying that it kills the incoming 417 // value! 418 419 // In our final twist, we have to decide which instruction kills the 420 // register. In most cases this is the copy, however, terminator 421 // instructions at the end of the block may also use the value. In this 422 // case, we should mark the last such terminator as being the killing 423 // block, not the copy. 424 MachineBasicBlock::iterator KillInst = opBlock.end(); 425 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 426 for (MachineBasicBlock::iterator Term = FirstTerm; 427 Term != opBlock.end(); ++Term) { 428 if (Term->readsRegister(SrcReg)) 429 KillInst = Term; 430 } 431 432 if (KillInst == opBlock.end()) { 433 // No terminator uses the register. 434 435 if (reusedIncoming || !IncomingReg) { 436 // We may have to rewind a bit if we didn't insert a copy this time. 437 KillInst = FirstTerm; 438 while (KillInst != opBlock.begin()) { 439 --KillInst; 440 if (KillInst->isDebugValue()) 441 continue; 442 if (KillInst->readsRegister(SrcReg)) 443 break; 444 } 445 } else { 446 // We just inserted this copy. 447 KillInst = prior(InsertPos); 448 } 449 } 450 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 451 452 // Finally, mark it killed. 453 LV->addVirtualRegisterKilled(SrcReg, KillInst); 454 455 // This vreg no longer lives all of the way through opBlock. 456 unsigned opBlockNum = opBlock.getNumber(); 457 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 458 } 459 460 if (LIS) { 461 if (NewSrcInstr) { 462 LIS->InsertMachineInstrInMaps(NewSrcInstr); 463 LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr); 464 } 465 466 if (!SrcUndef && 467 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 468 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 469 470 bool isLiveOut = false; 471 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 472 SE = opBlock.succ_end(); SI != SE; ++SI) { 473 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 474 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 475 476 // Definitions by other PHIs are not truly live-in for our purposes. 477 if (VNI && VNI->def != startIdx) { 478 isLiveOut = true; 479 break; 480 } 481 } 482 483 if (!isLiveOut) { 484 MachineBasicBlock::iterator KillInst = opBlock.end(); 485 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 486 for (MachineBasicBlock::iterator Term = FirstTerm; 487 Term != opBlock.end(); ++Term) { 488 if (Term->readsRegister(SrcReg)) 489 KillInst = Term; 490 } 491 492 if (KillInst == opBlock.end()) { 493 // No terminator uses the register. 494 495 if (reusedIncoming || !IncomingReg) { 496 // We may have to rewind a bit if we didn't just insert a copy. 497 KillInst = FirstTerm; 498 while (KillInst != opBlock.begin()) { 499 --KillInst; 500 if (KillInst->isDebugValue()) 501 continue; 502 if (KillInst->readsRegister(SrcReg)) 503 break; 504 } 505 } else { 506 // We just inserted this copy. 507 KillInst = prior(InsertPos); 508 } 509 } 510 assert(KillInst->readsRegister(SrcReg) && 511 "Cannot find kill instruction"); 512 513 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst); 514 SrcLI.removeRange(LastUseIndex.getRegSlot(), 515 LIS->getMBBEndIdx(&opBlock)); 516 } 517 } 518 } 519 } 520 521 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 522 if (reusedIncoming || !IncomingReg) { 523 if (LIS) 524 LIS->RemoveMachineInstrFromMaps(MPhi); 525 MF.DeleteMachineInstr(MPhi); 526 } 527 } 528 529 /// analyzePHINodes - Gather information about the PHI nodes in here. In 530 /// particular, we want to map the number of uses of a virtual register which is 531 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 532 /// used later to determine when the vreg is killed in the BB. 533 /// 534 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 535 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); 536 I != E; ++I) 537 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 538 BBI != BBE && BBI->isPHI(); ++BBI) 539 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 540 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), 541 BBI->getOperand(i).getReg())]; 542 } 543 544 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 545 MachineBasicBlock &MBB, 546 MachineLoopInfo *MLI) { 547 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) 548 return false; // Quick exit for basic blocks without PHIs. 549 550 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0; 551 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 552 553 bool Changed = false; 554 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 555 BBI != BBE && BBI->isPHI(); ++BBI) { 556 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 557 unsigned Reg = BBI->getOperand(i).getReg(); 558 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 559 // Is there a critical edge from PreMBB to MBB? 560 if (PreMBB->succ_size() == 1) 561 continue; 562 563 // Avoid splitting backedges of loops. It would introduce small 564 // out-of-line blocks into the loop which is very bad for code placement. 565 if (PreMBB == &MBB && !SplitAllCriticalEdges) 566 continue; 567 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0; 568 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 569 continue; 570 571 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 572 // when the source register is live-out for some other reason than a phi 573 // use. That means the copy we will insert in PreMBB won't be a kill, and 574 // there is a risk it may not be coalesced away. 575 // 576 // If the copy would be a kill, there is no need to split the edge. 577 if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges) 578 continue; 579 580 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 581 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 582 << ": " << *BBI); 583 584 // If Reg is not live-in to MBB, it means it must be live-in to some 585 // other PreMBB successor, and we can avoid the interference by splitting 586 // the edge. 587 // 588 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 589 // is likely to be left after coalescing. If we are looking at a loop 590 // exiting edge, split it so we won't insert code in the loop, otherwise 591 // don't bother. 592 bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges; 593 594 // Check for a loop exiting edge. 595 if (!ShouldSplit && CurLoop != PreLoop) { 596 DEBUG({ 597 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 598 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 599 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 600 }); 601 // This edge could be entering a loop, exiting a loop, or it could be 602 // both: Jumping directly form one loop to the header of a sibling 603 // loop. 604 // Split unless this edge is entering CurLoop from an outer loop. 605 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 606 } 607 if (!ShouldSplit) 608 continue; 609 if (!PreMBB->SplitCriticalEdge(&MBB, this)) { 610 DEBUG(dbgs() << "Failed to split ciritcal edge.\n"); 611 continue; 612 } 613 Changed = true; 614 ++NumCriticalEdgesSplit; 615 } 616 } 617 return Changed; 618 } 619 620 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) { 621 assert((LV || LIS) && 622 "isLiveIn() requires either LiveVariables or LiveIntervals"); 623 if (LIS) 624 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 625 else 626 return LV->isLiveIn(Reg, *MBB); 627 } 628 629 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) { 630 assert((LV || LIS) && 631 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 632 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 633 // so that a register used only in a PHI is not live out of the block. In 634 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 635 // in the predecessor basic block, so that a register used only in a PHI is live 636 // out of the block. 637 if (LIS) { 638 const LiveInterval &LI = LIS->getInterval(Reg); 639 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 640 SE = MBB->succ_end(); SI != SE; ++SI) { 641 if (LI.liveAt(LIS->getMBBStartIdx(*SI))) 642 return true; 643 } 644 return false; 645 } else { 646 return LV->isLiveOut(Reg, *MBB); 647 } 648 } 649