1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <assert.h> 12 13 #include "./vp9_rtcd.h" 14 #include "vpx_mem/vpx_mem.h" 15 #include "vpx_scale/vpx_scale.h" 16 17 #include "vp9/common/vp9_alloccommon.h" 18 #include "vp9/common/vp9_common.h" 19 #include "vp9/common/vp9_entropy.h" 20 #include "vp9/common/vp9_entropymode.h" 21 #include "vp9/common/vp9_extend.h" 22 #include "vp9/common/vp9_idct.h" 23 #include "vp9/common/vp9_pred_common.h" 24 #include "vp9/common/vp9_quant_common.h" 25 #include "vp9/common/vp9_reconintra.h" 26 #include "vp9/common/vp9_reconinter.h" 27 #include "vp9/common/vp9_seg_common.h" 28 #include "vp9/common/vp9_tile_common.h" 29 30 #include "vp9/decoder/vp9_dboolhuff.h" 31 #include "vp9/decoder/vp9_decodframe.h" 32 #include "vp9/decoder/vp9_detokenize.h" 33 #include "vp9/decoder/vp9_decodemv.h" 34 #include "vp9/decoder/vp9_dsubexp.h" 35 #include "vp9/decoder/vp9_onyxd_int.h" 36 #include "vp9/decoder/vp9_read_bit_buffer.h" 37 #include "vp9/decoder/vp9_thread.h" 38 #include "vp9/decoder/vp9_treereader.h" 39 40 typedef struct TileWorkerData { 41 VP9_COMMON *cm; 42 vp9_reader bit_reader; 43 DECLARE_ALIGNED(16, MACROBLOCKD, xd); 44 DECLARE_ALIGNED(16, unsigned char, token_cache[1024]); 45 DECLARE_ALIGNED(16, int16_t, qcoeff[MAX_MB_PLANE][64 * 64]); 46 DECLARE_ALIGNED(16, int16_t, dqcoeff[MAX_MB_PLANE][64 * 64]); 47 DECLARE_ALIGNED(16, uint16_t, eobs[MAX_MB_PLANE][256]); 48 } TileWorkerData; 49 50 static int read_be32(const uint8_t *p) { 51 return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; 52 } 53 54 static int is_compound_prediction_allowed(const VP9_COMMON *cm) { 55 int i; 56 for (i = 1; i < ALLOWED_REFS_PER_FRAME; ++i) 57 if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) 58 return 1; 59 60 return 0; 61 } 62 63 static void setup_compound_prediction(VP9_COMMON *cm) { 64 if (cm->ref_frame_sign_bias[LAST_FRAME] == 65 cm->ref_frame_sign_bias[GOLDEN_FRAME]) { 66 cm->comp_fixed_ref = ALTREF_FRAME; 67 cm->comp_var_ref[0] = LAST_FRAME; 68 cm->comp_var_ref[1] = GOLDEN_FRAME; 69 } else if (cm->ref_frame_sign_bias[LAST_FRAME] == 70 cm->ref_frame_sign_bias[ALTREF_FRAME]) { 71 cm->comp_fixed_ref = GOLDEN_FRAME; 72 cm->comp_var_ref[0] = LAST_FRAME; 73 cm->comp_var_ref[1] = ALTREF_FRAME; 74 } else { 75 cm->comp_fixed_ref = LAST_FRAME; 76 cm->comp_var_ref[0] = GOLDEN_FRAME; 77 cm->comp_var_ref[1] = ALTREF_FRAME; 78 } 79 } 80 81 // len == 0 is not allowed 82 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { 83 return start + len > start && start + len <= end; 84 } 85 86 static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { 87 const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); 88 return data > max ? max : data; 89 } 90 91 static TX_MODE read_tx_mode(vp9_reader *r) { 92 TX_MODE tx_mode = vp9_read_literal(r, 2); 93 if (tx_mode == ALLOW_32X32) 94 tx_mode += vp9_read_bit(r); 95 return tx_mode; 96 } 97 98 static void read_tx_probs(struct tx_probs *tx_probs, vp9_reader *r) { 99 int i, j; 100 101 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) 102 for (j = 0; j < TX_SIZES - 3; ++j) 103 vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); 104 105 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) 106 for (j = 0; j < TX_SIZES - 2; ++j) 107 vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); 108 109 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) 110 for (j = 0; j < TX_SIZES - 1; ++j) 111 vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); 112 } 113 114 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { 115 int i, j; 116 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) 117 for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) 118 vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); 119 } 120 121 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { 122 int i, j; 123 for (i = 0; i < INTER_MODE_CONTEXTS; ++i) 124 for (j = 0; j < INTER_MODES - 1; ++j) 125 vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); 126 } 127 128 static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { 129 COMPPREDMODE_TYPE mode = vp9_read_bit(r); 130 if (mode) 131 mode += vp9_read_bit(r); 132 return mode; 133 } 134 135 static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) { 136 int i; 137 138 const int compound_allowed = is_compound_prediction_allowed(cm); 139 cm->comp_pred_mode = compound_allowed ? read_comp_pred_mode(r) 140 : SINGLE_PREDICTION_ONLY; 141 if (compound_allowed) 142 setup_compound_prediction(cm); 143 144 if (cm->comp_pred_mode == HYBRID_PREDICTION) 145 for (i = 0; i < COMP_INTER_CONTEXTS; i++) 146 vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]); 147 148 if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) 149 for (i = 0; i < REF_CONTEXTS; i++) { 150 vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]); 151 vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]); 152 } 153 154 if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) 155 for (i = 0; i < REF_CONTEXTS; i++) 156 vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]); 157 } 158 159 static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) { 160 int i; 161 for (i = 0; i < n; ++i) 162 if (vp9_read(r, NMV_UPDATE_PROB)) 163 p[i] = (vp9_read_literal(r, 7) << 1) | 1; 164 } 165 166 static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) { 167 int i, j; 168 169 update_mv_probs(ctx->joints, MV_JOINTS - 1, r); 170 171 for (i = 0; i < 2; ++i) { 172 nmv_component *const comp_ctx = &ctx->comps[i]; 173 update_mv_probs(&comp_ctx->sign, 1, r); 174 update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); 175 update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); 176 update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); 177 } 178 179 for (i = 0; i < 2; ++i) { 180 nmv_component *const comp_ctx = &ctx->comps[i]; 181 for (j = 0; j < CLASS0_SIZE; ++j) 182 update_mv_probs(comp_ctx->class0_fp[j], 3, r); 183 update_mv_probs(comp_ctx->fp, 3, r); 184 } 185 186 if (allow_hp) { 187 for (i = 0; i < 2; ++i) { 188 nmv_component *const comp_ctx = &ctx->comps[i]; 189 update_mv_probs(&comp_ctx->class0_hp, 1, r); 190 update_mv_probs(&comp_ctx->hp, 1, r); 191 } 192 } 193 } 194 195 static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) { 196 int i; 197 xd->plane[0].dequant = cm->y_dequant[q_index]; 198 199 for (i = 1; i < MAX_MB_PLANE; i++) 200 xd->plane[i].dequant = cm->uv_dequant[q_index]; 201 } 202 203 // Allocate storage for each tile column. 204 // TODO(jzern): when max_threads <= 1 the same storage could be used for each 205 // tile. 206 static void alloc_tile_storage(VP9D_COMP *pbi, int tile_rows, int tile_cols) { 207 VP9_COMMON *const cm = &pbi->common; 208 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); 209 int i, tile_row, tile_col; 210 211 CHECK_MEM_ERROR(cm, pbi->mi_streams, 212 vpx_realloc(pbi->mi_streams, tile_rows * tile_cols * 213 sizeof(*pbi->mi_streams))); 214 for (tile_row = 0; tile_row < tile_rows; ++tile_row) { 215 for (tile_col = 0; tile_col < tile_cols; ++tile_col) { 216 TileInfo tile; 217 vp9_tile_init(&tile, cm, tile_row, tile_col); 218 pbi->mi_streams[tile_row * tile_cols + tile_col] = 219 &cm->mi[tile.mi_row_start * cm->mode_info_stride 220 + tile.mi_col_start]; 221 } 222 } 223 224 // 2 contexts per 'mi unit', so that we have one context per 4x4 txfm 225 // block where mi unit size is 8x8. 226 CHECK_MEM_ERROR(cm, pbi->above_context[0], 227 vpx_realloc(pbi->above_context[0], 228 sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 229 2 * aligned_mi_cols)); 230 for (i = 1; i < MAX_MB_PLANE; ++i) { 231 pbi->above_context[i] = pbi->above_context[0] + 232 i * sizeof(*pbi->above_context[0]) * 233 2 * aligned_mi_cols; 234 } 235 236 // This is sized based on the entire frame. Each tile operates within its 237 // column bounds. 238 CHECK_MEM_ERROR(cm, pbi->above_seg_context, 239 vpx_realloc(pbi->above_seg_context, 240 sizeof(*pbi->above_seg_context) * 241 aligned_mi_cols)); 242 } 243 244 static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block, 245 TX_SIZE tx_size, int x, int y) { 246 struct macroblockd_plane *const pd = &xd->plane[plane]; 247 const int eob = pd->eobs[block]; 248 if (eob > 0) { 249 TX_TYPE tx_type; 250 const int plane_type = pd->plane_type; 251 const int stride = pd->dst.stride; 252 int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); 253 uint8_t *const dst = &pd->dst.buf[4 * y * stride + 4 * x]; 254 255 switch (tx_size) { 256 case TX_4X4: 257 tx_type = get_tx_type_4x4(plane_type, xd, block); 258 if (tx_type == DCT_DCT) 259 xd->itxm_add(dqcoeff, dst, stride, eob); 260 else 261 vp9_iht4x4_16_add(dqcoeff, dst, stride, tx_type); 262 break; 263 case TX_8X8: 264 tx_type = get_tx_type_8x8(plane_type, xd); 265 vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); 266 break; 267 case TX_16X16: 268 tx_type = get_tx_type_16x16(plane_type, xd); 269 vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); 270 break; 271 case TX_32X32: 272 tx_type = DCT_DCT; 273 vp9_idct32x32_add(dqcoeff, dst, stride, eob); 274 break; 275 default: 276 assert(!"Invalid transform size"); 277 } 278 279 if (eob == 1) { 280 vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0])); 281 } else { 282 if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) 283 vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); 284 else if (tx_size == TX_32X32 && eob <= 34) 285 vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); 286 else 287 vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); 288 } 289 } 290 } 291 292 struct intra_args { 293 VP9_COMMON *cm; 294 MACROBLOCKD *xd; 295 vp9_reader *r; 296 uint8_t *token_cache; 297 }; 298 299 static void predict_and_reconstruct_intra_block(int plane, int block, 300 BLOCK_SIZE plane_bsize, 301 TX_SIZE tx_size, void *arg) { 302 struct intra_args *const args = arg; 303 VP9_COMMON *const cm = args->cm; 304 MACROBLOCKD *const xd = args->xd; 305 struct macroblockd_plane *const pd = &xd->plane[plane]; 306 MODE_INFO *const mi = xd->mi_8x8[0]; 307 const MB_PREDICTION_MODE mode = (plane == 0) 308 ? ((mi->mbmi.sb_type < BLOCK_8X8) ? mi->bmi[block].as_mode 309 : mi->mbmi.mode) 310 : mi->mbmi.uv_mode; 311 int x, y; 312 uint8_t *dst; 313 txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); 314 dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x]; 315 316 if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) 317 extend_for_intra(xd, plane_bsize, plane, block, tx_size); 318 319 vp9_predict_intra_block(xd, block >> (tx_size << 1), 320 b_width_log2(plane_bsize), tx_size, mode, 321 dst, pd->dst.stride, dst, pd->dst.stride); 322 323 if (!mi->mbmi.skip_coeff) { 324 vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, 325 args->r, args->token_cache); 326 inverse_transform_block(xd, plane, block, tx_size, x, y); 327 } 328 } 329 330 struct inter_args { 331 VP9_COMMON *cm; 332 MACROBLOCKD *xd; 333 vp9_reader *r; 334 int *eobtotal; 335 uint8_t *token_cache; 336 }; 337 338 static void reconstruct_inter_block(int plane, int block, 339 BLOCK_SIZE plane_bsize, 340 TX_SIZE tx_size, void *arg) { 341 struct inter_args *args = arg; 342 VP9_COMMON *const cm = args->cm; 343 MACROBLOCKD *const xd = args->xd; 344 int x, y; 345 txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); 346 347 *args->eobtotal += vp9_decode_block_tokens(cm, xd, plane, block, 348 plane_bsize, x, y, tx_size, 349 args->r, args->token_cache); 350 inverse_transform_block(xd, plane, block, tx_size, x, y); 351 } 352 353 static void set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, 354 const TileInfo *const tile, 355 BLOCK_SIZE bsize, int mi_row, int mi_col) { 356 const int bh = num_8x8_blocks_high_lookup[bsize]; 357 const int bw = num_8x8_blocks_wide_lookup[bsize]; 358 const int offset = mi_row * cm->mode_info_stride + mi_col; 359 const int tile_offset = tile->mi_row_start * cm->mode_info_stride + 360 tile->mi_col_start; 361 362 xd->mi_8x8 = cm->mi_grid_visible + offset; 363 xd->prev_mi_8x8 = cm->prev_mi_grid_visible + offset; 364 365 // we are using the mode info context stream here 366 xd->mi_8x8[0] = xd->mi_stream + offset - tile_offset; 367 xd->mi_8x8[0]->mbmi.sb_type = bsize; 368 369 // Special case: if prev_mi is NULL, the previous mode info context 370 // cannot be used. 371 xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL; 372 373 set_skip_context(xd, xd->above_context, xd->left_context, mi_row, mi_col); 374 375 // Distance of Mb to the various image edges. These are specified to 8th pel 376 // as they are always compared to values that are in 1/8th pel units 377 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); 378 379 setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col); 380 } 381 382 static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd, 383 int idx, int mi_row, int mi_col) { 384 MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; 385 const int ref = mbmi->ref_frame[idx] - LAST_FRAME; 386 const YV12_BUFFER_CONFIG *cfg = get_frame_ref_buffer(cm, ref); 387 const struct scale_factors_common *sfc = &cm->active_ref_scale_comm[ref]; 388 if (!vp9_is_valid_scale(sfc)) 389 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, 390 "Invalid scale factors"); 391 392 xd->scale_factor[idx].sfc = sfc; 393 setup_pre_planes(xd, idx, cfg, mi_row, mi_col, &xd->scale_factor[idx]); 394 xd->corrupted |= cfg->corrupted; 395 } 396 397 static void decode_modes_b(VP9_COMMON *const cm, MACROBLOCKD *const xd, 398 const TileInfo *const tile, 399 int mi_row, int mi_col, 400 vp9_reader *r, BLOCK_SIZE bsize, 401 uint8_t *token_cache) { 402 const int less8x8 = bsize < BLOCK_8X8; 403 MB_MODE_INFO *mbmi; 404 405 set_offsets(cm, xd, tile, bsize, mi_row, mi_col); 406 vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r); 407 408 if (less8x8) 409 bsize = BLOCK_8X8; 410 411 // Has to be called after set_offsets 412 mbmi = &xd->mi_8x8[0]->mbmi; 413 414 if (mbmi->skip_coeff) { 415 reset_skip_context(xd, bsize); 416 } else { 417 if (cm->seg.enabled) 418 setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id, 419 cm->base_qindex)); 420 } 421 422 if (!is_inter_block(mbmi)) { 423 struct intra_args arg = { 424 cm, xd, r, token_cache 425 }; 426 foreach_transformed_block(xd, bsize, predict_and_reconstruct_intra_block, 427 &arg); 428 } else { 429 // Setup 430 set_ref(cm, xd, 0, mi_row, mi_col); 431 if (has_second_ref(mbmi)) 432 set_ref(cm, xd, 1, mi_row, mi_col); 433 434 xd->subpix.filter_x = xd->subpix.filter_y = 435 vp9_get_filter_kernel(mbmi->interp_filter); 436 437 // Prediction 438 vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); 439 440 // Reconstruction 441 if (!mbmi->skip_coeff) { 442 int eobtotal = 0; 443 struct inter_args arg = { 444 cm, xd, r, &eobtotal, token_cache 445 }; 446 foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg); 447 if (!less8x8 && eobtotal == 0) 448 mbmi->skip_coeff = 1; // skip loopfilter 449 } 450 } 451 452 xd->corrupted |= vp9_reader_has_error(r); 453 } 454 455 static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs, 456 int mi_row, int mi_col, BLOCK_SIZE bsize, 457 vp9_reader *r) { 458 const int ctx = partition_plane_context(xd->above_seg_context, 459 xd->left_seg_context, 460 mi_row, mi_col, bsize); 461 const vp9_prob *const probs = get_partition_probs(cm, ctx); 462 const int has_rows = (mi_row + hbs) < cm->mi_rows; 463 const int has_cols = (mi_col + hbs) < cm->mi_cols; 464 PARTITION_TYPE p; 465 466 if (has_rows && has_cols) 467 p = treed_read(r, vp9_partition_tree, probs); 468 else if (!has_rows && has_cols) 469 p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; 470 else if (has_rows && !has_cols) 471 p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; 472 else 473 p = PARTITION_SPLIT; 474 475 if (!cm->frame_parallel_decoding_mode) 476 ++cm->counts.partition[ctx][p]; 477 478 return p; 479 } 480 481 static void decode_modes_sb(VP9_COMMON *const cm, MACROBLOCKD *const xd, 482 const TileInfo *const tile, 483 int mi_row, int mi_col, 484 vp9_reader* r, BLOCK_SIZE bsize, 485 uint8_t *token_cache) { 486 const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; 487 PARTITION_TYPE partition; 488 BLOCK_SIZE subsize; 489 490 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) 491 return; 492 493 partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r); 494 subsize = get_subsize(bsize, partition); 495 if (subsize < BLOCK_8X8) { 496 decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); 497 } else { 498 switch (partition) { 499 case PARTITION_NONE: 500 decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); 501 break; 502 case PARTITION_HORZ: 503 decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); 504 if (mi_row + hbs < cm->mi_rows) 505 decode_modes_b(cm, xd, tile, mi_row + hbs, mi_col, r, subsize, 506 token_cache); 507 break; 508 case PARTITION_VERT: 509 decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); 510 if (mi_col + hbs < cm->mi_cols) 511 decode_modes_b(cm, xd, tile, mi_row, mi_col + hbs, r, subsize, 512 token_cache); 513 break; 514 case PARTITION_SPLIT: 515 decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, subsize, 516 token_cache); 517 decode_modes_sb(cm, xd, tile, mi_row, mi_col + hbs, r, subsize, 518 token_cache); 519 decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col, r, subsize, 520 token_cache); 521 decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize, 522 token_cache); 523 break; 524 default: 525 assert(!"Invalid partition type"); 526 } 527 } 528 529 // update partition context 530 if (bsize >= BLOCK_8X8 && 531 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) 532 update_partition_context(xd->above_seg_context, xd->left_seg_context, 533 mi_row, mi_col, subsize, bsize); 534 } 535 536 static void setup_token_decoder(const uint8_t *data, 537 const uint8_t *data_end, 538 size_t read_size, 539 struct vpx_internal_error_info *error_info, 540 vp9_reader *r) { 541 // Validate the calculated partition length. If the buffer 542 // described by the partition can't be fully read, then restrict 543 // it to the portion that can be (for EC mode) or throw an error. 544 if (!read_is_valid(data, read_size, data_end)) 545 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, 546 "Truncated packet or corrupt tile length"); 547 548 if (vp9_reader_init(r, data, read_size)) 549 vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, 550 "Failed to allocate bool decoder %d", 1); 551 } 552 553 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, 554 vp9_reader *r) { 555 int i, j, k, l, m; 556 557 if (vp9_read_bit(r)) 558 for (i = 0; i < BLOCK_TYPES; i++) 559 for (j = 0; j < REF_TYPES; j++) 560 for (k = 0; k < COEF_BANDS; k++) 561 for (l = 0; l < PREV_COEF_CONTEXTS; l++) 562 if (k > 0 || l < 3) 563 for (m = 0; m < UNCONSTRAINED_NODES; m++) 564 vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); 565 } 566 567 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, 568 vp9_reader *r) { 569 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; 570 TX_SIZE tx_size; 571 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) 572 read_coef_probs_common(fc->coef_probs[tx_size], r); 573 } 574 575 static void setup_segmentation(struct segmentation *seg, 576 struct vp9_read_bit_buffer *rb) { 577 int i, j; 578 579 seg->update_map = 0; 580 seg->update_data = 0; 581 582 seg->enabled = vp9_rb_read_bit(rb); 583 if (!seg->enabled) 584 return; 585 586 // Segmentation map update 587 seg->update_map = vp9_rb_read_bit(rb); 588 if (seg->update_map) { 589 for (i = 0; i < SEG_TREE_PROBS; i++) 590 seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) 591 : MAX_PROB; 592 593 seg->temporal_update = vp9_rb_read_bit(rb); 594 if (seg->temporal_update) { 595 for (i = 0; i < PREDICTION_PROBS; i++) 596 seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) 597 : MAX_PROB; 598 } else { 599 for (i = 0; i < PREDICTION_PROBS; i++) 600 seg->pred_probs[i] = MAX_PROB; 601 } 602 } 603 604 // Segmentation data update 605 seg->update_data = vp9_rb_read_bit(rb); 606 if (seg->update_data) { 607 seg->abs_delta = vp9_rb_read_bit(rb); 608 609 vp9_clearall_segfeatures(seg); 610 611 for (i = 0; i < MAX_SEGMENTS; i++) { 612 for (j = 0; j < SEG_LVL_MAX; j++) { 613 int data = 0; 614 const int feature_enabled = vp9_rb_read_bit(rb); 615 if (feature_enabled) { 616 vp9_enable_segfeature(seg, i, j); 617 data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); 618 if (vp9_is_segfeature_signed(j)) 619 data = vp9_rb_read_bit(rb) ? -data : data; 620 } 621 vp9_set_segdata(seg, i, j, data); 622 } 623 } 624 } 625 } 626 627 static void setup_loopfilter(struct loopfilter *lf, 628 struct vp9_read_bit_buffer *rb) { 629 lf->filter_level = vp9_rb_read_literal(rb, 6); 630 lf->sharpness_level = vp9_rb_read_literal(rb, 3); 631 632 // Read in loop filter deltas applied at the MB level based on mode or ref 633 // frame. 634 lf->mode_ref_delta_update = 0; 635 636 lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb); 637 if (lf->mode_ref_delta_enabled) { 638 lf->mode_ref_delta_update = vp9_rb_read_bit(rb); 639 if (lf->mode_ref_delta_update) { 640 int i; 641 642 for (i = 0; i < MAX_REF_LF_DELTAS; i++) 643 if (vp9_rb_read_bit(rb)) 644 lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6); 645 646 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) 647 if (vp9_rb_read_bit(rb)) 648 lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6); 649 } 650 } 651 } 652 653 static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) { 654 const int old = *delta_q; 655 *delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0; 656 return old != *delta_q; 657 } 658 659 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, 660 struct vp9_read_bit_buffer *rb) { 661 int update = 0; 662 663 cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS); 664 update |= read_delta_q(rb, &cm->y_dc_delta_q); 665 update |= read_delta_q(rb, &cm->uv_dc_delta_q); 666 update |= read_delta_q(rb, &cm->uv_ac_delta_q); 667 if (update) 668 vp9_init_dequantizer(cm); 669 670 xd->lossless = cm->base_qindex == 0 && 671 cm->y_dc_delta_q == 0 && 672 cm->uv_dc_delta_q == 0 && 673 cm->uv_ac_delta_q == 0; 674 675 xd->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; 676 } 677 678 static INTERPOLATION_TYPE read_interp_filter_type( 679 struct vp9_read_bit_buffer *rb) { 680 const INTERPOLATION_TYPE literal_to_type[] = { EIGHTTAP_SMOOTH, 681 EIGHTTAP, 682 EIGHTTAP_SHARP, 683 BILINEAR }; 684 return vp9_rb_read_bit(rb) ? SWITCHABLE 685 : literal_to_type[vp9_rb_read_literal(rb, 2)]; 686 } 687 688 static void read_frame_size(struct vp9_read_bit_buffer *rb, 689 int *width, int *height) { 690 const int w = vp9_rb_read_literal(rb, 16) + 1; 691 const int h = vp9_rb_read_literal(rb, 16) + 1; 692 *width = w; 693 *height = h; 694 } 695 696 static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { 697 cm->display_width = cm->width; 698 cm->display_height = cm->height; 699 if (vp9_rb_read_bit(rb)) 700 read_frame_size(rb, &cm->display_width, &cm->display_height); 701 } 702 703 static void apply_frame_size(VP9D_COMP *pbi, int width, int height) { 704 VP9_COMMON *cm = &pbi->common; 705 706 if (cm->width != width || cm->height != height) { 707 // Change in frame size. 708 if (cm->width == 0 || cm->height == 0) { 709 // Assign new frame buffer on first call. 710 cm->new_fb_idx = NUM_YV12_BUFFERS - 1; 711 cm->fb_idx_ref_cnt[cm->new_fb_idx] = 1; 712 } 713 714 // TODO(agrange) Don't test width/height, check overall size. 715 if (width > cm->width || height > cm->height) { 716 // Rescale frame buffers only if they're not big enough already. 717 if (vp9_resize_frame_buffers(cm, width, height)) 718 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, 719 "Failed to allocate frame buffers"); 720 } 721 722 cm->width = width; 723 cm->height = height; 724 725 vp9_update_frame_size(cm); 726 } 727 728 vp9_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, 729 cm->subsampling_x, cm->subsampling_y, 730 VP9BORDERINPIXELS); 731 } 732 733 static void setup_frame_size(VP9D_COMP *pbi, 734 struct vp9_read_bit_buffer *rb) { 735 int width, height; 736 read_frame_size(rb, &width, &height); 737 apply_frame_size(pbi, width, height); 738 setup_display_size(&pbi->common, rb); 739 } 740 741 static void setup_frame_size_with_refs(VP9D_COMP *pbi, 742 struct vp9_read_bit_buffer *rb) { 743 VP9_COMMON *const cm = &pbi->common; 744 745 int width, height; 746 int found = 0, i; 747 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { 748 if (vp9_rb_read_bit(rb)) { 749 YV12_BUFFER_CONFIG *const cfg = get_frame_ref_buffer(cm, i); 750 width = cfg->y_crop_width; 751 height = cfg->y_crop_height; 752 found = 1; 753 break; 754 } 755 } 756 757 if (!found) 758 read_frame_size(rb, &width, &height); 759 760 if (!width || !height) 761 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, 762 "Referenced frame with invalid size"); 763 764 apply_frame_size(pbi, width, height); 765 setup_display_size(cm, rb); 766 } 767 768 static void setup_tile_context(VP9D_COMP *const pbi, MACROBLOCKD *const xd, 769 int tile_row, int tile_col) { 770 int i; 771 const int tile_cols = 1 << pbi->common.log2_tile_cols; 772 xd->mi_stream = pbi->mi_streams[tile_row * tile_cols + tile_col]; 773 774 for (i = 0; i < MAX_MB_PLANE; ++i) { 775 xd->above_context[i] = pbi->above_context[i]; 776 } 777 // see note in alloc_tile_storage(). 778 xd->above_seg_context = pbi->above_seg_context; 779 } 780 781 static void decode_tile(VP9D_COMP *pbi, const TileInfo *const tile, 782 vp9_reader *r) { 783 const int num_threads = pbi->oxcf.max_threads; 784 VP9_COMMON *const cm = &pbi->common; 785 int mi_row, mi_col; 786 MACROBLOCKD *xd = &pbi->mb; 787 788 if (pbi->do_loopfilter_inline) { 789 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; 790 lf_data->frame_buffer = get_frame_new_buffer(cm); 791 lf_data->cm = cm; 792 lf_data->xd = pbi->mb; 793 lf_data->stop = 0; 794 lf_data->y_only = 0; 795 vp9_loop_filter_frame_init(cm, cm->lf.filter_level); 796 } 797 798 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; 799 mi_row += MI_BLOCK_SIZE) { 800 // For a SB there are 2 left contexts, each pertaining to a MB row within 801 vp9_zero(xd->left_context); 802 vp9_zero(xd->left_seg_context); 803 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; 804 mi_col += MI_BLOCK_SIZE) { 805 decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, BLOCK_64X64, 806 pbi->token_cache); 807 } 808 809 if (pbi->do_loopfilter_inline) { 810 const int lf_start = mi_row - MI_BLOCK_SIZE; 811 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; 812 813 // delay the loopfilter by 1 macroblock row. 814 if (lf_start < 0) continue; 815 816 // decoding has completed: finish up the loop filter in this thread. 817 if (mi_row + MI_BLOCK_SIZE >= tile->mi_row_end) continue; 818 819 vp9_worker_sync(&pbi->lf_worker); 820 lf_data->start = lf_start; 821 lf_data->stop = mi_row; 822 if (num_threads > 1) { 823 vp9_worker_launch(&pbi->lf_worker); 824 } else { 825 vp9_worker_execute(&pbi->lf_worker); 826 } 827 } 828 } 829 830 if (pbi->do_loopfilter_inline) { 831 LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; 832 833 vp9_worker_sync(&pbi->lf_worker); 834 lf_data->start = lf_data->stop; 835 lf_data->stop = cm->mi_rows; 836 vp9_worker_execute(&pbi->lf_worker); 837 } 838 } 839 840 static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { 841 int min_log2_tile_cols, max_log2_tile_cols, max_ones; 842 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); 843 844 // columns 845 max_ones = max_log2_tile_cols - min_log2_tile_cols; 846 cm->log2_tile_cols = min_log2_tile_cols; 847 while (max_ones-- && vp9_rb_read_bit(rb)) 848 cm->log2_tile_cols++; 849 850 // rows 851 cm->log2_tile_rows = vp9_rb_read_bit(rb); 852 if (cm->log2_tile_rows) 853 cm->log2_tile_rows += vp9_rb_read_bit(rb); 854 } 855 856 // Reads the next tile returning its size and adjusting '*data' accordingly 857 // based on 'is_last'. 858 static size_t get_tile(const uint8_t *const data_end, 859 int is_last, 860 struct vpx_internal_error_info *error_info, 861 const uint8_t **data) { 862 size_t size; 863 864 if (!is_last) { 865 if (!read_is_valid(*data, 4, data_end)) 866 vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, 867 "Truncated packet or corrupt tile length"); 868 869 size = read_be32(*data); 870 *data += 4; 871 } else { 872 size = data_end - *data; 873 } 874 return size; 875 } 876 877 typedef struct TileBuffer { 878 const uint8_t *data; 879 size_t size; 880 } TileBuffer; 881 882 static const uint8_t *decode_tiles(VP9D_COMP *pbi, const uint8_t *data) { 883 VP9_COMMON *const cm = &pbi->common; 884 MACROBLOCKD *const xd = &pbi->mb; 885 const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); 886 const int tile_cols = 1 << cm->log2_tile_cols; 887 const int tile_rows = 1 << cm->log2_tile_rows; 888 TileBuffer tile_buffers[4][1 << 6]; 889 int tile_row, tile_col; 890 const uint8_t *const data_end = pbi->source + pbi->source_sz; 891 const uint8_t *end = NULL; 892 vp9_reader r; 893 894 assert(tile_rows <= 4); 895 assert(tile_cols <= (1 << 6)); 896 897 // Note: this memset assumes above_context[0], [1] and [2] 898 // are allocated as part of the same buffer. 899 vpx_memset(pbi->above_context[0], 0, 900 sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 2 * aligned_cols); 901 902 vpx_memset(pbi->above_seg_context, 0, 903 sizeof(*pbi->above_seg_context) * aligned_cols); 904 905 // Load tile data into tile_buffers 906 for (tile_row = 0; tile_row < tile_rows; ++tile_row) { 907 for (tile_col = 0; tile_col < tile_cols; ++tile_col) { 908 const int last_tile = tile_row == tile_rows - 1 && 909 tile_col == tile_cols - 1; 910 const size_t size = get_tile(data_end, last_tile, &cm->error, &data); 911 TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; 912 buf->data = data; 913 buf->size = size; 914 data += size; 915 } 916 } 917 918 // Decode tiles using data from tile_buffers 919 for (tile_row = 0; tile_row < tile_rows; ++tile_row) { 920 for (tile_col = 0; tile_col < tile_cols; ++tile_col) { 921 const int col = pbi->oxcf.inv_tile_order ? tile_cols - tile_col - 1 922 : tile_col; 923 const int last_tile = tile_row == tile_rows - 1 && 924 col == tile_cols - 1; 925 const TileBuffer *const buf = &tile_buffers[tile_row][col]; 926 TileInfo tile; 927 928 vp9_tile_init(&tile, cm, tile_row, col); 929 setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &r); 930 setup_tile_context(pbi, xd, tile_row, col); 931 decode_tile(pbi, &tile, &r); 932 933 if (last_tile) 934 end = vp9_reader_find_end(&r); 935 } 936 } 937 938 return end; 939 } 940 941 static void setup_tile_macroblockd(TileWorkerData *const tile_data) { 942 MACROBLOCKD *xd = &tile_data->xd; 943 struct macroblockd_plane *const pd = xd->plane; 944 int i; 945 946 for (i = 0; i < MAX_MB_PLANE; ++i) { 947 pd[i].qcoeff = tile_data->qcoeff[i]; 948 pd[i].dqcoeff = tile_data->dqcoeff[i]; 949 pd[i].eobs = tile_data->eobs[i]; 950 vpx_memset(xd->plane[i].dqcoeff, 0, 64 * 64 * sizeof(int16_t)); 951 } 952 } 953 954 static int tile_worker_hook(void *arg1, void *arg2) { 955 TileWorkerData *const tile_data = (TileWorkerData*)arg1; 956 const TileInfo *const tile = (TileInfo*)arg2; 957 int mi_row, mi_col; 958 959 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; 960 mi_row += MI_BLOCK_SIZE) { 961 vp9_zero(tile_data->xd.left_context); 962 vp9_zero(tile_data->xd.left_seg_context); 963 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; 964 mi_col += MI_BLOCK_SIZE) { 965 decode_modes_sb(tile_data->cm, &tile_data->xd, tile, 966 mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, 967 tile_data->token_cache); 968 } 969 } 970 return !tile_data->xd.corrupted; 971 } 972 973 static const uint8_t *decode_tiles_mt(VP9D_COMP *pbi, const uint8_t *data) { 974 VP9_COMMON *const cm = &pbi->common; 975 const uint8_t *const data_end = pbi->source + pbi->source_sz; 976 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); 977 const int tile_cols = 1 << cm->log2_tile_cols; 978 const int tile_rows = 1 << cm->log2_tile_rows; 979 const int num_workers = MIN(pbi->oxcf.max_threads & ~1, tile_cols); 980 int tile_col = 0; 981 982 assert(tile_rows == 1); 983 (void)tile_rows; 984 985 if (num_workers > pbi->num_tile_workers) { 986 int i; 987 CHECK_MEM_ERROR(cm, pbi->tile_workers, 988 vpx_realloc(pbi->tile_workers, 989 num_workers * sizeof(*pbi->tile_workers))); 990 for (i = pbi->num_tile_workers; i < num_workers; ++i) { 991 VP9Worker *const worker = &pbi->tile_workers[i]; 992 ++pbi->num_tile_workers; 993 994 vp9_worker_init(worker); 995 worker->hook = (VP9WorkerHook)tile_worker_hook; 996 CHECK_MEM_ERROR(cm, worker->data1, 997 vpx_memalign(32, sizeof(TileWorkerData))); 998 CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo))); 999 if (i < num_workers - 1 && !vp9_worker_reset(worker)) { 1000 vpx_internal_error(&cm->error, VPX_CODEC_ERROR, 1001 "Tile decoder thread creation failed"); 1002 } 1003 } 1004 } 1005 1006 // Note: this memset assumes above_context[0], [1] and [2] 1007 // are allocated as part of the same buffer. 1008 vpx_memset(pbi->above_context[0], 0, 1009 sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 1010 2 * aligned_mi_cols); 1011 vpx_memset(pbi->above_seg_context, 0, 1012 sizeof(*pbi->above_seg_context) * aligned_mi_cols); 1013 1014 while (tile_col < tile_cols) { 1015 int i; 1016 for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { 1017 VP9Worker *const worker = &pbi->tile_workers[i]; 1018 TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; 1019 TileInfo *const tile = (TileInfo*)worker->data2; 1020 const size_t size = 1021 get_tile(data_end, tile_col == tile_cols - 1, &cm->error, &data); 1022 1023 tile_data->cm = cm; 1024 tile_data->xd = pbi->mb; 1025 tile_data->xd.corrupted = 0; 1026 vp9_tile_init(tile, tile_data->cm, 0, tile_col); 1027 1028 setup_token_decoder(data, data_end, size, &cm->error, 1029 &tile_data->bit_reader); 1030 setup_tile_context(pbi, &tile_data->xd, 0, tile_col); 1031 setup_tile_macroblockd(tile_data); 1032 1033 worker->had_error = 0; 1034 if (i == num_workers - 1 || tile_col == tile_cols - 1) { 1035 vp9_worker_execute(worker); 1036 } else { 1037 vp9_worker_launch(worker); 1038 } 1039 1040 data += size; 1041 ++tile_col; 1042 } 1043 1044 for (; i > 0; --i) { 1045 VP9Worker *const worker = &pbi->tile_workers[i - 1]; 1046 pbi->mb.corrupted |= !vp9_worker_sync(worker); 1047 } 1048 } 1049 1050 { 1051 const int final_worker = (tile_cols + num_workers - 1) % num_workers; 1052 TileWorkerData *const tile_data = 1053 (TileWorkerData*)pbi->tile_workers[final_worker].data1; 1054 return vp9_reader_find_end(&tile_data->bit_reader); 1055 } 1056 } 1057 1058 static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { 1059 if (vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_0 || 1060 vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_1 || 1061 vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_2) { 1062 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, 1063 "Invalid frame sync code"); 1064 } 1065 } 1066 1067 static void error_handler(void *data, size_t bit_offset) { 1068 VP9_COMMON *const cm = (VP9_COMMON *)data; 1069 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); 1070 } 1071 1072 #define RESERVED \ 1073 if (vp9_rb_read_bit(rb)) \ 1074 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \ 1075 "Reserved bit must be unset") 1076 1077 static size_t read_uncompressed_header(VP9D_COMP *pbi, 1078 struct vp9_read_bit_buffer *rb) { 1079 VP9_COMMON *const cm = &pbi->common; 1080 size_t sz; 1081 int i; 1082 1083 cm->last_frame_type = cm->frame_type; 1084 1085 if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) 1086 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, 1087 "Invalid frame marker"); 1088 1089 cm->version = vp9_rb_read_bit(rb); 1090 RESERVED; 1091 1092 if (vp9_rb_read_bit(rb)) { 1093 // show an existing frame directly 1094 int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)]; 1095 ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->new_fb_idx, frame_to_show); 1096 pbi->refresh_frame_flags = 0; 1097 cm->lf.filter_level = 0; 1098 return 0; 1099 } 1100 1101 cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb); 1102 cm->show_frame = vp9_rb_read_bit(rb); 1103 cm->error_resilient_mode = vp9_rb_read_bit(rb); 1104 1105 if (cm->frame_type == KEY_FRAME) { 1106 check_sync_code(cm, rb); 1107 1108 cm->color_space = vp9_rb_read_literal(rb, 3); // colorspace 1109 if (cm->color_space != SRGB) { 1110 vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range 1111 if (cm->version == 1) { 1112 cm->subsampling_x = vp9_rb_read_bit(rb); 1113 cm->subsampling_y = vp9_rb_read_bit(rb); 1114 vp9_rb_read_bit(rb); // has extra plane 1115 } else { 1116 cm->subsampling_y = cm->subsampling_x = 1; 1117 } 1118 } else { 1119 if (cm->version == 1) { 1120 cm->subsampling_y = cm->subsampling_x = 0; 1121 vp9_rb_read_bit(rb); // has extra plane 1122 } else { 1123 vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, 1124 "RGB not supported in profile 0"); 1125 } 1126 } 1127 1128 pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; 1129 1130 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) 1131 cm->active_ref_idx[i] = cm->new_fb_idx; 1132 1133 setup_frame_size(pbi, rb); 1134 } else { 1135 cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb); 1136 1137 cm->reset_frame_context = cm->error_resilient_mode ? 1138 0 : vp9_rb_read_literal(rb, 2); 1139 1140 if (cm->intra_only) { 1141 check_sync_code(cm, rb); 1142 1143 pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); 1144 setup_frame_size(pbi, rb); 1145 } else { 1146 pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); 1147 1148 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { 1149 const int ref = vp9_rb_read_literal(rb, NUM_REF_FRAMES_LOG2); 1150 cm->active_ref_idx[i] = cm->ref_frame_map[ref]; 1151 cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb); 1152 } 1153 1154 setup_frame_size_with_refs(pbi, rb); 1155 1156 cm->allow_high_precision_mv = vp9_rb_read_bit(rb); 1157 cm->mcomp_filter_type = read_interp_filter_type(rb); 1158 1159 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) 1160 vp9_setup_scale_factors(cm, i); 1161 } 1162 } 1163 1164 if (!cm->error_resilient_mode) { 1165 cm->refresh_frame_context = vp9_rb_read_bit(rb); 1166 cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb); 1167 } else { 1168 cm->refresh_frame_context = 0; 1169 cm->frame_parallel_decoding_mode = 1; 1170 } 1171 1172 // This flag will be overridden by the call to vp9_setup_past_independence 1173 // below, forcing the use of context 0 for those frame types. 1174 cm->frame_context_idx = vp9_rb_read_literal(rb, NUM_FRAME_CONTEXTS_LOG2); 1175 1176 if (frame_is_intra_only(cm) || cm->error_resilient_mode) 1177 vp9_setup_past_independence(cm); 1178 1179 setup_loopfilter(&cm->lf, rb); 1180 setup_quantization(cm, &pbi->mb, rb); 1181 setup_segmentation(&cm->seg, rb); 1182 1183 setup_tile_info(cm, rb); 1184 sz = vp9_rb_read_literal(rb, 16); 1185 1186 if (sz == 0) 1187 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, 1188 "Invalid header size"); 1189 1190 return sz; 1191 } 1192 1193 static int read_compressed_header(VP9D_COMP *pbi, const uint8_t *data, 1194 size_t partition_size) { 1195 VP9_COMMON *const cm = &pbi->common; 1196 MACROBLOCKD *const xd = &pbi->mb; 1197 FRAME_CONTEXT *const fc = &cm->fc; 1198 vp9_reader r; 1199 int k; 1200 1201 if (vp9_reader_init(&r, data, partition_size)) 1202 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, 1203 "Failed to allocate bool decoder 0"); 1204 1205 cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); 1206 if (cm->tx_mode == TX_MODE_SELECT) 1207 read_tx_probs(&fc->tx_probs, &r); 1208 read_coef_probs(fc, cm->tx_mode, &r); 1209 1210 for (k = 0; k < MBSKIP_CONTEXTS; ++k) 1211 vp9_diff_update_prob(&r, &fc->mbskip_probs[k]); 1212 1213 if (!frame_is_intra_only(cm)) { 1214 nmv_context *const nmvc = &fc->nmvc; 1215 int i, j; 1216 1217 read_inter_mode_probs(fc, &r); 1218 1219 if (cm->mcomp_filter_type == SWITCHABLE) 1220 read_switchable_interp_probs(fc, &r); 1221 1222 for (i = 0; i < INTRA_INTER_CONTEXTS; i++) 1223 vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); 1224 1225 read_comp_pred(cm, &r); 1226 1227 for (j = 0; j < BLOCK_SIZE_GROUPS; j++) 1228 for (i = 0; i < INTRA_MODES - 1; ++i) 1229 vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); 1230 1231 for (j = 0; j < PARTITION_CONTEXTS; ++j) 1232 for (i = 0; i < PARTITION_TYPES - 1; ++i) 1233 vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); 1234 1235 read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); 1236 } 1237 1238 return vp9_reader_has_error(&r); 1239 } 1240 1241 void vp9_init_dequantizer(VP9_COMMON *cm) { 1242 int q; 1243 1244 for (q = 0; q < QINDEX_RANGE; q++) { 1245 cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q); 1246 cm->y_dequant[q][1] = vp9_ac_quant(q, 0); 1247 1248 cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q); 1249 cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q); 1250 } 1251 } 1252 1253 #ifdef NDEBUG 1254 #define debug_check_frame_counts(cm) (void)0 1255 #else // !NDEBUG 1256 // Counts should only be incremented when frame_parallel_decoding_mode and 1257 // error_resilient_mode are disabled. 1258 static void debug_check_frame_counts(const VP9_COMMON *const cm) { 1259 FRAME_COUNTS zero_counts; 1260 vp9_zero(zero_counts); 1261 assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); 1262 assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, 1263 sizeof(cm->counts.y_mode))); 1264 assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, 1265 sizeof(cm->counts.uv_mode))); 1266 assert(!memcmp(cm->counts.partition, zero_counts.partition, 1267 sizeof(cm->counts.partition))); 1268 assert(!memcmp(cm->counts.coef, zero_counts.coef, 1269 sizeof(cm->counts.coef))); 1270 assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, 1271 sizeof(cm->counts.eob_branch))); 1272 assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, 1273 sizeof(cm->counts.switchable_interp))); 1274 assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, 1275 sizeof(cm->counts.inter_mode))); 1276 assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, 1277 sizeof(cm->counts.intra_inter))); 1278 assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, 1279 sizeof(cm->counts.comp_inter))); 1280 assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, 1281 sizeof(cm->counts.single_ref))); 1282 assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, 1283 sizeof(cm->counts.comp_ref))); 1284 assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); 1285 assert(!memcmp(cm->counts.mbskip, zero_counts.mbskip, 1286 sizeof(cm->counts.mbskip))); 1287 assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); 1288 } 1289 #endif // NDEBUG 1290 1291 int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { 1292 int i; 1293 VP9_COMMON *const cm = &pbi->common; 1294 MACROBLOCKD *const xd = &pbi->mb; 1295 1296 const uint8_t *data = pbi->source; 1297 const uint8_t *const data_end = pbi->source + pbi->source_sz; 1298 1299 struct vp9_read_bit_buffer rb = { data, data_end, 0, cm, error_handler }; 1300 const size_t first_partition_size = read_uncompressed_header(pbi, &rb); 1301 const int keyframe = cm->frame_type == KEY_FRAME; 1302 const int tile_rows = 1 << cm->log2_tile_rows; 1303 const int tile_cols = 1 << cm->log2_tile_cols; 1304 YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); 1305 1306 if (!first_partition_size) { 1307 // showing a frame directly 1308 *p_data_end = data + 1; 1309 return 0; 1310 } 1311 1312 if (!pbi->decoded_key_frame && !keyframe) 1313 return -1; 1314 1315 data += vp9_rb_bytes_read(&rb); 1316 if (!read_is_valid(data, first_partition_size, data_end)) 1317 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, 1318 "Truncated packet or corrupt header length"); 1319 1320 pbi->do_loopfilter_inline = 1321 (cm->log2_tile_rows | cm->log2_tile_cols) == 0 && cm->lf.filter_level; 1322 if (pbi->do_loopfilter_inline && pbi->lf_worker.data1 == NULL) { 1323 CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_malloc(sizeof(LFWorkerData))); 1324 pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker; 1325 if (pbi->oxcf.max_threads > 1 && !vp9_worker_reset(&pbi->lf_worker)) { 1326 vpx_internal_error(&cm->error, VPX_CODEC_ERROR, 1327 "Loop filter thread creation failed"); 1328 } 1329 } 1330 1331 alloc_tile_storage(pbi, tile_rows, tile_cols); 1332 1333 xd->mode_info_stride = cm->mode_info_stride; 1334 set_prev_mi(cm); 1335 1336 setup_plane_dequants(cm, xd, cm->base_qindex); 1337 setup_block_dptrs(xd, cm->subsampling_x, cm->subsampling_y); 1338 1339 cm->fc = cm->frame_contexts[cm->frame_context_idx]; 1340 vp9_zero(cm->counts); 1341 for (i = 0; i < MAX_MB_PLANE; ++i) 1342 vpx_memset(xd->plane[i].dqcoeff, 0, 64 * 64 * sizeof(int16_t)); 1343 1344 xd->corrupted = 0; 1345 new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); 1346 1347 // TODO(jzern): remove frame_parallel_decoding_mode restriction for 1348 // single-frame tile decoding. 1349 if (pbi->oxcf.max_threads > 1 && tile_rows == 1 && tile_cols > 1 && 1350 cm->frame_parallel_decoding_mode) { 1351 *p_data_end = decode_tiles_mt(pbi, data + first_partition_size); 1352 } else { 1353 *p_data_end = decode_tiles(pbi, data + first_partition_size); 1354 } 1355 1356 cm->last_width = cm->width; 1357 cm->last_height = cm->height; 1358 1359 new_fb->corrupted |= xd->corrupted; 1360 1361 if (!pbi->decoded_key_frame) { 1362 if (keyframe && !new_fb->corrupted) 1363 pbi->decoded_key_frame = 1; 1364 else 1365 vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, 1366 "A stream must start with a complete key frame"); 1367 } 1368 1369 if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { 1370 vp9_adapt_coef_probs(cm); 1371 1372 if (!frame_is_intra_only(cm)) { 1373 vp9_adapt_mode_probs(cm); 1374 vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); 1375 } 1376 } else { 1377 debug_check_frame_counts(cm); 1378 } 1379 1380 if (cm->refresh_frame_context) 1381 cm->frame_contexts[cm->frame_context_idx] = cm->fc; 1382 1383 return 0; 1384 } 1385