1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a class to represent arbitrary precision 12 /// integral constant values and operations on them. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_APINT_H 17 #define LLVM_ADT_APINT_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Support/MathExtras.h" 22 #include <cassert> 23 #include <climits> 24 #include <cstring> 25 #include <string> 26 27 namespace llvm { 28 class Deserializer; 29 class FoldingSetNodeID; 30 class Serializer; 31 class StringRef; 32 class hash_code; 33 class raw_ostream; 34 35 template <typename T> class SmallVectorImpl; 36 37 // An unsigned host type used as a single part of a multi-part 38 // bignum. 39 typedef uint64_t integerPart; 40 41 const unsigned int host_char_bit = 8; 42 const unsigned int integerPartWidth = 43 host_char_bit * static_cast<unsigned int>(sizeof(integerPart)); 44 45 //===----------------------------------------------------------------------===// 46 // APInt Class 47 //===----------------------------------------------------------------------===// 48 49 /// \brief Class for arbitrary precision integers. 50 /// 51 /// APInt is a functional replacement for common case unsigned integer type like 52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more 54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators 55 /// and methods to manipulate integer values of any bit-width. It supports both 56 /// the typical integer arithmetic and comparison operations as well as bitwise 57 /// manipulation. 58 /// 59 /// The class has several invariants worth noting: 60 /// * All bit, byte, and word positions are zero-based. 61 /// * Once the bit width is set, it doesn't change except by the Truncate, 62 /// SignExtend, or ZeroExtend operations. 63 /// * All binary operators must be on APInt instances of the same bit width. 64 /// Attempting to use these operators on instances with different bit 65 /// widths will yield an assertion. 66 /// * The value is stored canonically as an unsigned value. For operations 67 /// where it makes a difference, there are both signed and unsigned variants 68 /// of the operation. For example, sdiv and udiv. However, because the bit 69 /// widths must be the same, operations such as Mul and Add produce the same 70 /// results regardless of whether the values are interpreted as signed or 71 /// not. 72 /// * In general, the class tries to follow the style of computation that LLVM 73 /// uses in its IR. This simplifies its use for LLVM. 74 /// 75 class APInt { 76 unsigned BitWidth; ///< The number of bits in this APInt. 77 78 /// This union is used to store the integer value. When the 79 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 80 union { 81 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 82 uint64_t *pVal; ///< Used to store the >64 bits integer value. 83 }; 84 85 /// This enum is used to hold the constants we needed for APInt. 86 enum { 87 /// Bits in a word 88 APINT_BITS_PER_WORD = 89 static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT, 90 /// Byte size of a word 91 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t)) 92 }; 93 94 /// \brief Fast internal constructor 95 /// 96 /// This constructor is used only internally for speed of construction of 97 /// temporaries. It is unsafe for general use so it is not public. 98 APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {} 99 100 /// \brief Determine if this APInt just has one word to store value. 101 /// 102 /// \returns true if the number of bits <= 64, false otherwise. 103 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 104 105 /// \brief Determine which word a bit is in. 106 /// 107 /// \returns the word position for the specified bit position. 108 static unsigned whichWord(unsigned bitPosition) { 109 return bitPosition / APINT_BITS_PER_WORD; 110 } 111 112 /// \brief Determine which bit in a word a bit is in. 113 /// 114 /// \returns the bit position in a word for the specified bit position 115 /// in the APInt. 116 static unsigned whichBit(unsigned bitPosition) { 117 return bitPosition % APINT_BITS_PER_WORD; 118 } 119 120 /// \brief Get a single bit mask. 121 /// 122 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 123 /// This method generates and returns a uint64_t (word) mask for a single 124 /// bit at a specific bit position. This is used to mask the bit in the 125 /// corresponding word. 126 static uint64_t maskBit(unsigned bitPosition) { 127 return 1ULL << whichBit(bitPosition); 128 } 129 130 /// \brief Clear unused high order bits 131 /// 132 /// This method is used internally to clear the to "N" bits in the high order 133 /// word that are not used by the APInt. This is needed after the most 134 /// significant word is assigned a value to ensure that those bits are 135 /// zero'd out. 136 APInt &clearUnusedBits() { 137 // Compute how many bits are used in the final word 138 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; 139 if (wordBits == 0) 140 // If all bits are used, we want to leave the value alone. This also 141 // avoids the undefined behavior of >> when the shift is the same size as 142 // the word size (64). 143 return *this; 144 145 // Mask out the high bits. 146 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); 147 if (isSingleWord()) 148 VAL &= mask; 149 else 150 pVal[getNumWords() - 1] &= mask; 151 return *this; 152 } 153 154 /// \brief Get the word corresponding to a bit position 155 /// \returns the corresponding word for the specified bit position. 156 uint64_t getWord(unsigned bitPosition) const { 157 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; 158 } 159 160 /// \brief Convert a char array into an APInt 161 /// 162 /// \param radix 2, 8, 10, 16, or 36 163 /// Converts a string into a number. The string must be non-empty 164 /// and well-formed as a number of the given base. The bit-width 165 /// must be sufficient to hold the result. 166 /// 167 /// This is used by the constructors that take string arguments. 168 /// 169 /// StringRef::getAsInteger is superficially similar but (1) does 170 /// not assume that the string is well-formed and (2) grows the 171 /// result to hold the input. 172 void fromString(unsigned numBits, StringRef str, uint8_t radix); 173 174 /// \brief An internal division function for dividing APInts. 175 /// 176 /// This is used by the toString method to divide by the radix. It simply 177 /// provides a more convenient form of divide for internal use since KnuthDiv 178 /// has specific constraints on its inputs. If those constraints are not met 179 /// then it provides a simpler form of divide. 180 static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS, 181 unsigned rhsWords, APInt *Quotient, APInt *Remainder); 182 183 /// out-of-line slow case for inline constructor 184 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned); 185 186 /// shared code between two array constructors 187 void initFromArray(ArrayRef<uint64_t> array); 188 189 /// out-of-line slow case for inline copy constructor 190 void initSlowCase(const APInt &that); 191 192 /// out-of-line slow case for shl 193 APInt shlSlowCase(unsigned shiftAmt) const; 194 195 /// out-of-line slow case for operator& 196 APInt AndSlowCase(const APInt &RHS) const; 197 198 /// out-of-line slow case for operator| 199 APInt OrSlowCase(const APInt &RHS) const; 200 201 /// out-of-line slow case for operator^ 202 APInt XorSlowCase(const APInt &RHS) const; 203 204 /// out-of-line slow case for operator= 205 APInt &AssignSlowCase(const APInt &RHS); 206 207 /// out-of-line slow case for operator== 208 bool EqualSlowCase(const APInt &RHS) const; 209 210 /// out-of-line slow case for operator== 211 bool EqualSlowCase(uint64_t Val) const; 212 213 /// out-of-line slow case for countLeadingZeros 214 unsigned countLeadingZerosSlowCase() const; 215 216 /// out-of-line slow case for countTrailingOnes 217 unsigned countTrailingOnesSlowCase() const; 218 219 /// out-of-line slow case for countPopulation 220 unsigned countPopulationSlowCase() const; 221 222 public: 223 /// \name Constructors 224 /// @{ 225 226 /// \brief Create a new APInt of numBits width, initialized as val. 227 /// 228 /// If isSigned is true then val is treated as if it were a signed value 229 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 230 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 231 /// the range of val are zero filled). 232 /// 233 /// \param numBits the bit width of the constructed APInt 234 /// \param val the initial value of the APInt 235 /// \param isSigned how to treat signedness of val 236 APInt(unsigned numBits, uint64_t val, bool isSigned = false) 237 : BitWidth(numBits), VAL(0) { 238 assert(BitWidth && "bitwidth too small"); 239 if (isSingleWord()) 240 VAL = val; 241 else 242 initSlowCase(numBits, val, isSigned); 243 clearUnusedBits(); 244 } 245 246 /// \brief Construct an APInt of numBits width, initialized as bigVal[]. 247 /// 248 /// Note that bigVal.size() can be smaller or larger than the corresponding 249 /// bit width but any extraneous bits will be dropped. 250 /// 251 /// \param numBits the bit width of the constructed APInt 252 /// \param bigVal a sequence of words to form the initial value of the APInt 253 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 254 255 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 256 /// deprecated because this constructor is prone to ambiguity with the 257 /// APInt(unsigned, uint64_t, bool) constructor. 258 /// 259 /// If this overload is ever deleted, care should be taken to prevent calls 260 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 261 /// constructor. 262 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 263 264 /// \brief Construct an APInt from a string representation. 265 /// 266 /// This constructor interprets the string \p str in the given radix. The 267 /// interpretation stops when the first character that is not suitable for the 268 /// radix is encountered, or the end of the string. Acceptable radix values 269 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 270 /// string to require more bits than numBits. 271 /// 272 /// \param numBits the bit width of the constructed APInt 273 /// \param str the string to be interpreted 274 /// \param radix the radix to use for the conversion 275 APInt(unsigned numBits, StringRef str, uint8_t radix); 276 277 /// Simply makes *this a copy of that. 278 /// @brief Copy Constructor. 279 APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) { 280 assert(BitWidth && "bitwidth too small"); 281 if (isSingleWord()) 282 VAL = that.VAL; 283 else 284 initSlowCase(that); 285 } 286 287 #if LLVM_HAS_RVALUE_REFERENCES 288 /// \brief Move Constructor. 289 APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) { 290 that.BitWidth = 0; 291 } 292 #endif 293 294 /// \brief Destructor. 295 ~APInt() { 296 if (needsCleanup()) 297 delete[] pVal; 298 } 299 300 /// \brief Default constructor that creates an uninitialized APInt. 301 /// 302 /// This is useful for object deserialization (pair this with the static 303 /// method Read). 304 explicit APInt() : BitWidth(1) {} 305 306 /// \brief Returns whether this instance allocated memory. 307 bool needsCleanup() const { return !isSingleWord(); } 308 309 /// Used to insert APInt objects, or objects that contain APInt objects, into 310 /// FoldingSets. 311 void Profile(FoldingSetNodeID &id) const; 312 313 /// @} 314 /// \name Value Tests 315 /// @{ 316 317 /// \brief Determine sign of this APInt. 318 /// 319 /// This tests the high bit of this APInt to determine if it is set. 320 /// 321 /// \returns true if this APInt is negative, false otherwise 322 bool isNegative() const { return (*this)[BitWidth - 1]; } 323 324 /// \brief Determine if this APInt Value is non-negative (>= 0) 325 /// 326 /// This tests the high bit of the APInt to determine if it is unset. 327 bool isNonNegative() const { return !isNegative(); } 328 329 /// \brief Determine if this APInt Value is positive. 330 /// 331 /// This tests if the value of this APInt is positive (> 0). Note 332 /// that 0 is not a positive value. 333 /// 334 /// \returns true if this APInt is positive. 335 bool isStrictlyPositive() const { return isNonNegative() && !!*this; } 336 337 /// \brief Determine if all bits are set 338 /// 339 /// This checks to see if the value has all bits of the APInt are set or not. 340 bool isAllOnesValue() const { 341 if (isSingleWord()) 342 return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth); 343 return countPopulationSlowCase() == BitWidth; 344 } 345 346 /// \brief Determine if this is the largest unsigned value. 347 /// 348 /// This checks to see if the value of this APInt is the maximum unsigned 349 /// value for the APInt's bit width. 350 bool isMaxValue() const { return isAllOnesValue(); } 351 352 /// \brief Determine if this is the largest signed value. 353 /// 354 /// This checks to see if the value of this APInt is the maximum signed 355 /// value for the APInt's bit width. 356 bool isMaxSignedValue() const { 357 return BitWidth == 1 ? VAL == 0 358 : !isNegative() && countPopulation() == BitWidth - 1; 359 } 360 361 /// \brief Determine if this is the smallest unsigned value. 362 /// 363 /// This checks to see if the value of this APInt is the minimum unsigned 364 /// value for the APInt's bit width. 365 bool isMinValue() const { return !*this; } 366 367 /// \brief Determine if this is the smallest signed value. 368 /// 369 /// This checks to see if the value of this APInt is the minimum signed 370 /// value for the APInt's bit width. 371 bool isMinSignedValue() const { 372 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2(); 373 } 374 375 /// \brief Check if this APInt has an N-bits unsigned integer value. 376 bool isIntN(unsigned N) const { 377 assert(N && "N == 0 ???"); 378 return getActiveBits() <= N; 379 } 380 381 /// \brief Check if this APInt has an N-bits signed integer value. 382 bool isSignedIntN(unsigned N) const { 383 assert(N && "N == 0 ???"); 384 return getMinSignedBits() <= N; 385 } 386 387 /// \brief Check if this APInt's value is a power of two greater than zero. 388 /// 389 /// \returns true if the argument APInt value is a power of two > 0. 390 bool isPowerOf2() const { 391 if (isSingleWord()) 392 return isPowerOf2_64(VAL); 393 return countPopulationSlowCase() == 1; 394 } 395 396 /// \brief Check if the APInt's value is returned by getSignBit. 397 /// 398 /// \returns true if this is the value returned by getSignBit. 399 bool isSignBit() const { return isMinSignedValue(); } 400 401 /// \brief Convert APInt to a boolean value. 402 /// 403 /// This converts the APInt to a boolean value as a test against zero. 404 bool getBoolValue() const { return !!*this; } 405 406 /// If this value is smaller than the specified limit, return it, otherwise 407 /// return the limit value. This causes the value to saturate to the limit. 408 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 409 return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit 410 : getZExtValue(); 411 } 412 413 /// @} 414 /// \name Value Generators 415 /// @{ 416 417 /// \brief Gets maximum unsigned value of APInt for specific bit width. 418 static APInt getMaxValue(unsigned numBits) { 419 return getAllOnesValue(numBits); 420 } 421 422 /// \brief Gets maximum signed value of APInt for a specific bit width. 423 static APInt getSignedMaxValue(unsigned numBits) { 424 APInt API = getAllOnesValue(numBits); 425 API.clearBit(numBits - 1); 426 return API; 427 } 428 429 /// \brief Gets minimum unsigned value of APInt for a specific bit width. 430 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 431 432 /// \brief Gets minimum signed value of APInt for a specific bit width. 433 static APInt getSignedMinValue(unsigned numBits) { 434 APInt API(numBits, 0); 435 API.setBit(numBits - 1); 436 return API; 437 } 438 439 /// \brief Get the SignBit for a specific bit width. 440 /// 441 /// This is just a wrapper function of getSignedMinValue(), and it helps code 442 /// readability when we want to get a SignBit. 443 static APInt getSignBit(unsigned BitWidth) { 444 return getSignedMinValue(BitWidth); 445 } 446 447 /// \brief Get the all-ones value. 448 /// 449 /// \returns the all-ones value for an APInt of the specified bit-width. 450 static APInt getAllOnesValue(unsigned numBits) { 451 return APInt(numBits, UINT64_MAX, true); 452 } 453 454 /// \brief Get the '0' value. 455 /// 456 /// \returns the '0' value for an APInt of the specified bit-width. 457 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } 458 459 /// \brief Compute an APInt containing numBits highbits from this APInt. 460 /// 461 /// Get an APInt with the same BitWidth as this APInt, just zero mask 462 /// the low bits and right shift to the least significant bit. 463 /// 464 /// \returns the high "numBits" bits of this APInt. 465 APInt getHiBits(unsigned numBits) const; 466 467 /// \brief Compute an APInt containing numBits lowbits from this APInt. 468 /// 469 /// Get an APInt with the same BitWidth as this APInt, just zero mask 470 /// the high bits. 471 /// 472 /// \returns the low "numBits" bits of this APInt. 473 APInt getLoBits(unsigned numBits) const; 474 475 /// \brief Return an APInt with exactly one bit set in the result. 476 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 477 APInt Res(numBits, 0); 478 Res.setBit(BitNo); 479 return Res; 480 } 481 482 /// \brief Get a value with a block of bits set. 483 /// 484 /// Constructs an APInt value that has a contiguous range of bits set. The 485 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 486 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 487 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For 488 /// example, with parameters (32, 28, 4), you would get 0xF000000F. 489 /// 490 /// \param numBits the intended bit width of the result 491 /// \param loBit the index of the lowest bit set. 492 /// \param hiBit the index of the highest bit set. 493 /// 494 /// \returns An APInt value with the requested bits set. 495 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 496 assert(hiBit <= numBits && "hiBit out of range"); 497 assert(loBit < numBits && "loBit out of range"); 498 if (hiBit < loBit) 499 return getLowBitsSet(numBits, hiBit) | 500 getHighBitsSet(numBits, numBits - loBit); 501 return getLowBitsSet(numBits, hiBit - loBit).shl(loBit); 502 } 503 504 /// \brief Get a value with high bits set 505 /// 506 /// Constructs an APInt value that has the top hiBitsSet bits set. 507 /// 508 /// \param numBits the bitwidth of the result 509 /// \param hiBitsSet the number of high-order bits set in the result. 510 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 511 assert(hiBitsSet <= numBits && "Too many bits to set!"); 512 // Handle a degenerate case, to avoid shifting by word size 513 if (hiBitsSet == 0) 514 return APInt(numBits, 0); 515 unsigned shiftAmt = numBits - hiBitsSet; 516 // For small values, return quickly 517 if (numBits <= APINT_BITS_PER_WORD) 518 return APInt(numBits, ~0ULL << shiftAmt); 519 return getAllOnesValue(numBits).shl(shiftAmt); 520 } 521 522 /// \brief Get a value with low bits set 523 /// 524 /// Constructs an APInt value that has the bottom loBitsSet bits set. 525 /// 526 /// \param numBits the bitwidth of the result 527 /// \param loBitsSet the number of low-order bits set in the result. 528 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 529 assert(loBitsSet <= numBits && "Too many bits to set!"); 530 // Handle a degenerate case, to avoid shifting by word size 531 if (loBitsSet == 0) 532 return APInt(numBits, 0); 533 if (loBitsSet == APINT_BITS_PER_WORD) 534 return APInt(numBits, UINT64_MAX); 535 // For small values, return quickly. 536 if (loBitsSet <= APINT_BITS_PER_WORD) 537 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet)); 538 return getAllOnesValue(numBits).lshr(numBits - loBitsSet); 539 } 540 541 /// \brief Return a value containing V broadcasted over NewLen bits. 542 static APInt getSplat(unsigned NewLen, const APInt &V) { 543 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 544 545 APInt Val = V.zextOrSelf(NewLen); 546 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 547 Val |= Val << I; 548 549 return Val; 550 } 551 552 /// \brief Determine if two APInts have the same value, after zero-extending 553 /// one of them (if needed!) to ensure that the bit-widths match. 554 static bool isSameValue(const APInt &I1, const APInt &I2) { 555 if (I1.getBitWidth() == I2.getBitWidth()) 556 return I1 == I2; 557 558 if (I1.getBitWidth() > I2.getBitWidth()) 559 return I1 == I2.zext(I1.getBitWidth()); 560 561 return I1.zext(I2.getBitWidth()) == I2; 562 } 563 564 /// \brief Overload to compute a hash_code for an APInt value. 565 friend hash_code hash_value(const APInt &Arg); 566 567 /// This function returns a pointer to the internal storage of the APInt. 568 /// This is useful for writing out the APInt in binary form without any 569 /// conversions. 570 const uint64_t *getRawData() const { 571 if (isSingleWord()) 572 return &VAL; 573 return &pVal[0]; 574 } 575 576 /// @} 577 /// \name Unary Operators 578 /// @{ 579 580 /// \brief Postfix increment operator. 581 /// 582 /// \returns a new APInt value representing *this incremented by one 583 const APInt operator++(int) { 584 APInt API(*this); 585 ++(*this); 586 return API; 587 } 588 589 /// \brief Prefix increment operator. 590 /// 591 /// \returns *this incremented by one 592 APInt &operator++(); 593 594 /// \brief Postfix decrement operator. 595 /// 596 /// \returns a new APInt representing *this decremented by one. 597 const APInt operator--(int) { 598 APInt API(*this); 599 --(*this); 600 return API; 601 } 602 603 /// \brief Prefix decrement operator. 604 /// 605 /// \returns *this decremented by one. 606 APInt &operator--(); 607 608 /// \brief Unary bitwise complement operator. 609 /// 610 /// Performs a bitwise complement operation on this APInt. 611 /// 612 /// \returns an APInt that is the bitwise complement of *this 613 APInt operator~() const { 614 APInt Result(*this); 615 Result.flipAllBits(); 616 return Result; 617 } 618 619 /// \brief Unary negation operator 620 /// 621 /// Negates *this using two's complement logic. 622 /// 623 /// \returns An APInt value representing the negation of *this. 624 APInt operator-() const { return APInt(BitWidth, 0) - (*this); } 625 626 /// \brief Logical negation operator. 627 /// 628 /// Performs logical negation operation on this APInt. 629 /// 630 /// \returns true if *this is zero, false otherwise. 631 bool operator!() const { 632 if (isSingleWord()) 633 return !VAL; 634 635 for (unsigned i = 0; i != getNumWords(); ++i) 636 if (pVal[i]) 637 return false; 638 return true; 639 } 640 641 /// @} 642 /// \name Assignment Operators 643 /// @{ 644 645 /// \brief Copy assignment operator. 646 /// 647 /// \returns *this after assignment of RHS. 648 APInt &operator=(const APInt &RHS) { 649 // If the bitwidths are the same, we can avoid mucking with memory 650 if (isSingleWord() && RHS.isSingleWord()) { 651 VAL = RHS.VAL; 652 BitWidth = RHS.BitWidth; 653 return clearUnusedBits(); 654 } 655 656 return AssignSlowCase(RHS); 657 } 658 659 #if LLVM_HAS_RVALUE_REFERENCES 660 /// @brief Move assignment operator. 661 APInt &operator=(APInt &&that) { 662 if (!isSingleWord()) 663 delete[] pVal; 664 665 BitWidth = that.BitWidth; 666 VAL = that.VAL; 667 668 that.BitWidth = 0; 669 670 return *this; 671 } 672 #endif 673 674 /// \brief Assignment operator. 675 /// 676 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 677 /// the bit width, the excess bits are truncated. If the bit width is larger 678 /// than 64, the value is zero filled in the unspecified high order bits. 679 /// 680 /// \returns *this after assignment of RHS value. 681 APInt &operator=(uint64_t RHS); 682 683 /// \brief Bitwise AND assignment operator. 684 /// 685 /// Performs a bitwise AND operation on this APInt and RHS. The result is 686 /// assigned to *this. 687 /// 688 /// \returns *this after ANDing with RHS. 689 APInt &operator&=(const APInt &RHS); 690 691 /// \brief Bitwise OR assignment operator. 692 /// 693 /// Performs a bitwise OR operation on this APInt and RHS. The result is 694 /// assigned *this; 695 /// 696 /// \returns *this after ORing with RHS. 697 APInt &operator|=(const APInt &RHS); 698 699 /// \brief Bitwise OR assignment operator. 700 /// 701 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 702 /// logically zero-extended or truncated to match the bit-width of 703 /// the LHS. 704 APInt &operator|=(uint64_t RHS) { 705 if (isSingleWord()) { 706 VAL |= RHS; 707 clearUnusedBits(); 708 } else { 709 pVal[0] |= RHS; 710 } 711 return *this; 712 } 713 714 /// \brief Bitwise XOR assignment operator. 715 /// 716 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 717 /// assigned to *this. 718 /// 719 /// \returns *this after XORing with RHS. 720 APInt &operator^=(const APInt &RHS); 721 722 /// \brief Multiplication assignment operator. 723 /// 724 /// Multiplies this APInt by RHS and assigns the result to *this. 725 /// 726 /// \returns *this 727 APInt &operator*=(const APInt &RHS); 728 729 /// \brief Addition assignment operator. 730 /// 731 /// Adds RHS to *this and assigns the result to *this. 732 /// 733 /// \returns *this 734 APInt &operator+=(const APInt &RHS); 735 736 /// \brief Subtraction assignment operator. 737 /// 738 /// Subtracts RHS from *this and assigns the result to *this. 739 /// 740 /// \returns *this 741 APInt &operator-=(const APInt &RHS); 742 743 /// \brief Left-shift assignment function. 744 /// 745 /// Shifts *this left by shiftAmt and assigns the result to *this. 746 /// 747 /// \returns *this after shifting left by shiftAmt 748 APInt &operator<<=(unsigned shiftAmt) { 749 *this = shl(shiftAmt); 750 return *this; 751 } 752 753 /// @} 754 /// \name Binary Operators 755 /// @{ 756 757 /// \brief Bitwise AND operator. 758 /// 759 /// Performs a bitwise AND operation on *this and RHS. 760 /// 761 /// \returns An APInt value representing the bitwise AND of *this and RHS. 762 APInt operator&(const APInt &RHS) const { 763 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 764 if (isSingleWord()) 765 return APInt(getBitWidth(), VAL & RHS.VAL); 766 return AndSlowCase(RHS); 767 } 768 APInt And(const APInt &RHS) const { return this->operator&(RHS); } 769 770 /// \brief Bitwise OR operator. 771 /// 772 /// Performs a bitwise OR operation on *this and RHS. 773 /// 774 /// \returns An APInt value representing the bitwise OR of *this and RHS. 775 APInt operator|(const APInt &RHS) const { 776 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 777 if (isSingleWord()) 778 return APInt(getBitWidth(), VAL | RHS.VAL); 779 return OrSlowCase(RHS); 780 } 781 782 /// \brief Bitwise OR function. 783 /// 784 /// Performs a bitwise or on *this and RHS. This is implemented bny simply 785 /// calling operator|. 786 /// 787 /// \returns An APInt value representing the bitwise OR of *this and RHS. 788 APInt Or(const APInt &RHS) const { return this->operator|(RHS); } 789 790 /// \brief Bitwise XOR operator. 791 /// 792 /// Performs a bitwise XOR operation on *this and RHS. 793 /// 794 /// \returns An APInt value representing the bitwise XOR of *this and RHS. 795 APInt operator^(const APInt &RHS) const { 796 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 797 if (isSingleWord()) 798 return APInt(BitWidth, VAL ^ RHS.VAL); 799 return XorSlowCase(RHS); 800 } 801 802 /// \brief Bitwise XOR function. 803 /// 804 /// Performs a bitwise XOR operation on *this and RHS. This is implemented 805 /// through the usage of operator^. 806 /// 807 /// \returns An APInt value representing the bitwise XOR of *this and RHS. 808 APInt Xor(const APInt &RHS) const { return this->operator^(RHS); } 809 810 /// \brief Multiplication operator. 811 /// 812 /// Multiplies this APInt by RHS and returns the result. 813 APInt operator*(const APInt &RHS) const; 814 815 /// \brief Addition operator. 816 /// 817 /// Adds RHS to this APInt and returns the result. 818 APInt operator+(const APInt &RHS) const; 819 APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); } 820 821 /// \brief Subtraction operator. 822 /// 823 /// Subtracts RHS from this APInt and returns the result. 824 APInt operator-(const APInt &RHS) const; 825 APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); } 826 827 /// \brief Left logical shift operator. 828 /// 829 /// Shifts this APInt left by \p Bits and returns the result. 830 APInt operator<<(unsigned Bits) const { return shl(Bits); } 831 832 /// \brief Left logical shift operator. 833 /// 834 /// Shifts this APInt left by \p Bits and returns the result. 835 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 836 837 /// \brief Arithmetic right-shift function. 838 /// 839 /// Arithmetic right-shift this APInt by shiftAmt. 840 APInt ashr(unsigned shiftAmt) const; 841 842 /// \brief Logical right-shift function. 843 /// 844 /// Logical right-shift this APInt by shiftAmt. 845 APInt lshr(unsigned shiftAmt) const; 846 847 /// \brief Left-shift function. 848 /// 849 /// Left-shift this APInt by shiftAmt. 850 APInt shl(unsigned shiftAmt) const { 851 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 852 if (isSingleWord()) { 853 if (shiftAmt >= BitWidth) 854 return APInt(BitWidth, 0); // avoid undefined shift results 855 return APInt(BitWidth, VAL << shiftAmt); 856 } 857 return shlSlowCase(shiftAmt); 858 } 859 860 /// \brief Rotate left by rotateAmt. 861 APInt rotl(unsigned rotateAmt) const; 862 863 /// \brief Rotate right by rotateAmt. 864 APInt rotr(unsigned rotateAmt) const; 865 866 /// \brief Arithmetic right-shift function. 867 /// 868 /// Arithmetic right-shift this APInt by shiftAmt. 869 APInt ashr(const APInt &shiftAmt) const; 870 871 /// \brief Logical right-shift function. 872 /// 873 /// Logical right-shift this APInt by shiftAmt. 874 APInt lshr(const APInt &shiftAmt) const; 875 876 /// \brief Left-shift function. 877 /// 878 /// Left-shift this APInt by shiftAmt. 879 APInt shl(const APInt &shiftAmt) const; 880 881 /// \brief Rotate left by rotateAmt. 882 APInt rotl(const APInt &rotateAmt) const; 883 884 /// \brief Rotate right by rotateAmt. 885 APInt rotr(const APInt &rotateAmt) const; 886 887 /// \brief Unsigned division operation. 888 /// 889 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 890 /// RHS are treated as unsigned quantities for purposes of this division. 891 /// 892 /// \returns a new APInt value containing the division result 893 APInt udiv(const APInt &RHS) const; 894 895 /// \brief Signed division function for APInt. 896 /// 897 /// Signed divide this APInt by APInt RHS. 898 APInt sdiv(const APInt &RHS) const; 899 900 /// \brief Unsigned remainder operation. 901 /// 902 /// Perform an unsigned remainder operation on this APInt with RHS being the 903 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 904 /// of this operation. Note that this is a true remainder operation and not a 905 /// modulo operation because the sign follows the sign of the dividend which 906 /// is *this. 907 /// 908 /// \returns a new APInt value containing the remainder result 909 APInt urem(const APInt &RHS) const; 910 911 /// \brief Function for signed remainder operation. 912 /// 913 /// Signed remainder operation on APInt. 914 APInt srem(const APInt &RHS) const; 915 916 /// \brief Dual division/remainder interface. 917 /// 918 /// Sometimes it is convenient to divide two APInt values and obtain both the 919 /// quotient and remainder. This function does both operations in the same 920 /// computation making it a little more efficient. The pair of input arguments 921 /// may overlap with the pair of output arguments. It is safe to call 922 /// udivrem(X, Y, X, Y), for example. 923 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 924 APInt &Remainder); 925 926 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 927 APInt &Remainder); 928 929 // Operations that return overflow indicators. 930 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 931 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 932 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 933 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 934 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 935 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 936 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 937 APInt sshl_ov(unsigned Amt, bool &Overflow) const; 938 939 /// \brief Array-indexing support. 940 /// 941 /// \returns the bit value at bitPosition 942 bool operator[](unsigned bitPosition) const { 943 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 944 return (maskBit(bitPosition) & 945 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 946 0; 947 } 948 949 /// @} 950 /// \name Comparison Operators 951 /// @{ 952 953 /// \brief Equality operator. 954 /// 955 /// Compares this APInt with RHS for the validity of the equality 956 /// relationship. 957 bool operator==(const APInt &RHS) const { 958 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 959 if (isSingleWord()) 960 return VAL == RHS.VAL; 961 return EqualSlowCase(RHS); 962 } 963 964 /// \brief Equality operator. 965 /// 966 /// Compares this APInt with a uint64_t for the validity of the equality 967 /// relationship. 968 /// 969 /// \returns true if *this == Val 970 bool operator==(uint64_t Val) const { 971 if (isSingleWord()) 972 return VAL == Val; 973 return EqualSlowCase(Val); 974 } 975 976 /// \brief Equality comparison. 977 /// 978 /// Compares this APInt with RHS for the validity of the equality 979 /// relationship. 980 /// 981 /// \returns true if *this == Val 982 bool eq(const APInt &RHS) const { return (*this) == RHS; } 983 984 /// \brief Inequality operator. 985 /// 986 /// Compares this APInt with RHS for the validity of the inequality 987 /// relationship. 988 /// 989 /// \returns true if *this != Val 990 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 991 992 /// \brief Inequality operator. 993 /// 994 /// Compares this APInt with a uint64_t for the validity of the inequality 995 /// relationship. 996 /// 997 /// \returns true if *this != Val 998 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 999 1000 /// \brief Inequality comparison 1001 /// 1002 /// Compares this APInt with RHS for the validity of the inequality 1003 /// relationship. 1004 /// 1005 /// \returns true if *this != Val 1006 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1007 1008 /// \brief Unsigned less than comparison 1009 /// 1010 /// Regards both *this and RHS as unsigned quantities and compares them for 1011 /// the validity of the less-than relationship. 1012 /// 1013 /// \returns true if *this < RHS when both are considered unsigned. 1014 bool ult(const APInt &RHS) const; 1015 1016 /// \brief Unsigned less than comparison 1017 /// 1018 /// Regards both *this as an unsigned quantity and compares it with RHS for 1019 /// the validity of the less-than relationship. 1020 /// 1021 /// \returns true if *this < RHS when considered unsigned. 1022 bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); } 1023 1024 /// \brief Signed less than comparison 1025 /// 1026 /// Regards both *this and RHS as signed quantities and compares them for 1027 /// validity of the less-than relationship. 1028 /// 1029 /// \returns true if *this < RHS when both are considered signed. 1030 bool slt(const APInt &RHS) const; 1031 1032 /// \brief Signed less than comparison 1033 /// 1034 /// Regards both *this as a signed quantity and compares it with RHS for 1035 /// the validity of the less-than relationship. 1036 /// 1037 /// \returns true if *this < RHS when considered signed. 1038 bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); } 1039 1040 /// \brief Unsigned less or equal comparison 1041 /// 1042 /// Regards both *this and RHS as unsigned quantities and compares them for 1043 /// validity of the less-or-equal relationship. 1044 /// 1045 /// \returns true if *this <= RHS when both are considered unsigned. 1046 bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); } 1047 1048 /// \brief Unsigned less or equal comparison 1049 /// 1050 /// Regards both *this as an unsigned quantity and compares it with RHS for 1051 /// the validity of the less-or-equal relationship. 1052 /// 1053 /// \returns true if *this <= RHS when considered unsigned. 1054 bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); } 1055 1056 /// \brief Signed less or equal comparison 1057 /// 1058 /// Regards both *this and RHS as signed quantities and compares them for 1059 /// validity of the less-or-equal relationship. 1060 /// 1061 /// \returns true if *this <= RHS when both are considered signed. 1062 bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); } 1063 1064 /// \brief Signed less or equal comparison 1065 /// 1066 /// Regards both *this as a signed quantity and compares it with RHS for the 1067 /// validity of the less-or-equal relationship. 1068 /// 1069 /// \returns true if *this <= RHS when considered signed. 1070 bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); } 1071 1072 /// \brief Unsigned greather than comparison 1073 /// 1074 /// Regards both *this and RHS as unsigned quantities and compares them for 1075 /// the validity of the greater-than relationship. 1076 /// 1077 /// \returns true if *this > RHS when both are considered unsigned. 1078 bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); } 1079 1080 /// \brief Unsigned greater than comparison 1081 /// 1082 /// Regards both *this as an unsigned quantity and compares it with RHS for 1083 /// the validity of the greater-than relationship. 1084 /// 1085 /// \returns true if *this > RHS when considered unsigned. 1086 bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); } 1087 1088 /// \brief Signed greather than comparison 1089 /// 1090 /// Regards both *this and RHS as signed quantities and compares them for the 1091 /// validity of the greater-than relationship. 1092 /// 1093 /// \returns true if *this > RHS when both are considered signed. 1094 bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); } 1095 1096 /// \brief Signed greater than comparison 1097 /// 1098 /// Regards both *this as a signed quantity and compares it with RHS for 1099 /// the validity of the greater-than relationship. 1100 /// 1101 /// \returns true if *this > RHS when considered signed. 1102 bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); } 1103 1104 /// \brief Unsigned greater or equal comparison 1105 /// 1106 /// Regards both *this and RHS as unsigned quantities and compares them for 1107 /// validity of the greater-or-equal relationship. 1108 /// 1109 /// \returns true if *this >= RHS when both are considered unsigned. 1110 bool uge(const APInt &RHS) const { return !ult(RHS); } 1111 1112 /// \brief Unsigned greater or equal comparison 1113 /// 1114 /// Regards both *this as an unsigned quantity and compares it with RHS for 1115 /// the validity of the greater-or-equal relationship. 1116 /// 1117 /// \returns true if *this >= RHS when considered unsigned. 1118 bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); } 1119 1120 /// \brief Signed greather or equal comparison 1121 /// 1122 /// Regards both *this and RHS as signed quantities and compares them for 1123 /// validity of the greater-or-equal relationship. 1124 /// 1125 /// \returns true if *this >= RHS when both are considered signed. 1126 bool sge(const APInt &RHS) const { return !slt(RHS); } 1127 1128 /// \brief Signed greater or equal comparison 1129 /// 1130 /// Regards both *this as a signed quantity and compares it with RHS for 1131 /// the validity of the greater-or-equal relationship. 1132 /// 1133 /// \returns true if *this >= RHS when considered signed. 1134 bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); } 1135 1136 /// This operation tests if there are any pairs of corresponding bits 1137 /// between this APInt and RHS that are both set. 1138 bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } 1139 1140 /// @} 1141 /// \name Resizing Operators 1142 /// @{ 1143 1144 /// \brief Truncate to new width. 1145 /// 1146 /// Truncate the APInt to a specified width. It is an error to specify a width 1147 /// that is greater than or equal to the current width. 1148 APInt trunc(unsigned width) const; 1149 1150 /// \brief Sign extend to a new width. 1151 /// 1152 /// This operation sign extends the APInt to a new width. If the high order 1153 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1154 /// It is an error to specify a width that is less than or equal to the 1155 /// current width. 1156 APInt sext(unsigned width) const; 1157 1158 /// \brief Zero extend to a new width. 1159 /// 1160 /// This operation zero extends the APInt to a new width. The high order bits 1161 /// are filled with 0 bits. It is an error to specify a width that is less 1162 /// than or equal to the current width. 1163 APInt zext(unsigned width) const; 1164 1165 /// \brief Sign extend or truncate to width 1166 /// 1167 /// Make this APInt have the bit width given by \p width. The value is sign 1168 /// extended, truncated, or left alone to make it that width. 1169 APInt sextOrTrunc(unsigned width) const; 1170 1171 /// \brief Zero extend or truncate to width 1172 /// 1173 /// Make this APInt have the bit width given by \p width. The value is zero 1174 /// extended, truncated, or left alone to make it that width. 1175 APInt zextOrTrunc(unsigned width) const; 1176 1177 /// \brief Sign extend or truncate to width 1178 /// 1179 /// Make this APInt have the bit width given by \p width. The value is sign 1180 /// extended, or left alone to make it that width. 1181 APInt sextOrSelf(unsigned width) const; 1182 1183 /// \brief Zero extend or truncate to width 1184 /// 1185 /// Make this APInt have the bit width given by \p width. The value is zero 1186 /// extended, or left alone to make it that width. 1187 APInt zextOrSelf(unsigned width) const; 1188 1189 /// @} 1190 /// \name Bit Manipulation Operators 1191 /// @{ 1192 1193 /// \brief Set every bit to 1. 1194 void setAllBits() { 1195 if (isSingleWord()) 1196 VAL = UINT64_MAX; 1197 else { 1198 // Set all the bits in all the words. 1199 for (unsigned i = 0; i < getNumWords(); ++i) 1200 pVal[i] = UINT64_MAX; 1201 } 1202 // Clear the unused ones 1203 clearUnusedBits(); 1204 } 1205 1206 /// \brief Set a given bit to 1. 1207 /// 1208 /// Set the given bit to 1 whose position is given as "bitPosition". 1209 void setBit(unsigned bitPosition); 1210 1211 /// \brief Set every bit to 0. 1212 void clearAllBits() { 1213 if (isSingleWord()) 1214 VAL = 0; 1215 else 1216 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); 1217 } 1218 1219 /// \brief Set a given bit to 0. 1220 /// 1221 /// Set the given bit to 0 whose position is given as "bitPosition". 1222 void clearBit(unsigned bitPosition); 1223 1224 /// \brief Toggle every bit to its opposite value. 1225 void flipAllBits() { 1226 if (isSingleWord()) 1227 VAL ^= UINT64_MAX; 1228 else { 1229 for (unsigned i = 0; i < getNumWords(); ++i) 1230 pVal[i] ^= UINT64_MAX; 1231 } 1232 clearUnusedBits(); 1233 } 1234 1235 /// \brief Toggles a given bit to its opposite value. 1236 /// 1237 /// Toggle a given bit to its opposite value whose position is given 1238 /// as "bitPosition". 1239 void flipBit(unsigned bitPosition); 1240 1241 /// @} 1242 /// \name Value Characterization Functions 1243 /// @{ 1244 1245 /// \brief Return the number of bits in the APInt. 1246 unsigned getBitWidth() const { return BitWidth; } 1247 1248 /// \brief Get the number of words. 1249 /// 1250 /// Here one word's bitwidth equals to that of uint64_t. 1251 /// 1252 /// \returns the number of words to hold the integer value of this APInt. 1253 unsigned getNumWords() const { return getNumWords(BitWidth); } 1254 1255 /// \brief Get the number of words. 1256 /// 1257 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1258 /// 1259 /// \returns the number of words to hold the integer value with a given bit 1260 /// width. 1261 static unsigned getNumWords(unsigned BitWidth) { 1262 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1263 } 1264 1265 /// \brief Compute the number of active bits in the value 1266 /// 1267 /// This function returns the number of active bits which is defined as the 1268 /// bit width minus the number of leading zeros. This is used in several 1269 /// computations to see how "wide" the value is. 1270 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1271 1272 /// \brief Compute the number of active words in the value of this APInt. 1273 /// 1274 /// This is used in conjunction with getActiveData to extract the raw value of 1275 /// the APInt. 1276 unsigned getActiveWords() const { 1277 unsigned numActiveBits = getActiveBits(); 1278 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1279 } 1280 1281 /// \brief Get the minimum bit size for this signed APInt 1282 /// 1283 /// Computes the minimum bit width for this APInt while considering it to be a 1284 /// signed (and probably negative) value. If the value is not negative, this 1285 /// function returns the same value as getActiveBits()+1. Otherwise, it 1286 /// returns the smallest bit width that will retain the negative value. For 1287 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1288 /// for -1, this function will always return 1. 1289 unsigned getMinSignedBits() const { 1290 if (isNegative()) 1291 return BitWidth - countLeadingOnes() + 1; 1292 return getActiveBits() + 1; 1293 } 1294 1295 /// \brief Get zero extended value 1296 /// 1297 /// This method attempts to return the value of this APInt as a zero extended 1298 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1299 /// uint64_t. Otherwise an assertion will result. 1300 uint64_t getZExtValue() const { 1301 if (isSingleWord()) 1302 return VAL; 1303 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1304 return pVal[0]; 1305 } 1306 1307 /// \brief Get sign extended value 1308 /// 1309 /// This method attempts to return the value of this APInt as a sign extended 1310 /// int64_t. The bit width must be <= 64 or the value must fit within an 1311 /// int64_t. Otherwise an assertion will result. 1312 int64_t getSExtValue() const { 1313 if (isSingleWord()) 1314 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> 1315 (APINT_BITS_PER_WORD - BitWidth); 1316 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 1317 return int64_t(pVal[0]); 1318 } 1319 1320 /// \brief Get bits required for string value. 1321 /// 1322 /// This method determines how many bits are required to hold the APInt 1323 /// equivalent of the string given by \p str. 1324 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1325 1326 /// \brief The APInt version of the countLeadingZeros functions in 1327 /// MathExtras.h. 1328 /// 1329 /// It counts the number of zeros from the most significant bit to the first 1330 /// one bit. 1331 /// 1332 /// \returns BitWidth if the value is zero, otherwise returns the number of 1333 /// zeros from the most significant bit to the first one bits. 1334 unsigned countLeadingZeros() const { 1335 if (isSingleWord()) { 1336 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1337 return llvm::countLeadingZeros(VAL) - unusedBits; 1338 } 1339 return countLeadingZerosSlowCase(); 1340 } 1341 1342 /// \brief Count the number of leading one bits. 1343 /// 1344 /// This function is an APInt version of the countLeadingOnes_{32,64} 1345 /// functions in MathExtras.h. It counts the number of ones from the most 1346 /// significant bit to the first zero bit. 1347 /// 1348 /// \returns 0 if the high order bit is not set, otherwise returns the number 1349 /// of 1 bits from the most significant to the least 1350 unsigned countLeadingOnes() const; 1351 1352 /// Computes the number of leading bits of this APInt that are equal to its 1353 /// sign bit. 1354 unsigned getNumSignBits() const { 1355 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1356 } 1357 1358 /// \brief Count the number of trailing zero bits. 1359 /// 1360 /// This function is an APInt version of the countTrailingZeros_{32,64} 1361 /// functions in MathExtras.h. It counts the number of zeros from the least 1362 /// significant bit to the first set bit. 1363 /// 1364 /// \returns BitWidth if the value is zero, otherwise returns the number of 1365 /// zeros from the least significant bit to the first one bit. 1366 unsigned countTrailingZeros() const; 1367 1368 /// \brief Count the number of trailing one bits. 1369 /// 1370 /// This function is an APInt version of the countTrailingOnes_{32,64} 1371 /// functions in MathExtras.h. It counts the number of ones from the least 1372 /// significant bit to the first zero bit. 1373 /// 1374 /// \returns BitWidth if the value is all ones, otherwise returns the number 1375 /// of ones from the least significant bit to the first zero bit. 1376 unsigned countTrailingOnes() const { 1377 if (isSingleWord()) 1378 return CountTrailingOnes_64(VAL); 1379 return countTrailingOnesSlowCase(); 1380 } 1381 1382 /// \brief Count the number of bits set. 1383 /// 1384 /// This function is an APInt version of the countPopulation_{32,64} functions 1385 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1386 /// 1387 /// \returns 0 if the value is zero, otherwise returns the number of set bits. 1388 unsigned countPopulation() const { 1389 if (isSingleWord()) 1390 return CountPopulation_64(VAL); 1391 return countPopulationSlowCase(); 1392 } 1393 1394 /// @} 1395 /// \name Conversion Functions 1396 /// @{ 1397 void print(raw_ostream &OS, bool isSigned) const; 1398 1399 /// Converts an APInt to a string and append it to Str. Str is commonly a 1400 /// SmallString. 1401 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1402 bool formatAsCLiteral = false) const; 1403 1404 /// Considers the APInt to be unsigned and converts it into a string in the 1405 /// radix given. The radix can be 2, 8, 10 16, or 36. 1406 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1407 toString(Str, Radix, false, false); 1408 } 1409 1410 /// Considers the APInt to be signed and converts it into a string in the 1411 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1412 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1413 toString(Str, Radix, true, false); 1414 } 1415 1416 /// \brief Return the APInt as a std::string. 1417 /// 1418 /// Note that this is an inefficient method. It is better to pass in a 1419 /// SmallVector/SmallString to the methods above to avoid thrashing the heap 1420 /// for the string. 1421 std::string toString(unsigned Radix, bool Signed) const; 1422 1423 /// \returns a byte-swapped representation of this APInt Value. 1424 APInt byteSwap() const; 1425 1426 /// \brief Converts this APInt to a double value. 1427 double roundToDouble(bool isSigned) const; 1428 1429 /// \brief Converts this unsigned APInt to a double value. 1430 double roundToDouble() const { return roundToDouble(false); } 1431 1432 /// \brief Converts this signed APInt to a double value. 1433 double signedRoundToDouble() const { return roundToDouble(true); } 1434 1435 /// \brief Converts APInt bits to a double 1436 /// 1437 /// The conversion does not do a translation from integer to double, it just 1438 /// re-interprets the bits as a double. Note that it is valid to do this on 1439 /// any bit width. Exactly 64 bits will be translated. 1440 double bitsToDouble() const { 1441 union { 1442 uint64_t I; 1443 double D; 1444 } T; 1445 T.I = (isSingleWord() ? VAL : pVal[0]); 1446 return T.D; 1447 } 1448 1449 /// \brief Converts APInt bits to a double 1450 /// 1451 /// The conversion does not do a translation from integer to float, it just 1452 /// re-interprets the bits as a float. Note that it is valid to do this on 1453 /// any bit width. Exactly 32 bits will be translated. 1454 float bitsToFloat() const { 1455 union { 1456 unsigned I; 1457 float F; 1458 } T; 1459 T.I = unsigned((isSingleWord() ? VAL : pVal[0])); 1460 return T.F; 1461 } 1462 1463 /// \brief Converts a double to APInt bits. 1464 /// 1465 /// The conversion does not do a translation from double to integer, it just 1466 /// re-interprets the bits of the double. 1467 static APInt doubleToBits(double V) { 1468 union { 1469 uint64_t I; 1470 double D; 1471 } T; 1472 T.D = V; 1473 return APInt(sizeof T * CHAR_BIT, T.I); 1474 } 1475 1476 /// \brief Converts a float to APInt bits. 1477 /// 1478 /// The conversion does not do a translation from float to integer, it just 1479 /// re-interprets the bits of the float. 1480 static APInt floatToBits(float V) { 1481 union { 1482 unsigned I; 1483 float F; 1484 } T; 1485 T.F = V; 1486 return APInt(sizeof T * CHAR_BIT, T.I); 1487 } 1488 1489 /// @} 1490 /// \name Mathematics Operations 1491 /// @{ 1492 1493 /// \returns the floor log base 2 of this APInt. 1494 unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); } 1495 1496 /// \returns the ceil log base 2 of this APInt. 1497 unsigned ceilLogBase2() const { 1498 return BitWidth - (*this - 1).countLeadingZeros(); 1499 } 1500 1501 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1502 /// otherwise 1503 int32_t exactLogBase2() const { 1504 if (!isPowerOf2()) 1505 return -1; 1506 return logBase2(); 1507 } 1508 1509 /// \brief Compute the square root 1510 APInt sqrt() const; 1511 1512 /// \brief Get the absolute value; 1513 /// 1514 /// If *this is < 0 then return -(*this), otherwise *this; 1515 APInt abs() const { 1516 if (isNegative()) 1517 return -(*this); 1518 return *this; 1519 } 1520 1521 /// \returns the multiplicative inverse for a given modulo. 1522 APInt multiplicativeInverse(const APInt &modulo) const; 1523 1524 /// @} 1525 /// \name Support for division by constant 1526 /// @{ 1527 1528 /// Calculate the magic number for signed division by a constant. 1529 struct ms; 1530 ms magic() const; 1531 1532 /// Calculate the magic number for unsigned division by a constant. 1533 struct mu; 1534 mu magicu(unsigned LeadingZeros = 0) const; 1535 1536 /// @} 1537 /// \name Building-block Operations for APInt and APFloat 1538 /// @{ 1539 1540 // These building block operations operate on a representation of arbitrary 1541 // precision, two's-complement, bignum integer values. They should be 1542 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1543 // generally a pointer to the base of an array of integer parts, representing 1544 // an unsigned bignum, and a count of how many parts there are. 1545 1546 /// Sets the least significant part of a bignum to the input value, and zeroes 1547 /// out higher parts. 1548 static void tcSet(integerPart *, integerPart, unsigned int); 1549 1550 /// Assign one bignum to another. 1551 static void tcAssign(integerPart *, const integerPart *, unsigned int); 1552 1553 /// Returns true if a bignum is zero, false otherwise. 1554 static bool tcIsZero(const integerPart *, unsigned int); 1555 1556 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1557 static int tcExtractBit(const integerPart *, unsigned int bit); 1558 1559 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1560 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1561 /// significant bit of DST. All high bits above srcBITS in DST are 1562 /// zero-filled. 1563 static void tcExtract(integerPart *, unsigned int dstCount, 1564 const integerPart *, unsigned int srcBits, 1565 unsigned int srcLSB); 1566 1567 /// Set the given bit of a bignum. Zero-based. 1568 static void tcSetBit(integerPart *, unsigned int bit); 1569 1570 /// Clear the given bit of a bignum. Zero-based. 1571 static void tcClearBit(integerPart *, unsigned int bit); 1572 1573 /// Returns the bit number of the least or most significant set bit of a 1574 /// number. If the input number has no bits set -1U is returned. 1575 static unsigned int tcLSB(const integerPart *, unsigned int); 1576 static unsigned int tcMSB(const integerPart *parts, unsigned int n); 1577 1578 /// Negate a bignum in-place. 1579 static void tcNegate(integerPart *, unsigned int); 1580 1581 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1582 static integerPart tcAdd(integerPart *, const integerPart *, 1583 integerPart carry, unsigned); 1584 1585 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1586 static integerPart tcSubtract(integerPart *, const integerPart *, 1587 integerPart carry, unsigned); 1588 1589 /// DST += SRC * MULTIPLIER + PART if add is true 1590 /// DST = SRC * MULTIPLIER + PART if add is false 1591 /// 1592 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1593 /// start at the same point, i.e. DST == SRC. 1594 /// 1595 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1596 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1597 /// result, and if all of the omitted higher parts were zero return zero, 1598 /// otherwise overflow occurred and return one. 1599 static int tcMultiplyPart(integerPart *dst, const integerPart *src, 1600 integerPart multiplier, integerPart carry, 1601 unsigned int srcParts, unsigned int dstParts, 1602 bool add); 1603 1604 /// DST = LHS * RHS, where DST has the same width as the operands and is 1605 /// filled with the least significant parts of the result. Returns one if 1606 /// overflow occurred, otherwise zero. DST must be disjoint from both 1607 /// operands. 1608 static int tcMultiply(integerPart *, const integerPart *, const integerPart *, 1609 unsigned); 1610 1611 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1612 /// operands. No overflow occurs. DST must be disjoint from both 1613 /// operands. Returns the number of parts required to hold the result. 1614 static unsigned int tcFullMultiply(integerPart *, const integerPart *, 1615 const integerPart *, unsigned, unsigned); 1616 1617 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1618 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1619 /// REMAINDER to the remainder, return zero. i.e. 1620 /// 1621 /// OLD_LHS = RHS * LHS + REMAINDER 1622 /// 1623 /// SCRATCH is a bignum of the same size as the operands and result for use by 1624 /// the routine; its contents need not be initialized and are destroyed. LHS, 1625 /// REMAINDER and SCRATCH must be distinct. 1626 static int tcDivide(integerPart *lhs, const integerPart *rhs, 1627 integerPart *remainder, integerPart *scratch, 1628 unsigned int parts); 1629 1630 /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no 1631 /// restrictions on COUNT. 1632 static void tcShiftLeft(integerPart *, unsigned int parts, 1633 unsigned int count); 1634 1635 /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no 1636 /// restrictions on COUNT. 1637 static void tcShiftRight(integerPart *, unsigned int parts, 1638 unsigned int count); 1639 1640 /// The obvious AND, OR and XOR and complement operations. 1641 static void tcAnd(integerPart *, const integerPart *, unsigned int); 1642 static void tcOr(integerPart *, const integerPart *, unsigned int); 1643 static void tcXor(integerPart *, const integerPart *, unsigned int); 1644 static void tcComplement(integerPart *, unsigned int); 1645 1646 /// Comparison (unsigned) of two bignums. 1647 static int tcCompare(const integerPart *, const integerPart *, unsigned int); 1648 1649 /// Increment a bignum in-place. Return the carry flag. 1650 static integerPart tcIncrement(integerPart *, unsigned int); 1651 1652 /// Decrement a bignum in-place. Return the borrow flag. 1653 static integerPart tcDecrement(integerPart *, unsigned int); 1654 1655 /// Set the least significant BITS and clear the rest. 1656 static void tcSetLeastSignificantBits(integerPart *, unsigned int, 1657 unsigned int bits); 1658 1659 /// \brief debug method 1660 void dump() const; 1661 1662 /// @} 1663 }; 1664 1665 /// Magic data for optimising signed division by a constant. 1666 struct APInt::ms { 1667 APInt m; ///< magic number 1668 unsigned s; ///< shift amount 1669 }; 1670 1671 /// Magic data for optimising unsigned division by a constant. 1672 struct APInt::mu { 1673 APInt m; ///< magic number 1674 bool a; ///< add indicator 1675 unsigned s; ///< shift amount 1676 }; 1677 1678 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 1679 1680 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 1681 1682 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 1683 I.print(OS, true); 1684 return OS; 1685 } 1686 1687 namespace APIntOps { 1688 1689 /// \brief Determine the smaller of two APInts considered to be signed. 1690 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; } 1691 1692 /// \brief Determine the larger of two APInts considered to be signed. 1693 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; } 1694 1695 /// \brief Determine the smaller of two APInts considered to be signed. 1696 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; } 1697 1698 /// \brief Determine the larger of two APInts considered to be unsigned. 1699 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; } 1700 1701 /// \brief Check if the specified APInt has a N-bits unsigned integer value. 1702 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); } 1703 1704 /// \brief Check if the specified APInt has a N-bits signed integer value. 1705 inline bool isSignedIntN(unsigned N, const APInt &APIVal) { 1706 return APIVal.isSignedIntN(N); 1707 } 1708 1709 /// \returns true if the argument APInt value is a sequence of ones starting at 1710 /// the least significant bit with the remainder zero. 1711 inline bool isMask(unsigned numBits, const APInt &APIVal) { 1712 return numBits <= APIVal.getBitWidth() && 1713 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); 1714 } 1715 1716 /// \brief Return true if the argument APInt value contains a sequence of ones 1717 /// with the remainder zero. 1718 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) { 1719 return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal); 1720 } 1721 1722 /// \brief Returns a byte-swapped representation of the specified APInt Value. 1723 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); } 1724 1725 /// \brief Returns the floor log base 2 of the specified APInt value. 1726 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); } 1727 1728 /// \brief Compute GCD of two APInt values. 1729 /// 1730 /// This function returns the greatest common divisor of the two APInt values 1731 /// using Euclid's algorithm. 1732 /// 1733 /// \returns the greatest common divisor of Val1 and Val2 1734 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2); 1735 1736 /// \brief Converts the given APInt to a double value. 1737 /// 1738 /// Treats the APInt as an unsigned value for conversion purposes. 1739 inline double RoundAPIntToDouble(const APInt &APIVal) { 1740 return APIVal.roundToDouble(); 1741 } 1742 1743 /// \brief Converts the given APInt to a double value. 1744 /// 1745 /// Treats the APInt as a signed value for conversion purposes. 1746 inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 1747 return APIVal.signedRoundToDouble(); 1748 } 1749 1750 /// \brief Converts the given APInt to a float vlalue. 1751 inline float RoundAPIntToFloat(const APInt &APIVal) { 1752 return float(RoundAPIntToDouble(APIVal)); 1753 } 1754 1755 /// \brief Converts the given APInt to a float value. 1756 /// 1757 /// Treast the APInt as a signed value for conversion purposes. 1758 inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 1759 return float(APIVal.signedRoundToDouble()); 1760 } 1761 1762 /// \brief Converts the given double value into a APInt. 1763 /// 1764 /// This function convert a double value to an APInt value. 1765 APInt RoundDoubleToAPInt(double Double, unsigned width); 1766 1767 /// \brief Converts a float value into a APInt. 1768 /// 1769 /// Converts a float value into an APInt value. 1770 inline APInt RoundFloatToAPInt(float Float, unsigned width) { 1771 return RoundDoubleToAPInt(double(Float), width); 1772 } 1773 1774 /// \brief Arithmetic right-shift function. 1775 /// 1776 /// Arithmetic right-shift the APInt by shiftAmt. 1777 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) { 1778 return LHS.ashr(shiftAmt); 1779 } 1780 1781 /// \brief Logical right-shift function. 1782 /// 1783 /// Logical right-shift the APInt by shiftAmt. 1784 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) { 1785 return LHS.lshr(shiftAmt); 1786 } 1787 1788 /// \brief Left-shift function. 1789 /// 1790 /// Left-shift the APInt by shiftAmt. 1791 inline APInt shl(const APInt &LHS, unsigned shiftAmt) { 1792 return LHS.shl(shiftAmt); 1793 } 1794 1795 /// \brief Signed division function for APInt. 1796 /// 1797 /// Signed divide APInt LHS by APInt RHS. 1798 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); } 1799 1800 /// \brief Unsigned division function for APInt. 1801 /// 1802 /// Unsigned divide APInt LHS by APInt RHS. 1803 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); } 1804 1805 /// \brief Function for signed remainder operation. 1806 /// 1807 /// Signed remainder operation on APInt. 1808 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); } 1809 1810 /// \brief Function for unsigned remainder operation. 1811 /// 1812 /// Unsigned remainder operation on APInt. 1813 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); } 1814 1815 /// \brief Function for multiplication operation. 1816 /// 1817 /// Performs multiplication on APInt values. 1818 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; } 1819 1820 /// \brief Function for addition operation. 1821 /// 1822 /// Performs addition on APInt values. 1823 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; } 1824 1825 /// \brief Function for subtraction operation. 1826 /// 1827 /// Performs subtraction on APInt values. 1828 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; } 1829 1830 /// \brief Bitwise AND function for APInt. 1831 /// 1832 /// Performs bitwise AND operation on APInt LHS and 1833 /// APInt RHS. 1834 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; } 1835 1836 /// \brief Bitwise OR function for APInt. 1837 /// 1838 /// Performs bitwise OR operation on APInt LHS and APInt RHS. 1839 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; } 1840 1841 /// \brief Bitwise XOR function for APInt. 1842 /// 1843 /// Performs bitwise XOR operation on APInt. 1844 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; } 1845 1846 /// \brief Bitwise complement function. 1847 /// 1848 /// Performs a bitwise complement operation on APInt. 1849 inline APInt Not(const APInt &APIVal) { return ~APIVal; } 1850 1851 } // End of APIntOps namespace 1852 1853 // See friend declaration above. This additional declaration is required in 1854 // order to compile LLVM with IBM xlC compiler. 1855 hash_code hash_value(const APInt &Arg); 1856 } // End of llvm namespace 1857 1858 #endif 1859