Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include <cassert>
     23 #include <climits>
     24 #include <cstring>
     25 #include <string>
     26 
     27 namespace llvm {
     28 class Deserializer;
     29 class FoldingSetNodeID;
     30 class Serializer;
     31 class StringRef;
     32 class hash_code;
     33 class raw_ostream;
     34 
     35 template <typename T> class SmallVectorImpl;
     36 
     37 // An unsigned host type used as a single part of a multi-part
     38 // bignum.
     39 typedef uint64_t integerPart;
     40 
     41 const unsigned int host_char_bit = 8;
     42 const unsigned int integerPartWidth =
     43     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                              APInt Class
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// \brief Class for arbitrary precision integers.
     50 ///
     51 /// APInt is a functional replacement for common case unsigned integer type like
     52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     55 /// and methods to manipulate integer values of any bit-width. It supports both
     56 /// the typical integer arithmetic and comparison operations as well as bitwise
     57 /// manipulation.
     58 ///
     59 /// The class has several invariants worth noting:
     60 ///   * All bit, byte, and word positions are zero-based.
     61 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     62 ///     SignExtend, or ZeroExtend operations.
     63 ///   * All binary operators must be on APInt instances of the same bit width.
     64 ///     Attempting to use these operators on instances with different bit
     65 ///     widths will yield an assertion.
     66 ///   * The value is stored canonically as an unsigned value. For operations
     67 ///     where it makes a difference, there are both signed and unsigned variants
     68 ///     of the operation. For example, sdiv and udiv. However, because the bit
     69 ///     widths must be the same, operations such as Mul and Add produce the same
     70 ///     results regardless of whether the values are interpreted as signed or
     71 ///     not.
     72 ///   * In general, the class tries to follow the style of computation that LLVM
     73 ///     uses in its IR. This simplifies its use for LLVM.
     74 ///
     75 class APInt {
     76   unsigned BitWidth; ///< The number of bits in this APInt.
     77 
     78   /// This union is used to store the integer value. When the
     79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     80   union {
     81     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     82     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     83   };
     84 
     85   /// This enum is used to hold the constants we needed for APInt.
     86   enum {
     87     /// Bits in a word
     88     APINT_BITS_PER_WORD =
     89         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
     90     /// Byte size of a word
     91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     92   };
     93 
     94   /// \brief Fast internal constructor
     95   ///
     96   /// This constructor is used only internally for speed of construction of
     97   /// temporaries. It is unsafe for general use so it is not public.
     98   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
     99 
    100   /// \brief Determine if this APInt just has one word to store value.
    101   ///
    102   /// \returns true if the number of bits <= 64, false otherwise.
    103   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    104 
    105   /// \brief Determine which word a bit is in.
    106   ///
    107   /// \returns the word position for the specified bit position.
    108   static unsigned whichWord(unsigned bitPosition) {
    109     return bitPosition / APINT_BITS_PER_WORD;
    110   }
    111 
    112   /// \brief Determine which bit in a word a bit is in.
    113   ///
    114   /// \returns the bit position in a word for the specified bit position
    115   /// in the APInt.
    116   static unsigned whichBit(unsigned bitPosition) {
    117     return bitPosition % APINT_BITS_PER_WORD;
    118   }
    119 
    120   /// \brief Get a single bit mask.
    121   ///
    122   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    123   /// This method generates and returns a uint64_t (word) mask for a single
    124   /// bit at a specific bit position. This is used to mask the bit in the
    125   /// corresponding word.
    126   static uint64_t maskBit(unsigned bitPosition) {
    127     return 1ULL << whichBit(bitPosition);
    128   }
    129 
    130   /// \brief Clear unused high order bits
    131   ///
    132   /// This method is used internally to clear the to "N" bits in the high order
    133   /// word that are not used by the APInt. This is needed after the most
    134   /// significant word is assigned a value to ensure that those bits are
    135   /// zero'd out.
    136   APInt &clearUnusedBits() {
    137     // Compute how many bits are used in the final word
    138     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    139     if (wordBits == 0)
    140       // If all bits are used, we want to leave the value alone. This also
    141       // avoids the undefined behavior of >> when the shift is the same size as
    142       // the word size (64).
    143       return *this;
    144 
    145     // Mask out the high bits.
    146     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    147     if (isSingleWord())
    148       VAL &= mask;
    149     else
    150       pVal[getNumWords() - 1] &= mask;
    151     return *this;
    152   }
    153 
    154   /// \brief Get the word corresponding to a bit position
    155   /// \returns the corresponding word for the specified bit position.
    156   uint64_t getWord(unsigned bitPosition) const {
    157     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    158   }
    159 
    160   /// \brief Convert a char array into an APInt
    161   ///
    162   /// \param radix 2, 8, 10, 16, or 36
    163   /// Converts a string into a number.  The string must be non-empty
    164   /// and well-formed as a number of the given base. The bit-width
    165   /// must be sufficient to hold the result.
    166   ///
    167   /// This is used by the constructors that take string arguments.
    168   ///
    169   /// StringRef::getAsInteger is superficially similar but (1) does
    170   /// not assume that the string is well-formed and (2) grows the
    171   /// result to hold the input.
    172   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    173 
    174   /// \brief An internal division function for dividing APInts.
    175   ///
    176   /// This is used by the toString method to divide by the radix. It simply
    177   /// provides a more convenient form of divide for internal use since KnuthDiv
    178   /// has specific constraints on its inputs. If those constraints are not met
    179   /// then it provides a simpler form of divide.
    180   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
    181                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
    182 
    183   /// out-of-line slow case for inline constructor
    184   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
    185 
    186   /// shared code between two array constructors
    187   void initFromArray(ArrayRef<uint64_t> array);
    188 
    189   /// out-of-line slow case for inline copy constructor
    190   void initSlowCase(const APInt &that);
    191 
    192   /// out-of-line slow case for shl
    193   APInt shlSlowCase(unsigned shiftAmt) const;
    194 
    195   /// out-of-line slow case for operator&
    196   APInt AndSlowCase(const APInt &RHS) const;
    197 
    198   /// out-of-line slow case for operator|
    199   APInt OrSlowCase(const APInt &RHS) const;
    200 
    201   /// out-of-line slow case for operator^
    202   APInt XorSlowCase(const APInt &RHS) const;
    203 
    204   /// out-of-line slow case for operator=
    205   APInt &AssignSlowCase(const APInt &RHS);
    206 
    207   /// out-of-line slow case for operator==
    208   bool EqualSlowCase(const APInt &RHS) const;
    209 
    210   /// out-of-line slow case for operator==
    211   bool EqualSlowCase(uint64_t Val) const;
    212 
    213   /// out-of-line slow case for countLeadingZeros
    214   unsigned countLeadingZerosSlowCase() const;
    215 
    216   /// out-of-line slow case for countTrailingOnes
    217   unsigned countTrailingOnesSlowCase() const;
    218 
    219   /// out-of-line slow case for countPopulation
    220   unsigned countPopulationSlowCase() const;
    221 
    222 public:
    223   /// \name Constructors
    224   /// @{
    225 
    226   /// \brief Create a new APInt of numBits width, initialized as val.
    227   ///
    228   /// If isSigned is true then val is treated as if it were a signed value
    229   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    230   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    231   /// the range of val are zero filled).
    232   ///
    233   /// \param numBits the bit width of the constructed APInt
    234   /// \param val the initial value of the APInt
    235   /// \param isSigned how to treat signedness of val
    236   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    237       : BitWidth(numBits), VAL(0) {
    238     assert(BitWidth && "bitwidth too small");
    239     if (isSingleWord())
    240       VAL = val;
    241     else
    242       initSlowCase(numBits, val, isSigned);
    243     clearUnusedBits();
    244   }
    245 
    246   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    247   ///
    248   /// Note that bigVal.size() can be smaller or larger than the corresponding
    249   /// bit width but any extraneous bits will be dropped.
    250   ///
    251   /// \param numBits the bit width of the constructed APInt
    252   /// \param bigVal a sequence of words to form the initial value of the APInt
    253   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    254 
    255   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    256   /// deprecated because this constructor is prone to ambiguity with the
    257   /// APInt(unsigned, uint64_t, bool) constructor.
    258   ///
    259   /// If this overload is ever deleted, care should be taken to prevent calls
    260   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    261   /// constructor.
    262   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    263 
    264   /// \brief Construct an APInt from a string representation.
    265   ///
    266   /// This constructor interprets the string \p str in the given radix. The
    267   /// interpretation stops when the first character that is not suitable for the
    268   /// radix is encountered, or the end of the string. Acceptable radix values
    269   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    270   /// string to require more bits than numBits.
    271   ///
    272   /// \param numBits the bit width of the constructed APInt
    273   /// \param str the string to be interpreted
    274   /// \param radix the radix to use for the conversion
    275   APInt(unsigned numBits, StringRef str, uint8_t radix);
    276 
    277   /// Simply makes *this a copy of that.
    278   /// @brief Copy Constructor.
    279   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
    280     assert(BitWidth && "bitwidth too small");
    281     if (isSingleWord())
    282       VAL = that.VAL;
    283     else
    284       initSlowCase(that);
    285   }
    286 
    287 #if LLVM_HAS_RVALUE_REFERENCES
    288   /// \brief Move Constructor.
    289   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    290     that.BitWidth = 0;
    291   }
    292 #endif
    293 
    294   /// \brief Destructor.
    295   ~APInt() {
    296     if (needsCleanup())
    297       delete[] pVal;
    298   }
    299 
    300   /// \brief Default constructor that creates an uninitialized APInt.
    301   ///
    302   /// This is useful for object deserialization (pair this with the static
    303   ///  method Read).
    304   explicit APInt() : BitWidth(1) {}
    305 
    306   /// \brief Returns whether this instance allocated memory.
    307   bool needsCleanup() const { return !isSingleWord(); }
    308 
    309   /// Used to insert APInt objects, or objects that contain APInt objects, into
    310   ///  FoldingSets.
    311   void Profile(FoldingSetNodeID &id) const;
    312 
    313   /// @}
    314   /// \name Value Tests
    315   /// @{
    316 
    317   /// \brief Determine sign of this APInt.
    318   ///
    319   /// This tests the high bit of this APInt to determine if it is set.
    320   ///
    321   /// \returns true if this APInt is negative, false otherwise
    322   bool isNegative() const { return (*this)[BitWidth - 1]; }
    323 
    324   /// \brief Determine if this APInt Value is non-negative (>= 0)
    325   ///
    326   /// This tests the high bit of the APInt to determine if it is unset.
    327   bool isNonNegative() const { return !isNegative(); }
    328 
    329   /// \brief Determine if this APInt Value is positive.
    330   ///
    331   /// This tests if the value of this APInt is positive (> 0). Note
    332   /// that 0 is not a positive value.
    333   ///
    334   /// \returns true if this APInt is positive.
    335   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
    336 
    337   /// \brief Determine if all bits are set
    338   ///
    339   /// This checks to see if the value has all bits of the APInt are set or not.
    340   bool isAllOnesValue() const {
    341     if (isSingleWord())
    342       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
    343     return countPopulationSlowCase() == BitWidth;
    344   }
    345 
    346   /// \brief Determine if this is the largest unsigned value.
    347   ///
    348   /// This checks to see if the value of this APInt is the maximum unsigned
    349   /// value for the APInt's bit width.
    350   bool isMaxValue() const { return isAllOnesValue(); }
    351 
    352   /// \brief Determine if this is the largest signed value.
    353   ///
    354   /// This checks to see if the value of this APInt is the maximum signed
    355   /// value for the APInt's bit width.
    356   bool isMaxSignedValue() const {
    357     return BitWidth == 1 ? VAL == 0
    358                          : !isNegative() && countPopulation() == BitWidth - 1;
    359   }
    360 
    361   /// \brief Determine if this is the smallest unsigned value.
    362   ///
    363   /// This checks to see if the value of this APInt is the minimum unsigned
    364   /// value for the APInt's bit width.
    365   bool isMinValue() const { return !*this; }
    366 
    367   /// \brief Determine if this is the smallest signed value.
    368   ///
    369   /// This checks to see if the value of this APInt is the minimum signed
    370   /// value for the APInt's bit width.
    371   bool isMinSignedValue() const {
    372     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
    373   }
    374 
    375   /// \brief Check if this APInt has an N-bits unsigned integer value.
    376   bool isIntN(unsigned N) const {
    377     assert(N && "N == 0 ???");
    378     return getActiveBits() <= N;
    379   }
    380 
    381   /// \brief Check if this APInt has an N-bits signed integer value.
    382   bool isSignedIntN(unsigned N) const {
    383     assert(N && "N == 0 ???");
    384     return getMinSignedBits() <= N;
    385   }
    386 
    387   /// \brief Check if this APInt's value is a power of two greater than zero.
    388   ///
    389   /// \returns true if the argument APInt value is a power of two > 0.
    390   bool isPowerOf2() const {
    391     if (isSingleWord())
    392       return isPowerOf2_64(VAL);
    393     return countPopulationSlowCase() == 1;
    394   }
    395 
    396   /// \brief Check if the APInt's value is returned by getSignBit.
    397   ///
    398   /// \returns true if this is the value returned by getSignBit.
    399   bool isSignBit() const { return isMinSignedValue(); }
    400 
    401   /// \brief Convert APInt to a boolean value.
    402   ///
    403   /// This converts the APInt to a boolean value as a test against zero.
    404   bool getBoolValue() const { return !!*this; }
    405 
    406   /// If this value is smaller than the specified limit, return it, otherwise
    407   /// return the limit value.  This causes the value to saturate to the limit.
    408   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    409     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
    410                                                             : getZExtValue();
    411   }
    412 
    413   /// @}
    414   /// \name Value Generators
    415   /// @{
    416 
    417   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    418   static APInt getMaxValue(unsigned numBits) {
    419     return getAllOnesValue(numBits);
    420   }
    421 
    422   /// \brief Gets maximum signed value of APInt for a specific bit width.
    423   static APInt getSignedMaxValue(unsigned numBits) {
    424     APInt API = getAllOnesValue(numBits);
    425     API.clearBit(numBits - 1);
    426     return API;
    427   }
    428 
    429   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    430   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    431 
    432   /// \brief Gets minimum signed value of APInt for a specific bit width.
    433   static APInt getSignedMinValue(unsigned numBits) {
    434     APInt API(numBits, 0);
    435     API.setBit(numBits - 1);
    436     return API;
    437   }
    438 
    439   /// \brief Get the SignBit for a specific bit width.
    440   ///
    441   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    442   /// readability when we want to get a SignBit.
    443   static APInt getSignBit(unsigned BitWidth) {
    444     return getSignedMinValue(BitWidth);
    445   }
    446 
    447   /// \brief Get the all-ones value.
    448   ///
    449   /// \returns the all-ones value for an APInt of the specified bit-width.
    450   static APInt getAllOnesValue(unsigned numBits) {
    451     return APInt(numBits, UINT64_MAX, true);
    452   }
    453 
    454   /// \brief Get the '0' value.
    455   ///
    456   /// \returns the '0' value for an APInt of the specified bit-width.
    457   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    458 
    459   /// \brief Compute an APInt containing numBits highbits from this APInt.
    460   ///
    461   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    462   /// the low bits and right shift to the least significant bit.
    463   ///
    464   /// \returns the high "numBits" bits of this APInt.
    465   APInt getHiBits(unsigned numBits) const;
    466 
    467   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    468   ///
    469   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    470   /// the high bits.
    471   ///
    472   /// \returns the low "numBits" bits of this APInt.
    473   APInt getLoBits(unsigned numBits) const;
    474 
    475   /// \brief Return an APInt with exactly one bit set in the result.
    476   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    477     APInt Res(numBits, 0);
    478     Res.setBit(BitNo);
    479     return Res;
    480   }
    481 
    482   /// \brief Get a value with a block of bits set.
    483   ///
    484   /// Constructs an APInt value that has a contiguous range of bits set. The
    485   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    486   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    487   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    488   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    489   ///
    490   /// \param numBits the intended bit width of the result
    491   /// \param loBit the index of the lowest bit set.
    492   /// \param hiBit the index of the highest bit set.
    493   ///
    494   /// \returns An APInt value with the requested bits set.
    495   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    496     assert(hiBit <= numBits && "hiBit out of range");
    497     assert(loBit < numBits && "loBit out of range");
    498     if (hiBit < loBit)
    499       return getLowBitsSet(numBits, hiBit) |
    500              getHighBitsSet(numBits, numBits - loBit);
    501     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
    502   }
    503 
    504   /// \brief Get a value with high bits set
    505   ///
    506   /// Constructs an APInt value that has the top hiBitsSet bits set.
    507   ///
    508   /// \param numBits the bitwidth of the result
    509   /// \param hiBitsSet the number of high-order bits set in the result.
    510   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    511     assert(hiBitsSet <= numBits && "Too many bits to set!");
    512     // Handle a degenerate case, to avoid shifting by word size
    513     if (hiBitsSet == 0)
    514       return APInt(numBits, 0);
    515     unsigned shiftAmt = numBits - hiBitsSet;
    516     // For small values, return quickly
    517     if (numBits <= APINT_BITS_PER_WORD)
    518       return APInt(numBits, ~0ULL << shiftAmt);
    519     return getAllOnesValue(numBits).shl(shiftAmt);
    520   }
    521 
    522   /// \brief Get a value with low bits set
    523   ///
    524   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    525   ///
    526   /// \param numBits the bitwidth of the result
    527   /// \param loBitsSet the number of low-order bits set in the result.
    528   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    529     assert(loBitsSet <= numBits && "Too many bits to set!");
    530     // Handle a degenerate case, to avoid shifting by word size
    531     if (loBitsSet == 0)
    532       return APInt(numBits, 0);
    533     if (loBitsSet == APINT_BITS_PER_WORD)
    534       return APInt(numBits, UINT64_MAX);
    535     // For small values, return quickly.
    536     if (loBitsSet <= APINT_BITS_PER_WORD)
    537       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    538     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    539   }
    540 
    541   /// \brief Return a value containing V broadcasted over NewLen bits.
    542   static APInt getSplat(unsigned NewLen, const APInt &V) {
    543     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
    544 
    545     APInt Val = V.zextOrSelf(NewLen);
    546     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    547       Val |= Val << I;
    548 
    549     return Val;
    550   }
    551 
    552   /// \brief Determine if two APInts have the same value, after zero-extending
    553   /// one of them (if needed!) to ensure that the bit-widths match.
    554   static bool isSameValue(const APInt &I1, const APInt &I2) {
    555     if (I1.getBitWidth() == I2.getBitWidth())
    556       return I1 == I2;
    557 
    558     if (I1.getBitWidth() > I2.getBitWidth())
    559       return I1 == I2.zext(I1.getBitWidth());
    560 
    561     return I1.zext(I2.getBitWidth()) == I2;
    562   }
    563 
    564   /// \brief Overload to compute a hash_code for an APInt value.
    565   friend hash_code hash_value(const APInt &Arg);
    566 
    567   /// This function returns a pointer to the internal storage of the APInt.
    568   /// This is useful for writing out the APInt in binary form without any
    569   /// conversions.
    570   const uint64_t *getRawData() const {
    571     if (isSingleWord())
    572       return &VAL;
    573     return &pVal[0];
    574   }
    575 
    576   /// @}
    577   /// \name Unary Operators
    578   /// @{
    579 
    580   /// \brief Postfix increment operator.
    581   ///
    582   /// \returns a new APInt value representing *this incremented by one
    583   const APInt operator++(int) {
    584     APInt API(*this);
    585     ++(*this);
    586     return API;
    587   }
    588 
    589   /// \brief Prefix increment operator.
    590   ///
    591   /// \returns *this incremented by one
    592   APInt &operator++();
    593 
    594   /// \brief Postfix decrement operator.
    595   ///
    596   /// \returns a new APInt representing *this decremented by one.
    597   const APInt operator--(int) {
    598     APInt API(*this);
    599     --(*this);
    600     return API;
    601   }
    602 
    603   /// \brief Prefix decrement operator.
    604   ///
    605   /// \returns *this decremented by one.
    606   APInt &operator--();
    607 
    608   /// \brief Unary bitwise complement operator.
    609   ///
    610   /// Performs a bitwise complement operation on this APInt.
    611   ///
    612   /// \returns an APInt that is the bitwise complement of *this
    613   APInt operator~() const {
    614     APInt Result(*this);
    615     Result.flipAllBits();
    616     return Result;
    617   }
    618 
    619   /// \brief Unary negation operator
    620   ///
    621   /// Negates *this using two's complement logic.
    622   ///
    623   /// \returns An APInt value representing the negation of *this.
    624   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
    625 
    626   /// \brief Logical negation operator.
    627   ///
    628   /// Performs logical negation operation on this APInt.
    629   ///
    630   /// \returns true if *this is zero, false otherwise.
    631   bool operator!() const {
    632     if (isSingleWord())
    633       return !VAL;
    634 
    635     for (unsigned i = 0; i != getNumWords(); ++i)
    636       if (pVal[i])
    637         return false;
    638     return true;
    639   }
    640 
    641   /// @}
    642   /// \name Assignment Operators
    643   /// @{
    644 
    645   /// \brief Copy assignment operator.
    646   ///
    647   /// \returns *this after assignment of RHS.
    648   APInt &operator=(const APInt &RHS) {
    649     // If the bitwidths are the same, we can avoid mucking with memory
    650     if (isSingleWord() && RHS.isSingleWord()) {
    651       VAL = RHS.VAL;
    652       BitWidth = RHS.BitWidth;
    653       return clearUnusedBits();
    654     }
    655 
    656     return AssignSlowCase(RHS);
    657   }
    658 
    659 #if LLVM_HAS_RVALUE_REFERENCES
    660   /// @brief Move assignment operator.
    661   APInt &operator=(APInt &&that) {
    662     if (!isSingleWord())
    663       delete[] pVal;
    664 
    665     BitWidth = that.BitWidth;
    666     VAL = that.VAL;
    667 
    668     that.BitWidth = 0;
    669 
    670     return *this;
    671   }
    672 #endif
    673 
    674   /// \brief Assignment operator.
    675   ///
    676   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    677   /// the bit width, the excess bits are truncated. If the bit width is larger
    678   /// than 64, the value is zero filled in the unspecified high order bits.
    679   ///
    680   /// \returns *this after assignment of RHS value.
    681   APInt &operator=(uint64_t RHS);
    682 
    683   /// \brief Bitwise AND assignment operator.
    684   ///
    685   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    686   /// assigned to *this.
    687   ///
    688   /// \returns *this after ANDing with RHS.
    689   APInt &operator&=(const APInt &RHS);
    690 
    691   /// \brief Bitwise OR assignment operator.
    692   ///
    693   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    694   /// assigned *this;
    695   ///
    696   /// \returns *this after ORing with RHS.
    697   APInt &operator|=(const APInt &RHS);
    698 
    699   /// \brief Bitwise OR assignment operator.
    700   ///
    701   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    702   /// logically zero-extended or truncated to match the bit-width of
    703   /// the LHS.
    704   APInt &operator|=(uint64_t RHS) {
    705     if (isSingleWord()) {
    706       VAL |= RHS;
    707       clearUnusedBits();
    708     } else {
    709       pVal[0] |= RHS;
    710     }
    711     return *this;
    712   }
    713 
    714   /// \brief Bitwise XOR assignment operator.
    715   ///
    716   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    717   /// assigned to *this.
    718   ///
    719   /// \returns *this after XORing with RHS.
    720   APInt &operator^=(const APInt &RHS);
    721 
    722   /// \brief Multiplication assignment operator.
    723   ///
    724   /// Multiplies this APInt by RHS and assigns the result to *this.
    725   ///
    726   /// \returns *this
    727   APInt &operator*=(const APInt &RHS);
    728 
    729   /// \brief Addition assignment operator.
    730   ///
    731   /// Adds RHS to *this and assigns the result to *this.
    732   ///
    733   /// \returns *this
    734   APInt &operator+=(const APInt &RHS);
    735 
    736   /// \brief Subtraction assignment operator.
    737   ///
    738   /// Subtracts RHS from *this and assigns the result to *this.
    739   ///
    740   /// \returns *this
    741   APInt &operator-=(const APInt &RHS);
    742 
    743   /// \brief Left-shift assignment function.
    744   ///
    745   /// Shifts *this left by shiftAmt and assigns the result to *this.
    746   ///
    747   /// \returns *this after shifting left by shiftAmt
    748   APInt &operator<<=(unsigned shiftAmt) {
    749     *this = shl(shiftAmt);
    750     return *this;
    751   }
    752 
    753   /// @}
    754   /// \name Binary Operators
    755   /// @{
    756 
    757   /// \brief Bitwise AND operator.
    758   ///
    759   /// Performs a bitwise AND operation on *this and RHS.
    760   ///
    761   /// \returns An APInt value representing the bitwise AND of *this and RHS.
    762   APInt operator&(const APInt &RHS) const {
    763     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    764     if (isSingleWord())
    765       return APInt(getBitWidth(), VAL & RHS.VAL);
    766     return AndSlowCase(RHS);
    767   }
    768   APInt And(const APInt &RHS) const { return this->operator&(RHS); }
    769 
    770   /// \brief Bitwise OR operator.
    771   ///
    772   /// Performs a bitwise OR operation on *this and RHS.
    773   ///
    774   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    775   APInt operator|(const APInt &RHS) const {
    776     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    777     if (isSingleWord())
    778       return APInt(getBitWidth(), VAL | RHS.VAL);
    779     return OrSlowCase(RHS);
    780   }
    781 
    782   /// \brief Bitwise OR function.
    783   ///
    784   /// Performs a bitwise or on *this and RHS. This is implemented bny simply
    785   /// calling operator|.
    786   ///
    787   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    788   APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
    789 
    790   /// \brief Bitwise XOR operator.
    791   ///
    792   /// Performs a bitwise XOR operation on *this and RHS.
    793   ///
    794   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    795   APInt operator^(const APInt &RHS) const {
    796     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    797     if (isSingleWord())
    798       return APInt(BitWidth, VAL ^ RHS.VAL);
    799     return XorSlowCase(RHS);
    800   }
    801 
    802   /// \brief Bitwise XOR function.
    803   ///
    804   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
    805   /// through the usage of operator^.
    806   ///
    807   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    808   APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
    809 
    810   /// \brief Multiplication operator.
    811   ///
    812   /// Multiplies this APInt by RHS and returns the result.
    813   APInt operator*(const APInt &RHS) const;
    814 
    815   /// \brief Addition operator.
    816   ///
    817   /// Adds RHS to this APInt and returns the result.
    818   APInt operator+(const APInt &RHS) const;
    819   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
    820 
    821   /// \brief Subtraction operator.
    822   ///
    823   /// Subtracts RHS from this APInt and returns the result.
    824   APInt operator-(const APInt &RHS) const;
    825   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
    826 
    827   /// \brief Left logical shift operator.
    828   ///
    829   /// Shifts this APInt left by \p Bits and returns the result.
    830   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    831 
    832   /// \brief Left logical shift operator.
    833   ///
    834   /// Shifts this APInt left by \p Bits and returns the result.
    835   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    836 
    837   /// \brief Arithmetic right-shift function.
    838   ///
    839   /// Arithmetic right-shift this APInt by shiftAmt.
    840   APInt ashr(unsigned shiftAmt) const;
    841 
    842   /// \brief Logical right-shift function.
    843   ///
    844   /// Logical right-shift this APInt by shiftAmt.
    845   APInt lshr(unsigned shiftAmt) const;
    846 
    847   /// \brief Left-shift function.
    848   ///
    849   /// Left-shift this APInt by shiftAmt.
    850   APInt shl(unsigned shiftAmt) const {
    851     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    852     if (isSingleWord()) {
    853       if (shiftAmt >= BitWidth)
    854         return APInt(BitWidth, 0); // avoid undefined shift results
    855       return APInt(BitWidth, VAL << shiftAmt);
    856     }
    857     return shlSlowCase(shiftAmt);
    858   }
    859 
    860   /// \brief Rotate left by rotateAmt.
    861   APInt rotl(unsigned rotateAmt) const;
    862 
    863   /// \brief Rotate right by rotateAmt.
    864   APInt rotr(unsigned rotateAmt) const;
    865 
    866   /// \brief Arithmetic right-shift function.
    867   ///
    868   /// Arithmetic right-shift this APInt by shiftAmt.
    869   APInt ashr(const APInt &shiftAmt) const;
    870 
    871   /// \brief Logical right-shift function.
    872   ///
    873   /// Logical right-shift this APInt by shiftAmt.
    874   APInt lshr(const APInt &shiftAmt) const;
    875 
    876   /// \brief Left-shift function.
    877   ///
    878   /// Left-shift this APInt by shiftAmt.
    879   APInt shl(const APInt &shiftAmt) const;
    880 
    881   /// \brief Rotate left by rotateAmt.
    882   APInt rotl(const APInt &rotateAmt) const;
    883 
    884   /// \brief Rotate right by rotateAmt.
    885   APInt rotr(const APInt &rotateAmt) const;
    886 
    887   /// \brief Unsigned division operation.
    888   ///
    889   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    890   /// RHS are treated as unsigned quantities for purposes of this division.
    891   ///
    892   /// \returns a new APInt value containing the division result
    893   APInt udiv(const APInt &RHS) const;
    894 
    895   /// \brief Signed division function for APInt.
    896   ///
    897   /// Signed divide this APInt by APInt RHS.
    898   APInt sdiv(const APInt &RHS) const;
    899 
    900   /// \brief Unsigned remainder operation.
    901   ///
    902   /// Perform an unsigned remainder operation on this APInt with RHS being the
    903   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    904   /// of this operation. Note that this is a true remainder operation and not a
    905   /// modulo operation because the sign follows the sign of the dividend which
    906   /// is *this.
    907   ///
    908   /// \returns a new APInt value containing the remainder result
    909   APInt urem(const APInt &RHS) const;
    910 
    911   /// \brief Function for signed remainder operation.
    912   ///
    913   /// Signed remainder operation on APInt.
    914   APInt srem(const APInt &RHS) const;
    915 
    916   /// \brief Dual division/remainder interface.
    917   ///
    918   /// Sometimes it is convenient to divide two APInt values and obtain both the
    919   /// quotient and remainder. This function does both operations in the same
    920   /// computation making it a little more efficient. The pair of input arguments
    921   /// may overlap with the pair of output arguments. It is safe to call
    922   /// udivrem(X, Y, X, Y), for example.
    923   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    924                       APInt &Remainder);
    925 
    926   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    927                       APInt &Remainder);
    928 
    929   // Operations that return overflow indicators.
    930   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    931   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    932   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    933   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    934   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    935   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    936   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    937   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
    938 
    939   /// \brief Array-indexing support.
    940   ///
    941   /// \returns the bit value at bitPosition
    942   bool operator[](unsigned bitPosition) const {
    943     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    944     return (maskBit(bitPosition) &
    945             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
    946            0;
    947   }
    948 
    949   /// @}
    950   /// \name Comparison Operators
    951   /// @{
    952 
    953   /// \brief Equality operator.
    954   ///
    955   /// Compares this APInt with RHS for the validity of the equality
    956   /// relationship.
    957   bool operator==(const APInt &RHS) const {
    958     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    959     if (isSingleWord())
    960       return VAL == RHS.VAL;
    961     return EqualSlowCase(RHS);
    962   }
    963 
    964   /// \brief Equality operator.
    965   ///
    966   /// Compares this APInt with a uint64_t for the validity of the equality
    967   /// relationship.
    968   ///
    969   /// \returns true if *this == Val
    970   bool operator==(uint64_t Val) const {
    971     if (isSingleWord())
    972       return VAL == Val;
    973     return EqualSlowCase(Val);
    974   }
    975 
    976   /// \brief Equality comparison.
    977   ///
    978   /// Compares this APInt with RHS for the validity of the equality
    979   /// relationship.
    980   ///
    981   /// \returns true if *this == Val
    982   bool eq(const APInt &RHS) const { return (*this) == RHS; }
    983 
    984   /// \brief Inequality operator.
    985   ///
    986   /// Compares this APInt with RHS for the validity of the inequality
    987   /// relationship.
    988   ///
    989   /// \returns true if *this != Val
    990   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
    991 
    992   /// \brief Inequality operator.
    993   ///
    994   /// Compares this APInt with a uint64_t for the validity of the inequality
    995   /// relationship.
    996   ///
    997   /// \returns true if *this != Val
    998   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
    999 
   1000   /// \brief Inequality comparison
   1001   ///
   1002   /// Compares this APInt with RHS for the validity of the inequality
   1003   /// relationship.
   1004   ///
   1005   /// \returns true if *this != Val
   1006   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1007 
   1008   /// \brief Unsigned less than comparison
   1009   ///
   1010   /// Regards both *this and RHS as unsigned quantities and compares them for
   1011   /// the validity of the less-than relationship.
   1012   ///
   1013   /// \returns true if *this < RHS when both are considered unsigned.
   1014   bool ult(const APInt &RHS) const;
   1015 
   1016   /// \brief Unsigned less than comparison
   1017   ///
   1018   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1019   /// the validity of the less-than relationship.
   1020   ///
   1021   /// \returns true if *this < RHS when considered unsigned.
   1022   bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
   1023 
   1024   /// \brief Signed less than comparison
   1025   ///
   1026   /// Regards both *this and RHS as signed quantities and compares them for
   1027   /// validity of the less-than relationship.
   1028   ///
   1029   /// \returns true if *this < RHS when both are considered signed.
   1030   bool slt(const APInt &RHS) const;
   1031 
   1032   /// \brief Signed less than comparison
   1033   ///
   1034   /// Regards both *this as a signed quantity and compares it with RHS for
   1035   /// the validity of the less-than relationship.
   1036   ///
   1037   /// \returns true if *this < RHS when considered signed.
   1038   bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
   1039 
   1040   /// \brief Unsigned less or equal comparison
   1041   ///
   1042   /// Regards both *this and RHS as unsigned quantities and compares them for
   1043   /// validity of the less-or-equal relationship.
   1044   ///
   1045   /// \returns true if *this <= RHS when both are considered unsigned.
   1046   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
   1047 
   1048   /// \brief Unsigned less or equal comparison
   1049   ///
   1050   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1051   /// the validity of the less-or-equal relationship.
   1052   ///
   1053   /// \returns true if *this <= RHS when considered unsigned.
   1054   bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
   1055 
   1056   /// \brief Signed less or equal comparison
   1057   ///
   1058   /// Regards both *this and RHS as signed quantities and compares them for
   1059   /// validity of the less-or-equal relationship.
   1060   ///
   1061   /// \returns true if *this <= RHS when both are considered signed.
   1062   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
   1063 
   1064   /// \brief Signed less or equal comparison
   1065   ///
   1066   /// Regards both *this as a signed quantity and compares it with RHS for the
   1067   /// validity of the less-or-equal relationship.
   1068   ///
   1069   /// \returns true if *this <= RHS when considered signed.
   1070   bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
   1071 
   1072   /// \brief Unsigned greather than comparison
   1073   ///
   1074   /// Regards both *this and RHS as unsigned quantities and compares them for
   1075   /// the validity of the greater-than relationship.
   1076   ///
   1077   /// \returns true if *this > RHS when both are considered unsigned.
   1078   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
   1079 
   1080   /// \brief Unsigned greater than comparison
   1081   ///
   1082   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1083   /// the validity of the greater-than relationship.
   1084   ///
   1085   /// \returns true if *this > RHS when considered unsigned.
   1086   bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
   1087 
   1088   /// \brief Signed greather than comparison
   1089   ///
   1090   /// Regards both *this and RHS as signed quantities and compares them for the
   1091   /// validity of the greater-than relationship.
   1092   ///
   1093   /// \returns true if *this > RHS when both are considered signed.
   1094   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
   1095 
   1096   /// \brief Signed greater than comparison
   1097   ///
   1098   /// Regards both *this as a signed quantity and compares it with RHS for
   1099   /// the validity of the greater-than relationship.
   1100   ///
   1101   /// \returns true if *this > RHS when considered signed.
   1102   bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
   1103 
   1104   /// \brief Unsigned greater or equal comparison
   1105   ///
   1106   /// Regards both *this and RHS as unsigned quantities and compares them for
   1107   /// validity of the greater-or-equal relationship.
   1108   ///
   1109   /// \returns true if *this >= RHS when both are considered unsigned.
   1110   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1111 
   1112   /// \brief Unsigned greater or equal comparison
   1113   ///
   1114   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1115   /// the validity of the greater-or-equal relationship.
   1116   ///
   1117   /// \returns true if *this >= RHS when considered unsigned.
   1118   bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
   1119 
   1120   /// \brief Signed greather or equal comparison
   1121   ///
   1122   /// Regards both *this and RHS as signed quantities and compares them for
   1123   /// validity of the greater-or-equal relationship.
   1124   ///
   1125   /// \returns true if *this >= RHS when both are considered signed.
   1126   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1127 
   1128   /// \brief Signed greater or equal comparison
   1129   ///
   1130   /// Regards both *this as a signed quantity and compares it with RHS for
   1131   /// the validity of the greater-or-equal relationship.
   1132   ///
   1133   /// \returns true if *this >= RHS when considered signed.
   1134   bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
   1135 
   1136   /// This operation tests if there are any pairs of corresponding bits
   1137   /// between this APInt and RHS that are both set.
   1138   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
   1139 
   1140   /// @}
   1141   /// \name Resizing Operators
   1142   /// @{
   1143 
   1144   /// \brief Truncate to new width.
   1145   ///
   1146   /// Truncate the APInt to a specified width. It is an error to specify a width
   1147   /// that is greater than or equal to the current width.
   1148   APInt trunc(unsigned width) const;
   1149 
   1150   /// \brief Sign extend to a new width.
   1151   ///
   1152   /// This operation sign extends the APInt to a new width. If the high order
   1153   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1154   /// It is an error to specify a width that is less than or equal to the
   1155   /// current width.
   1156   APInt sext(unsigned width) const;
   1157 
   1158   /// \brief Zero extend to a new width.
   1159   ///
   1160   /// This operation zero extends the APInt to a new width. The high order bits
   1161   /// are filled with 0 bits.  It is an error to specify a width that is less
   1162   /// than or equal to the current width.
   1163   APInt zext(unsigned width) const;
   1164 
   1165   /// \brief Sign extend or truncate to width
   1166   ///
   1167   /// Make this APInt have the bit width given by \p width. The value is sign
   1168   /// extended, truncated, or left alone to make it that width.
   1169   APInt sextOrTrunc(unsigned width) const;
   1170 
   1171   /// \brief Zero extend or truncate to width
   1172   ///
   1173   /// Make this APInt have the bit width given by \p width. The value is zero
   1174   /// extended, truncated, or left alone to make it that width.
   1175   APInt zextOrTrunc(unsigned width) const;
   1176 
   1177   /// \brief Sign extend or truncate to width
   1178   ///
   1179   /// Make this APInt have the bit width given by \p width. The value is sign
   1180   /// extended, or left alone to make it that width.
   1181   APInt sextOrSelf(unsigned width) const;
   1182 
   1183   /// \brief Zero extend or truncate to width
   1184   ///
   1185   /// Make this APInt have the bit width given by \p width. The value is zero
   1186   /// extended, or left alone to make it that width.
   1187   APInt zextOrSelf(unsigned width) const;
   1188 
   1189   /// @}
   1190   /// \name Bit Manipulation Operators
   1191   /// @{
   1192 
   1193   /// \brief Set every bit to 1.
   1194   void setAllBits() {
   1195     if (isSingleWord())
   1196       VAL = UINT64_MAX;
   1197     else {
   1198       // Set all the bits in all the words.
   1199       for (unsigned i = 0; i < getNumWords(); ++i)
   1200         pVal[i] = UINT64_MAX;
   1201     }
   1202     // Clear the unused ones
   1203     clearUnusedBits();
   1204   }
   1205 
   1206   /// \brief Set a given bit to 1.
   1207   ///
   1208   /// Set the given bit to 1 whose position is given as "bitPosition".
   1209   void setBit(unsigned bitPosition);
   1210 
   1211   /// \brief Set every bit to 0.
   1212   void clearAllBits() {
   1213     if (isSingleWord())
   1214       VAL = 0;
   1215     else
   1216       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1217   }
   1218 
   1219   /// \brief Set a given bit to 0.
   1220   ///
   1221   /// Set the given bit to 0 whose position is given as "bitPosition".
   1222   void clearBit(unsigned bitPosition);
   1223 
   1224   /// \brief Toggle every bit to its opposite value.
   1225   void flipAllBits() {
   1226     if (isSingleWord())
   1227       VAL ^= UINT64_MAX;
   1228     else {
   1229       for (unsigned i = 0; i < getNumWords(); ++i)
   1230         pVal[i] ^= UINT64_MAX;
   1231     }
   1232     clearUnusedBits();
   1233   }
   1234 
   1235   /// \brief Toggles a given bit to its opposite value.
   1236   ///
   1237   /// Toggle a given bit to its opposite value whose position is given
   1238   /// as "bitPosition".
   1239   void flipBit(unsigned bitPosition);
   1240 
   1241   /// @}
   1242   /// \name Value Characterization Functions
   1243   /// @{
   1244 
   1245   /// \brief Return the number of bits in the APInt.
   1246   unsigned getBitWidth() const { return BitWidth; }
   1247 
   1248   /// \brief Get the number of words.
   1249   ///
   1250   /// Here one word's bitwidth equals to that of uint64_t.
   1251   ///
   1252   /// \returns the number of words to hold the integer value of this APInt.
   1253   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1254 
   1255   /// \brief Get the number of words.
   1256   ///
   1257   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1258   ///
   1259   /// \returns the number of words to hold the integer value with a given bit
   1260   /// width.
   1261   static unsigned getNumWords(unsigned BitWidth) {
   1262     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1263   }
   1264 
   1265   /// \brief Compute the number of active bits in the value
   1266   ///
   1267   /// This function returns the number of active bits which is defined as the
   1268   /// bit width minus the number of leading zeros. This is used in several
   1269   /// computations to see how "wide" the value is.
   1270   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1271 
   1272   /// \brief Compute the number of active words in the value of this APInt.
   1273   ///
   1274   /// This is used in conjunction with getActiveData to extract the raw value of
   1275   /// the APInt.
   1276   unsigned getActiveWords() const {
   1277     unsigned numActiveBits = getActiveBits();
   1278     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1279   }
   1280 
   1281   /// \brief Get the minimum bit size for this signed APInt
   1282   ///
   1283   /// Computes the minimum bit width for this APInt while considering it to be a
   1284   /// signed (and probably negative) value. If the value is not negative, this
   1285   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1286   /// returns the smallest bit width that will retain the negative value. For
   1287   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1288   /// for -1, this function will always return 1.
   1289   unsigned getMinSignedBits() const {
   1290     if (isNegative())
   1291       return BitWidth - countLeadingOnes() + 1;
   1292     return getActiveBits() + 1;
   1293   }
   1294 
   1295   /// \brief Get zero extended value
   1296   ///
   1297   /// This method attempts to return the value of this APInt as a zero extended
   1298   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1299   /// uint64_t. Otherwise an assertion will result.
   1300   uint64_t getZExtValue() const {
   1301     if (isSingleWord())
   1302       return VAL;
   1303     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1304     return pVal[0];
   1305   }
   1306 
   1307   /// \brief Get sign extended value
   1308   ///
   1309   /// This method attempts to return the value of this APInt as a sign extended
   1310   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1311   /// int64_t. Otherwise an assertion will result.
   1312   int64_t getSExtValue() const {
   1313     if (isSingleWord())
   1314       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1315              (APINT_BITS_PER_WORD - BitWidth);
   1316     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1317     return int64_t(pVal[0]);
   1318   }
   1319 
   1320   /// \brief Get bits required for string value.
   1321   ///
   1322   /// This method determines how many bits are required to hold the APInt
   1323   /// equivalent of the string given by \p str.
   1324   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1325 
   1326   /// \brief The APInt version of the countLeadingZeros functions in
   1327   ///   MathExtras.h.
   1328   ///
   1329   /// It counts the number of zeros from the most significant bit to the first
   1330   /// one bit.
   1331   ///
   1332   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1333   ///   zeros from the most significant bit to the first one bits.
   1334   unsigned countLeadingZeros() const {
   1335     if (isSingleWord()) {
   1336       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1337       return llvm::countLeadingZeros(VAL) - unusedBits;
   1338     }
   1339     return countLeadingZerosSlowCase();
   1340   }
   1341 
   1342   /// \brief Count the number of leading one bits.
   1343   ///
   1344   /// This function is an APInt version of the countLeadingOnes_{32,64}
   1345   /// functions in MathExtras.h. It counts the number of ones from the most
   1346   /// significant bit to the first zero bit.
   1347   ///
   1348   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1349   /// of 1 bits from the most significant to the least
   1350   unsigned countLeadingOnes() const;
   1351 
   1352   /// Computes the number of leading bits of this APInt that are equal to its
   1353   /// sign bit.
   1354   unsigned getNumSignBits() const {
   1355     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1356   }
   1357 
   1358   /// \brief Count the number of trailing zero bits.
   1359   ///
   1360   /// This function is an APInt version of the countTrailingZeros_{32,64}
   1361   /// functions in MathExtras.h. It counts the number of zeros from the least
   1362   /// significant bit to the first set bit.
   1363   ///
   1364   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1365   /// zeros from the least significant bit to the first one bit.
   1366   unsigned countTrailingZeros() const;
   1367 
   1368   /// \brief Count the number of trailing one bits.
   1369   ///
   1370   /// This function is an APInt version of the countTrailingOnes_{32,64}
   1371   /// functions in MathExtras.h. It counts the number of ones from the least
   1372   /// significant bit to the first zero bit.
   1373   ///
   1374   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1375   /// of ones from the least significant bit to the first zero bit.
   1376   unsigned countTrailingOnes() const {
   1377     if (isSingleWord())
   1378       return CountTrailingOnes_64(VAL);
   1379     return countTrailingOnesSlowCase();
   1380   }
   1381 
   1382   /// \brief Count the number of bits set.
   1383   ///
   1384   /// This function is an APInt version of the countPopulation_{32,64} functions
   1385   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1386   ///
   1387   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1388   unsigned countPopulation() const {
   1389     if (isSingleWord())
   1390       return CountPopulation_64(VAL);
   1391     return countPopulationSlowCase();
   1392   }
   1393 
   1394   /// @}
   1395   /// \name Conversion Functions
   1396   /// @{
   1397   void print(raw_ostream &OS, bool isSigned) const;
   1398 
   1399   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1400   /// SmallString.
   1401   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1402                 bool formatAsCLiteral = false) const;
   1403 
   1404   /// Considers the APInt to be unsigned and converts it into a string in the
   1405   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1406   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1407     toString(Str, Radix, false, false);
   1408   }
   1409 
   1410   /// Considers the APInt to be signed and converts it into a string in the
   1411   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1412   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1413     toString(Str, Radix, true, false);
   1414   }
   1415 
   1416   /// \brief Return the APInt as a std::string.
   1417   ///
   1418   /// Note that this is an inefficient method.  It is better to pass in a
   1419   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1420   /// for the string.
   1421   std::string toString(unsigned Radix, bool Signed) const;
   1422 
   1423   /// \returns a byte-swapped representation of this APInt Value.
   1424   APInt byteSwap() const;
   1425 
   1426   /// \brief Converts this APInt to a double value.
   1427   double roundToDouble(bool isSigned) const;
   1428 
   1429   /// \brief Converts this unsigned APInt to a double value.
   1430   double roundToDouble() const { return roundToDouble(false); }
   1431 
   1432   /// \brief Converts this signed APInt to a double value.
   1433   double signedRoundToDouble() const { return roundToDouble(true); }
   1434 
   1435   /// \brief Converts APInt bits to a double
   1436   ///
   1437   /// The conversion does not do a translation from integer to double, it just
   1438   /// re-interprets the bits as a double. Note that it is valid to do this on
   1439   /// any bit width. Exactly 64 bits will be translated.
   1440   double bitsToDouble() const {
   1441     union {
   1442       uint64_t I;
   1443       double D;
   1444     } T;
   1445     T.I = (isSingleWord() ? VAL : pVal[0]);
   1446     return T.D;
   1447   }
   1448 
   1449   /// \brief Converts APInt bits to a double
   1450   ///
   1451   /// The conversion does not do a translation from integer to float, it just
   1452   /// re-interprets the bits as a float. Note that it is valid to do this on
   1453   /// any bit width. Exactly 32 bits will be translated.
   1454   float bitsToFloat() const {
   1455     union {
   1456       unsigned I;
   1457       float F;
   1458     } T;
   1459     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1460     return T.F;
   1461   }
   1462 
   1463   /// \brief Converts a double to APInt bits.
   1464   ///
   1465   /// The conversion does not do a translation from double to integer, it just
   1466   /// re-interprets the bits of the double.
   1467   static APInt doubleToBits(double V) {
   1468     union {
   1469       uint64_t I;
   1470       double D;
   1471     } T;
   1472     T.D = V;
   1473     return APInt(sizeof T * CHAR_BIT, T.I);
   1474   }
   1475 
   1476   /// \brief Converts a float to APInt bits.
   1477   ///
   1478   /// The conversion does not do a translation from float to integer, it just
   1479   /// re-interprets the bits of the float.
   1480   static APInt floatToBits(float V) {
   1481     union {
   1482       unsigned I;
   1483       float F;
   1484     } T;
   1485     T.F = V;
   1486     return APInt(sizeof T * CHAR_BIT, T.I);
   1487   }
   1488 
   1489   /// @}
   1490   /// \name Mathematics Operations
   1491   /// @{
   1492 
   1493   /// \returns the floor log base 2 of this APInt.
   1494   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
   1495 
   1496   /// \returns the ceil log base 2 of this APInt.
   1497   unsigned ceilLogBase2() const {
   1498     return BitWidth - (*this - 1).countLeadingZeros();
   1499   }
   1500 
   1501   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1502   /// otherwise
   1503   int32_t exactLogBase2() const {
   1504     if (!isPowerOf2())
   1505       return -1;
   1506     return logBase2();
   1507   }
   1508 
   1509   /// \brief Compute the square root
   1510   APInt sqrt() const;
   1511 
   1512   /// \brief Get the absolute value;
   1513   ///
   1514   /// If *this is < 0 then return -(*this), otherwise *this;
   1515   APInt abs() const {
   1516     if (isNegative())
   1517       return -(*this);
   1518     return *this;
   1519   }
   1520 
   1521   /// \returns the multiplicative inverse for a given modulo.
   1522   APInt multiplicativeInverse(const APInt &modulo) const;
   1523 
   1524   /// @}
   1525   /// \name Support for division by constant
   1526   /// @{
   1527 
   1528   /// Calculate the magic number for signed division by a constant.
   1529   struct ms;
   1530   ms magic() const;
   1531 
   1532   /// Calculate the magic number for unsigned division by a constant.
   1533   struct mu;
   1534   mu magicu(unsigned LeadingZeros = 0) const;
   1535 
   1536   /// @}
   1537   /// \name Building-block Operations for APInt and APFloat
   1538   /// @{
   1539 
   1540   // These building block operations operate on a representation of arbitrary
   1541   // precision, two's-complement, bignum integer values. They should be
   1542   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1543   // generally a pointer to the base of an array of integer parts, representing
   1544   // an unsigned bignum, and a count of how many parts there are.
   1545 
   1546   /// Sets the least significant part of a bignum to the input value, and zeroes
   1547   /// out higher parts.
   1548   static void tcSet(integerPart *, integerPart, unsigned int);
   1549 
   1550   /// Assign one bignum to another.
   1551   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1552 
   1553   /// Returns true if a bignum is zero, false otherwise.
   1554   static bool tcIsZero(const integerPart *, unsigned int);
   1555 
   1556   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1557   static int tcExtractBit(const integerPart *, unsigned int bit);
   1558 
   1559   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1560   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1561   /// significant bit of DST.  All high bits above srcBITS in DST are
   1562   /// zero-filled.
   1563   static void tcExtract(integerPart *, unsigned int dstCount,
   1564                         const integerPart *, unsigned int srcBits,
   1565                         unsigned int srcLSB);
   1566 
   1567   /// Set the given bit of a bignum.  Zero-based.
   1568   static void tcSetBit(integerPart *, unsigned int bit);
   1569 
   1570   /// Clear the given bit of a bignum.  Zero-based.
   1571   static void tcClearBit(integerPart *, unsigned int bit);
   1572 
   1573   /// Returns the bit number of the least or most significant set bit of a
   1574   /// number.  If the input number has no bits set -1U is returned.
   1575   static unsigned int tcLSB(const integerPart *, unsigned int);
   1576   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1577 
   1578   /// Negate a bignum in-place.
   1579   static void tcNegate(integerPart *, unsigned int);
   1580 
   1581   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1582   static integerPart tcAdd(integerPart *, const integerPart *,
   1583                            integerPart carry, unsigned);
   1584 
   1585   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1586   static integerPart tcSubtract(integerPart *, const integerPart *,
   1587                                 integerPart carry, unsigned);
   1588 
   1589   /// DST += SRC * MULTIPLIER + PART   if add is true
   1590   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1591   ///
   1592   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1593   /// start at the same point, i.e. DST == SRC.
   1594   ///
   1595   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1596   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1597   /// result, and if all of the omitted higher parts were zero return zero,
   1598   /// otherwise overflow occurred and return one.
   1599   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1600                             integerPart multiplier, integerPart carry,
   1601                             unsigned int srcParts, unsigned int dstParts,
   1602                             bool add);
   1603 
   1604   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1605   /// filled with the least significant parts of the result.  Returns one if
   1606   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1607   /// operands.
   1608   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
   1609                         unsigned);
   1610 
   1611   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1612   /// operands.  No overflow occurs.  DST must be disjoint from both
   1613   /// operands. Returns the number of parts required to hold the result.
   1614   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1615                                      const integerPart *, unsigned, unsigned);
   1616 
   1617   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1618   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1619   /// REMAINDER to the remainder, return zero.  i.e.
   1620   ///
   1621   ///  OLD_LHS = RHS * LHS + REMAINDER
   1622   ///
   1623   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1624   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1625   /// REMAINDER and SCRATCH must be distinct.
   1626   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1627                       integerPart *remainder, integerPart *scratch,
   1628                       unsigned int parts);
   1629 
   1630   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
   1631   /// restrictions on COUNT.
   1632   static void tcShiftLeft(integerPart *, unsigned int parts,
   1633                           unsigned int count);
   1634 
   1635   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
   1636   /// restrictions on COUNT.
   1637   static void tcShiftRight(integerPart *, unsigned int parts,
   1638                            unsigned int count);
   1639 
   1640   /// The obvious AND, OR and XOR and complement operations.
   1641   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1642   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1643   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1644   static void tcComplement(integerPart *, unsigned int);
   1645 
   1646   /// Comparison (unsigned) of two bignums.
   1647   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
   1648 
   1649   /// Increment a bignum in-place.  Return the carry flag.
   1650   static integerPart tcIncrement(integerPart *, unsigned int);
   1651 
   1652   /// Decrement a bignum in-place.  Return the borrow flag.
   1653   static integerPart tcDecrement(integerPart *, unsigned int);
   1654 
   1655   /// Set the least significant BITS and clear the rest.
   1656   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1657                                         unsigned int bits);
   1658 
   1659   /// \brief debug method
   1660   void dump() const;
   1661 
   1662   /// @}
   1663 };
   1664 
   1665 /// Magic data for optimising signed division by a constant.
   1666 struct APInt::ms {
   1667   APInt m;    ///< magic number
   1668   unsigned s; ///< shift amount
   1669 };
   1670 
   1671 /// Magic data for optimising unsigned division by a constant.
   1672 struct APInt::mu {
   1673   APInt m;    ///< magic number
   1674   bool a;     ///< add indicator
   1675   unsigned s; ///< shift amount
   1676 };
   1677 
   1678 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1679 
   1680 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1681 
   1682 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1683   I.print(OS, true);
   1684   return OS;
   1685 }
   1686 
   1687 namespace APIntOps {
   1688 
   1689 /// \brief Determine the smaller of two APInts considered to be signed.
   1690 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
   1691 
   1692 /// \brief Determine the larger of two APInts considered to be signed.
   1693 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
   1694 
   1695 /// \brief Determine the smaller of two APInts considered to be signed.
   1696 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
   1697 
   1698 /// \brief Determine the larger of two APInts considered to be unsigned.
   1699 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
   1700 
   1701 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
   1702 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
   1703 
   1704 /// \brief Check if the specified APInt has a N-bits signed integer value.
   1705 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
   1706   return APIVal.isSignedIntN(N);
   1707 }
   1708 
   1709 /// \returns true if the argument APInt value is a sequence of ones starting at
   1710 /// the least significant bit with the remainder zero.
   1711 inline bool isMask(unsigned numBits, const APInt &APIVal) {
   1712   return numBits <= APIVal.getBitWidth() &&
   1713          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1714 }
   1715 
   1716 /// \brief Return true if the argument APInt value contains a sequence of ones
   1717 /// with the remainder zero.
   1718 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
   1719   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
   1720 }
   1721 
   1722 /// \brief Returns a byte-swapped representation of the specified APInt Value.
   1723 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
   1724 
   1725 /// \brief Returns the floor log base 2 of the specified APInt value.
   1726 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
   1727 
   1728 /// \brief Compute GCD of two APInt values.
   1729 ///
   1730 /// This function returns the greatest common divisor of the two APInt values
   1731 /// using Euclid's algorithm.
   1732 ///
   1733 /// \returns the greatest common divisor of Val1 and Val2
   1734 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
   1735 
   1736 /// \brief Converts the given APInt to a double value.
   1737 ///
   1738 /// Treats the APInt as an unsigned value for conversion purposes.
   1739 inline double RoundAPIntToDouble(const APInt &APIVal) {
   1740   return APIVal.roundToDouble();
   1741 }
   1742 
   1743 /// \brief Converts the given APInt to a double value.
   1744 ///
   1745 /// Treats the APInt as a signed value for conversion purposes.
   1746 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   1747   return APIVal.signedRoundToDouble();
   1748 }
   1749 
   1750 /// \brief Converts the given APInt to a float vlalue.
   1751 inline float RoundAPIntToFloat(const APInt &APIVal) {
   1752   return float(RoundAPIntToDouble(APIVal));
   1753 }
   1754 
   1755 /// \brief Converts the given APInt to a float value.
   1756 ///
   1757 /// Treast the APInt as a signed value for conversion purposes.
   1758 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   1759   return float(APIVal.signedRoundToDouble());
   1760 }
   1761 
   1762 /// \brief Converts the given double value into a APInt.
   1763 ///
   1764 /// This function convert a double value to an APInt value.
   1765 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1766 
   1767 /// \brief Converts a float value into a APInt.
   1768 ///
   1769 /// Converts a float value into an APInt value.
   1770 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1771   return RoundDoubleToAPInt(double(Float), width);
   1772 }
   1773 
   1774 /// \brief Arithmetic right-shift function.
   1775 ///
   1776 /// Arithmetic right-shift the APInt by shiftAmt.
   1777 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
   1778   return LHS.ashr(shiftAmt);
   1779 }
   1780 
   1781 /// \brief Logical right-shift function.
   1782 ///
   1783 /// Logical right-shift the APInt by shiftAmt.
   1784 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
   1785   return LHS.lshr(shiftAmt);
   1786 }
   1787 
   1788 /// \brief Left-shift function.
   1789 ///
   1790 /// Left-shift the APInt by shiftAmt.
   1791 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
   1792   return LHS.shl(shiftAmt);
   1793 }
   1794 
   1795 /// \brief Signed division function for APInt.
   1796 ///
   1797 /// Signed divide APInt LHS by APInt RHS.
   1798 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
   1799 
   1800 /// \brief Unsigned division function for APInt.
   1801 ///
   1802 /// Unsigned divide APInt LHS by APInt RHS.
   1803 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
   1804 
   1805 /// \brief Function for signed remainder operation.
   1806 ///
   1807 /// Signed remainder operation on APInt.
   1808 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
   1809 
   1810 /// \brief Function for unsigned remainder operation.
   1811 ///
   1812 /// Unsigned remainder operation on APInt.
   1813 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
   1814 
   1815 /// \brief Function for multiplication operation.
   1816 ///
   1817 /// Performs multiplication on APInt values.
   1818 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
   1819 
   1820 /// \brief Function for addition operation.
   1821 ///
   1822 /// Performs addition on APInt values.
   1823 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
   1824 
   1825 /// \brief Function for subtraction operation.
   1826 ///
   1827 /// Performs subtraction on APInt values.
   1828 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
   1829 
   1830 /// \brief Bitwise AND function for APInt.
   1831 ///
   1832 /// Performs bitwise AND operation on APInt LHS and
   1833 /// APInt RHS.
   1834 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
   1835 
   1836 /// \brief Bitwise OR function for APInt.
   1837 ///
   1838 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1839 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
   1840 
   1841 /// \brief Bitwise XOR function for APInt.
   1842 ///
   1843 /// Performs bitwise XOR operation on APInt.
   1844 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
   1845 
   1846 /// \brief Bitwise complement function.
   1847 ///
   1848 /// Performs a bitwise complement operation on APInt.
   1849 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
   1850 
   1851 } // End of APIntOps namespace
   1852 
   1853 // See friend declaration above. This additional declaration is required in
   1854 // order to compile LLVM with IBM xlC compiler.
   1855 hash_code hash_value(const APInt &Arg);
   1856 } // End of llvm namespace
   1857 
   1858 #endif
   1859