Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 /*
     28  * Mark garbage collection card. Skip if the value we're storing is null.
     29  */
     30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
     31 {
     32     int regCardBase = dvmCompilerAllocTemp(cUnit);
     33     int regCardNo = dvmCompilerAllocTemp(cUnit);
     34     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
     35     loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
     36                  regCardBase);
     37     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
     38     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
     39                      kUnsignedByte);
     40     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
     41     target->defMask = ENCODE_ALL;
     42     branchOver->generic.target = (LIR *)target;
     43     dvmCompilerFreeTemp(cUnit, regCardBase);
     44     dvmCompilerFreeTemp(cUnit, regCardNo);
     45 }
     46 
     47 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     48                                      int srcSize, int tgtSize)
     49 {
     50     /*
     51      * Don't optimize the register usage since it calls out to template
     52      * functions
     53      */
     54     RegLocation rlSrc;
     55     RegLocation rlDest;
     56     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     57     if (srcSize == 1) {
     58         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     59         loadValueDirectFixed(cUnit, rlSrc, r0);
     60     } else {
     61         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     62         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     63     }
     64     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     65     opReg(cUnit, kOpBlx, r2);
     66     dvmCompilerClobberCallRegs(cUnit);
     67     if (tgtSize == 1) {
     68         RegLocation rlResult;
     69         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     70         rlResult = dvmCompilerGetReturn(cUnit);
     71         storeValue(cUnit, rlDest, rlResult);
     72     } else {
     73         RegLocation rlResult;
     74         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     75         rlResult = dvmCompilerGetReturnWide(cUnit);
     76         storeValueWide(cUnit, rlDest, rlResult);
     77     }
     78     return false;
     79 }
     80 
     81 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     82                                     RegLocation rlDest, RegLocation rlSrc1,
     83                                     RegLocation rlSrc2)
     84 {
     85     RegLocation rlResult;
     86     void* funct;
     87 
     88     switch (mir->dalvikInsn.opcode) {
     89         case OP_ADD_FLOAT_2ADDR:
     90         case OP_ADD_FLOAT:
     91             funct = (void*) __aeabi_fadd;
     92             break;
     93         case OP_SUB_FLOAT_2ADDR:
     94         case OP_SUB_FLOAT:
     95             funct = (void*) __aeabi_fsub;
     96             break;
     97         case OP_DIV_FLOAT_2ADDR:
     98         case OP_DIV_FLOAT:
     99             funct = (void*) __aeabi_fdiv;
    100             break;
    101         case OP_MUL_FLOAT_2ADDR:
    102         case OP_MUL_FLOAT:
    103             funct = (void*) __aeabi_fmul;
    104             break;
    105         case OP_REM_FLOAT_2ADDR:
    106         case OP_REM_FLOAT:
    107             funct = (void*) fmodf;
    108             break;
    109         case OP_NEG_FLOAT: {
    110             genNegFloat(cUnit, rlDest, rlSrc1);
    111             return false;
    112         }
    113         default:
    114             return true;
    115     }
    116     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    117     loadValueDirectFixed(cUnit, rlSrc1, r0);
    118     loadValueDirectFixed(cUnit, rlSrc2, r1);
    119     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    120     opReg(cUnit, kOpBlx, r2);
    121     dvmCompilerClobberCallRegs(cUnit);
    122     rlResult = dvmCompilerGetReturn(cUnit);
    123     storeValue(cUnit, rlDest, rlResult);
    124     return false;
    125 }
    126 
    127 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    128                                      RegLocation rlDest, RegLocation rlSrc1,
    129                                      RegLocation rlSrc2)
    130 {
    131     RegLocation rlResult;
    132     void* funct;
    133 
    134     switch (mir->dalvikInsn.opcode) {
    135         case OP_ADD_DOUBLE_2ADDR:
    136         case OP_ADD_DOUBLE:
    137             funct = (void*) __aeabi_dadd;
    138             break;
    139         case OP_SUB_DOUBLE_2ADDR:
    140         case OP_SUB_DOUBLE:
    141             funct = (void*) __aeabi_dsub;
    142             break;
    143         case OP_DIV_DOUBLE_2ADDR:
    144         case OP_DIV_DOUBLE:
    145             funct = (void*) __aeabi_ddiv;
    146             break;
    147         case OP_MUL_DOUBLE_2ADDR:
    148         case OP_MUL_DOUBLE:
    149             funct = (void*) __aeabi_dmul;
    150             break;
    151         case OP_REM_DOUBLE_2ADDR:
    152         case OP_REM_DOUBLE:
    153             funct = (void*) (double (*)(double, double)) fmod;
    154             break;
    155         case OP_NEG_DOUBLE: {
    156             genNegDouble(cUnit, rlDest, rlSrc1);
    157             return false;
    158         }
    159         default:
    160             return true;
    161     }
    162     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    163     LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
    164     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    165     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    166     opReg(cUnit, kOpBlx, r14lr);
    167     dvmCompilerClobberCallRegs(cUnit);
    168     rlResult = dvmCompilerGetReturnWide(cUnit);
    169     storeValueWide(cUnit, rlDest, rlResult);
    170 #if defined(WITH_SELF_VERIFICATION)
    171     cUnit->usesLinkRegister = true;
    172 #endif
    173     return false;
    174 }
    175 
    176 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    177 {
    178     Opcode opcode = mir->dalvikInsn.opcode;
    179 
    180     switch (opcode) {
    181         case OP_INT_TO_FLOAT:
    182             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    183         case OP_FLOAT_TO_INT:
    184             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    185         case OP_DOUBLE_TO_FLOAT:
    186             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    187         case OP_FLOAT_TO_DOUBLE:
    188             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    189         case OP_INT_TO_DOUBLE:
    190             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    191         case OP_DOUBLE_TO_INT:
    192             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    193         case OP_FLOAT_TO_LONG:
    194             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    195         case OP_LONG_TO_FLOAT:
    196             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    197         case OP_DOUBLE_TO_LONG:
    198             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    199         case OP_LONG_TO_DOUBLE:
    200             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    201         default:
    202             return true;
    203     }
    204     return false;
    205 }
    206 
    207 #if defined(WITH_SELF_VERIFICATION)
    208 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
    209                           int dest, int src1)
    210 {
    211      ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    212      insn->opcode = opcode;
    213      insn->operands[0] = dest;
    214      insn->operands[1] = src1;
    215      setupResourceMasks(insn);
    216      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    217 }
    218 
    219 /*
    220  * Example where r14 (LR) is preserved around a heap access under
    221  * self-verification mode in Thumb2:
    222  *
    223  * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
    224  * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
    225  * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
    226  * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
    227  * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
    228  * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
    229  * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
    230  * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
    231  * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
    232  * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
    233  * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
    234  * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
    235  * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
    236  * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
    237  * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
    238  * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
    239  * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
    240  * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
    241  * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
    242  *
    243  */
    244 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    245 {
    246     ArmLIR *thisLIR;
    247     TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
    248 
    249     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    250          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    251          thisLIR = NEXT_LIR(thisLIR)) {
    252         if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
    253             /*
    254              * Push r5(FP) and r14(LR) onto stack. We need to make sure that
    255              * SP is 8-byte aligned, and we use r5 as a temp to restore LR
    256              * for Thumb-only target since LR cannot be directly accessed in
    257              * Thumb mode. Another reason to choose r5 here is it is the Dalvik
    258              * frame pointer and cannot be the target of the emulated heap
    259              * load.
    260              */
    261             if (cUnit->usesLinkRegister) {
    262                 genSelfVerificationPreBranch(cUnit, thisLIR);
    263             }
    264 
    265             /* Branch to mem op decode template */
    266             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    267                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    268                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    269             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    270                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    271                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    272 
    273             /* Restore LR */
    274             if (cUnit->usesLinkRegister) {
    275                 genSelfVerificationPostBranch(cUnit, thisLIR);
    276             }
    277         }
    278     }
    279 }
    280 #endif
    281 
    282 /* Generate conditional branch instructions */
    283 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    284                                     ArmConditionCode cond,
    285                                     ArmLIR *target)
    286 {
    287     ArmLIR *branch = opCondBranch(cUnit, cond);
    288     branch->generic.target = (LIR *) target;
    289     return branch;
    290 }
    291 
    292 /* Generate a unconditional branch to go to the interpreter */
    293 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    294                                   ArmLIR *pcrLabel)
    295 {
    296     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    297     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    298 }
    299 
    300 /* Load a wide field from an object instance */
    301 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    302 {
    303     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    304     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    305     RegLocation rlResult;
    306     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    307     int regPtr = dvmCompilerAllocTemp(cUnit);
    308 
    309     assert(rlDest.wide);
    310 
    311     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    312                  NULL);/* null object? */
    313     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    314     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    315 
    316     HEAP_ACCESS_SHADOW(true);
    317     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    318     HEAP_ACCESS_SHADOW(false);
    319 
    320     dvmCompilerFreeTemp(cUnit, regPtr);
    321     storeValueWide(cUnit, rlDest, rlResult);
    322 }
    323 
    324 /* Store a wide field to an object instance */
    325 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    326 {
    327     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    328     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    329     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    330     int regPtr;
    331     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    332     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    333                  NULL);/* null object? */
    334     regPtr = dvmCompilerAllocTemp(cUnit);
    335     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    336 
    337     HEAP_ACCESS_SHADOW(true);
    338     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    339     HEAP_ACCESS_SHADOW(false);
    340 
    341     dvmCompilerFreeTemp(cUnit, regPtr);
    342 }
    343 
    344 /*
    345  * Load a field from an object instance
    346  *
    347  */
    348 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    349                     int fieldOffset, bool isVolatile)
    350 {
    351     RegLocation rlResult;
    352     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    353     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    354     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    355     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    356     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    357     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    358                  NULL);/* null object? */
    359 
    360     HEAP_ACCESS_SHADOW(true);
    361     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    362                  size, rlObj.sRegLow);
    363     HEAP_ACCESS_SHADOW(false);
    364     if (isVolatile) {
    365         dvmCompilerGenMemBarrier(cUnit, kSY);
    366     }
    367 
    368     storeValue(cUnit, rlDest, rlResult);
    369 }
    370 
    371 /*
    372  * Store a field to an object instance
    373  *
    374  */
    375 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    376                     int fieldOffset, bool isObject, bool isVolatile)
    377 {
    378     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    379     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    380     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    381     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    382     rlSrc = loadValue(cUnit, rlSrc, regClass);
    383     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    384                  NULL);/* null object? */
    385 
    386     if (isVolatile) {
    387         dvmCompilerGenMemBarrier(cUnit, kST);
    388     }
    389     HEAP_ACCESS_SHADOW(true);
    390     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    391     HEAP_ACCESS_SHADOW(false);
    392     if (isVolatile) {
    393         dvmCompilerGenMemBarrier(cUnit, kSY);
    394     }
    395     if (isObject) {
    396         /* NOTE: marking card based on object head */
    397         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
    398     }
    399 }
    400 
    401 
    402 /*
    403  * Generate array load
    404  */
    405 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    406                         RegLocation rlArray, RegLocation rlIndex,
    407                         RegLocation rlDest, int scale)
    408 {
    409     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    410     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    411     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    412     RegLocation rlResult;
    413     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    414     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    415     int regPtr;
    416 
    417     /* null object? */
    418     ArmLIR * pcrLabel = NULL;
    419 
    420     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    421         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    422                                 rlArray.lowReg, mir->offset, NULL);
    423     }
    424 
    425     regPtr = dvmCompilerAllocTemp(cUnit);
    426 
    427     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    428         int regLen = dvmCompilerAllocTemp(cUnit);
    429         /* Get len */
    430         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    431         /* regPtr -> array data */
    432         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    433         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    434                        pcrLabel);
    435         dvmCompilerFreeTemp(cUnit, regLen);
    436     } else {
    437         /* regPtr -> array data */
    438         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    439     }
    440     if ((size == kLong) || (size == kDouble)) {
    441         if (scale) {
    442             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    443             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    444             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    445             dvmCompilerFreeTemp(cUnit, rNewIndex);
    446         } else {
    447             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    448         }
    449         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    450 
    451         HEAP_ACCESS_SHADOW(true);
    452         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    453         HEAP_ACCESS_SHADOW(false);
    454 
    455         dvmCompilerFreeTemp(cUnit, regPtr);
    456         storeValueWide(cUnit, rlDest, rlResult);
    457     } else {
    458         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    459 
    460         HEAP_ACCESS_SHADOW(true);
    461         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    462                         scale, size);
    463         HEAP_ACCESS_SHADOW(false);
    464 
    465         dvmCompilerFreeTemp(cUnit, regPtr);
    466         storeValue(cUnit, rlDest, rlResult);
    467     }
    468 }
    469 
    470 /*
    471  * Generate array store
    472  *
    473  */
    474 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    475                         RegLocation rlArray, RegLocation rlIndex,
    476                         RegLocation rlSrc, int scale)
    477 {
    478     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    479     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    480     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    481 
    482     int regPtr;
    483     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    484     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    485 
    486     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    487         dvmCompilerClobber(cUnit, rlArray.lowReg);
    488         regPtr = rlArray.lowReg;
    489     } else {
    490         regPtr = dvmCompilerAllocTemp(cUnit);
    491         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    492     }
    493 
    494     /* null object? */
    495     ArmLIR * pcrLabel = NULL;
    496 
    497     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    498         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    499                                 mir->offset, NULL);
    500     }
    501 
    502     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    503         int regLen = dvmCompilerAllocTemp(cUnit);
    504         //NOTE: max live temps(4) here.
    505         /* Get len */
    506         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    507         /* regPtr -> array data */
    508         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    509         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    510                        pcrLabel);
    511         dvmCompilerFreeTemp(cUnit, regLen);
    512     } else {
    513         /* regPtr -> array data */
    514         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    515     }
    516     /* at this point, regPtr points to array, 2 live temps */
    517     if ((size == kLong) || (size == kDouble)) {
    518         //TODO: need specific wide routine that can handle fp regs
    519         if (scale) {
    520             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    521             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    522             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    523             dvmCompilerFreeTemp(cUnit, rNewIndex);
    524         } else {
    525             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    526         }
    527         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
    528 
    529         HEAP_ACCESS_SHADOW(true);
    530         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    531         HEAP_ACCESS_SHADOW(false);
    532 
    533         dvmCompilerFreeTemp(cUnit, regPtr);
    534     } else {
    535         rlSrc = loadValue(cUnit, rlSrc, regClass);
    536 
    537         HEAP_ACCESS_SHADOW(true);
    538         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    539                          scale, size);
    540         HEAP_ACCESS_SHADOW(false);
    541     }
    542 }
    543 
    544 /*
    545  * Generate array object store
    546  * Must use explicit register allocation here because of
    547  * call-out to dvmCanPutArrayElement
    548  */
    549 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    550                               RegLocation rlArray, RegLocation rlIndex,
    551                               RegLocation rlSrc, int scale)
    552 {
    553     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    554     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    555 
    556     dvmCompilerFlushAllRegs(cUnit);
    557 
    558     int regLen = r0;
    559     int regPtr = r4PC;  /* Preserved across call */
    560     int regArray = r1;
    561     int regIndex = r7;  /* Preserved across call */
    562 
    563     loadValueDirectFixed(cUnit, rlArray, regArray);
    564     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    565 
    566     /* null object? */
    567     ArmLIR * pcrLabel = NULL;
    568 
    569     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    570         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    571                                 mir->offset, NULL);
    572     }
    573 
    574     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    575         /* Get len */
    576         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    577         /* regPtr -> array data */
    578         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    579         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    580                        pcrLabel);
    581     } else {
    582         /* regPtr -> array data */
    583         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    584     }
    585 
    586     /* Get object to store */
    587     loadValueDirectFixed(cUnit, rlSrc, r0);
    588     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    589 
    590     /* Are we storing null?  If so, avoid check */
    591     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
    592 
    593     /* Make sure the types are compatible */
    594     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    595     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    596     opReg(cUnit, kOpBlx, r2);
    597     dvmCompilerClobberCallRegs(cUnit);
    598 
    599     /*
    600      * Using fixed registers here, and counting on r4 and r7 being
    601      * preserved across the above call.  Tell the register allocation
    602      * utilities about the regs we are using directly
    603      */
    604     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    605     dvmCompilerLockTemp(cUnit, regIndex); // r7
    606     dvmCompilerLockTemp(cUnit, r0);
    607     dvmCompilerLockTemp(cUnit, r1);
    608 
    609     /* Bad? - roll back and re-execute if so */
    610     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    611 
    612     /* Resume here - must reload element & array, regPtr & index preserved */
    613     loadValueDirectFixed(cUnit, rlSrc, r0);
    614     loadValueDirectFixed(cUnit, rlArray, r1);
    615 
    616     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    617     target->defMask = ENCODE_ALL;
    618     branchOver->generic.target = (LIR *) target;
    619 
    620     HEAP_ACCESS_SHADOW(true);
    621     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    622                      scale, kWord);
    623     HEAP_ACCESS_SHADOW(false);
    624 
    625     dvmCompilerFreeTemp(cUnit, regPtr);
    626     dvmCompilerFreeTemp(cUnit, regIndex);
    627 
    628     /* NOTE: marking card here based on object head */
    629     markCard(cUnit, r0, r1);
    630 }
    631 
    632 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    633                            RegLocation rlDest, RegLocation rlSrc1,
    634                            RegLocation rlShift)
    635 {
    636     /*
    637      * Don't mess with the regsiters here as there is a particular calling
    638      * convention to the out-of-line handler.
    639      */
    640     RegLocation rlResult;
    641 
    642     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    643     loadValueDirect(cUnit, rlShift, r2);
    644     switch( mir->dalvikInsn.opcode) {
    645         case OP_SHL_LONG:
    646         case OP_SHL_LONG_2ADDR:
    647             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    648             break;
    649         case OP_SHR_LONG:
    650         case OP_SHR_LONG_2ADDR:
    651             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    652             break;
    653         case OP_USHR_LONG:
    654         case OP_USHR_LONG_2ADDR:
    655             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    656             break;
    657         default:
    658             return true;
    659     }
    660     rlResult = dvmCompilerGetReturnWide(cUnit);
    661     storeValueWide(cUnit, rlDest, rlResult);
    662     return false;
    663 }
    664 
    665 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    666                            RegLocation rlDest, RegLocation rlSrc1,
    667                            RegLocation rlSrc2)
    668 {
    669     RegLocation rlResult;
    670     OpKind firstOp = kOpBkpt;
    671     OpKind secondOp = kOpBkpt;
    672     bool callOut = false;
    673     bool checkZero = false;
    674     void *callTgt;
    675     int retReg = r0;
    676 
    677     switch (mir->dalvikInsn.opcode) {
    678         case OP_NOT_LONG:
    679             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    680             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    681             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    682             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    683             storeValueWide(cUnit, rlDest, rlResult);
    684             return false;
    685             break;
    686         case OP_ADD_LONG:
    687         case OP_ADD_LONG_2ADDR:
    688             firstOp = kOpAdd;
    689             secondOp = kOpAdc;
    690             break;
    691         case OP_SUB_LONG:
    692         case OP_SUB_LONG_2ADDR:
    693             firstOp = kOpSub;
    694             secondOp = kOpSbc;
    695             break;
    696         case OP_MUL_LONG:
    697         case OP_MUL_LONG_2ADDR:
    698             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    699             return false;
    700         case OP_DIV_LONG:
    701         case OP_DIV_LONG_2ADDR:
    702             callOut = true;
    703             retReg = r0;
    704             checkZero = true;
    705             callTgt = (void*)__aeabi_ldivmod;
    706             break;
    707         /* NOTE - result is in r2/r3 instead of r0/r1 */
    708         case OP_REM_LONG:
    709         case OP_REM_LONG_2ADDR:
    710             callOut = true;
    711             callTgt = (void*)__aeabi_ldivmod;
    712             retReg = r2;
    713             checkZero = true;
    714             break;
    715         case OP_AND_LONG_2ADDR:
    716         case OP_AND_LONG:
    717             firstOp = kOpAnd;
    718             secondOp = kOpAnd;
    719             break;
    720         case OP_OR_LONG:
    721         case OP_OR_LONG_2ADDR:
    722             firstOp = kOpOr;
    723             secondOp = kOpOr;
    724             break;
    725         case OP_XOR_LONG:
    726         case OP_XOR_LONG_2ADDR:
    727             firstOp = kOpXor;
    728             secondOp = kOpXor;
    729             break;
    730         case OP_NEG_LONG: {
    731             //TUNING: can improve this using Thumb2 code
    732             int tReg = dvmCompilerAllocTemp(cUnit);
    733             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    734             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    735             loadConstantNoClobber(cUnit, tReg, 0);
    736             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    737                         tReg, rlSrc2.lowReg);
    738             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    739             genRegCopy(cUnit, rlResult.highReg, tReg);
    740             storeValueWide(cUnit, rlDest, rlResult);
    741             return false;
    742         }
    743         default:
    744             ALOGE("Invalid long arith op");
    745             dvmCompilerAbort(cUnit);
    746     }
    747     if (!callOut) {
    748         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    749     } else {
    750         // Adjust return regs in to handle case of rem returning r2/r3
    751         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    752         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    753         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    754         LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
    755         if (checkZero) {
    756             int tReg = r12; // Using fixed registers during call sequence
    757             opRegRegReg(cUnit, kOpOr, tReg, r2, r3);
    758             genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL);
    759         }
    760         opReg(cUnit, kOpBlx, r14lr);
    761         dvmCompilerClobberCallRegs(cUnit);
    762         if (retReg == r0)
    763             rlResult = dvmCompilerGetReturnWide(cUnit);
    764         else
    765             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    766         storeValueWide(cUnit, rlDest, rlResult);
    767 #if defined(WITH_SELF_VERIFICATION)
    768         cUnit->usesLinkRegister = true;
    769 #endif
    770     }
    771     return false;
    772 }
    773 
    774 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    775                           RegLocation rlDest, RegLocation rlSrc1,
    776                           RegLocation rlSrc2)
    777 {
    778     OpKind op = kOpBkpt;
    779     bool callOut = false;
    780     bool checkZero = false;
    781     bool unary = false;
    782     int retReg = r0;
    783     int (*callTgt)(int, int);
    784     RegLocation rlResult;
    785     bool shiftOp = false;
    786 
    787     switch (mir->dalvikInsn.opcode) {
    788         case OP_NEG_INT:
    789             op = kOpNeg;
    790             unary = true;
    791             break;
    792         case OP_NOT_INT:
    793             op = kOpMvn;
    794             unary = true;
    795             break;
    796         case OP_ADD_INT:
    797         case OP_ADD_INT_2ADDR:
    798             op = kOpAdd;
    799             break;
    800         case OP_SUB_INT:
    801         case OP_SUB_INT_2ADDR:
    802             op = kOpSub;
    803             break;
    804         case OP_MUL_INT:
    805         case OP_MUL_INT_2ADDR:
    806             op = kOpMul;
    807             break;
    808         case OP_DIV_INT:
    809         case OP_DIV_INT_2ADDR:
    810             callOut = true;
    811             checkZero = true;
    812             callTgt = __aeabi_idiv;
    813             retReg = r0;
    814             break;
    815         /* NOTE: returns in r1 */
    816         case OP_REM_INT:
    817         case OP_REM_INT_2ADDR:
    818             callOut = true;
    819             checkZero = true;
    820             callTgt = __aeabi_idivmod;
    821             retReg = r1;
    822             break;
    823         case OP_AND_INT:
    824         case OP_AND_INT_2ADDR:
    825             op = kOpAnd;
    826             break;
    827         case OP_OR_INT:
    828         case OP_OR_INT_2ADDR:
    829             op = kOpOr;
    830             break;
    831         case OP_XOR_INT:
    832         case OP_XOR_INT_2ADDR:
    833             op = kOpXor;
    834             break;
    835         case OP_SHL_INT:
    836         case OP_SHL_INT_2ADDR:
    837             shiftOp = true;
    838             op = kOpLsl;
    839             break;
    840         case OP_SHR_INT:
    841         case OP_SHR_INT_2ADDR:
    842             shiftOp = true;
    843             op = kOpAsr;
    844             break;
    845         case OP_USHR_INT:
    846         case OP_USHR_INT_2ADDR:
    847             shiftOp = true;
    848             op = kOpLsr;
    849             break;
    850         default:
    851             ALOGE("Invalid word arith op: %#x(%d)",
    852                  mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
    853             dvmCompilerAbort(cUnit);
    854     }
    855     if (!callOut) {
    856         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    857         if (unary) {
    858             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    859             opRegReg(cUnit, op, rlResult.lowReg,
    860                      rlSrc1.lowReg);
    861         } else {
    862             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    863             if (shiftOp) {
    864                 int tReg = dvmCompilerAllocTemp(cUnit);
    865                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    866                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    867                 opRegRegReg(cUnit, op, rlResult.lowReg,
    868                             rlSrc1.lowReg, tReg);
    869                 dvmCompilerFreeTemp(cUnit, tReg);
    870             } else {
    871                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    872                 opRegRegReg(cUnit, op, rlResult.lowReg,
    873                             rlSrc1.lowReg, rlSrc2.lowReg);
    874             }
    875         }
    876         storeValue(cUnit, rlDest, rlResult);
    877     } else {
    878         RegLocation rlResult;
    879         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    880         loadValueDirectFixed(cUnit, rlSrc2, r1);
    881         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    882         loadValueDirectFixed(cUnit, rlSrc1, r0);
    883         if (checkZero) {
    884             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    885         }
    886         opReg(cUnit, kOpBlx, r2);
    887         dvmCompilerClobberCallRegs(cUnit);
    888         if (retReg == r0)
    889             rlResult = dvmCompilerGetReturn(cUnit);
    890         else
    891             rlResult = dvmCompilerGetReturnAlt(cUnit);
    892         storeValue(cUnit, rlDest, rlResult);
    893     }
    894     return false;
    895 }
    896 
    897 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    898 {
    899     Opcode opcode = mir->dalvikInsn.opcode;
    900     RegLocation rlDest;
    901     RegLocation rlSrc1;
    902     RegLocation rlSrc2;
    903     /* Deduce sizes of operands */
    904     if (mir->ssaRep->numUses == 2) {
    905         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    906         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    907     } else if (mir->ssaRep->numUses == 3) {
    908         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    909         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    910     } else {
    911         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    912         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    913         assert(mir->ssaRep->numUses == 4);
    914     }
    915     if (mir->ssaRep->numDefs == 1) {
    916         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    917     } else {
    918         assert(mir->ssaRep->numDefs == 2);
    919         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    920     }
    921 
    922     if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
    923         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    924     }
    925     if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
    926         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    927     }
    928     if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
    929         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    930     }
    931     if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
    932         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    933     }
    934     if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
    935         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    936     }
    937     if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
    938         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    939     }
    940     if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
    941         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    942     }
    943     if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
    944         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    945     }
    946     if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
    947         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    948     }
    949     if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
    950         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    951     }
    952     return true;
    953 }
    954 
    955 /* Generate unconditional branch instructions */
    956 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    957 {
    958     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    959     branch->generic.target = (LIR *) target;
    960     return branch;
    961 }
    962 
    963 /* Perform the actual operation for OP_RETURN_* */
    964 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    965 {
    966     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
    967                          TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
    968 #if defined(WITH_JIT_TUNING)
    969     gDvmJit.returnOp++;
    970 #endif
    971     int dPC = (int) (cUnit->method->insns + mir->offset);
    972     /* Insert branch, but defer setting of target */
    973     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    974     /* Set up the place holder to reconstruct this Dalvik PC */
    975     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    976     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
    977     pcrLabel->operands[0] = dPC;
    978     pcrLabel->operands[1] = mir->offset;
    979     /* Insert the place holder to the growable list */
    980     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
    981     /* Branch to the PC reconstruction code */
    982     branch->generic.target = (LIR *) pcrLabel;
    983 }
    984 
    985 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    986                                   DecodedInstruction *dInsn,
    987                                   ArmLIR **pcrLabel)
    988 {
    989     unsigned int i;
    990     unsigned int regMask = 0;
    991     RegLocation rlArg;
    992     int numDone = 0;
    993 
    994     /*
    995      * Load arguments to r0..r4.  Note that these registers may contain
    996      * live values, so we clobber them immediately after loading to prevent
    997      * them from being used as sources for subsequent loads.
    998      */
    999     dvmCompilerLockAllTemps(cUnit);
   1000     for (i = 0; i < dInsn->vA; i++) {
   1001         regMask |= 1 << i;
   1002         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
   1003         loadValueDirectFixed(cUnit, rlArg, i);
   1004     }
   1005     if (regMask) {
   1006         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
   1007         opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1008                     sizeof(StackSaveArea) + (dInsn->vA << 2));
   1009         /* generate null check */
   1010         if (pcrLabel) {
   1011             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1012                                      mir->offset, NULL);
   1013         }
   1014         storeMultiple(cUnit, r7, regMask);
   1015     }
   1016 }
   1017 
   1018 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
   1019                                 DecodedInstruction *dInsn,
   1020                                 ArmLIR **pcrLabel)
   1021 {
   1022     int srcOffset = dInsn->vC << 2;
   1023     int numArgs = dInsn->vA;
   1024     int regMask;
   1025 
   1026     /*
   1027      * Note: here, all promoted registers will have been flushed
   1028      * back to the Dalvik base locations, so register usage restrictins
   1029      * are lifted.  All parms loaded from original Dalvik register
   1030      * region - even though some might conceivably have valid copies
   1031      * cached in a preserved register.
   1032      */
   1033     dvmCompilerLockAllTemps(cUnit);
   1034 
   1035     /*
   1036      * r4PC     : &r5FP[vC]
   1037      * r7: &newFP[0]
   1038      */
   1039     opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
   1040     /* load [r0 .. min(numArgs,4)] */
   1041     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
   1042     /*
   1043      * Protect the loadMultiple instruction from being reordered with other
   1044      * Dalvik stack accesses.
   1045      */
   1046     if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
   1047 
   1048     opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1049                 sizeof(StackSaveArea) + (numArgs << 2));
   1050     /* generate null check */
   1051     if (pcrLabel) {
   1052         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1053                                  mir->offset, NULL);
   1054     }
   1055 
   1056     /*
   1057      * Handle remaining 4n arguments:
   1058      * store previously loaded 4 values and load the next 4 values
   1059      */
   1060     if (numArgs >= 8) {
   1061         ArmLIR *loopLabel = NULL;
   1062         /*
   1063          * r0 contains "this" and it will be used later, so push it to the stack
   1064          * first. Pushing r5FP is just for stack alignment purposes.
   1065          */
   1066         opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
   1067         /* No need to generate the loop structure if numArgs <= 11 */
   1068         if (numArgs > 11) {
   1069             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
   1070             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1071             loopLabel->defMask = ENCODE_ALL;
   1072         }
   1073         storeMultiple(cUnit, r7, regMask);
   1074         /*
   1075          * Protect the loadMultiple instruction from being reordered with other
   1076          * Dalvik stack accesses.
   1077          */
   1078         loadMultiple(cUnit, r4PC, regMask);
   1079         /* No need to generate the loop structure if numArgs <= 11 */
   1080         if (numArgs > 11) {
   1081             opRegImm(cUnit, kOpSub, r5FP, 4);
   1082             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
   1083         }
   1084     }
   1085 
   1086     /* Save the last batch of loaded values */
   1087     if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
   1088 
   1089     /* Generate the loop epilogue - don't use r0 */
   1090     if ((numArgs > 4) && (numArgs % 4)) {
   1091         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
   1092         /*
   1093          * Protect the loadMultiple instruction from being reordered with other
   1094          * Dalvik stack accesses.
   1095          */
   1096         loadMultiple(cUnit, r4PC, regMask);
   1097     }
   1098     if (numArgs >= 8)
   1099         opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
   1100 
   1101     /* Save the modulo 4 arguments */
   1102     if ((numArgs > 4) && (numArgs % 4)) {
   1103         storeMultiple(cUnit, r7, regMask);
   1104     }
   1105 }
   1106 
   1107 /*
   1108  * Generate code to setup the call stack then jump to the chaining cell if it
   1109  * is not a native method.
   1110  */
   1111 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1112                                      BasicBlock *bb, ArmLIR *labelList,
   1113                                      ArmLIR *pcrLabel,
   1114                                      const Method *calleeMethod)
   1115 {
   1116     /*
   1117      * Note: all Dalvik register state should be flushed to
   1118      * memory by the point, so register usage restrictions no
   1119      * longer apply.  All temp & preserved registers may be used.
   1120      */
   1121     dvmCompilerLockAllTemps(cUnit);
   1122     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1123 
   1124     /* r1 = &retChainingCell */
   1125     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1126 
   1127     /* r4PC = dalvikCallsite */
   1128     loadConstant(cUnit, r4PC,
   1129                  (int) (cUnit->method->insns + mir->offset));
   1130     addrRetChain->generic.target = (LIR *) retChainingCell;
   1131 
   1132     /* r7 = calleeMethod->registersSize */
   1133     loadConstant(cUnit, r7, calleeMethod->registersSize);
   1134     /*
   1135      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1136      * r1 = &ChainingCell
   1137      * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
   1138      * r4PC = callsiteDPC
   1139      * r7 = calleeMethod->registersSize
   1140      */
   1141     if (dvmIsNativeMethod(calleeMethod)) {
   1142         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1143             TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
   1144             TEMPLATE_INVOKE_METHOD_NATIVE);
   1145 #if defined(WITH_JIT_TUNING)
   1146         gDvmJit.invokeNative++;
   1147 #endif
   1148     } else {
   1149         /* For Java callees, set up r2 to be calleeMethod->outsSize */
   1150         loadConstant(cUnit, r2, calleeMethod->outsSize);
   1151         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1152             TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
   1153             TEMPLATE_INVOKE_METHOD_CHAIN);
   1154 #if defined(WITH_JIT_TUNING)
   1155         gDvmJit.invokeMonomorphic++;
   1156 #endif
   1157         /* Branch to the chaining cell */
   1158         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1159     }
   1160     /* Handle exceptions using the interpreter */
   1161     genTrap(cUnit, mir->offset, pcrLabel);
   1162 }
   1163 
   1164 /*
   1165  * Generate code to check the validity of a predicted chain and take actions
   1166  * based on the result.
   1167  *
   1168  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1169  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1170  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1171  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1172  * 0x426a99b2 : blx_2   see above     --+
   1173  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1174  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1175  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1176  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1177  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1178  * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
   1179  * 0x426a99c0 : blx     r7            --+
   1180  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1181  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1182  * 0x426a99c6 : blx_2   see above     --+
   1183  */
   1184 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1185                                    int methodIndex,
   1186                                    ArmLIR *retChainingCell,
   1187                                    ArmLIR *predChainingCell,
   1188                                    ArmLIR *pcrLabel)
   1189 {
   1190     /*
   1191      * Note: all Dalvik register state should be flushed to
   1192      * memory by the point, so register usage restrictions no
   1193      * longer apply.  Lock temps to prevent them from being
   1194      * allocated by utility routines.
   1195      */
   1196     dvmCompilerLockAllTemps(cUnit);
   1197 
   1198     /*
   1199      * For verbose printing, store the method pointer in operands[1] first as
   1200      * operands[0] will be clobbered in dvmCompilerMIR2LIR.
   1201      */
   1202     predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
   1203 
   1204     /* "this" is already left in r0 by genProcessArgs* */
   1205 
   1206     /* r4PC = dalvikCallsite */
   1207     loadConstant(cUnit, r4PC,
   1208                  (int) (cUnit->method->insns + mir->offset));
   1209 
   1210     /* r1 = &retChainingCell */
   1211     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1212     addrRetChain->generic.target = (LIR *) retChainingCell;
   1213 
   1214     /* r2 = &predictedChainingCell */
   1215     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   1216     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1217 
   1218     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1219         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   1220         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1221 
   1222     /* return through lr - jump to the chaining cell */
   1223     genUnconditionalBranch(cUnit, predChainingCell);
   1224 
   1225     /*
   1226      * null-check on "this" may have been eliminated, but we still need a PC-
   1227      * reconstruction label for stack overflow bailout.
   1228      */
   1229     if (pcrLabel == NULL) {
   1230         int dPC = (int) (cUnit->method->insns + mir->offset);
   1231         pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   1232         pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   1233         pcrLabel->operands[0] = dPC;
   1234         pcrLabel->operands[1] = mir->offset;
   1235         /* Insert the place holder to the growable list */
   1236         dvmInsertGrowableList(&cUnit->pcReconstructionList,
   1237                               (intptr_t) pcrLabel);
   1238     }
   1239 
   1240     /* return through lr+2 - punt to the interpreter */
   1241     genUnconditionalBranch(cUnit, pcrLabel);
   1242 
   1243     /*
   1244      * return through lr+4 - fully resolve the callee method.
   1245      * r1 <- count
   1246      * r2 <- &predictedChainCell
   1247      * r3 <- this->class
   1248      * r4 <- dPC
   1249      * r7 <- this->class->vtable
   1250      */
   1251 
   1252     /* r0 <- calleeMethod */
   1253     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1254 
   1255     /* Check if rechain limit is reached */
   1256     ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
   1257 
   1258     LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   1259 
   1260     genRegCopy(cUnit, r1, r6SELF);
   1261 
   1262     /*
   1263      * r0 = calleeMethod
   1264      * r2 = &predictedChainingCell
   1265      * r3 = class
   1266      *
   1267      * &returnChainingCell has been loaded into r1 but is not needed
   1268      * when patching the chaining cell and will be clobbered upon
   1269      * returning so it will be reconstructed again.
   1270      */
   1271     opReg(cUnit, kOpBlx, r7);
   1272 
   1273     /* r1 = &retChainingCell */
   1274     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1275     addrRetChain->generic.target = (LIR *) retChainingCell;
   1276 
   1277     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1278     /*
   1279      * r0 = calleeMethod,
   1280      * r1 = &ChainingCell,
   1281      * r4PC = callsiteDPC,
   1282      */
   1283     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1284         TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   1285         TEMPLATE_INVOKE_METHOD_NO_OPT);
   1286 #if defined(WITH_JIT_TUNING)
   1287     gDvmJit.invokePolymorphic++;
   1288 #endif
   1289     /* Handle exceptions using the interpreter */
   1290     genTrap(cUnit, mir->offset, pcrLabel);
   1291 }
   1292 
   1293 /* "this" pointer is already in r0 */
   1294 static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
   1295                                         MIR *mir,
   1296                                         void *calleeAddr,
   1297                                         ArmLIR *retChainingCell)
   1298 {
   1299     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   1300     dvmCompilerLockAllTemps(cUnit);
   1301 
   1302     loadClassPointer(cUnit, r1, (int) callsiteInfo);
   1303 
   1304     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
   1305     /* Branch to the slow path if classes are not equal */
   1306     opRegReg(cUnit, kOpCmp, r1, r2);
   1307     /*
   1308      * Set the misPredBranchOver target so that it will be generated when the
   1309      * code for the non-optimized invoke is generated.
   1310      */
   1311     ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
   1312 
   1313     /* r0 = the Dalvik PC of the callsite */
   1314     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1315 
   1316     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1317     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1318     genUnconditionalBranch(cUnit, retChainingCell);
   1319 
   1320     /* Target of slow path */
   1321     ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1322 
   1323     slowPathLabel->defMask = ENCODE_ALL;
   1324     classCheck->generic.target = (LIR *) slowPathLabel;
   1325 
   1326     // FIXME
   1327     cUnit->printMe = true;
   1328 }
   1329 
   1330 static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
   1331                                           MIR *mir,
   1332                                           void *calleeAddr,
   1333                                           ArmLIR *retChainingCell)
   1334 {
   1335     /* r0 = the Dalvik PC of the callsite */
   1336     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1337 
   1338     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1339     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1340     genUnconditionalBranch(cUnit, retChainingCell);
   1341 
   1342     // FIXME
   1343     cUnit->printMe = true;
   1344 }
   1345 
   1346 /* Geneate a branch to go back to the interpreter */
   1347 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1348 {
   1349     /* r0 = dalvik pc */
   1350     dvmCompilerFlushAllRegs(cUnit);
   1351     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1352     loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   1353                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1354     opReg(cUnit, kOpBlx, r1);
   1355 }
   1356 
   1357 /*
   1358  * Attempt to single step one instruction using the interpreter and return
   1359  * to the compiled code for the next Dalvik instruction
   1360  */
   1361 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1362 {
   1363     int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
   1364     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
   1365 
   1366     // Single stepping is considered loop mode breaker
   1367     if (cUnit->jitMode == kJitLoop) {
   1368         cUnit->quitLoopMode = true;
   1369         return;
   1370     }
   1371 
   1372     //If already optimized out, just ignore
   1373     if (mir->dalvikInsn.opcode == OP_NOP)
   1374         return;
   1375 
   1376     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1377     dvmCompilerFlushAllRegs(cUnit);
   1378 
   1379     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1380        genPuntToInterp(cUnit, mir->offset);
   1381        return;
   1382     }
   1383     int entryAddr = offsetof(Thread,
   1384                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1385     loadWordDisp(cUnit, r6SELF, entryAddr, r2);
   1386     /* r0 = dalvik pc */
   1387     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1388     /* r1 = dalvik pc of following instruction */
   1389     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1390     opReg(cUnit, kOpBlx, r2);
   1391 }
   1392 
   1393 #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
   1394 /*
   1395  * To prevent a thread in a monitor wait from blocking the Jit from
   1396  * resetting the code cache, heavyweight monitor lock will not
   1397  * be allowed to return to an existing translation.  Instead, we will
   1398  * handle them by branching to a handler, which will in turn call the
   1399  * runtime lock routine and then branch directly back to the
   1400  * interpreter main loop.  Given the high cost of the heavyweight
   1401  * lock operation, this additional cost should be slight (especially when
   1402  * considering that we expect the vast majority of lock operations to
   1403  * use the fast-path thin lock bypass).
   1404  */
   1405 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1406 {
   1407     bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
   1408     genExportPC(cUnit, mir);
   1409     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1410     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1411     loadValueDirectFixed(cUnit, rlSrc, r1);
   1412     genRegCopy(cUnit, r0, r6SELF);
   1413     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1414     if (isEnter) {
   1415         /* Get dPC of next insn */
   1416         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1417                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
   1418         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1419     } else {
   1420         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1421         /* Do the call */
   1422         opReg(cUnit, kOpBlx, r2);
   1423         /* Did we throw? */
   1424         ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1425         loadConstant(cUnit, r0,
   1426                      (int) (cUnit->method->insns + mir->offset +
   1427                      dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
   1428         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1429         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1430         target->defMask = ENCODE_ALL;
   1431         branchOver->generic.target = (LIR *) target;
   1432         dvmCompilerClobberCallRegs(cUnit);
   1433     }
   1434 }
   1435 #endif
   1436 
   1437 /*
   1438  * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
   1439  * punt to the interpreter.
   1440  */
   1441 static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
   1442 {
   1443     int rTemp = dvmCompilerAllocTemp(cUnit);
   1444     ArmLIR *ld;
   1445     ld = loadBaseDisp(cUnit, NULL, r6SELF,
   1446                       offsetof(Thread, interpBreak.ctl.breakFlags),
   1447                       rTemp, kUnsignedByte, INVALID_SREG);
   1448     setMemRefType(ld, true /* isLoad */, kMustNotAlias);
   1449     genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
   1450 }
   1451 
   1452 /*
   1453  * The following are the first-level codegen routines that analyze the format
   1454  * of each bytecode then either dispatch special purpose codegen routines
   1455  * or produce corresponding Thumb instructions directly.
   1456  */
   1457 
   1458 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1459                                        BasicBlock *bb, ArmLIR *labelList)
   1460 {
   1461     /* backward branch? */
   1462     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   1463 
   1464     if (backwardBranch &&
   1465         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   1466         genSuspendPoll(cUnit, mir);
   1467     }
   1468 
   1469     int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
   1470     /*
   1471      * Things could be hoisted out of the taken block into the predecessor, so
   1472      * make sure it is dominated by the predecessor.
   1473      */
   1474     if (numPredecessors == 1 && bb->taken->visited == false &&
   1475         bb->taken->blockType == kDalvikByteCode) {
   1476         cUnit->nextCodegenBlock = bb->taken;
   1477     } else {
   1478         /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1479         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1480     }
   1481     return false;
   1482 }
   1483 
   1484 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1485 {
   1486     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1487     if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
   1488         ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1489         return true;
   1490     }
   1491     switch (dalvikOpcode) {
   1492         case OP_RETURN_VOID_BARRIER:
   1493             dvmCompilerGenMemBarrier(cUnit, kST);
   1494             // Intentional fallthrough
   1495         case OP_RETURN_VOID:
   1496             genReturnCommon(cUnit,mir);
   1497             break;
   1498         case OP_UNUSED_73:
   1499         case OP_UNUSED_79:
   1500         case OP_UNUSED_7A:
   1501         case OP_UNUSED_FF:
   1502             ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1503             return true;
   1504         case OP_NOP:
   1505             break;
   1506         default:
   1507             return true;
   1508     }
   1509     return false;
   1510 }
   1511 
   1512 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1513 {
   1514     RegLocation rlDest;
   1515     RegLocation rlResult;
   1516     if (mir->ssaRep->numDefs == 2) {
   1517         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1518     } else {
   1519         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1520     }
   1521 
   1522     switch (mir->dalvikInsn.opcode) {
   1523         case OP_CONST:
   1524         case OP_CONST_4: {
   1525             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1526             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1527             storeValue(cUnit, rlDest, rlResult);
   1528             break;
   1529         }
   1530         case OP_CONST_WIDE_32: {
   1531             //TUNING: single routine to load constant pair for support doubles
   1532             //TUNING: load 0/-1 separately to avoid load dependency
   1533             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1534             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1535             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1536                         rlResult.lowReg, 31);
   1537             storeValueWide(cUnit, rlDest, rlResult);
   1538             break;
   1539         }
   1540         default:
   1541             return true;
   1542     }
   1543     return false;
   1544 }
   1545 
   1546 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1547 {
   1548     RegLocation rlDest;
   1549     RegLocation rlResult;
   1550     if (mir->ssaRep->numDefs == 2) {
   1551         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1552     } else {
   1553         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1554     }
   1555     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1556 
   1557     switch (mir->dalvikInsn.opcode) {
   1558         case OP_CONST_HIGH16: {
   1559             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1560                                   mir->dalvikInsn.vB << 16);
   1561             storeValue(cUnit, rlDest, rlResult);
   1562             break;
   1563         }
   1564         case OP_CONST_WIDE_HIGH16: {
   1565             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1566                                   0, mir->dalvikInsn.vB << 16);
   1567             storeValueWide(cUnit, rlDest, rlResult);
   1568             break;
   1569         }
   1570         default:
   1571             return true;
   1572     }
   1573     return false;
   1574 }
   1575 
   1576 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1577 {
   1578     /* For OP_THROW_VERIFICATION_ERROR */
   1579     genInterpSingleStep(cUnit, mir);
   1580     return false;
   1581 }
   1582 
   1583 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1584 {
   1585     RegLocation rlResult;
   1586     RegLocation rlDest;
   1587     RegLocation rlSrc;
   1588 
   1589     switch (mir->dalvikInsn.opcode) {
   1590         case OP_CONST_STRING_JUMBO:
   1591         case OP_CONST_STRING: {
   1592             void *strPtr = (void*)
   1593               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1594 
   1595             if (strPtr == NULL) {
   1596                 BAIL_LOOP_COMPILATION();
   1597                 ALOGE("Unexpected null string");
   1598                 dvmAbort();
   1599             }
   1600 
   1601             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1602             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1603             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1604             storeValue(cUnit, rlDest, rlResult);
   1605             break;
   1606         }
   1607         case OP_CONST_CLASS: {
   1608             void *classPtr = (void*)
   1609               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1610 
   1611             if (classPtr == NULL) {
   1612                 BAIL_LOOP_COMPILATION();
   1613                 ALOGE("Unexpected null class");
   1614                 dvmAbort();
   1615             }
   1616 
   1617             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1618             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1619             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1620             storeValue(cUnit, rlDest, rlResult);
   1621             break;
   1622         }
   1623         case OP_SGET:
   1624         case OP_SGET_VOLATILE:
   1625         case OP_SGET_OBJECT:
   1626         case OP_SGET_OBJECT_VOLATILE:
   1627         case OP_SGET_BOOLEAN:
   1628         case OP_SGET_CHAR:
   1629         case OP_SGET_BYTE:
   1630         case OP_SGET_SHORT: {
   1631             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1632             int tReg = dvmCompilerAllocTemp(cUnit);
   1633             bool isVolatile;
   1634             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1635                 mir->meta.calleeMethod : cUnit->method;
   1636             void *fieldPtr = (void*)
   1637               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1638 
   1639             if (fieldPtr == NULL) {
   1640                 BAIL_LOOP_COMPILATION();
   1641                 ALOGE("Unexpected null static field");
   1642                 dvmAbort();
   1643             }
   1644 
   1645             /*
   1646              * On SMP systems, Dalvik opcodes found to be referencing
   1647              * volatile fields are rewritten to their _VOLATILE variant.
   1648              * However, this does not happen on non-SMP systems. The JIT
   1649              * still needs to know about volatility to avoid unsafe
   1650              * optimizations so we determine volatility based on either
   1651              * the opcode or the field access flags.
   1652              */
   1653 #if ANDROID_SMP != 0
   1654             Opcode opcode = mir->dalvikInsn.opcode;
   1655             isVolatile = (opcode == OP_SGET_VOLATILE) ||
   1656                          (opcode == OP_SGET_OBJECT_VOLATILE);
   1657             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1658 #else
   1659             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1660 #endif
   1661 
   1662             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1663             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1664             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1665 
   1666             if (isVolatile) {
   1667                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1668             }
   1669             HEAP_ACCESS_SHADOW(true);
   1670             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1671             HEAP_ACCESS_SHADOW(false);
   1672 
   1673             storeValue(cUnit, rlDest, rlResult);
   1674             break;
   1675         }
   1676         case OP_SGET_WIDE: {
   1677             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1678             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1679                 mir->meta.calleeMethod : cUnit->method;
   1680             void *fieldPtr = (void*)
   1681               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1682 
   1683             if (fieldPtr == NULL) {
   1684                 BAIL_LOOP_COMPILATION();
   1685                 ALOGE("Unexpected null static field");
   1686                 dvmAbort();
   1687             }
   1688 
   1689             int tReg = dvmCompilerAllocTemp(cUnit);
   1690             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1691             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1692             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1693 
   1694             HEAP_ACCESS_SHADOW(true);
   1695             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1696             HEAP_ACCESS_SHADOW(false);
   1697 
   1698             storeValueWide(cUnit, rlDest, rlResult);
   1699             break;
   1700         }
   1701         case OP_SPUT:
   1702         case OP_SPUT_VOLATILE:
   1703         case OP_SPUT_OBJECT:
   1704         case OP_SPUT_OBJECT_VOLATILE:
   1705         case OP_SPUT_BOOLEAN:
   1706         case OP_SPUT_CHAR:
   1707         case OP_SPUT_BYTE:
   1708         case OP_SPUT_SHORT: {
   1709             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1710             int tReg = dvmCompilerAllocTemp(cUnit);
   1711             int objHead;
   1712             bool isVolatile;
   1713             bool isSputObject;
   1714             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1715                 mir->meta.calleeMethod : cUnit->method;
   1716             void *fieldPtr = (void*)
   1717               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1718             Opcode opcode = mir->dalvikInsn.opcode;
   1719 
   1720             if (fieldPtr == NULL) {
   1721                 BAIL_LOOP_COMPILATION();
   1722                 ALOGE("Unexpected null static field");
   1723                 dvmAbort();
   1724             }
   1725 
   1726 #if ANDROID_SMP != 0
   1727             isVolatile = (opcode == OP_SPUT_VOLATILE) ||
   1728                          (opcode == OP_SPUT_OBJECT_VOLATILE);
   1729             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1730 #else
   1731             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1732 #endif
   1733 
   1734             isSputObject = (opcode == OP_SPUT_OBJECT) ||
   1735                            (opcode == OP_SPUT_OBJECT_VOLATILE);
   1736 
   1737             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1738             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1739             loadConstant(cUnit, tReg,  (int) fieldPtr);
   1740             if (isSputObject) {
   1741                 objHead = dvmCompilerAllocTemp(cUnit);
   1742                 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
   1743             }
   1744             if (isVolatile) {
   1745                 dvmCompilerGenMemBarrier(cUnit, kST);
   1746             }
   1747             HEAP_ACCESS_SHADOW(true);
   1748             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
   1749             dvmCompilerFreeTemp(cUnit, tReg);
   1750             HEAP_ACCESS_SHADOW(false);
   1751             if (isVolatile) {
   1752                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1753             }
   1754             if (isSputObject) {
   1755                 /* NOTE: marking card based sfield->clazz */
   1756                 markCard(cUnit, rlSrc.lowReg, objHead);
   1757                 dvmCompilerFreeTemp(cUnit, objHead);
   1758             }
   1759 
   1760             break;
   1761         }
   1762         case OP_SPUT_WIDE: {
   1763             int tReg = dvmCompilerAllocTemp(cUnit);
   1764             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1765             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1766                 mir->meta.calleeMethod : cUnit->method;
   1767             void *fieldPtr = (void*)
   1768               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1769 
   1770             if (fieldPtr == NULL) {
   1771                 BAIL_LOOP_COMPILATION();
   1772                 ALOGE("Unexpected null static field");
   1773                 dvmAbort();
   1774             }
   1775 
   1776             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1777             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1778             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1779 
   1780             HEAP_ACCESS_SHADOW(true);
   1781             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1782             HEAP_ACCESS_SHADOW(false);
   1783             break;
   1784         }
   1785         case OP_NEW_INSTANCE: {
   1786             /*
   1787              * Obey the calling convention and don't mess with the register
   1788              * usage.
   1789              */
   1790             ClassObject *classPtr = (ClassObject *)
   1791               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1792 
   1793             if (classPtr == NULL) {
   1794                 BAIL_LOOP_COMPILATION();
   1795                 ALOGE("Unexpected null class");
   1796                 dvmAbort();
   1797             }
   1798 
   1799             /*
   1800              * If it is going to throw, it should not make to the trace to begin
   1801              * with.  However, Alloc might throw, so we need to genExportPC()
   1802              */
   1803             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1804             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1805             genExportPC(cUnit, mir);
   1806             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1807             loadConstant(cUnit, r0, (int) classPtr);
   1808             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1809             opReg(cUnit, kOpBlx, r2);
   1810             dvmCompilerClobberCallRegs(cUnit);
   1811             /* generate a branch over if allocation is successful */
   1812             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1813             /*
   1814              * OOM exception needs to be thrown here and cannot re-execute
   1815              */
   1816             loadConstant(cUnit, r0,
   1817                          (int) (cUnit->method->insns + mir->offset));
   1818             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1819             /* noreturn */
   1820 
   1821             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1822             target->defMask = ENCODE_ALL;
   1823             branchOver->generic.target = (LIR *) target;
   1824             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1825             rlResult = dvmCompilerGetReturn(cUnit);
   1826             storeValue(cUnit, rlDest, rlResult);
   1827             break;
   1828         }
   1829         case OP_CHECK_CAST: {
   1830             /*
   1831              * Obey the calling convention and don't mess with the register
   1832              * usage.
   1833              */
   1834             ClassObject *classPtr =
   1835               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1836             /*
   1837              * Note: It is possible that classPtr is NULL at this point,
   1838              * even though this instruction has been successfully interpreted.
   1839              * If the previous interpretation had a null source, the
   1840              * interpreter would not have bothered to resolve the clazz.
   1841              * Bail out to the interpreter in this case, and log it
   1842              * so that we can tell if it happens frequently.
   1843              */
   1844             if (classPtr == NULL) {
   1845                 BAIL_LOOP_COMPILATION();
   1846                 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1847                 genInterpSingleStep(cUnit, mir);
   1848                 return false;
   1849             }
   1850             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1851             loadConstant(cUnit, r1, (int) classPtr );
   1852             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1853             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1854             /* Null? */
   1855             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
   1856                                               rlSrc.lowReg, 0);
   1857             /*
   1858              *  rlSrc.lowReg now contains object->clazz.  Note that
   1859              *  it could have been allocated r0, but we're okay so long
   1860              *  as we don't do anything desctructive until r0 is loaded
   1861              *  with clazz.
   1862              */
   1863             /* r0 now contains object->clazz */
   1864             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1865             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1866             opRegReg(cUnit, kOpCmp, r0, r1);
   1867             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1868             opReg(cUnit, kOpBlx, r2);
   1869             dvmCompilerClobberCallRegs(cUnit);
   1870             /*
   1871              * If null, check cast failed - punt to the interpreter.  Because
   1872              * interpreter will be the one throwing, we don't need to
   1873              * genExportPC() here.
   1874              */
   1875             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1876             /* check cast passed - branch target here */
   1877             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1878             target->defMask = ENCODE_ALL;
   1879             branch1->generic.target = (LIR *)target;
   1880             branch2->generic.target = (LIR *)target;
   1881             break;
   1882         }
   1883         case OP_SGET_WIDE_VOLATILE:
   1884         case OP_SPUT_WIDE_VOLATILE:
   1885             genInterpSingleStep(cUnit, mir);
   1886             break;
   1887         default:
   1888             return true;
   1889     }
   1890     return false;
   1891 }
   1892 
   1893 /*
   1894  * A typical example of inlined getter/setter from a monomorphic callsite:
   1895  *
   1896  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
   1897  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
   1898  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
   1899  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
   1900  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
   1901  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
   1902  * D/dalvikvm(  289): L0x0003:
   1903  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
   1904  *
   1905  * Note the invoke-static and move-result-object with the (I) notation are
   1906  * turned into no-op.
   1907  */
   1908 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1909 {
   1910     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1911     RegLocation rlResult;
   1912     switch (dalvikOpcode) {
   1913         case OP_MOVE_EXCEPTION: {
   1914             int exOffset = offsetof(Thread, exception);
   1915             int resetReg = dvmCompilerAllocTemp(cUnit);
   1916             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1917             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1918             loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
   1919             loadConstant(cUnit, resetReg, 0);
   1920             storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
   1921             storeValue(cUnit, rlDest, rlResult);
   1922            break;
   1923         }
   1924         case OP_MOVE_RESULT:
   1925         case OP_MOVE_RESULT_OBJECT: {
   1926             /* An inlined move result is effectively no-op */
   1927             if (mir->OptimizationFlags & MIR_INLINED)
   1928                 break;
   1929             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1930             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1931             rlSrc.fp = rlDest.fp;
   1932             storeValue(cUnit, rlDest, rlSrc);
   1933             break;
   1934         }
   1935         case OP_MOVE_RESULT_WIDE: {
   1936             /* An inlined move result is effectively no-op */
   1937             if (mir->OptimizationFlags & MIR_INLINED)
   1938                 break;
   1939             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1940             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1941             rlSrc.fp = rlDest.fp;
   1942             storeValueWide(cUnit, rlDest, rlSrc);
   1943             break;
   1944         }
   1945         case OP_RETURN_WIDE: {
   1946             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1947             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1948             rlDest.fp = rlSrc.fp;
   1949             storeValueWide(cUnit, rlDest, rlSrc);
   1950             genReturnCommon(cUnit,mir);
   1951             break;
   1952         }
   1953         case OP_RETURN:
   1954         case OP_RETURN_OBJECT: {
   1955             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1956             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1957             rlDest.fp = rlSrc.fp;
   1958             storeValue(cUnit, rlDest, rlSrc);
   1959             genReturnCommon(cUnit, mir);
   1960             break;
   1961         }
   1962         case OP_MONITOR_EXIT:
   1963         case OP_MONITOR_ENTER:
   1964             genMonitor(cUnit, mir);
   1965             break;
   1966         case OP_THROW:
   1967             genInterpSingleStep(cUnit, mir);
   1968             break;
   1969         default:
   1970             return true;
   1971     }
   1972     return false;
   1973 }
   1974 
   1975 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1976 {
   1977     Opcode opcode = mir->dalvikInsn.opcode;
   1978     RegLocation rlDest;
   1979     RegLocation rlSrc;
   1980     RegLocation rlResult;
   1981 
   1982     if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
   1983         return genArithOp( cUnit, mir );
   1984     }
   1985 
   1986     if (mir->ssaRep->numUses == 2)
   1987         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1988     else
   1989         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1990     if (mir->ssaRep->numDefs == 2)
   1991         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1992     else
   1993         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1994 
   1995     switch (opcode) {
   1996         case OP_DOUBLE_TO_INT:
   1997         case OP_INT_TO_FLOAT:
   1998         case OP_FLOAT_TO_INT:
   1999         case OP_DOUBLE_TO_FLOAT:
   2000         case OP_FLOAT_TO_DOUBLE:
   2001         case OP_INT_TO_DOUBLE:
   2002         case OP_FLOAT_TO_LONG:
   2003         case OP_LONG_TO_FLOAT:
   2004         case OP_DOUBLE_TO_LONG:
   2005         case OP_LONG_TO_DOUBLE:
   2006             return genConversion(cUnit, mir);
   2007         case OP_NEG_INT:
   2008         case OP_NOT_INT:
   2009             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   2010         case OP_NEG_LONG:
   2011         case OP_NOT_LONG:
   2012             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   2013         case OP_NEG_FLOAT:
   2014             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   2015         case OP_NEG_DOUBLE:
   2016             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   2017         case OP_MOVE_WIDE:
   2018             storeValueWide(cUnit, rlDest, rlSrc);
   2019             break;
   2020         case OP_INT_TO_LONG:
   2021             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   2022             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2023             //TUNING: shouldn't loadValueDirect already check for phys reg?
   2024             if (rlSrc.location == kLocPhysReg) {
   2025                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2026             } else {
   2027                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   2028             }
   2029             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   2030                         rlResult.lowReg, 31);
   2031             storeValueWide(cUnit, rlDest, rlResult);
   2032             break;
   2033         case OP_LONG_TO_INT:
   2034             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   2035             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   2036             // Intentional fallthrough
   2037         case OP_MOVE:
   2038         case OP_MOVE_OBJECT:
   2039             storeValue(cUnit, rlDest, rlSrc);
   2040             break;
   2041         case OP_INT_TO_BYTE:
   2042             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2043             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2044             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   2045             storeValue(cUnit, rlDest, rlResult);
   2046             break;
   2047         case OP_INT_TO_SHORT:
   2048             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2049             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2050             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   2051             storeValue(cUnit, rlDest, rlResult);
   2052             break;
   2053         case OP_INT_TO_CHAR:
   2054             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2055             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2056             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   2057             storeValue(cUnit, rlDest, rlResult);
   2058             break;
   2059         case OP_ARRAY_LENGTH: {
   2060             int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   2061             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2062             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   2063                          mir->offset, NULL);
   2064             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2065             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   2066                          rlResult.lowReg);
   2067             storeValue(cUnit, rlDest, rlResult);
   2068             break;
   2069         }
   2070         default:
   2071             return true;
   2072     }
   2073     return false;
   2074 }
   2075 
   2076 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   2077 {
   2078     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2079     RegLocation rlDest;
   2080     RegLocation rlResult;
   2081     int BBBB = mir->dalvikInsn.vB;
   2082     if (dalvikOpcode == OP_CONST_WIDE_16) {
   2083         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2084         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2085         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2086         //TUNING: do high separately to avoid load dependency
   2087         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   2088         storeValueWide(cUnit, rlDest, rlResult);
   2089     } else if (dalvikOpcode == OP_CONST_16) {
   2090         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2091         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   2092         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2093         storeValue(cUnit, rlDest, rlResult);
   2094     } else
   2095         return true;
   2096     return false;
   2097 }
   2098 
   2099 /* Compare agaist zero */
   2100 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2101                          ArmLIR *labelList)
   2102 {
   2103     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2104     ArmConditionCode cond;
   2105     /* backward branch? */
   2106     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2107 
   2108     if (backwardBranch &&
   2109         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2110         genSuspendPoll(cUnit, mir);
   2111     }
   2112 
   2113     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2114     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2115 
   2116     switch (dalvikOpcode) {
   2117         case OP_IF_EQZ:
   2118             cond = kArmCondEq;
   2119             break;
   2120         case OP_IF_NEZ:
   2121             cond = kArmCondNe;
   2122             break;
   2123         case OP_IF_LTZ:
   2124             cond = kArmCondLt;
   2125             break;
   2126         case OP_IF_GEZ:
   2127             cond = kArmCondGe;
   2128             break;
   2129         case OP_IF_GTZ:
   2130             cond = kArmCondGt;
   2131             break;
   2132         case OP_IF_LEZ:
   2133             cond = kArmCondLe;
   2134             break;
   2135         default:
   2136             cond = (ArmConditionCode)0;
   2137             ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
   2138             dvmCompilerAbort(cUnit);
   2139     }
   2140     ArmLIR* branch = genCmpImmBranch(cUnit, cond, rlSrc.lowReg, 0);
   2141     branch->generic.target = (LIR*)&labelList[bb->taken->id];
   2142     /* This mostly likely will be optimized away in a later phase */
   2143     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2144     return false;
   2145 }
   2146 
   2147 static bool isPowerOfTwo(int x)
   2148 {
   2149     return (x & (x - 1)) == 0;
   2150 }
   2151 
   2152 // Returns true if no more than two bits are set in 'x'.
   2153 static bool isPopCountLE2(unsigned int x)
   2154 {
   2155     x &= x - 1;
   2156     return (x & (x - 1)) == 0;
   2157 }
   2158 
   2159 // Returns the index of the lowest set bit in 'x'.
   2160 static int lowestSetBit(unsigned int x) {
   2161     int bit_posn = 0;
   2162     while ((x & 0xf) == 0) {
   2163         bit_posn += 4;
   2164         x >>= 4;
   2165     }
   2166     while ((x & 1) == 0) {
   2167         bit_posn++;
   2168         x >>= 1;
   2169     }
   2170     return bit_posn;
   2171 }
   2172 
   2173 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
   2174 // and store the result in 'rlDest'.
   2175 static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
   2176                              RegLocation rlSrc, RegLocation rlDest, int lit)
   2177 {
   2178     if (lit < 2 || !isPowerOfTwo(lit)) {
   2179         return false;
   2180     }
   2181     int k = lowestSetBit(lit);
   2182     if (k >= 30) {
   2183         // Avoid special cases.
   2184         return false;
   2185     }
   2186     bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
   2187     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2188     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2189     if (div) {
   2190         int tReg = dvmCompilerAllocTemp(cUnit);
   2191         if (lit == 2) {
   2192             // Division by 2 is by far the most common division by constant.
   2193             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
   2194             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2195             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2196         } else {
   2197             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
   2198             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
   2199             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2200             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2201         }
   2202     } else {
   2203         int cReg = dvmCompilerAllocTemp(cUnit);
   2204         loadConstant(cUnit, cReg, lit - 1);
   2205         int tReg1 = dvmCompilerAllocTemp(cUnit);
   2206         int tReg2 = dvmCompilerAllocTemp(cUnit);
   2207         if (lit == 2) {
   2208             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
   2209             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2210             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2211             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2212         } else {
   2213             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
   2214             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
   2215             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2216             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2217             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2218         }
   2219     }
   2220     storeValue(cUnit, rlDest, rlResult);
   2221     return true;
   2222 }
   2223 
   2224 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   2225 // and store the result in 'rlDest'.
   2226 static bool handleEasyMultiply(CompilationUnit *cUnit,
   2227                                RegLocation rlSrc, RegLocation rlDest, int lit)
   2228 {
   2229     // Can we simplify this multiplication?
   2230     bool powerOfTwo = false;
   2231     bool popCountLE2 = false;
   2232     bool powerOfTwoMinusOne = false;
   2233     if (lit < 2) {
   2234         // Avoid special cases.
   2235         return false;
   2236     } else if (isPowerOfTwo(lit)) {
   2237         powerOfTwo = true;
   2238     } else if (isPopCountLE2(lit)) {
   2239         popCountLE2 = true;
   2240     } else if (isPowerOfTwo(lit + 1)) {
   2241         powerOfTwoMinusOne = true;
   2242     } else {
   2243         return false;
   2244     }
   2245     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2246     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2247     if (powerOfTwo) {
   2248         // Shift.
   2249         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   2250                     lowestSetBit(lit));
   2251     } else if (popCountLE2) {
   2252         // Shift and add and shift.
   2253         int firstBit = lowestSetBit(lit);
   2254         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   2255         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   2256                                       firstBit, secondBit);
   2257     } else {
   2258         // Reverse subtract: (src << (shift + 1)) - src.
   2259         assert(powerOfTwoMinusOne);
   2260         genMultiplyByShiftAndReverseSubtract(cUnit, rlSrc, rlResult, lowestSetBit(lit + 1));
   2261     }
   2262     storeValue(cUnit, rlDest, rlResult);
   2263     return true;
   2264 }
   2265 
   2266 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   2267 {
   2268     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2269     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2270     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2271     RegLocation rlResult;
   2272     int lit = mir->dalvikInsn.vC;
   2273     OpKind op = (OpKind)0;      /* Make gcc happy */
   2274     int shiftOp = false;
   2275     bool isDiv = false;
   2276 
   2277     switch (dalvikOpcode) {
   2278         case OP_RSUB_INT_LIT8:
   2279         case OP_RSUB_INT: {
   2280             int tReg;
   2281             //TUNING: add support for use of Arm rsub op
   2282             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2283             tReg = dvmCompilerAllocTemp(cUnit);
   2284             loadConstant(cUnit, tReg, lit);
   2285             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2286             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   2287                         tReg, rlSrc.lowReg);
   2288             storeValue(cUnit, rlDest, rlResult);
   2289             return false;
   2290             break;
   2291         }
   2292 
   2293         case OP_ADD_INT_LIT8:
   2294         case OP_ADD_INT_LIT16:
   2295             op = kOpAdd;
   2296             break;
   2297         case OP_MUL_INT_LIT8:
   2298         case OP_MUL_INT_LIT16: {
   2299             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   2300                 return false;
   2301             }
   2302             op = kOpMul;
   2303             break;
   2304         }
   2305         case OP_AND_INT_LIT8:
   2306         case OP_AND_INT_LIT16:
   2307             op = kOpAnd;
   2308             break;
   2309         case OP_OR_INT_LIT8:
   2310         case OP_OR_INT_LIT16:
   2311             op = kOpOr;
   2312             break;
   2313         case OP_XOR_INT_LIT8:
   2314         case OP_XOR_INT_LIT16:
   2315             op = kOpXor;
   2316             break;
   2317         case OP_SHL_INT_LIT8:
   2318             lit &= 31;
   2319             shiftOp = true;
   2320             op = kOpLsl;
   2321             break;
   2322         case OP_SHR_INT_LIT8:
   2323             lit &= 31;
   2324             shiftOp = true;
   2325             op = kOpAsr;
   2326             break;
   2327         case OP_USHR_INT_LIT8:
   2328             lit &= 31;
   2329             shiftOp = true;
   2330             op = kOpLsr;
   2331             break;
   2332 
   2333         case OP_DIV_INT_LIT8:
   2334         case OP_DIV_INT_LIT16:
   2335         case OP_REM_INT_LIT8:
   2336         case OP_REM_INT_LIT16:
   2337             if (lit == 0) {
   2338                 /* Let the interpreter deal with div by 0 */
   2339                 genInterpSingleStep(cUnit, mir);
   2340                 return false;
   2341             }
   2342             if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
   2343                 return false;
   2344             }
   2345             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2346             loadValueDirectFixed(cUnit, rlSrc, r0);
   2347             dvmCompilerClobber(cUnit, r0);
   2348             if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
   2349                 (dalvikOpcode == OP_DIV_INT_LIT16)) {
   2350                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2351                 isDiv = true;
   2352             } else {
   2353                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2354                 isDiv = false;
   2355             }
   2356             loadConstant(cUnit, r1, lit);
   2357             opReg(cUnit, kOpBlx, r2);
   2358             dvmCompilerClobberCallRegs(cUnit);
   2359             if (isDiv)
   2360                 rlResult = dvmCompilerGetReturn(cUnit);
   2361             else
   2362                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2363             storeValue(cUnit, rlDest, rlResult);
   2364             return false;
   2365             break;
   2366         default:
   2367             return true;
   2368     }
   2369     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2370     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2371     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2372     if (shiftOp && (lit == 0)) {
   2373         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2374     } else {
   2375         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2376     }
   2377     storeValue(cUnit, rlDest, rlResult);
   2378     return false;
   2379 }
   2380 
   2381 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2382 {
   2383     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2384     int fieldOffset = -1;
   2385     bool isVolatile = false;
   2386     switch (dalvikOpcode) {
   2387         /*
   2388          * Wide volatiles currently handled via single step.
   2389          * Add them here if generating in-line code.
   2390          *     case OP_IGET_WIDE_VOLATILE:
   2391          *     case OP_IPUT_WIDE_VOLATILE:
   2392          */
   2393         case OP_IGET_VOLATILE:
   2394         case OP_IGET_OBJECT_VOLATILE:
   2395         case OP_IPUT_VOLATILE:
   2396         case OP_IPUT_OBJECT_VOLATILE:
   2397 #if ANDROID_SMP != 0
   2398             isVolatile = true;
   2399         // NOTE: intentional fallthrough
   2400 #endif
   2401         case OP_IGET:
   2402         case OP_IGET_WIDE:
   2403         case OP_IGET_OBJECT:
   2404         case OP_IGET_BOOLEAN:
   2405         case OP_IGET_BYTE:
   2406         case OP_IGET_CHAR:
   2407         case OP_IGET_SHORT:
   2408         case OP_IPUT:
   2409         case OP_IPUT_WIDE:
   2410         case OP_IPUT_OBJECT:
   2411         case OP_IPUT_BOOLEAN:
   2412         case OP_IPUT_BYTE:
   2413         case OP_IPUT_CHAR:
   2414         case OP_IPUT_SHORT: {
   2415             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   2416                 mir->meta.calleeMethod : cUnit->method;
   2417             Field *fieldPtr =
   2418                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2419 
   2420             if (fieldPtr == NULL) {
   2421                 BAIL_LOOP_COMPILATION();
   2422                 ALOGE("Unexpected null instance field");
   2423                 dvmAbort();
   2424             }
   2425 
   2426 #if ANDROID_SMP != 0
   2427             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   2428 #else
   2429             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   2430 #endif
   2431             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
   2432             break;
   2433         }
   2434         default:
   2435             break;
   2436     }
   2437 
   2438     switch (dalvikOpcode) {
   2439         case OP_NEW_ARRAY: {
   2440             // Generates a call - use explicit registers
   2441             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2442             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2443             RegLocation rlResult;
   2444             void *classPtr = (void*)
   2445               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2446 
   2447             if (classPtr == NULL) {
   2448                 BAIL_LOOP_COMPILATION();
   2449                 ALOGE("Unexpected null class");
   2450                 dvmAbort();
   2451             }
   2452 
   2453             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2454             genExportPC(cUnit, mir);
   2455             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2456             loadConstant(cUnit, r0, (int) classPtr );
   2457             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2458             /*
   2459              * "len < 0": bail to the interpreter to re-execute the
   2460              * instruction
   2461              */
   2462             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2463             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2464             opReg(cUnit, kOpBlx, r3);
   2465             dvmCompilerClobberCallRegs(cUnit);
   2466             /* generate a branch over if allocation is successful */
   2467             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2468             /*
   2469              * OOM exception needs to be thrown here and cannot re-execute
   2470              */
   2471             loadConstant(cUnit, r0,
   2472                          (int) (cUnit->method->insns + mir->offset));
   2473             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2474             /* noreturn */
   2475 
   2476             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2477             target->defMask = ENCODE_ALL;
   2478             branchOver->generic.target = (LIR *) target;
   2479             rlResult = dvmCompilerGetReturn(cUnit);
   2480             storeValue(cUnit, rlDest, rlResult);
   2481             break;
   2482         }
   2483         case OP_INSTANCE_OF: {
   2484             // May generate a call - use explicit registers
   2485             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2486             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2487             RegLocation rlResult;
   2488             ClassObject *classPtr =
   2489               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2490             /*
   2491              * Note: It is possible that classPtr is NULL at this point,
   2492              * even though this instruction has been successfully interpreted.
   2493              * If the previous interpretation had a null source, the
   2494              * interpreter would not have bothered to resolve the clazz.
   2495              * Bail out to the interpreter in this case, and log it
   2496              * so that we can tell if it happens frequently.
   2497              */
   2498             if (classPtr == NULL) {
   2499                 BAIL_LOOP_COMPILATION();
   2500                 ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2501                 genInterpSingleStep(cUnit, mir);
   2502                 break;
   2503             }
   2504             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2505             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2506             loadConstant(cUnit, r2, (int) classPtr );
   2507             /* When taken r0 has NULL which can be used for store directly */
   2508             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
   2509             /* r1 now contains object->clazz */
   2510             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2511             /* r1 now contains object->clazz */
   2512             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2513             loadConstant(cUnit, r0, 1);                /* Assume true */
   2514             opRegReg(cUnit, kOpCmp, r1, r2);
   2515             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2516             genRegCopy(cUnit, r0, r1);
   2517             genRegCopy(cUnit, r1, r2);
   2518             opReg(cUnit, kOpBlx, r3);
   2519             dvmCompilerClobberCallRegs(cUnit);
   2520             /* branch target here */
   2521             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2522             target->defMask = ENCODE_ALL;
   2523             rlResult = dvmCompilerGetReturn(cUnit);
   2524             storeValue(cUnit, rlDest, rlResult);
   2525             branch1->generic.target = (LIR *)target;
   2526             branch2->generic.target = (LIR *)target;
   2527             break;
   2528         }
   2529         case OP_IGET_WIDE:
   2530             genIGetWide(cUnit, mir, fieldOffset);
   2531             break;
   2532         case OP_IGET_VOLATILE:
   2533         case OP_IGET_OBJECT_VOLATILE:
   2534         case OP_IGET:
   2535         case OP_IGET_OBJECT:
   2536         case OP_IGET_BOOLEAN:
   2537         case OP_IGET_BYTE:
   2538         case OP_IGET_CHAR:
   2539         case OP_IGET_SHORT:
   2540             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
   2541             break;
   2542         case OP_IPUT_WIDE:
   2543             genIPutWide(cUnit, mir, fieldOffset);
   2544             break;
   2545         case OP_IPUT_VOLATILE:
   2546         case OP_IPUT:
   2547         case OP_IPUT_BOOLEAN:
   2548         case OP_IPUT_BYTE:
   2549         case OP_IPUT_CHAR:
   2550         case OP_IPUT_SHORT:
   2551             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
   2552             break;
   2553         case OP_IPUT_OBJECT_VOLATILE:
   2554         case OP_IPUT_OBJECT:
   2555             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
   2556             break;
   2557         case OP_IGET_WIDE_VOLATILE:
   2558         case OP_IPUT_WIDE_VOLATILE:
   2559             genInterpSingleStep(cUnit, mir);
   2560             break;
   2561         default:
   2562             return true;
   2563     }
   2564     return false;
   2565 }
   2566 
   2567 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2568 {
   2569     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2570     int fieldOffset =  mir->dalvikInsn.vC;
   2571     switch (dalvikOpcode) {
   2572         case OP_IGET_QUICK:
   2573         case OP_IGET_OBJECT_QUICK:
   2574             genIGet(cUnit, mir, kWord, fieldOffset, false);
   2575             break;
   2576         case OP_IPUT_QUICK:
   2577             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
   2578             break;
   2579         case OP_IPUT_OBJECT_QUICK:
   2580             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
   2581             break;
   2582         case OP_IGET_WIDE_QUICK:
   2583             genIGetWide(cUnit, mir, fieldOffset);
   2584             break;
   2585         case OP_IPUT_WIDE_QUICK:
   2586             genIPutWide(cUnit, mir, fieldOffset);
   2587             break;
   2588         default:
   2589             return true;
   2590     }
   2591     return false;
   2592 
   2593 }
   2594 
   2595 /* Compare agaist zero */
   2596 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2597                          ArmLIR *labelList)
   2598 {
   2599     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2600     ArmConditionCode cond;
   2601     /* backward branch? */
   2602     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2603 
   2604     if (backwardBranch &&
   2605         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2606         genSuspendPoll(cUnit, mir);
   2607     }
   2608 
   2609     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2610     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2611 
   2612     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2613     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2614 
   2615     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2616 
   2617     switch (dalvikOpcode) {
   2618         case OP_IF_EQ:
   2619             cond = kArmCondEq;
   2620             break;
   2621         case OP_IF_NE:
   2622             cond = kArmCondNe;
   2623             break;
   2624         case OP_IF_LT:
   2625             cond = kArmCondLt;
   2626             break;
   2627         case OP_IF_GE:
   2628             cond = kArmCondGe;
   2629             break;
   2630         case OP_IF_GT:
   2631             cond = kArmCondGt;
   2632             break;
   2633         case OP_IF_LE:
   2634             cond = kArmCondLe;
   2635             break;
   2636         default:
   2637             cond = (ArmConditionCode)0;
   2638             ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
   2639             dvmCompilerAbort(cUnit);
   2640     }
   2641     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2642     /* This mostly likely will be optimized away in a later phase */
   2643     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2644     return false;
   2645 }
   2646 
   2647 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2648 {
   2649     Opcode opcode = mir->dalvikInsn.opcode;
   2650 
   2651     switch (opcode) {
   2652         case OP_MOVE_16:
   2653         case OP_MOVE_OBJECT_16:
   2654         case OP_MOVE_FROM16:
   2655         case OP_MOVE_OBJECT_FROM16: {
   2656             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2657                        dvmCompilerGetSrc(cUnit, mir, 0));
   2658             break;
   2659         }
   2660         case OP_MOVE_WIDE_16:
   2661         case OP_MOVE_WIDE_FROM16: {
   2662             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2663                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2664             break;
   2665         }
   2666         default:
   2667             return true;
   2668     }
   2669     return false;
   2670 }
   2671 
   2672 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2673 {
   2674     Opcode opcode = mir->dalvikInsn.opcode;
   2675     RegLocation rlSrc1;
   2676     RegLocation rlSrc2;
   2677     RegLocation rlDest;
   2678 
   2679     if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
   2680         return genArithOp( cUnit, mir );
   2681     }
   2682 
   2683     /* APUTs have 3 sources and no targets */
   2684     if (mir->ssaRep->numDefs == 0) {
   2685         if (mir->ssaRep->numUses == 3) {
   2686             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2687             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2688             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2689         } else {
   2690             assert(mir->ssaRep->numUses == 4);
   2691             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2692             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2693             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2694         }
   2695     } else {
   2696         /* Two sources and 1 dest.  Deduce the operand sizes */
   2697         if (mir->ssaRep->numUses == 4) {
   2698             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2699             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2700         } else {
   2701             assert(mir->ssaRep->numUses == 2);
   2702             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2703             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2704         }
   2705         if (mir->ssaRep->numDefs == 2) {
   2706             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2707         } else {
   2708             assert(mir->ssaRep->numDefs == 1);
   2709             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2710         }
   2711     }
   2712 
   2713 
   2714     switch (opcode) {
   2715         case OP_CMPL_FLOAT:
   2716         case OP_CMPG_FLOAT:
   2717         case OP_CMPL_DOUBLE:
   2718         case OP_CMPG_DOUBLE:
   2719             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2720         case OP_CMP_LONG:
   2721             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2722             break;
   2723         case OP_AGET_WIDE:
   2724             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2725             break;
   2726         case OP_AGET:
   2727         case OP_AGET_OBJECT:
   2728             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2729             break;
   2730         case OP_AGET_BOOLEAN:
   2731             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2732             break;
   2733         case OP_AGET_BYTE:
   2734             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2735             break;
   2736         case OP_AGET_CHAR:
   2737             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2738             break;
   2739         case OP_AGET_SHORT:
   2740             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2741             break;
   2742         case OP_APUT_WIDE:
   2743             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2744             break;
   2745         case OP_APUT:
   2746             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2747             break;
   2748         case OP_APUT_OBJECT:
   2749             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2750             break;
   2751         case OP_APUT_SHORT:
   2752         case OP_APUT_CHAR:
   2753             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2754             break;
   2755         case OP_APUT_BYTE:
   2756         case OP_APUT_BOOLEAN:
   2757             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2758             break;
   2759         default:
   2760             return true;
   2761     }
   2762     return false;
   2763 }
   2764 
   2765 /*
   2766  * Find the matching case.
   2767  *
   2768  * return values:
   2769  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2770  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2771  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2772  *    above MAX_CHAINED_SWITCH_CASES).
   2773  *
   2774  * Instructions around the call are:
   2775  *
   2776  * mov r2, pc
   2777  * blx &findPackedSwitchIndex
   2778  * mov pc, r0
   2779  * .align4
   2780  * chaining cell for case 0 [12 bytes]
   2781  * chaining cell for case 1 [12 bytes]
   2782  *               :
   2783  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
   2784  * chaining cell for case default [8 bytes]
   2785  * noChain exit
   2786  */
   2787 static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
   2788 {
   2789     int size;
   2790     int firstKey;
   2791     const int *entries;
   2792     int index;
   2793     int jumpIndex;
   2794     uintptr_t caseDPCOffset = 0;
   2795     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2796     uintptr_t chainingPC = (pc + 4) & ~3;
   2797 
   2798     /*
   2799      * Packed switch data format:
   2800      *  ushort ident = 0x0100   magic value
   2801      *  ushort size             number of entries in the table
   2802      *  int first_key           first (and lowest) switch case value
   2803      *  int targets[size]       branch targets, relative to switch opcode
   2804      *
   2805      * Total size is (4+size*2) 16-bit code units.
   2806      */
   2807     size = switchData[1];
   2808     assert(size > 0);
   2809 
   2810     firstKey = switchData[2];
   2811     firstKey |= switchData[3] << 16;
   2812 
   2813 
   2814     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2815      * we can treat them as a native int array.
   2816      */
   2817     entries = (const int*) &switchData[4];
   2818     assert(((u4)entries & 0x3) == 0);
   2819 
   2820     index = testVal - firstKey;
   2821 
   2822     /* Jump to the default cell */
   2823     if (index < 0 || index >= size) {
   2824         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2825     /* Jump to the non-chaining exit point */
   2826     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2827         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2828         caseDPCOffset = entries[index];
   2829     /* Jump to the inline chaining cell */
   2830     } else {
   2831         jumpIndex = index;
   2832     }
   2833 
   2834     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2835     return (((u8) caseDPCOffset) << 32) | (u8) chainingPC;
   2836 }
   2837 
   2838 /* See comments for findPackedSwitchIndex */
   2839 static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
   2840 {
   2841     int size;
   2842     const int *keys;
   2843     const int *entries;
   2844     uintptr_t chainingPC = (pc + 4) & ~3;
   2845     int i;
   2846 
   2847     /*
   2848      * Sparse switch data format:
   2849      *  ushort ident = 0x0200   magic value
   2850      *  ushort size             number of entries in the table; > 0
   2851      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2852      *  int targets[size]       branch targets, relative to switch opcode
   2853      *
   2854      * Total size is (2+size*4) 16-bit code units.
   2855      */
   2856 
   2857     size = switchData[1];
   2858     assert(size > 0);
   2859 
   2860     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2861      * we can treat them as a native int array.
   2862      */
   2863     keys = (const int*) &switchData[2];
   2864     assert(((u4)keys & 0x3) == 0);
   2865 
   2866     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2867      * we can treat them as a native int array.
   2868      */
   2869     entries = keys + size;
   2870     assert(((u4)entries & 0x3) == 0);
   2871 
   2872     /*
   2873      * Run through the list of keys, which are guaranteed to
   2874      * be sorted low-to-high.
   2875      *
   2876      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2877      * search here is probably not useful.
   2878      */
   2879     for (i = 0; i < size; i++) {
   2880         int k = keys[i];
   2881         if (k == testVal) {
   2882             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2883             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2884                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2885             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2886             return (((u8) entries[i]) << 32) | (u8) chainingPC;
   2887         } else if (k > testVal) {
   2888             break;
   2889         }
   2890     }
   2891     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
   2892            CHAIN_CELL_NORMAL_SIZE;
   2893 }
   2894 
   2895 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2896 {
   2897     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2898     switch (dalvikOpcode) {
   2899         case OP_FILL_ARRAY_DATA: {
   2900             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2901             // Making a call - use explicit registers
   2902             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2903             genExportPC(cUnit, mir);
   2904             loadValueDirectFixed(cUnit, rlSrc, r0);
   2905             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2906             loadConstant(cUnit, r1,
   2907                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2908             opReg(cUnit, kOpBlx, r2);
   2909             dvmCompilerClobberCallRegs(cUnit);
   2910             /* generate a branch over if successful */
   2911             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2912             loadConstant(cUnit, r0,
   2913                          (int) (cUnit->method->insns + mir->offset));
   2914             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2915             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2916             target->defMask = ENCODE_ALL;
   2917             branchOver->generic.target = (LIR *) target;
   2918             break;
   2919         }
   2920         /*
   2921          * Compute the goto target of up to
   2922          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2923          * See the comment before findPackedSwitchIndex for the code layout.
   2924          */
   2925         case OP_PACKED_SWITCH:
   2926         case OP_SPARSE_SWITCH: {
   2927             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2928             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2929             loadValueDirectFixed(cUnit, rlSrc, r1);
   2930             dvmCompilerLockAllTemps(cUnit);
   2931             if (dalvikOpcode == OP_PACKED_SWITCH) {
   2932                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2933             } else {
   2934                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2935             }
   2936             /* r0 <- Addr of the switch data */
   2937             loadConstant(cUnit, r0,
   2938                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2939             /* r2 <- pc of the instruction following the blx */
   2940             opRegReg(cUnit, kOpMov, r2, r15pc);
   2941             opReg(cUnit, kOpBlx, r4PC);
   2942             dvmCompilerClobberCallRegs(cUnit);
   2943             /* pc <- computed goto target */
   2944             opRegReg(cUnit, kOpMov, r15pc, r0);
   2945             break;
   2946         }
   2947         default:
   2948             return true;
   2949     }
   2950     return false;
   2951 }
   2952 
   2953 /*
   2954  * See the example of predicted inlining listed before the
   2955  * genValidationForPredictedInline function. The function here takes care the
   2956  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
   2957  */
   2958 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
   2959                                                BasicBlock *bb,
   2960                                                ArmLIR *labelList)
   2961 {
   2962     BasicBlock *fallThrough = bb->fallThrough;
   2963 
   2964     /* Bypass the move-result block if there is one */
   2965     if (fallThrough->firstMIRInsn) {
   2966         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
   2967         fallThrough = fallThrough->fallThrough;
   2968     }
   2969     /* Generate a branch over if the predicted inlining is correct */
   2970     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
   2971 
   2972     /* Reset the register state */
   2973     dvmCompilerResetRegPool(cUnit);
   2974     dvmCompilerClobberAllRegs(cUnit);
   2975     dvmCompilerResetNullCheck(cUnit);
   2976 
   2977     /* Target for the slow invoke path */
   2978     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2979     target->defMask = ENCODE_ALL;
   2980     /* Hook up the target to the verification branch */
   2981     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
   2982 }
   2983 
   2984 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
   2985                              BasicBlock *bb, ArmLIR *labelList)
   2986 {
   2987     ArmLIR *retChainingCell = NULL;
   2988     ArmLIR *pcrLabel = NULL;
   2989 
   2990     /* An invoke with the MIR_INLINED is effectively a no-op */
   2991     if (mir->OptimizationFlags & MIR_INLINED)
   2992         return false;
   2993 
   2994     if (bb->fallThrough != NULL)
   2995         retChainingCell = &labelList[bb->fallThrough->id];
   2996 
   2997     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2998     switch (mir->dalvikInsn.opcode) {
   2999         /*
   3000          * calleeMethod = this->clazz->vtable[
   3001          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   3002          * ]
   3003          */
   3004         case OP_INVOKE_VIRTUAL:
   3005         case OP_INVOKE_VIRTUAL_RANGE: {
   3006             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3007             int methodIndex =
   3008                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   3009                 methodIndex;
   3010 
   3011             /*
   3012              * If the invoke has non-null misPredBranchOver, we need to generate
   3013              * the non-inlined version of the invoke here to handle the
   3014              * mispredicted case.
   3015              */
   3016             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3017                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3018             }
   3019 
   3020             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
   3021                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3022             else
   3023                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3024 
   3025             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3026                                    retChainingCell,
   3027                                    predChainingCell,
   3028                                    pcrLabel);
   3029             break;
   3030         }
   3031         /*
   3032          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   3033          *                ->pResMethods[BBBB]->methodIndex]
   3034          */
   3035         case OP_INVOKE_SUPER:
   3036         case OP_INVOKE_SUPER_RANGE: {
   3037             /* Grab the method ptr directly from what the interpreter sees */
   3038             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3039             assert(calleeMethod == cUnit->method->clazz->super->vtable[
   3040                                      cUnit->method->clazz->pDvmDex->
   3041                                        pResMethods[dInsn->vB]->methodIndex]);
   3042 
   3043             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
   3044                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3045             else
   3046                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3047 
   3048             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3049                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3050                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3051                 assert(calleeAddr);
   3052                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3053                                               retChainingCell);
   3054             } else {
   3055                 /* r0 = calleeMethod */
   3056                 loadConstant(cUnit, r0, (int) calleeMethod);
   3057 
   3058                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3059                                          calleeMethod);
   3060             }
   3061             break;
   3062         }
   3063         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3064         case OP_INVOKE_DIRECT:
   3065         case OP_INVOKE_DIRECT_RANGE: {
   3066             /* Grab the method ptr directly from what the interpreter sees */
   3067             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3068             assert(calleeMethod ==
   3069                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3070 
   3071             if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
   3072                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3073             else
   3074                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3075 
   3076             /* r0 = calleeMethod */
   3077             loadConstant(cUnit, r0, (int) calleeMethod);
   3078 
   3079             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3080                                      calleeMethod);
   3081             break;
   3082         }
   3083         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3084         case OP_INVOKE_STATIC:
   3085         case OP_INVOKE_STATIC_RANGE: {
   3086             /* Grab the method ptr directly from what the interpreter sees */
   3087             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3088             assert(calleeMethod ==
   3089                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3090 
   3091             if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
   3092                 genProcessArgsNoRange(cUnit, mir, dInsn,
   3093                                       NULL /* no null check */);
   3094             else
   3095                 genProcessArgsRange(cUnit, mir, dInsn,
   3096                                     NULL /* no null check */);
   3097 
   3098             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3099                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3100                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3101                 assert(calleeAddr);
   3102                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3103                                               retChainingCell);
   3104             } else {
   3105                 /* r0 = calleeMethod */
   3106                 loadConstant(cUnit, r0, (int) calleeMethod);
   3107 
   3108                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3109                                          calleeMethod);
   3110             }
   3111             break;
   3112         }
   3113         /*
   3114          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   3115          *                    BBBB, method, method->clazz->pDvmDex)
   3116          *
   3117          * The following is an example of generated code for
   3118          *      "invoke-interface v0"
   3119          *
   3120          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   3121          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   3122          * 0x47357e38 : sub     r7,r5,#24        |
   3123          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   3124          * 0x47357e3e : beq     0x47357e82       |
   3125          * 0x47357e40 : stmia   r7, <r0>       --+
   3126          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   3127          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   3128          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   3129          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   3130          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   3131          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   3132          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   3133          * 0x47357e50 : mov     r8, r1         --+
   3134          * 0x47357e52 : mov     r9, r2           |
   3135          * 0x47357e54 : ldr     r2, [pc, #96]    |
   3136          * 0x47357e56 : mov     r10, r3          |
   3137          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   3138          * 0x47357e5a : ldr     r3, [pc, #88]    |
   3139          * 0x47357e5c : ldr     r7, [pc, #80]    |
   3140          * 0x47357e5e : mov     r1, #1452        |
   3141          * 0x47357e62 : blx     r7             --+
   3142          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   3143          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   3144          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   3145          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   3146          * 0x47357e6c : blx_2   see above      --+     COMMON
   3147          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   3148          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   3149          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   3150          * 0x47357e74 : ldr     r7, [pc, #off] --+
   3151          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   3152          * 0x47357e78 : mov     r3, r10          |
   3153          * 0x47357e7a : blx     r7             --+
   3154          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   3155          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   3156          * 0x47357e80 : blx_2   see above      --+
   3157          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   3158          * 0x47357e82 : ldr     r0, [pc, #56]
   3159          * Exception_Handling:
   3160          * 0x47357e84 : ldr     r1, [r6, #92]
   3161          * 0x47357e86 : blx     r1
   3162          * 0x47357e88 : .align4
   3163          * -------- chaining cell (hot): 0x000b
   3164          * 0x47357e88 : ldr     r0, [r6, #104]
   3165          * 0x47357e8a : blx     r0
   3166          * 0x47357e8c : data    0x19e2(6626)
   3167          * 0x47357e8e : data    0x4257(16983)
   3168          * 0x47357e90 : .align4
   3169          * -------- chaining cell (predicted)
   3170          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   3171          * 0x47357e92 : data    0x0000(0)
   3172          * 0x47357e94 : data    0x0000(0)      --> class
   3173          * 0x47357e96 : data    0x0000(0)
   3174          * 0x47357e98 : data    0x0000(0)      --> method
   3175          * 0x47357e9a : data    0x0000(0)
   3176          * 0x47357e9c : data    0x0000(0)      --> rechain count
   3177          * 0x47357e9e : data    0x0000(0)
   3178          * -------- end of chaining cells (0x006c)
   3179          * 0x47357eb0 : .word (0xad03e369)
   3180          * 0x47357eb4 : .word (0x28a90)
   3181          * 0x47357eb8 : .word (0x41a63394)
   3182          * 0x47357ebc : .word (0x425719dc)
   3183          */
   3184         case OP_INVOKE_INTERFACE:
   3185         case OP_INVOKE_INTERFACE_RANGE: {
   3186             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3187 
   3188             /*
   3189              * If the invoke has non-null misPredBranchOver, we need to generate
   3190              * the non-inlined version of the invoke here to handle the
   3191              * mispredicted case.
   3192              */
   3193             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3194                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3195             }
   3196 
   3197             if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
   3198                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3199             else
   3200                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3201 
   3202             /* "this" is already left in r0 by genProcessArgs* */
   3203 
   3204             /* r4PC = dalvikCallsite */
   3205             loadConstant(cUnit, r4PC,
   3206                          (int) (cUnit->method->insns + mir->offset));
   3207 
   3208             /* r1 = &retChainingCell */
   3209             ArmLIR *addrRetChain =
   3210                 opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3211             addrRetChain->generic.target = (LIR *) retChainingCell;
   3212 
   3213             /* r2 = &predictedChainingCell */
   3214             ArmLIR *predictedChainingCell =
   3215                 opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   3216             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   3217 
   3218             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3219                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   3220                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   3221 
   3222             /* return through lr - jump to the chaining cell */
   3223             genUnconditionalBranch(cUnit, predChainingCell);
   3224 
   3225             /*
   3226              * null-check on "this" may have been eliminated, but we still need
   3227              * a PC-reconstruction label for stack overflow bailout.
   3228              */
   3229             if (pcrLabel == NULL) {
   3230                 int dPC = (int) (cUnit->method->insns + mir->offset);
   3231                 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   3232                 pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   3233                 pcrLabel->operands[0] = dPC;
   3234                 pcrLabel->operands[1] = mir->offset;
   3235                 /* Insert the place holder to the growable list */
   3236                 dvmInsertGrowableList(&cUnit->pcReconstructionList,
   3237                                       (intptr_t) pcrLabel);
   3238             }
   3239 
   3240             /* return through lr+2 - punt to the interpreter */
   3241             genUnconditionalBranch(cUnit, pcrLabel);
   3242 
   3243             /*
   3244              * return through lr+4 - fully resolve the callee method.
   3245              * r1 <- count
   3246              * r2 <- &predictedChainCell
   3247              * r3 <- this->class
   3248              * r4 <- dPC
   3249              * r7 <- this->class->vtable
   3250              */
   3251 
   3252             /* Save count, &predictedChainCell, and class to high regs first */
   3253             genRegCopy(cUnit, r8, r1);
   3254             genRegCopy(cUnit, r9, r2);
   3255             genRegCopy(cUnit, r10, r3);
   3256 
   3257             /* r0 now contains this->clazz */
   3258             genRegCopy(cUnit, r0, r3);
   3259 
   3260             /* r1 = BBBB */
   3261             loadConstant(cUnit, r1, dInsn->vB);
   3262 
   3263             /* r2 = method (caller) */
   3264             loadConstant(cUnit, r2, (int) cUnit->method);
   3265 
   3266             /* r3 = pDvmDex */
   3267             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   3268 
   3269             LOAD_FUNC_ADDR(cUnit, r7,
   3270                            (intptr_t) dvmFindInterfaceMethodInCache);
   3271             opReg(cUnit, kOpBlx, r7);
   3272             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   3273 
   3274             dvmCompilerClobberCallRegs(cUnit);
   3275             /* generate a branch over if the interface method is resolved */
   3276             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3277             /*
   3278              * calleeMethod == NULL -> throw
   3279              */
   3280             loadConstant(cUnit, r0,
   3281                          (int) (cUnit->method->insns + mir->offset));
   3282             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3283             /* noreturn */
   3284 
   3285             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3286             target->defMask = ENCODE_ALL;
   3287             branchOver->generic.target = (LIR *) target;
   3288 
   3289             genRegCopy(cUnit, r1, r8);
   3290 
   3291             /* Check if rechain limit is reached */
   3292             ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
   3293                                                        r1, 0);
   3294 
   3295             LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   3296 
   3297             genRegCopy(cUnit, r1, r6SELF);
   3298             genRegCopy(cUnit, r2, r9);
   3299             genRegCopy(cUnit, r3, r10);
   3300 
   3301             /*
   3302              * r0 = calleeMethod
   3303              * r2 = &predictedChainingCell
   3304              * r3 = class
   3305              *
   3306              * &returnChainingCell has been loaded into r1 but is not needed
   3307              * when patching the chaining cell and will be clobbered upon
   3308              * returning so it will be reconstructed again.
   3309              */
   3310             opReg(cUnit, kOpBlx, r7);
   3311 
   3312             /* r1 = &retChainingCell */
   3313             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3314             addrRetChain->generic.target = (LIR *) retChainingCell;
   3315 
   3316             bypassRechaining->generic.target = (LIR *) addrRetChain;
   3317 
   3318             /*
   3319              * r0 = this, r1 = calleeMethod,
   3320              * r1 = &ChainingCell,
   3321              * r4PC = callsiteDPC,
   3322              */
   3323             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3324                 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   3325                 TEMPLATE_INVOKE_METHOD_NO_OPT);
   3326 #if defined(WITH_JIT_TUNING)
   3327             gDvmJit.invokePolymorphic++;
   3328 #endif
   3329             /* Handle exceptions using the interpreter */
   3330             genTrap(cUnit, mir->offset, pcrLabel);
   3331             break;
   3332         }
   3333         case OP_INVOKE_OBJECT_INIT_RANGE:
   3334         case OP_FILLED_NEW_ARRAY:
   3335         case OP_FILLED_NEW_ARRAY_RANGE: {
   3336             /* Just let the interpreter deal with these */
   3337             genInterpSingleStep(cUnit, mir);
   3338             break;
   3339         }
   3340         default:
   3341             return true;
   3342     }
   3343     return false;
   3344 }
   3345 
   3346 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   3347                                BasicBlock *bb, ArmLIR *labelList)
   3348 {
   3349     ArmLIR *pcrLabel = NULL;
   3350 
   3351     /* An invoke with the MIR_INLINED is effectively a no-op */
   3352     if (mir->OptimizationFlags & MIR_INLINED)
   3353         return false;
   3354 
   3355     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3356     switch (mir->dalvikInsn.opcode) {
   3357         /* calleeMethod = this->clazz->vtable[BBBB] */
   3358         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   3359         case OP_INVOKE_VIRTUAL_QUICK: {
   3360             int methodIndex = dInsn->vB;
   3361             ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   3362             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3363 
   3364             /*
   3365              * If the invoke has non-null misPredBranchOver, we need to generate
   3366              * the non-inlined version of the invoke here to handle the
   3367              * mispredicted case.
   3368              */
   3369             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3370                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3371             }
   3372 
   3373             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
   3374                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3375             else
   3376                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3377 
   3378 
   3379             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3380                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3381                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3382                 assert(calleeAddr);
   3383                 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
   3384                                             retChainingCell);
   3385             }
   3386 
   3387             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3388                                    retChainingCell,
   3389                                    predChainingCell,
   3390                                    pcrLabel);
   3391             break;
   3392         }
   3393         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   3394         case OP_INVOKE_SUPER_QUICK:
   3395         case OP_INVOKE_SUPER_QUICK_RANGE: {
   3396             /* Grab the method ptr directly from what the interpreter sees */
   3397             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3398             assert(calleeMethod ==
   3399                    cUnit->method->clazz->super->vtable[dInsn->vB]);
   3400 
   3401             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
   3402                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3403             else
   3404                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3405 
   3406             /* r0 = calleeMethod */
   3407             loadConstant(cUnit, r0, (int) calleeMethod);
   3408 
   3409             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3410                                      calleeMethod);
   3411             break;
   3412         }
   3413         default:
   3414             return true;
   3415     }
   3416     return false;
   3417 }
   3418 
   3419 /*
   3420  * This operation is complex enough that we'll do it partly inline
   3421  * and partly with a handler.  NOTE: the handler uses hardcoded
   3422  * values for string object offsets and must be revisitied if the
   3423  * layout changes.
   3424  */
   3425 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   3426 {
   3427 #if defined(USE_GLOBAL_STRING_DEFS)
   3428     return handleExecuteInlineC(cUnit, mir);
   3429 #else
   3430     ArmLIR *rollback;
   3431     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3432     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   3433 
   3434     loadValueDirectFixed(cUnit, rlThis, r0);
   3435     loadValueDirectFixed(cUnit, rlComp, r1);
   3436     /* Test objects for NULL */
   3437     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3438     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   3439     /*
   3440      * TUNING: we could check for object pointer equality before invoking
   3441      * handler. Unclear whether the gain would be worth the added code size
   3442      * expansion.
   3443      */
   3444     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   3445     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3446                dvmCompilerGetReturn(cUnit));
   3447     return false;
   3448 #endif
   3449 }
   3450 
   3451 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
   3452 {
   3453 #if defined(USE_GLOBAL_STRING_DEFS)
   3454     return handleExecuteInlineC(cUnit, mir);
   3455 #else
   3456     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3457     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   3458 
   3459     loadValueDirectFixed(cUnit, rlThis, r0);
   3460     loadValueDirectFixed(cUnit, rlChar, r1);
   3461     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   3462     loadValueDirectFixed(cUnit, rlStart, r2);
   3463     /* Test objects for NULL */
   3464     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3465     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3466     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3467                dvmCompilerGetReturn(cUnit));
   3468     return false;
   3469 #endif
   3470 }
   3471 
   3472 // Generates an inlined String.isEmpty or String.length.
   3473 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
   3474                                             bool isEmpty)
   3475 {
   3476     // dst = src.length();
   3477     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3478     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3479     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3480     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3481     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3482     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3483                  rlResult.lowReg);
   3484     if (isEmpty) {
   3485         // dst = (dst == 0);
   3486         int tReg = dvmCompilerAllocTemp(cUnit);
   3487         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
   3488         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
   3489     }
   3490     storeValue(cUnit, rlDest, rlResult);
   3491     return false;
   3492 }
   3493 
   3494 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3495 {
   3496     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
   3497 }
   3498 
   3499 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
   3500 {
   3501     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
   3502 }
   3503 
   3504 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3505 {
   3506     int contents = OFFSETOF_MEMBER(ArrayObject, contents);
   3507     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3508     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3509     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3510     RegLocation rlResult;
   3511     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3512     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3513     int regMax = dvmCompilerAllocTemp(cUnit);
   3514     int regOff = dvmCompilerAllocTemp(cUnit);
   3515     int regPtr = dvmCompilerAllocTemp(cUnit);
   3516     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3517                                     mir->offset, NULL);
   3518     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3519     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3520     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3521     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3522     dvmCompilerFreeTemp(cUnit, regMax);
   3523     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3524     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3525     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3526     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3527     storeValue(cUnit, rlDest, rlResult);
   3528     return false;
   3529 }
   3530 
   3531 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3532 {
   3533     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3534     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3535     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3536     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3537     int signReg = dvmCompilerAllocTemp(cUnit);
   3538     /*
   3539      * abs(x) = y<=x>>31, (x+y)^y.
   3540      * Thumb2's IT block also yields 3 instructions, but imposes
   3541      * scheduling constraints.
   3542      */
   3543     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3544     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3545     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3546     storeValue(cUnit, rlDest, rlResult);
   3547     return false;
   3548 }
   3549 
   3550 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3551 {
   3552     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3553     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3554     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3555     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3556     int signReg = dvmCompilerAllocTemp(cUnit);
   3557     /*
   3558      * abs(x) = y<=x>>31, (x+y)^y.
   3559      * Thumb2 IT block allows slightly shorter sequence,
   3560      * but introduces a scheduling barrier.  Stick with this
   3561      * mechanism for now.
   3562      */
   3563     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3564     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3565     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3566     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3567     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3568     storeValueWide(cUnit, rlDest, rlResult);
   3569     return false;
   3570 }
   3571 
   3572 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
   3573 {
   3574     // Just move from source to destination...
   3575     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3576     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3577     storeValue(cUnit, rlDest, rlSrc);
   3578     return false;
   3579 }
   3580 
   3581 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
   3582 {
   3583     // Just move from source to destination...
   3584     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3585     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3586     storeValueWide(cUnit, rlDest, rlSrc);
   3587     return false;
   3588 }
   3589 
   3590 /*
   3591  * JITs a call to a C function.
   3592  * TODO: use this for faster native method invocation for simple native
   3593  * methods (http://b/3069458).
   3594  */
   3595 static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
   3596 {
   3597     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3598     int operation = dInsn->vB;
   3599     unsigned int i;
   3600     const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3601     uintptr_t fn = (int) inLineTable[operation].func;
   3602     if (fn == 0) {
   3603         dvmCompilerAbort(cUnit);
   3604     }
   3605     dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3606     dvmCompilerClobberCallRegs(cUnit);
   3607     dvmCompilerClobber(cUnit, r4PC);
   3608     dvmCompilerClobber(cUnit, r7);
   3609     int offset = offsetof(Thread, interpSave.retval);
   3610     opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
   3611     opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3612     LOAD_FUNC_ADDR(cUnit, r4PC, fn);
   3613     genExportPC(cUnit, mir);
   3614     for (i=0; i < dInsn->vA; i++) {
   3615         loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3616     }
   3617     opReg(cUnit, kOpBlx, r4PC);
   3618     opRegImm(cUnit, kOpAdd, r13sp, 8);
   3619     /* NULL? */
   3620     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3621     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   3622     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3623     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3624     target->defMask = ENCODE_ALL;
   3625     branchOver->generic.target = (LIR *) target;
   3626     return false;
   3627 }
   3628 
   3629 /*
   3630  * NOTE: Handles both range and non-range versions (arguments
   3631  * have already been normalized by this point).
   3632  */
   3633 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3634 {
   3635     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3636     assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
   3637            dInsn->opcode == OP_EXECUTE_INLINE);
   3638     switch (dInsn->vB) {
   3639         case INLINE_EMPTYINLINEMETHOD:
   3640             return false;  /* Nop */
   3641 
   3642         /* These ones we potentially JIT inline. */
   3643 
   3644         case INLINE_STRING_CHARAT:
   3645             return genInlinedStringCharAt(cUnit, mir);
   3646         case INLINE_STRING_LENGTH:
   3647             return genInlinedStringLength(cUnit, mir);
   3648         case INLINE_STRING_IS_EMPTY:
   3649             return genInlinedStringIsEmpty(cUnit, mir);
   3650         case INLINE_STRING_COMPARETO:
   3651             return genInlinedCompareTo(cUnit, mir);
   3652         case INLINE_STRING_FASTINDEXOF_II:
   3653             return genInlinedFastIndexOf(cUnit, mir);
   3654 
   3655         case INLINE_MATH_ABS_INT:
   3656         case INLINE_STRICT_MATH_ABS_INT:
   3657             return genInlinedAbsInt(cUnit, mir);
   3658         case INLINE_MATH_ABS_LONG:
   3659         case INLINE_STRICT_MATH_ABS_LONG:
   3660             return genInlinedAbsLong(cUnit, mir);
   3661         case INLINE_MATH_MIN_INT:
   3662         case INLINE_STRICT_MATH_MIN_INT:
   3663             return genInlinedMinMaxInt(cUnit, mir, true);
   3664         case INLINE_MATH_MAX_INT:
   3665         case INLINE_STRICT_MATH_MAX_INT:
   3666             return genInlinedMinMaxInt(cUnit, mir, false);
   3667         case INLINE_MATH_SQRT:
   3668         case INLINE_STRICT_MATH_SQRT:
   3669             return genInlineSqrt(cUnit, mir);
   3670         case INLINE_MATH_ABS_FLOAT:
   3671         case INLINE_STRICT_MATH_ABS_FLOAT:
   3672             return genInlinedAbsFloat(cUnit, mir);
   3673         case INLINE_MATH_ABS_DOUBLE:
   3674         case INLINE_STRICT_MATH_ABS_DOUBLE:
   3675             return genInlinedAbsDouble(cUnit, mir);
   3676 
   3677         case INLINE_FLOAT_TO_RAW_INT_BITS:
   3678         case INLINE_INT_BITS_TO_FLOAT:
   3679             return genInlinedIntFloatConversion(cUnit, mir);
   3680         case INLINE_DOUBLE_TO_RAW_LONG_BITS:
   3681         case INLINE_LONG_BITS_TO_DOUBLE:
   3682             return genInlinedLongDoubleConversion(cUnit, mir);
   3683 
   3684         /*
   3685          * These ones we just JIT a call to a C function for.
   3686          * TODO: special-case these in the other "invoke" call paths.
   3687          */
   3688         case INLINE_STRING_EQUALS:
   3689         case INLINE_MATH_COS:
   3690         case INLINE_MATH_SIN:
   3691         case INLINE_FLOAT_TO_INT_BITS:
   3692         case INLINE_DOUBLE_TO_LONG_BITS:
   3693             return handleExecuteInlineC(cUnit, mir);
   3694     }
   3695     dvmCompilerAbort(cUnit);
   3696     return false; // Not reachable; keeps compiler happy.
   3697 }
   3698 
   3699 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3700 {
   3701     //TUNING: We're using core regs here - not optimal when target is a double
   3702     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3703     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3704     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3705                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3706     loadConstantNoClobber(cUnit, rlResult.highReg,
   3707                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3708     storeValueWide(cUnit, rlDest, rlResult);
   3709     return false;
   3710 }
   3711 
   3712 /*
   3713  * The following are special processing routines that handle transfer of
   3714  * controls between compiled code and the interpreter. Certain VM states like
   3715  * Dalvik PC and special-purpose registers are reconstructed here.
   3716  */
   3717 
   3718 /*
   3719  * Insert a
   3720  *    b   .+4
   3721  *    nop
   3722  * pair at the beginning of a chaining cell.  This serves as the
   3723  * switch branch that selects between reverting to the interpreter or
   3724  * not.  Once the cell is chained to a translation, the cell will
   3725  * contain a 32-bit branch.  Subsequent chain/unchain operations will
   3726  * then only alter that first 16-bits - the "b .+4" for unchaining,
   3727  * and the restoration of the first half of the 32-bit branch for
   3728  * rechaining.
   3729  */
   3730 static void insertChainingSwitch(CompilationUnit *cUnit)
   3731 {
   3732     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
   3733     newLIR2(cUnit, kThumbOrr, r0, r0);
   3734     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3735     target->defMask = ENCODE_ALL;
   3736     branch->generic.target = (LIR *) target;
   3737 }
   3738 
   3739 /* Chaining cell for code that may need warmup. */
   3740 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3741                                      unsigned int offset)
   3742 {
   3743     /*
   3744      * Use raw instruction constructors to guarantee that the generated
   3745      * instructions fit the predefined cell size.
   3746      */
   3747     insertChainingSwitch(cUnit);
   3748     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3749             offsetof(Thread,
   3750                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3751     newLIR1(cUnit, kThumbBlxR, r0);
   3752     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3753 }
   3754 
   3755 /*
   3756  * Chaining cell for instructions that immediately following already translated
   3757  * code.
   3758  */
   3759 static void handleHotChainingCell(CompilationUnit *cUnit,
   3760                                   unsigned int offset)
   3761 {
   3762     /*
   3763      * Use raw instruction constructors to guarantee that the generated
   3764      * instructions fit the predefined cell size.
   3765      */
   3766     insertChainingSwitch(cUnit);
   3767     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3768             offsetof(Thread,
   3769                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3770     newLIR1(cUnit, kThumbBlxR, r0);
   3771     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3772 }
   3773 
   3774 /* Chaining cell for branches that branch back into the same basic block */
   3775 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3776                                              unsigned int offset)
   3777 {
   3778     /*
   3779      * Use raw instruction constructors to guarantee that the generated
   3780      * instructions fit the predefined cell size.
   3781      */
   3782     insertChainingSwitch(cUnit);
   3783 #if defined(WITH_SELF_VERIFICATION)
   3784     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3785         offsetof(Thread,
   3786                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3787 #else
   3788     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3789         offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3790 #endif
   3791     newLIR1(cUnit, kThumbBlxR, r0);
   3792     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3793 }
   3794 
   3795 /* Chaining cell for monomorphic method invocations. */
   3796 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3797                                               const Method *callee)
   3798 {
   3799     /*
   3800      * Use raw instruction constructors to guarantee that the generated
   3801      * instructions fit the predefined cell size.
   3802      */
   3803     insertChainingSwitch(cUnit);
   3804     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3805             offsetof(Thread,
   3806                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3807     newLIR1(cUnit, kThumbBlxR, r0);
   3808     addWordData(cUnit, NULL, (int) (callee->insns));
   3809 }
   3810 
   3811 /* Chaining cell for monomorphic method invocations. */
   3812 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3813 {
   3814 
   3815     /* Should not be executed in the initial state */
   3816     addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
   3817     /* To be filled: class */
   3818     addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
   3819     /* To be filled: method */
   3820     addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
   3821     /*
   3822      * Rechain count. The initial value of 0 here will trigger chaining upon
   3823      * the first invocation of this callsite.
   3824      */
   3825     addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
   3826 }
   3827 
   3828 /* Load the Dalvik PC into r0 and jump to the specified target */
   3829 static void handlePCReconstruction(CompilationUnit *cUnit,
   3830                                    ArmLIR *targetLabel)
   3831 {
   3832     ArmLIR **pcrLabel =
   3833         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3834     int numElems = cUnit->pcReconstructionList.numUsed;
   3835     int i;
   3836 
   3837     /*
   3838      * We should never reach here through fall-through code, so insert
   3839      * a bomb to signal troubles immediately.
   3840      */
   3841     if (numElems) {
   3842         newLIR0(cUnit, kThumbUndefined);
   3843     }
   3844 
   3845     for (i = 0; i < numElems; i++) {
   3846         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3847         /* r0 = dalvik PC */
   3848         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3849         genUnconditionalBranch(cUnit, targetLabel);
   3850     }
   3851 }
   3852 
   3853 static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3854     "kMirOpPhi",
   3855     "kMirOpNullNRangeUpCheck",
   3856     "kMirOpNullNRangeDownCheck",
   3857     "kMirOpLowerBound",
   3858     "kMirOpPunt",
   3859     "kMirOpCheckInlinePrediction",
   3860 };
   3861 
   3862 /*
   3863  * vA = arrayReg;
   3864  * vB = idxReg;
   3865  * vC = endConditionReg;
   3866  * arg[0] = maxC
   3867  * arg[1] = minC
   3868  * arg[2] = loopBranchConditionCode
   3869  */
   3870 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3871 {
   3872     /*
   3873      * NOTE: these synthesized blocks don't have ssa names assigned
   3874      * for Dalvik registers.  However, because they dominate the following
   3875      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3876      * ssa name.
   3877      */
   3878     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3879     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3880     const int maxC = dInsn->arg[0];
   3881     int regLength;
   3882     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3883     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3884 
   3885     /* regArray <- arrayRef */
   3886     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3887     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3888     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3889                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3890 
   3891     /* regLength <- len(arrayRef) */
   3892     regLength = dvmCompilerAllocTemp(cUnit);
   3893     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3894 
   3895     int delta = maxC;
   3896     /*
   3897      * If the loop end condition is ">=" instead of ">", then the largest value
   3898      * of the index is "endCondition - 1".
   3899      */
   3900     if (dInsn->arg[2] == OP_IF_GE) {
   3901         delta--;
   3902     }
   3903 
   3904     if (delta) {
   3905         int tReg = dvmCompilerAllocTemp(cUnit);
   3906         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3907         rlIdxEnd.lowReg = tReg;
   3908         dvmCompilerFreeTemp(cUnit, tReg);
   3909     }
   3910     /* Punt if "regIdxEnd < len(Array)" is false */
   3911     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3912                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3913 }
   3914 
   3915 /*
   3916  * vA = arrayReg;
   3917  * vB = idxReg;
   3918  * vC = endConditionReg;
   3919  * arg[0] = maxC
   3920  * arg[1] = minC
   3921  * arg[2] = loopBranchConditionCode
   3922  */
   3923 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3924 {
   3925     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3926     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3927     const int regLength = dvmCompilerAllocTemp(cUnit);
   3928     const int maxC = dInsn->arg[0];
   3929     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3930     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3931 
   3932     /* regArray <- arrayRef */
   3933     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3934     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3935     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3936                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3937 
   3938     /* regLength <- len(arrayRef) */
   3939     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3940 
   3941     if (maxC) {
   3942         int tReg = dvmCompilerAllocTemp(cUnit);
   3943         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3944         rlIdxInit.lowReg = tReg;
   3945         dvmCompilerFreeTemp(cUnit, tReg);
   3946     }
   3947 
   3948     /* Punt if "regIdxInit < len(Array)" is false */
   3949     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3950                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3951 }
   3952 
   3953 /*
   3954  * vA = idxReg;
   3955  * vB = minC;
   3956  */
   3957 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3958 {
   3959     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3960     const int minC = dInsn->vB;
   3961     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3962 
   3963     /* regIdx <- initial index value */
   3964     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3965 
   3966     /* Punt if "regIdxInit + minC >= 0" is false */
   3967     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3968                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3969 }
   3970 
   3971 /*
   3972  * vC = this
   3973  *
   3974  * A predicted inlining target looks like the following, where instructions
   3975  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
   3976  * matches "this", and the verificaion code is generated by this routine.
   3977  *
   3978  * (C) means the instruction is inlined from the callee, and (PI) means the
   3979  * instruction is the predicted inlined invoke, whose corresponding
   3980  * instructions are still generated to handle the mispredicted case.
   3981  *
   3982  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
   3983  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
   3984  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
   3985  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
   3986  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
   3987  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
   3988  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
   3989  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
   3990  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
   3991  * v4, v17, (#8)
   3992  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
   3993  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
   3994  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
   3995  * +invoke-virtual-quick/range (PI) v17..v17
   3996  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
   3997  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
   3998  * D/dalvikvm(   86): -------- BARRIER
   3999  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
   4000  * D/dalvikvm(   86): -------- BARRIER
   4001  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
   4002  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
   4003  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
   4004  * D/dalvikvm(   86): -------- BARRIER
   4005  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
   4006  * D/dalvikvm(   86): -------- BARRIER
   4007  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
   4008  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
   4009  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
   4010  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
   4011  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
   4012  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
   4013  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
   4014  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
   4015  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
   4016  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
   4017  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
   4018  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
   4019  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
   4020  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
   4021  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
   4022  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
   4023  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
   4024  * D/dalvikvm(   86): 0x4858deac (0048): .align4
   4025  * D/dalvikvm(   86): L0x004f:
   4026  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
   4027  * v4, (#0), (#0)
   4028  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
   4029  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
   4030  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
   4031  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4032  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
   4033  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
   4034  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4035  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
   4036  * D/dalvikvm(   86): Exception_Handling:
   4037  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
   4038  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
   4039  * D/dalvikvm(   86): 0x4858debc (0058): .align4
   4040  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
   4041  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
   4042  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
   4043  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
   4044  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
   4045  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
   4046  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
   4047  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
   4048  * D/dalvikvm(   86): -------- chaining cell (predicted)
   4049  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
   4050  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
   4051  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
   4052  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
   4053  * :
   4054  */
   4055 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
   4056 {
   4057     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   4058     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
   4059 
   4060     rlThis = loadValue(cUnit, rlThis, kCoreReg);
   4061     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
   4062     loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
   4063     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
   4064                  NULL);/* null object? */
   4065     int regActualClass = dvmCompilerAllocTemp(cUnit);
   4066     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
   4067     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
   4068     /*
   4069      * Set the misPredBranchOver target so that it will be generated when the
   4070      * code for the non-optimized invoke is generated.
   4071      */
   4072     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
   4073 }
   4074 
   4075 /* Extended MIR instructions like PHI */
   4076 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   4077 {
   4078     int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
   4079     char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   4080                                         false);
   4081     strcpy(msg, extendedMIROpNames[opOffset]);
   4082     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   4083 
   4084     switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
   4085         case kMirOpPhi: {
   4086             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   4087             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4088             break;
   4089         }
   4090         case kMirOpNullNRangeUpCheck: {
   4091             genHoistedChecksForCountUpLoop(cUnit, mir);
   4092             break;
   4093         }
   4094         case kMirOpNullNRangeDownCheck: {
   4095             genHoistedChecksForCountDownLoop(cUnit, mir);
   4096             break;
   4097         }
   4098         case kMirOpLowerBound: {
   4099             genHoistedLowerBoundCheck(cUnit, mir);
   4100             break;
   4101         }
   4102         case kMirOpPunt: {
   4103             genUnconditionalBranch(cUnit,
   4104                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   4105             break;
   4106         }
   4107         case kMirOpCheckInlinePrediction: {
   4108             genValidationForPredictedInline(cUnit, mir);
   4109             break;
   4110         }
   4111         default:
   4112             break;
   4113     }
   4114 }
   4115 
   4116 /*
   4117  * Create a PC-reconstruction cell for the starting offset of this trace.
   4118  * Since the PCR cell is placed near the end of the compiled code which is
   4119  * usually out of range for a conditional branch, we put two branches (one
   4120  * branch over to the loop body and one layover branch to the actual PCR) at the
   4121  * end of the entry block.
   4122  */
   4123 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   4124                                 ArmLIR *bodyLabel)
   4125 {
   4126     /* Set up the place holder to reconstruct this Dalvik PC */
   4127     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4128     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   4129     pcrLabel->operands[0] =
   4130         (int) (cUnit->method->insns + entry->startOffset);
   4131     pcrLabel->operands[1] = entry->startOffset;
   4132     /* Insert the place holder to the growable list */
   4133     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
   4134 
   4135     /*
   4136      * Next, create two branches - one branch over to the loop body and the
   4137      * other branch to the PCR cell to punt.
   4138      */
   4139     ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4140     branchToBody->opcode = kThumbBUncond;
   4141     branchToBody->generic.target = (LIR *) bodyLabel;
   4142     setupResourceMasks(branchToBody);
   4143     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   4144 
   4145     ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4146     branchToPCR->opcode = kThumbBUncond;
   4147     branchToPCR->generic.target = (LIR *) pcrLabel;
   4148     setupResourceMasks(branchToPCR);
   4149     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   4150 }
   4151 
   4152 #if defined(WITH_SELF_VERIFICATION)
   4153 static bool selfVerificationPuntOps(MIR *mir)
   4154 {
   4155     DecodedInstruction *decInsn = &mir->dalvikInsn;
   4156 
   4157     /*
   4158      * All opcodes that can throw exceptions and use the
   4159      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   4160      * under self-verification mode.
   4161      */
   4162     switch (decInsn->opcode) {
   4163         case OP_MONITOR_ENTER:
   4164         case OP_MONITOR_EXIT:
   4165         case OP_NEW_INSTANCE:
   4166         case OP_NEW_ARRAY:
   4167         case OP_CHECK_CAST:
   4168         case OP_MOVE_EXCEPTION:
   4169         case OP_FILL_ARRAY_DATA:
   4170         case OP_EXECUTE_INLINE:
   4171         case OP_EXECUTE_INLINE_RANGE:
   4172             return true;
   4173         default:
   4174             return false;
   4175     }
   4176 }
   4177 #endif
   4178 
   4179 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   4180 {
   4181     /* Used to hold the labels of each block */
   4182     ArmLIR *labelList =
   4183         (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   4184     ArmLIR *headLIR = NULL;
   4185     GrowableList chainingListByType[kChainingCellGap];
   4186     int i;
   4187 
   4188     /*
   4189      * Initialize various types chaining lists.
   4190      */
   4191     for (i = 0; i < kChainingCellGap; i++) {
   4192         dvmInitGrowableList(&chainingListByType[i], 2);
   4193     }
   4194 
   4195     /* Clear the visited flag for each block */
   4196     dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
   4197                                           kAllNodes, false /* isIterative */);
   4198 
   4199     GrowableListIterator iterator;
   4200     dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
   4201 
   4202     /* Traces start with a profiling entry point.  Generate it here */
   4203     cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
   4204 
   4205     /* Handle the content in each basic block */
   4206     for (i = 0; ; i++) {
   4207         MIR *mir;
   4208         BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
   4209         if (bb == NULL) break;
   4210         if (bb->visited == true) continue;
   4211 
   4212         labelList[i].operands[0] = bb->startOffset;
   4213 
   4214         if (bb->blockType >= kChainingCellGap) {
   4215             if (bb->isFallThroughFromInvoke == true) {
   4216                 /* Align this block first since it is a return chaining cell */
   4217                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4218             }
   4219             /*
   4220              * Append the label pseudo LIR first. Chaining cells will be handled
   4221              * separately afterwards.
   4222              */
   4223             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   4224         }
   4225 
   4226         if (bb->blockType == kEntryBlock) {
   4227             labelList[i].opcode = kArmPseudoEntryBlock;
   4228             if (bb->firstMIRInsn == NULL) {
   4229                 continue;
   4230             } else {
   4231               setupLoopEntryBlock(cUnit, bb,
   4232                                   &labelList[bb->fallThrough->id]);
   4233             }
   4234         } else if (bb->blockType == kExitBlock) {
   4235             labelList[i].opcode = kArmPseudoExitBlock;
   4236             goto gen_fallthrough;
   4237         } else if (bb->blockType == kDalvikByteCode) {
   4238             if (bb->hidden == true) continue;
   4239             labelList[i].opcode = kArmPseudoNormalBlockLabel;
   4240             /* Reset the register state */
   4241             dvmCompilerResetRegPool(cUnit);
   4242             dvmCompilerClobberAllRegs(cUnit);
   4243             dvmCompilerResetNullCheck(cUnit);
   4244         } else {
   4245             switch (bb->blockType) {
   4246                 case kChainingCellNormal:
   4247                     labelList[i].opcode = kArmPseudoChainingCellNormal;
   4248                     /* handle the codegen later */
   4249                     dvmInsertGrowableList(
   4250                         &chainingListByType[kChainingCellNormal], i);
   4251                     break;
   4252                 case kChainingCellInvokeSingleton:
   4253                     labelList[i].opcode =
   4254                         kArmPseudoChainingCellInvokeSingleton;
   4255                     labelList[i].operands[0] =
   4256                         (int) bb->containingMethod;
   4257                     /* handle the codegen later */
   4258                     dvmInsertGrowableList(
   4259                         &chainingListByType[kChainingCellInvokeSingleton], i);
   4260                     break;
   4261                 case kChainingCellInvokePredicted:
   4262                     labelList[i].opcode =
   4263                         kArmPseudoChainingCellInvokePredicted;
   4264                     /*
   4265                      * Move the cached method pointer from operand 1 to 0.
   4266                      * Operand 0 was clobbered earlier in this routine to store
   4267                      * the block starting offset, which is not applicable to
   4268                      * predicted chaining cell.
   4269                      */
   4270                     labelList[i].operands[0] = labelList[i].operands[1];
   4271                     /* handle the codegen later */
   4272                     dvmInsertGrowableList(
   4273                         &chainingListByType[kChainingCellInvokePredicted], i);
   4274                     break;
   4275                 case kChainingCellHot:
   4276                     labelList[i].opcode =
   4277                         kArmPseudoChainingCellHot;
   4278                     /* handle the codegen later */
   4279                     dvmInsertGrowableList(
   4280                         &chainingListByType[kChainingCellHot], i);
   4281                     break;
   4282                 case kPCReconstruction:
   4283                     /* Make sure exception handling block is next */
   4284                     labelList[i].opcode =
   4285                         kArmPseudoPCReconstructionBlockLabel;
   4286                     handlePCReconstruction(cUnit,
   4287                                            &labelList[cUnit->puntBlock->id]);
   4288                     break;
   4289                 case kExceptionHandling:
   4290                     labelList[i].opcode = kArmPseudoEHBlockLabel;
   4291                     if (cUnit->pcReconstructionList.numUsed) {
   4292                         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4293                                      jitToInterpEntries.dvmJitToInterpPunt),
   4294                                      r1);
   4295                         opReg(cUnit, kOpBlx, r1);
   4296                     }
   4297                     break;
   4298                 case kChainingCellBackwardBranch:
   4299                     labelList[i].opcode =
   4300                         kArmPseudoChainingCellBackwardBranch;
   4301                     /* handle the codegen later */
   4302                     dvmInsertGrowableList(
   4303                         &chainingListByType[kChainingCellBackwardBranch],
   4304                         i);
   4305                     break;
   4306                 default:
   4307                     break;
   4308             }
   4309             continue;
   4310         }
   4311 
   4312         /*
   4313          * Try to build a longer optimization unit. Currently if the previous
   4314          * block ends with a goto, we continue adding instructions and don't
   4315          * reset the register allocation pool.
   4316          */
   4317         for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
   4318             bb = nextBB;
   4319             bb->visited = true;
   4320             cUnit->nextCodegenBlock = NULL;
   4321 
   4322             for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
   4323 
   4324                 dvmCompilerResetRegPool(cUnit);
   4325                 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   4326                     dvmCompilerClobberAllRegs(cUnit);
   4327                 }
   4328 
   4329                 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   4330                     dvmCompilerResetDefTracking(cUnit);
   4331                 }
   4332 
   4333                 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
   4334                     handleExtendedMIR(cUnit, mir);
   4335                     continue;
   4336                 }
   4337 
   4338                 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   4339                 InstructionFormat dalvikFormat =
   4340                     dexGetFormatFromOpcode(dalvikOpcode);
   4341                 const char *note;
   4342                 if (mir->OptimizationFlags & MIR_INLINED) {
   4343                     note = " (I)";
   4344                 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
   4345                     note = " (PI)";
   4346                 } else if (mir->OptimizationFlags & MIR_CALLEE) {
   4347                     note = " (C)";
   4348                 } else {
   4349                     note = NULL;
   4350                 }
   4351 
   4352                 ArmLIR *boundaryLIR;
   4353 
   4354                 /*
   4355                  * Don't generate the boundary LIR unless we are debugging this
   4356                  * trace or we need a scheduling barrier.
   4357                  */
   4358                 if (headLIR == NULL || cUnit->printMe == true) {
   4359                     boundaryLIR =
   4360                         newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   4361                                 mir->offset,
   4362                                 (int) dvmCompilerGetDalvikDisassembly(
   4363                                     &mir->dalvikInsn, note));
   4364                     /* Remember the first LIR for this block */
   4365                     if (headLIR == NULL) {
   4366                         headLIR = boundaryLIR;
   4367                         /* Set the first boundaryLIR as a scheduling barrier */
   4368                         headLIR->defMask = ENCODE_ALL;
   4369                     }
   4370                 }
   4371 
   4372                 /*
   4373                  * Don't generate the SSA annotation unless verbose mode is on
   4374                  */
   4375                 if (cUnit->printMe && mir->ssaRep) {
   4376                     char *ssaString = dvmCompilerGetSSAString(cUnit,
   4377                                                               mir->ssaRep);
   4378                     newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4379                 }
   4380 
   4381                 bool notHandled;
   4382                 /*
   4383                  * Debugging: screen the opcode first to see if it is in the
   4384                  * do[-not]-compile list
   4385                  */
   4386                 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
   4387 #if defined(WITH_SELF_VERIFICATION)
   4388               if (singleStepMe == false) {
   4389                   singleStepMe = selfVerificationPuntOps(mir);
   4390               }
   4391 #endif
   4392                 if (singleStepMe || cUnit->allSingleStep) {
   4393                     notHandled = false;
   4394                     genInterpSingleStep(cUnit, mir);
   4395                 } else {
   4396                     opcodeCoverage[dalvikOpcode]++;
   4397                     switch (dalvikFormat) {
   4398                         case kFmt10t:
   4399                         case kFmt20t:
   4400                         case kFmt30t:
   4401                             notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   4402                                       mir, bb, labelList);
   4403                             break;
   4404                         case kFmt10x:
   4405                             notHandled = handleFmt10x(cUnit, mir);
   4406                             break;
   4407                         case kFmt11n:
   4408                         case kFmt31i:
   4409                             notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   4410                             break;
   4411                         case kFmt11x:
   4412                             notHandled = handleFmt11x(cUnit, mir);
   4413                             break;
   4414                         case kFmt12x:
   4415                             notHandled = handleFmt12x(cUnit, mir);
   4416                             break;
   4417                         case kFmt20bc:
   4418                             notHandled = handleFmt20bc(cUnit, mir);
   4419                             break;
   4420                         case kFmt21c:
   4421                         case kFmt31c:
   4422                             notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   4423                             break;
   4424                         case kFmt21h:
   4425                             notHandled = handleFmt21h(cUnit, mir);
   4426                             break;
   4427                         case kFmt21s:
   4428                             notHandled = handleFmt21s(cUnit, mir);
   4429                             break;
   4430                         case kFmt21t:
   4431                             notHandled = handleFmt21t(cUnit, mir, bb,
   4432                                                       labelList);
   4433                             break;
   4434                         case kFmt22b:
   4435                         case kFmt22s:
   4436                             notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   4437                             break;
   4438                         case kFmt22c:
   4439                             notHandled = handleFmt22c(cUnit, mir);
   4440                             break;
   4441                         case kFmt22cs:
   4442                             notHandled = handleFmt22cs(cUnit, mir);
   4443                             break;
   4444                         case kFmt22t:
   4445                             notHandled = handleFmt22t(cUnit, mir, bb,
   4446                                                       labelList);
   4447                             break;
   4448                         case kFmt22x:
   4449                         case kFmt32x:
   4450                             notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   4451                             break;
   4452                         case kFmt23x:
   4453                             notHandled = handleFmt23x(cUnit, mir);
   4454                             break;
   4455                         case kFmt31t:
   4456                             notHandled = handleFmt31t(cUnit, mir);
   4457                             break;
   4458                         case kFmt3rc:
   4459                         case kFmt35c:
   4460                             notHandled = handleFmt35c_3rc(cUnit, mir, bb,
   4461                                                           labelList);
   4462                             break;
   4463                         case kFmt3rms:
   4464                         case kFmt35ms:
   4465                             notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
   4466                                                             labelList);
   4467                             break;
   4468                         case kFmt35mi:
   4469                         case kFmt3rmi:
   4470                             notHandled = handleExecuteInline(cUnit, mir);
   4471                             break;
   4472                         case kFmt51l:
   4473                             notHandled = handleFmt51l(cUnit, mir);
   4474                             break;
   4475                         default:
   4476                             notHandled = true;
   4477                             break;
   4478                     }
   4479                 }
   4480                 if (notHandled) {
   4481                     ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
   4482                          mir->offset,
   4483                          dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
   4484                          dalvikFormat);
   4485                     dvmCompilerAbort(cUnit);
   4486                     break;
   4487                 }
   4488             }
   4489         }
   4490 
   4491         if (bb->blockType == kEntryBlock) {
   4492             dvmCompilerAppendLIR(cUnit,
   4493                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   4494             dvmCompilerAppendLIR(cUnit,
   4495                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   4496         }
   4497 
   4498         if (headLIR) {
   4499             /*
   4500              * Eliminate redundant loads/stores and delay stores into later
   4501              * slots
   4502              */
   4503             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   4504                                                cUnit->lastLIRInsn);
   4505             /* Reset headLIR which is also the optimization boundary */
   4506             headLIR = NULL;
   4507         }
   4508 
   4509 gen_fallthrough:
   4510         /*
   4511          * Check if the block is terminated due to trace length constraint -
   4512          * insert an unconditional branch to the chaining cell.
   4513          */
   4514         if (bb->needFallThroughBranch) {
   4515             genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   4516         }
   4517     }
   4518 
   4519     /* Handle the chaining cells in predefined order */
   4520     for (i = 0; i < kChainingCellGap; i++) {
   4521         size_t j;
   4522         int *blockIdList = (int *) chainingListByType[i].elemList;
   4523 
   4524         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   4525 
   4526         /* No chaining cells of this type */
   4527         if (cUnit->numChainingCells[i] == 0)
   4528             continue;
   4529 
   4530         /* Record the first LIR for a new type of chaining cell */
   4531         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   4532 
   4533         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   4534             int blockId = blockIdList[j];
   4535             BasicBlock *chainingBlock =
   4536                 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
   4537                                                          blockId);
   4538 
   4539             /* Align this chaining cell first */
   4540             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4541 
   4542             /* Insert the pseudo chaining instruction */
   4543             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   4544 
   4545 
   4546             switch (chainingBlock->blockType) {
   4547                 case kChainingCellNormal:
   4548                     handleNormalChainingCell(cUnit, chainingBlock->startOffset);
   4549                     break;
   4550                 case kChainingCellInvokeSingleton:
   4551                     handleInvokeSingletonChainingCell(cUnit,
   4552                         chainingBlock->containingMethod);
   4553                     break;
   4554                 case kChainingCellInvokePredicted:
   4555                     handleInvokePredictedChainingCell(cUnit);
   4556                     break;
   4557                 case kChainingCellHot:
   4558                     handleHotChainingCell(cUnit, chainingBlock->startOffset);
   4559                     break;
   4560                 case kChainingCellBackwardBranch:
   4561                     handleBackwardBranchChainingCell(cUnit,
   4562                         chainingBlock->startOffset);
   4563                     break;
   4564                 default:
   4565                     ALOGE("Bad blocktype %d", chainingBlock->blockType);
   4566                     dvmCompilerAbort(cUnit);
   4567             }
   4568         }
   4569     }
   4570 
   4571     /* Mark the bottom of chaining cells */
   4572     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   4573 
   4574     /*
   4575      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   4576      * of all chaining cells for the overflow cases.
   4577      */
   4578     if (cUnit->switchOverflowPad) {
   4579         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   4580         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4581                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   4582         opRegReg(cUnit, kOpAdd, r1, r1);
   4583         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   4584 #if defined(WITH_JIT_TUNING)
   4585         loadConstant(cUnit, r0, kSwitchOverflow);
   4586 #endif
   4587         opReg(cUnit, kOpBlx, r2);
   4588     }
   4589 
   4590     dvmCompilerApplyGlobalOptimizations(cUnit);
   4591 
   4592 #if defined(WITH_SELF_VERIFICATION)
   4593     selfVerificationBranchInsertPass(cUnit);
   4594 #endif
   4595 }
   4596 
   4597 /*
   4598  * Accept the work and start compiling.  Returns true if compilation
   4599  * is attempted.
   4600  */
   4601 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   4602 {
   4603     JitTraceDescription *desc;
   4604     bool isCompile;
   4605     bool success = true;
   4606 
   4607     if (gDvmJit.codeCacheFull) {
   4608         return false;
   4609     }
   4610 
   4611     switch (work->kind) {
   4612         case kWorkOrderTrace:
   4613             isCompile = true;
   4614             /* Start compilation with maximally allowed trace length */
   4615             desc = (JitTraceDescription *)work->info;
   4616             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4617                                         work->bailPtr, 0 /* no hints */);
   4618             break;
   4619         case kWorkOrderTraceDebug: {
   4620             bool oldPrintMe = gDvmJit.printMe;
   4621             gDvmJit.printMe = true;
   4622             isCompile = true;
   4623             /* Start compilation with maximally allowed trace length */
   4624             desc = (JitTraceDescription *)work->info;
   4625             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4626                                         work->bailPtr, 0 /* no hints */);
   4627             gDvmJit.printMe = oldPrintMe;
   4628             break;
   4629         }
   4630         case kWorkOrderProfileMode:
   4631             dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
   4632             isCompile = false;
   4633             break;
   4634         default:
   4635             isCompile = false;
   4636             ALOGE("Jit: unknown work order type");
   4637             assert(0);  // Bail if debug build, discard otherwise
   4638     }
   4639     if (!success)
   4640         work->result.codeAddress = NULL;
   4641     return isCompile;
   4642 }
   4643 
   4644 /* Architectural-specific debugging helpers go here */
   4645 void dvmCompilerArchDump(void)
   4646 {
   4647     /* Print compiled opcode in this VM instance */
   4648     int i, start, streak;
   4649     char buf[1024];
   4650 
   4651     streak = i = 0;
   4652     buf[0] = 0;
   4653     while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4654         i++;
   4655     }
   4656     if (i == kNumPackedOpcodes) {
   4657         return;
   4658     }
   4659     for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
   4660         if (opcodeCoverage[i]) {
   4661             streak++;
   4662         } else {
   4663             if (streak == 1) {
   4664                 sprintf(buf+strlen(buf), "%x,", start);
   4665             } else {
   4666                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   4667             }
   4668             streak = 0;
   4669             while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4670                 i++;
   4671             }
   4672             if (i < kNumPackedOpcodes) {
   4673                 streak = 1;
   4674                 start = i;
   4675             }
   4676         }
   4677     }
   4678     if (streak) {
   4679         if (streak == 1) {
   4680             sprintf(buf+strlen(buf), "%x", start);
   4681         } else {
   4682             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4683         }
   4684     }
   4685     if (strlen(buf)) {
   4686         ALOGD("dalvik.vm.jit.op = %s", buf);
   4687     }
   4688 }
   4689 
   4690 /* Common initialization routine for an architecture family */
   4691 bool dvmCompilerArchInit()
   4692 {
   4693     int i;
   4694 
   4695     for (i = 0; i < kArmLast; i++) {
   4696         if (EncodingMap[i].opcode != i) {
   4697             ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4698                  EncodingMap[i].name, i, EncodingMap[i].opcode);
   4699             dvmAbort();  // OK to dvmAbort - build error
   4700         }
   4701     }
   4702 
   4703     return dvmCompilerArchVariantInit();
   4704 }
   4705 
   4706 void *dvmCompilerGetInterpretTemplate()
   4707 {
   4708       return (void*) ((int)gDvmJit.codeCache +
   4709                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4710 }
   4711 
   4712 JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
   4713 {
   4714     return DALVIK_JIT_ARM;
   4715 }
   4716 
   4717 /* Needed by the Assembler */
   4718 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
   4719 {
   4720     setupResourceMasks(lir);
   4721 }
   4722 
   4723 /* Needed by the ld/st optmizatons */
   4724 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4725 {
   4726     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4727 }
   4728 
   4729 /* Needed by the register allocator */
   4730 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4731 {
   4732     return genRegCopy(cUnit, rDest, rSrc);
   4733 }
   4734 
   4735 /* Needed by the register allocator */
   4736 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4737                             int srcLo, int srcHi)
   4738 {
   4739     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4740 }
   4741 
   4742 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4743                              int displacement, int rSrc, OpSize size)
   4744 {
   4745     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4746 }
   4747 
   4748 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4749                                  int displacement, int rSrcLo, int rSrcHi)
   4750 {
   4751     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4752 }
   4753