1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* 18 * This file contains codegen for the Mips ISA and is intended to be 19 * includes by: 20 * 21 * Codegen-$(TARGET_ARCH_VARIANT).c 22 * 23 */ 24 25 /* 26 * Reserve 8 bytes at the beginning of the trace 27 * +----------------------------+ 28 * | prof count addr (4 bytes) | 29 * +----------------------------+ 30 * | chain cell offset (4 bytes)| 31 * +----------------------------+ 32 * 33 * ...and then code to increment the execution 34 * 35 * For continuous profiling (24 bytes) 36 * lahi a0, addr # get ptr to prof count addr into a0 37 * lalo a0, addr 38 * lw a0, 0(a0) # read prof count addr into a0 39 * lw a1, 0(a0) # read prof count into a1 40 * addiu a1, a1, 1 # increment count 41 * sw a1, 0(a0) # store count 42 * 43 * For periodic profiling (8 bytes) 44 * call TEMPLATE_PERIODIC_PROFILING 45 * nop 46 * 47 * and return the size (in bytes) of the generated code. 48 */ 49 static int genTraceProfileEntry(CompilationUnit *cUnit) 50 { 51 intptr_t addr = (intptr_t)dvmJitNextTraceCounter(); 52 assert(__BYTE_ORDER == __LITTLE_ENDIAN); 53 MipsLIR *executionCount = newLIR1(cUnit, kMips32BitData, addr); 54 cUnit->chainCellOffsetLIR = 55 (LIR *) newLIR1(cUnit, kMips32BitData, CHAIN_CELL_OFFSET_TAG); 56 cUnit->headerSize = 8; 57 if ((gDvmJit.profileMode == kTraceProfilingContinuous) || 58 (gDvmJit.profileMode == kTraceProfilingDisabled)) { 59 MipsLIR *loadAddr = newLIR2(cUnit, kMipsLahi, r_A0, 0); 60 loadAddr->generic.target = (LIR *) executionCount; 61 loadAddr = newLIR3(cUnit, kMipsLalo, r_A0, r_A0, 0); 62 loadAddr ->generic.target = (LIR *) executionCount; 63 newLIR3(cUnit, kMipsLw, r_A0, 0, r_A0); 64 newLIR3(cUnit, kMipsLw, r_A1, 0, r_A0); 65 newLIR3(cUnit, kMipsAddiu, r_A1, r_A1, 1); 66 newLIR3(cUnit, kMipsSw, r_A1, 0, r_A0); 67 return 24; 68 } else { 69 int opcode = TEMPLATE_PERIODIC_PROFILING; 70 newLIR1(cUnit, kMipsJal, 71 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]); 72 newLIR0(cUnit, kMipsNop); /* delay slot */ 73 return 8; 74 } 75 } 76 77 /* 78 * Perform a "reg cmp imm" operation and jump to the PCR region if condition 79 * satisfies. 80 */ 81 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest, 82 RegLocation rlSrc) 83 { 84 RegLocation rlResult; 85 rlSrc = loadValue(cUnit, rlSrc, kCoreReg); 86 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); 87 opRegRegImm(cUnit, kOpAdd, rlResult.lowReg, 88 rlSrc.lowReg, 0x80000000); 89 storeValue(cUnit, rlDest, rlResult); 90 } 91 92 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest, 93 RegLocation rlSrc) 94 { 95 RegLocation rlResult; 96 rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); 97 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); 98 opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, 99 0x80000000); 100 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); 101 storeValueWide(cUnit, rlDest, rlResult); 102 } 103 104 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest, 105 RegLocation rlSrc1, RegLocation rlSrc2) 106 { 107 RegLocation rlResult; 108 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1); 109 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3); 110 genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG); 111 rlResult = dvmCompilerGetReturnWide(cUnit); 112 storeValueWide(cUnit, rlDest, rlResult); 113 } 114 115 static bool partialOverlap(int sreg1, int sreg2) 116 { 117 return abs(sreg1 - sreg2) == 1; 118 } 119 120 static void withCarryHelper(CompilationUnit *cUnit, MipsOpCode opc, 121 RegLocation rlDest, RegLocation rlSrc1, 122 RegLocation rlSrc2, int sltuSrc1, int sltuSrc2) 123 { 124 int tReg = dvmCompilerAllocTemp(cUnit); 125 newLIR3(cUnit, opc, rlDest.lowReg, rlSrc1.lowReg, rlSrc2.lowReg); 126 newLIR3(cUnit, kMipsSltu, tReg, sltuSrc1, sltuSrc2); 127 newLIR3(cUnit, opc, rlDest.highReg, rlSrc1.highReg, rlSrc2.highReg); 128 newLIR3(cUnit, opc, rlDest.highReg, rlDest.highReg, tReg); 129 dvmCompilerFreeTemp(cUnit, tReg); 130 } 131 132 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp, 133 OpKind secondOp, RegLocation rlDest, 134 RegLocation rlSrc1, RegLocation rlSrc2) 135 { 136 RegLocation rlResult; 137 int carryOp = (secondOp == kOpAdc || secondOp == kOpSbc); 138 139 if (partialOverlap(rlSrc1.sRegLow,rlSrc2.sRegLow) || 140 partialOverlap(rlSrc1.sRegLow,rlDest.sRegLow) || 141 partialOverlap(rlSrc2.sRegLow,rlDest.sRegLow)) { 142 // Rare case - not enough registers to properly handle 143 genInterpSingleStep(cUnit, mir); 144 } else if (rlDest.sRegLow == rlSrc1.sRegLow) { 145 rlResult = loadValueWide(cUnit, rlDest, kCoreReg); 146 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); 147 if (!carryOp) { 148 opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlResult.lowReg, rlSrc2.lowReg); 149 opRegRegReg(cUnit, secondOp, rlResult.highReg, rlResult.highReg, rlSrc2.highReg); 150 } else if (secondOp == kOpAdc) { 151 withCarryHelper(cUnit, kMipsAddu, rlResult, rlResult, rlSrc2, 152 rlResult.lowReg, rlSrc2.lowReg); 153 } else { 154 int tReg = dvmCompilerAllocTemp(cUnit); 155 newLIR2(cUnit, kMipsMove, tReg, rlResult.lowReg); 156 withCarryHelper(cUnit, kMipsSubu, rlResult, rlResult, rlSrc2, 157 tReg, rlResult.lowReg); 158 dvmCompilerFreeTemp(cUnit, tReg); 159 } 160 storeValueWide(cUnit, rlDest, rlResult); 161 } else if (rlDest.sRegLow == rlSrc2.sRegLow) { 162 rlResult = loadValueWide(cUnit, rlDest, kCoreReg); 163 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg); 164 if (!carryOp) { 165 opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlResult.lowReg); 166 opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg, rlResult.highReg); 167 } else if (secondOp == kOpAdc) { 168 withCarryHelper(cUnit, kMipsAddu, rlResult, rlSrc1, rlResult, 169 rlResult.lowReg, rlSrc1.lowReg); 170 } else { 171 withCarryHelper(cUnit, kMipsSubu, rlResult, rlSrc1, rlResult, 172 rlSrc1.lowReg, rlResult.lowReg); 173 } 174 storeValueWide(cUnit, rlDest, rlResult); 175 } else { 176 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg); 177 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); 178 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); 179 if (!carryOp) { 180 opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg); 181 opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg, rlSrc2.highReg); 182 } else if (secondOp == kOpAdc) { 183 withCarryHelper(cUnit, kMipsAddu, rlResult, rlSrc1, rlSrc2, 184 rlResult.lowReg, rlSrc1.lowReg); 185 } else { 186 withCarryHelper(cUnit, kMipsSubu, rlResult, rlSrc1, rlSrc2, 187 rlSrc1.lowReg, rlResult.lowReg); 188 } 189 storeValueWide(cUnit, rlDest, rlResult); 190 } 191 } 192 193 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit) 194 { 195 int numTemps = sizeof(coreTemps)/sizeof(int); 196 RegisterPool *pool = (RegisterPool *) dvmCompilerNew(sizeof(*pool), true); 197 cUnit->regPool = pool; 198 pool->numCoreTemps = numTemps; 199 pool->coreTemps = 200 (RegisterInfo *) dvmCompilerNew(numTemps * sizeof(*pool->coreTemps), true); 201 dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps); 202 #ifdef __mips_hard_float 203 int numFPTemps = sizeof(fpTemps)/sizeof(int); 204 pool->numFPTemps = numFPTemps; 205 pool->FPTemps = 206 (RegisterInfo *) dvmCompilerNew(numFPTemps * sizeof(*pool->FPTemps), true); 207 dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps); 208 #else 209 pool->numFPTemps = 0; 210 pool->FPTemps = NULL; 211 dvmCompilerInitPool(pool->FPTemps, NULL, 0); 212 #endif 213 pool->nullCheckedRegs = 214 dvmCompilerAllocBitVector(cUnit->numSSARegs, false); 215 } 216 217 /* Export the Dalvik PC assicated with an instruction to the StackSave area */ 218 static MipsLIR *genExportPC(CompilationUnit *cUnit, MIR *mir) 219 { 220 MipsLIR *res; 221 int rDPC = dvmCompilerAllocTemp(cUnit); 222 int rAddr = dvmCompilerAllocTemp(cUnit); 223 int offset = offsetof(StackSaveArea, xtra.currentPc); 224 res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset)); 225 newLIR3(cUnit, kMipsAddiu, rAddr, rFP, -(sizeof(StackSaveArea) - offset)); 226 storeWordDisp( cUnit, rAddr, 0, rDPC); 227 return res; 228 } 229 230 static void genMonitor(CompilationUnit *cUnit, MIR *mir) 231 { 232 genMonitorPortable(cUnit, mir); 233 } 234 235 static void genCmpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, 236 RegLocation rlSrc1, RegLocation rlSrc2) 237 { 238 RegLocation rlResult; 239 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1); 240 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3); 241 genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG); 242 rlResult = dvmCompilerGetReturn(cUnit); 243 storeValue(cUnit, rlDest, rlResult); 244 } 245 246 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir) 247 { 248 int offset = offsetof(Thread, interpSave.retval); 249 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); 250 int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg; 251 #if __mips_isa_rev>=2 252 newLIR4(cUnit, kMipsExt, reg0, reg0, 0, 31-1 /* size-1 */); 253 #else 254 newLIR2(cUnit, kMipsSll, reg0, 1); 255 newLIR2(cUnit, kMipsSrl, reg0, 1); 256 #endif 257 storeWordDisp(cUnit, rSELF, offset, reg0); 258 //TUNING: rewrite this to not clobber 259 dvmCompilerClobber(cUnit, reg0); 260 return false; 261 } 262 263 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir) 264 { 265 int offset = offsetof(Thread, interpSave.retval); 266 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); 267 RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg); 268 int reglo = regSrc.lowReg; 269 int reghi = regSrc.highReg; 270 storeWordDisp(cUnit, rSELF, offset + LOWORD_OFFSET, reglo); 271 #if __mips_isa_rev>=2 272 newLIR4(cUnit, kMipsExt, reghi, reghi, 0, 31-1 /* size-1 */); 273 #else 274 newLIR2(cUnit, kMipsSll, reghi, 1); 275 newLIR2(cUnit, kMipsSrl, reghi, 1); 276 #endif 277 storeWordDisp(cUnit, rSELF, offset + HIWORD_OFFSET, reghi); 278 //TUNING: rewrite this to not clobber 279 dvmCompilerClobber(cUnit, reghi); 280 return false; 281 } 282 283 /* No select in thumb, so we need to branch. Thumb2 will do better */ 284 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin) 285 { 286 int offset = offsetof(Thread, interpSave.retval); 287 RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); 288 RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); 289 int reg0 = loadValue(cUnit, rlSrc1, kCoreReg).lowReg; 290 int reg1 = loadValue(cUnit, rlSrc2, kCoreReg).lowReg; 291 int tReg = dvmCompilerAllocTemp(cUnit); 292 if (isMin) { 293 newLIR3(cUnit, kMipsSlt, tReg, reg0, reg1); 294 } 295 else { 296 newLIR3(cUnit, kMipsSlt, tReg, reg1, reg0); 297 } 298 newLIR3(cUnit, kMipsMovz, reg0, reg1, tReg); 299 dvmCompilerFreeTemp(cUnit, tReg); 300 newLIR3(cUnit, kMipsSw, reg0, offset, rSELF); 301 //TUNING: rewrite this to not clobber 302 dvmCompilerClobber(cUnit,reg0); 303 return false; 304 } 305 306 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit, 307 RegLocation rlSrc, RegLocation rlResult, int lit, 308 int firstBit, int secondBit) 309 { 310 // We can't implement "add src, src, src, lsl#shift" on Thumb, so we have 311 // to do a regular multiply. 312 opRegRegImm(cUnit, kOpMul, rlResult.lowReg, rlSrc.lowReg, lit); 313 } 314