1 /* 2 * libjingle 3 * Copyright 2004--2005, Google Inc. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #if defined(_MSC_VER) && _MSC_VER < 1300 29 #pragma warning(disable:4786) 30 #endif 31 32 #include <cassert> 33 34 #ifdef POSIX 35 #include <string.h> 36 #include <errno.h> 37 #include <fcntl.h> 38 #include <sys/time.h> 39 #include <unistd.h> 40 #include <signal.h> 41 #endif 42 43 #ifdef WIN32 44 #define WIN32_LEAN_AND_MEAN 45 #include <windows.h> 46 #include <winsock2.h> 47 #include <ws2tcpip.h> 48 #undef SetPort 49 #endif 50 51 #include <algorithm> 52 #include <map> 53 54 #include "talk/base/basictypes.h" 55 #include "talk/base/byteorder.h" 56 #include "talk/base/common.h" 57 #include "talk/base/logging.h" 58 #include "talk/base/nethelpers.h" 59 #include "talk/base/physicalsocketserver.h" 60 #include "talk/base/time.h" 61 #include "talk/base/winping.h" 62 #include "talk/base/win32socketinit.h" 63 64 // stm: this will tell us if we are on OSX 65 #ifdef HAVE_CONFIG_H 66 #include "config.h" 67 #endif 68 69 #ifdef POSIX 70 #include <netinet/tcp.h> // for TCP_NODELAY 71 #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h 72 typedef void* SockOptArg; 73 #endif // POSIX 74 75 #ifdef WIN32 76 typedef char* SockOptArg; 77 #endif 78 79 namespace talk_base { 80 81 // Standard MTUs, from RFC 1191 82 const uint16 PACKET_MAXIMUMS[] = { 83 65535, // Theoretical maximum, Hyperchannel 84 32000, // Nothing 85 17914, // 16Mb IBM Token Ring 86 8166, // IEEE 802.4 87 //4464, // IEEE 802.5 (4Mb max) 88 4352, // FDDI 89 //2048, // Wideband Network 90 2002, // IEEE 802.5 (4Mb recommended) 91 //1536, // Expermental Ethernet Networks 92 //1500, // Ethernet, Point-to-Point (default) 93 1492, // IEEE 802.3 94 1006, // SLIP, ARPANET 95 //576, // X.25 Networks 96 //544, // DEC IP Portal 97 //512, // NETBIOS 98 508, // IEEE 802/Source-Rt Bridge, ARCNET 99 296, // Point-to-Point (low delay) 100 68, // Official minimum 101 0, // End of list marker 102 }; 103 104 const uint32 IP_HEADER_SIZE = 20; 105 const uint32 ICMP_HEADER_SIZE = 8; 106 107 class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> { 108 public: 109 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET) 110 : ss_(ss), s_(s), enabled_events_(0), error_(0), 111 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), 112 resolver_(NULL) { 113 #ifdef WIN32 114 // EnsureWinsockInit() ensures that winsock is initialized. The default 115 // version of this function doesn't do anything because winsock is 116 // initialized by constructor of a static object. If neccessary libjingle 117 // users can link it with a different version of this function by replacing 118 // win32socketinit.cc. See win32socketinit.cc for more details. 119 EnsureWinsockInit(); 120 #endif 121 if (s_ != INVALID_SOCKET) { 122 enabled_events_ = DE_READ | DE_WRITE; 123 124 int type = SOCK_STREAM; 125 socklen_t len = sizeof(type); 126 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len)); 127 udp_ = (SOCK_DGRAM == type); 128 } 129 } 130 131 virtual ~PhysicalSocket() { 132 Close(); 133 } 134 135 // Creates the underlying OS socket (same as the "socket" function). 136 virtual bool Create(int type) { 137 Close(); 138 s_ = ::socket(AF_INET, type, 0); 139 udp_ = (SOCK_DGRAM == type); 140 UpdateLastError(); 141 if (udp_) 142 enabled_events_ = DE_READ | DE_WRITE; 143 return s_ != INVALID_SOCKET; 144 } 145 146 SocketAddress GetLocalAddress() const { 147 sockaddr_in addr; 148 socklen_t addrlen = sizeof(addr); 149 int result = ::getsockname(s_, (sockaddr*)&addr, &addrlen); 150 SocketAddress address; 151 if (result >= 0) { 152 ASSERT(addrlen == sizeof(addr)); 153 address.FromSockAddr(addr); 154 } else { 155 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" 156 << s_; 157 } 158 return address; 159 } 160 161 SocketAddress GetRemoteAddress() const { 162 sockaddr_in addr; 163 socklen_t addrlen = sizeof(addr); 164 int result = ::getpeername(s_, (sockaddr*)&addr, &addrlen); 165 SocketAddress address; 166 if (result >= 0) { 167 ASSERT(addrlen == sizeof(addr)); 168 address.FromSockAddr(addr); 169 } else { 170 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket=" 171 << s_; 172 } 173 return address; 174 } 175 176 int Bind(const SocketAddress& addr) { 177 sockaddr_in saddr; 178 addr.ToSockAddr(&saddr); 179 int err = ::bind(s_, (sockaddr*)&saddr, sizeof(saddr)); 180 UpdateLastError(); 181 #ifdef _DEBUG 182 if (0 == err) { 183 dbg_addr_ = "Bound @ "; 184 dbg_addr_.append(GetLocalAddress().ToString()); 185 } 186 #endif // _DEBUG 187 return err; 188 } 189 190 int Connect(const SocketAddress& addr) { 191 // TODO: Implicit creation is required to reconnect... 192 // ...but should we make it more explicit? 193 if ((s_ == INVALID_SOCKET) && !Create(SOCK_STREAM)) 194 return SOCKET_ERROR; 195 if (addr.IsUnresolved()) { 196 if (state_ != CS_CLOSED) { 197 SetError(EALREADY); 198 return SOCKET_ERROR; 199 } 200 201 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; 202 resolver_ = new AsyncResolver(); 203 resolver_->set_address(addr); 204 resolver_->SignalWorkDone.connect(this, &PhysicalSocket::OnResolveResult); 205 resolver_->Start(); 206 state_ = CS_CONNECTING; 207 return 0; 208 } 209 210 return DoConnect(addr); 211 } 212 213 int DoConnect(const SocketAddress& addr) { 214 sockaddr_in saddr; 215 addr.ToSockAddr(&saddr); 216 int err = ::connect(s_, (sockaddr*)&saddr, sizeof(saddr)); 217 UpdateLastError(); 218 if (err == 0) { 219 state_ = CS_CONNECTED; 220 } else if (IsBlockingError(error_)) { 221 state_ = CS_CONNECTING; 222 enabled_events_ |= DE_CONNECT; 223 } else { 224 return SOCKET_ERROR; 225 } 226 227 enabled_events_ |= DE_READ | DE_WRITE; 228 return 0; 229 } 230 231 int GetError() const { 232 return error_; 233 } 234 235 void SetError(int error) { 236 error_ = error; 237 } 238 239 ConnState GetState() const { 240 return state_; 241 } 242 243 int GetOption(Option opt, int* value) { 244 int slevel; 245 int sopt; 246 if (TranslateOption(opt, &slevel, &sopt) == -1) 247 return -1; 248 socklen_t optlen = sizeof(*value); 249 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); 250 if (ret != -1 && opt == OPT_DONTFRAGMENT) { 251 #ifdef LINUX 252 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; 253 #endif 254 } 255 return ret; 256 } 257 258 int SetOption(Option opt, int value) { 259 int slevel; 260 int sopt; 261 if (TranslateOption(opt, &slevel, &sopt) == -1) 262 return -1; 263 if (opt == OPT_DONTFRAGMENT) { 264 #ifdef LINUX 265 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; 266 #endif 267 } 268 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); 269 } 270 271 int Send(const void *pv, size_t cb) { 272 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb, 273 #ifdef LINUX 274 // Suppress SIGPIPE. Without this, attempting to send on a socket whose 275 // other end is closed will result in a SIGPIPE signal being raised to 276 // our process, which by default will terminate the process, which we 277 // don't want. By specifying this flag, we'll just get the error EPIPE 278 // instead and can handle the error gracefully. 279 MSG_NOSIGNAL 280 #else 281 0 282 #endif 283 ); 284 UpdateLastError(); 285 // We have seen minidumps where this may be false. 286 ASSERT(sent <= static_cast<int>(cb)); 287 if ((sent < 0) && IsBlockingError(error_)) { 288 enabled_events_ |= DE_WRITE; 289 } 290 return sent; 291 } 292 293 int SendTo(const void *pv, size_t cb, const SocketAddress& addr) { 294 sockaddr_in saddr; 295 addr.ToSockAddr(&saddr); 296 int sent = ::sendto( 297 s_, (const char *)pv, (int)cb, 298 #ifdef LINUX 299 // Suppress SIGPIPE. See above for explanation. 300 MSG_NOSIGNAL, 301 #else 302 0, 303 #endif 304 (sockaddr*)&saddr, sizeof(saddr)); 305 UpdateLastError(); 306 // We have seen minidumps where this may be false. 307 ASSERT(sent <= static_cast<int>(cb)); 308 if ((sent < 0) && IsBlockingError(error_)) { 309 enabled_events_ |= DE_WRITE; 310 } 311 return sent; 312 } 313 314 int Recv(void *pv, size_t cb) { 315 int received = ::recv(s_, (char *)pv, (int)cb, 0); 316 if ((received == 0) && (cb != 0)) { 317 // Note: on graceful shutdown, recv can return 0. In this case, we 318 // pretend it is blocking, and then signal close, so that simplifying 319 // assumptions can be made about Recv. 320 LOG(LS_WARNING) << "EOF from socket; deferring close event"; 321 // Must turn this back on so that the select() loop will notice the close 322 // event. 323 enabled_events_ |= DE_READ; 324 error_ = EWOULDBLOCK; 325 return SOCKET_ERROR; 326 } 327 UpdateLastError(); 328 bool success = (received >= 0) || IsBlockingError(error_); 329 if (udp_ || success) { 330 enabled_events_ |= DE_READ; 331 } 332 if (!success) { 333 LOG_F(LS_VERBOSE) << "Error = " << error_; 334 } 335 return received; 336 } 337 338 int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) { 339 sockaddr_in saddr; 340 socklen_t cbAddr = sizeof(saddr); 341 int received = ::recvfrom(s_, (char *)pv, (int)cb, 0, (sockaddr*)&saddr, 342 &cbAddr); 343 UpdateLastError(); 344 if ((received >= 0) && (paddr != NULL)) 345 paddr->FromSockAddr(saddr); 346 bool success = (received >= 0) || IsBlockingError(error_); 347 if (udp_ || success) { 348 enabled_events_ |= DE_READ; 349 } 350 if (!success) { 351 LOG_F(LS_VERBOSE) << "Error = " << error_; 352 } 353 return received; 354 } 355 356 int Listen(int backlog) { 357 int err = ::listen(s_, backlog); 358 UpdateLastError(); 359 if (err == 0) { 360 state_ = CS_CONNECTING; 361 enabled_events_ |= DE_ACCEPT; 362 #ifdef _DEBUG 363 dbg_addr_ = "Listening @ "; 364 dbg_addr_.append(GetLocalAddress().ToString()); 365 #endif // _DEBUG 366 } 367 return err; 368 } 369 370 AsyncSocket* Accept(SocketAddress *paddr) { 371 sockaddr_in saddr; 372 socklen_t cbAddr = sizeof(saddr); 373 SOCKET s = ::accept(s_, (sockaddr*)&saddr, &cbAddr); 374 UpdateLastError(); 375 if (s == INVALID_SOCKET) 376 return NULL; 377 enabled_events_ |= DE_ACCEPT; 378 if (paddr != NULL) 379 paddr->FromSockAddr(saddr); 380 return ss_->WrapSocket(s); 381 } 382 383 int Close() { 384 if (s_ == INVALID_SOCKET) 385 return 0; 386 int err = ::closesocket(s_); 387 UpdateLastError(); 388 s_ = INVALID_SOCKET; 389 state_ = CS_CLOSED; 390 enabled_events_ = 0; 391 if (resolver_) { 392 resolver_->Destroy(false); 393 resolver_ = NULL; 394 } 395 return err; 396 } 397 398 int EstimateMTU(uint16* mtu) { 399 SocketAddress addr = GetRemoteAddress(); 400 if (addr.IsAny()) { 401 error_ = ENOTCONN; 402 return -1; 403 } 404 405 #if defined(WIN32) 406 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|. 407 WinPing ping; 408 if (!ping.IsValid()) { 409 error_ = EINVAL; // can't think of a better error ID 410 return -1; 411 } 412 413 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) { 414 int32 size = PACKET_MAXIMUMS[level] - IP_HEADER_SIZE - ICMP_HEADER_SIZE; 415 WinPing::PingResult result = ping.Ping(addr.ip(), size, 0, 1, false); 416 if (result == WinPing::PING_FAIL) { 417 error_ = EINVAL; // can't think of a better error ID 418 return -1; 419 } else if (result != WinPing::PING_TOO_LARGE) { 420 *mtu = PACKET_MAXIMUMS[level]; 421 return 0; 422 } 423 } 424 425 ASSERT(false); 426 return -1; 427 #elif defined(IOS) || defined(OSX) 428 // No simple way to do this on Mac OS X. 429 // SIOCGIFMTU would work if we knew which interface would be used, but 430 // figuring that out is pretty complicated. For now we'll return an error 431 // and let the caller pick a default MTU. 432 error_ = EINVAL; 433 return -1; 434 #elif defined(LINUX) || defined(ANDROID) 435 // Gets the path MTU. 436 int value; 437 socklen_t vlen = sizeof(value); 438 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen); 439 if (err < 0) { 440 UpdateLastError(); 441 return err; 442 } 443 444 ASSERT((0 <= value) && (value <= 65536)); 445 *mtu = value; 446 return 0; 447 #endif 448 } 449 450 SocketServer* socketserver() { return ss_; } 451 452 protected: 453 void OnResolveResult(SignalThread* thread) { 454 if (thread != resolver_) { 455 return; 456 } 457 458 int error = resolver_->error(); 459 if (error == 0) { 460 error = DoConnect(resolver_->address()); 461 } else { 462 Close(); 463 } 464 465 if (error) { 466 error_ = error; 467 SignalCloseEvent(this, error_); 468 } 469 } 470 471 void UpdateLastError() { 472 error_ = LAST_SYSTEM_ERROR; 473 } 474 475 static int TranslateOption(Option opt, int* slevel, int* sopt) { 476 switch (opt) { 477 case OPT_DONTFRAGMENT: 478 #ifdef WIN32 479 *slevel = IPPROTO_IP; 480 *sopt = IP_DONTFRAGMENT; 481 break; 482 #elif defined(IOS) || defined(OSX) || defined(BSD) 483 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; 484 return -1; 485 #elif defined(POSIX) 486 *slevel = IPPROTO_IP; 487 *sopt = IP_MTU_DISCOVER; 488 break; 489 #endif 490 case OPT_RCVBUF: 491 *slevel = SOL_SOCKET; 492 *sopt = SO_RCVBUF; 493 break; 494 case OPT_SNDBUF: 495 *slevel = SOL_SOCKET; 496 *sopt = SO_SNDBUF; 497 break; 498 case OPT_NODELAY: 499 *slevel = IPPROTO_TCP; 500 *sopt = TCP_NODELAY; 501 break; 502 default: 503 ASSERT(false); 504 return -1; 505 } 506 return 0; 507 } 508 509 PhysicalSocketServer* ss_; 510 SOCKET s_; 511 uint8 enabled_events_; 512 bool udp_; 513 int error_; 514 ConnState state_; 515 AsyncResolver* resolver_; 516 517 #ifdef _DEBUG 518 std::string dbg_addr_; 519 #endif // _DEBUG; 520 }; 521 522 #ifdef POSIX 523 class EventDispatcher : public Dispatcher { 524 public: 525 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) { 526 if (pipe(afd_) < 0) 527 LOG(LERROR) << "pipe failed"; 528 ss_->Add(this); 529 } 530 531 virtual ~EventDispatcher() { 532 ss_->Remove(this); 533 close(afd_[0]); 534 close(afd_[1]); 535 } 536 537 virtual void Signal() { 538 CritScope cs(&crit_); 539 if (!fSignaled_) { 540 const uint8 b[1] = { 0 }; 541 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) { 542 fSignaled_ = true; 543 } 544 } 545 } 546 547 virtual uint32 GetRequestedEvents() { 548 return DE_READ; 549 } 550 551 virtual void OnPreEvent(uint32 ff) { 552 // It is not possible to perfectly emulate an auto-resetting event with 553 // pipes. This simulates it by resetting before the event is handled. 554 555 CritScope cs(&crit_); 556 if (fSignaled_) { 557 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1. 558 VERIFY(1 == read(afd_[0], b, sizeof(b))); 559 fSignaled_ = false; 560 } 561 } 562 563 virtual void OnEvent(uint32 ff, int err) { 564 ASSERT(false); 565 } 566 567 virtual int GetDescriptor() { 568 return afd_[0]; 569 } 570 571 virtual bool IsDescriptorClosed() { 572 return false; 573 } 574 575 private: 576 PhysicalSocketServer *ss_; 577 int afd_[2]; 578 bool fSignaled_; 579 CriticalSection crit_; 580 }; 581 582 // These two classes use the self-pipe trick to deliver POSIX signals to our 583 // select loop. This is the only safe, reliable, cross-platform way to do 584 // non-trivial things with a POSIX signal in an event-driven program (until 585 // proper pselect() implementations become ubiquitous). 586 587 class PosixSignalHandler { 588 public: 589 // POSIX only specifies 32 signals, but in principle the system might have 590 // more and the programmer might choose to use them, so we size our array 591 // for 128. 592 static const int kNumPosixSignals = 128; 593 594 static PosixSignalHandler *Instance() { return &instance_; } 595 596 // Returns true if the given signal number is set. 597 bool IsSignalSet(int signum) const { 598 ASSERT(signum < ARRAY_SIZE(received_signal_)); 599 if (signum < ARRAY_SIZE(received_signal_)) { 600 return received_signal_[signum]; 601 } else { 602 return false; 603 } 604 } 605 606 // Clears the given signal number. 607 void ClearSignal(int signum) { 608 ASSERT(signum < ARRAY_SIZE(received_signal_)); 609 if (signum < ARRAY_SIZE(received_signal_)) { 610 received_signal_[signum] = false; 611 } 612 } 613 614 // Returns the file descriptor to monitor for signal events. 615 int GetDescriptor() const { 616 return afd_[0]; 617 } 618 619 // This is called directly from our real signal handler, so it must be 620 // signal-handler-safe. That means it cannot assume anything about the 621 // user-level state of the process, since the handler could be executed at any 622 // time on any thread. 623 void OnPosixSignalReceived(int signum) { 624 if (signum >= ARRAY_SIZE(received_signal_)) { 625 // We don't have space in our array for this. 626 return; 627 } 628 // Set a flag saying we've seen this signal. 629 received_signal_[signum] = true; 630 // Notify application code that we got a signal. 631 const uint8 b[1] = { 0 }; 632 if (-1 == write(afd_[1], b, sizeof(b))) { 633 // Nothing we can do here. If there's an error somehow then there's 634 // nothing we can safely do from a signal handler. 635 // No, we can't even safely log it. 636 // But, we still have to check the return value here. Otherwise, 637 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help. 638 return; 639 } 640 } 641 642 private: 643 PosixSignalHandler() { 644 if (pipe(afd_) < 0) { 645 LOG_ERR(LS_ERROR) << "pipe failed"; 646 return; 647 } 648 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) { 649 LOG_ERR(LS_WARNING) << "fcntl #1 failed"; 650 } 651 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) { 652 LOG_ERR(LS_WARNING) << "fcntl #2 failed"; 653 } 654 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)), 655 0, 656 sizeof(received_signal_)); 657 } 658 659 ~PosixSignalHandler() { 660 int fd1 = afd_[0]; 661 int fd2 = afd_[1]; 662 // We clobber the stored file descriptor numbers here or else in principle 663 // a signal that happens to be delivered during application termination 664 // could erroneously write a zero byte to an unrelated file handle in 665 // OnPosixSignalReceived() if some other file happens to be opened later 666 // during shutdown and happens to be given the same file descriptor number 667 // as our pipe had. Unfortunately even with this precaution there is still a 668 // race where that could occur if said signal happens to be handled 669 // concurrently with this code and happens to have already read the value of 670 // afd_[1] from memory before we clobber it, but that's unlikely. 671 afd_[0] = -1; 672 afd_[1] = -1; 673 close(fd1); 674 close(fd2); 675 } 676 677 // There is just a single global instance. (Signal handlers do not get any 678 // sort of user-defined void * parameter, so they can't access anything that 679 // isn't global.) 680 static PosixSignalHandler instance_; 681 682 int afd_[2]; 683 // These are boolean flags that will be set in our signal handler and read 684 // and cleared from Wait(). There is a race involved in this, but it is 685 // benign. The signal handler sets the flag before signaling the pipe, so 686 // we'll never end up blocking in select() while a flag is still true. 687 // However, if two of the same signal arrive close to each other then it's 688 // possible that the second time the handler may set the flag while it's still 689 // true, meaning that signal will be missed. But the first occurrence of it 690 // will still be handled, so this isn't a problem. 691 // Volatile is not necessary here for correctness, but this data _is_ volatile 692 // so I've marked it as such. 693 volatile uint8 received_signal_[kNumPosixSignals]; 694 }; 695 696 PosixSignalHandler PosixSignalHandler::instance_; 697 698 class PosixSignalDispatcher : public Dispatcher { 699 public: 700 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) { 701 owner_->Add(this); 702 } 703 704 virtual ~PosixSignalDispatcher() { 705 owner_->Remove(this); 706 } 707 708 virtual uint32 GetRequestedEvents() { 709 return DE_READ; 710 } 711 712 virtual void OnPreEvent(uint32 ff) { 713 // Events might get grouped if signals come very fast, so we read out up to 714 // 16 bytes to make sure we keep the pipe empty. 715 uint8 b[16]; 716 ssize_t ret = read(GetDescriptor(), b, sizeof(b)); 717 if (ret < 0) { 718 LOG_ERR(LS_WARNING) << "Error in read()"; 719 } else if (ret == 0) { 720 LOG(LS_WARNING) << "Should have read at least one byte"; 721 } 722 } 723 724 virtual void OnEvent(uint32 ff, int err) { 725 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals; 726 ++signum) { 727 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) { 728 PosixSignalHandler::Instance()->ClearSignal(signum); 729 HandlerMap::iterator i = handlers_.find(signum); 730 if (i == handlers_.end()) { 731 // This can happen if a signal is delivered to our process at around 732 // the same time as we unset our handler for it. It is not an error 733 // condition, but it's unusual enough to be worth logging. 734 LOG(LS_INFO) << "Received signal with no handler: " << signum; 735 } else { 736 // Otherwise, execute our handler. 737 (*i->second)(signum); 738 } 739 } 740 } 741 } 742 743 virtual int GetDescriptor() { 744 return PosixSignalHandler::Instance()->GetDescriptor(); 745 } 746 747 virtual bool IsDescriptorClosed() { 748 return false; 749 } 750 751 void SetHandler(int signum, void (*handler)(int)) { 752 handlers_[signum] = handler; 753 } 754 755 void ClearHandler(int signum) { 756 handlers_.erase(signum); 757 } 758 759 bool HasHandlers() { 760 return !handlers_.empty(); 761 } 762 763 private: 764 typedef std::map<int, void (*)(int)> HandlerMap; 765 766 HandlerMap handlers_; 767 // Our owner. 768 PhysicalSocketServer *owner_; 769 }; 770 771 class SocketDispatcher : public Dispatcher, public PhysicalSocket { 772 public: 773 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) { 774 } 775 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) { 776 } 777 778 virtual ~SocketDispatcher() { 779 Close(); 780 } 781 782 bool Initialize() { 783 ss_->Add(this); 784 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); 785 return true; 786 } 787 788 virtual bool Create(int type) { 789 // Change the socket to be non-blocking. 790 if (!PhysicalSocket::Create(type)) 791 return false; 792 793 return Initialize(); 794 } 795 796 virtual int GetDescriptor() { 797 return s_; 798 } 799 800 virtual bool IsDescriptorClosed() { 801 // We don't have a reliable way of distinguishing end-of-stream 802 // from readability. So test on each readable call. Is this 803 // inefficient? Probably. 804 char ch; 805 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK); 806 if (res > 0) { 807 // Data available, so not closed. 808 return false; 809 } else if (res == 0) { 810 // EOF, so closed. 811 return true; 812 } else { // error 813 switch (errno) { 814 // Returned if we've already closed s_. 815 case EBADF: 816 // Returned during ungraceful peer shutdown. 817 case ECONNRESET: 818 return true; 819 default: 820 // Assume that all other errors are just blocking errors, meaning the 821 // connection is still good but we just can't read from it right now. 822 // This should only happen when connecting (and at most once), because 823 // in all other cases this function is only called if the file 824 // descriptor is already known to be in the readable state. However, 825 // it's not necessary a problem if we spuriously interpret a 826 // "connection lost"-type error as a blocking error, because typically 827 // the next recv() will get EOF, so we'll still eventually notice that 828 // the socket is closed. 829 LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; 830 return false; 831 } 832 } 833 } 834 835 virtual uint32 GetRequestedEvents() { 836 return enabled_events_; 837 } 838 839 virtual void OnPreEvent(uint32 ff) { 840 if ((ff & DE_CONNECT) != 0) 841 state_ = CS_CONNECTED; 842 if ((ff & DE_CLOSE) != 0) 843 state_ = CS_CLOSED; 844 } 845 846 virtual void OnEvent(uint32 ff, int err) { 847 if ((ff & DE_READ) != 0) { 848 enabled_events_ &= ~DE_READ; 849 SignalReadEvent(this); 850 } 851 if ((ff & DE_WRITE) != 0) { 852 enabled_events_ &= ~DE_WRITE; 853 SignalWriteEvent(this); 854 } 855 if ((ff & DE_CONNECT) != 0) { 856 enabled_events_ &= ~DE_CONNECT; 857 SignalConnectEvent(this); 858 } 859 if ((ff & DE_ACCEPT) != 0) { 860 enabled_events_ &= ~DE_ACCEPT; 861 SignalReadEvent(this); 862 } 863 if ((ff & DE_CLOSE) != 0) { 864 // The socket is now dead to us, so stop checking it. 865 enabled_events_ = 0; 866 SignalCloseEvent(this, err); 867 } 868 } 869 870 virtual int Close() { 871 if (s_ == INVALID_SOCKET) 872 return 0; 873 874 ss_->Remove(this); 875 return PhysicalSocket::Close(); 876 } 877 }; 878 879 class FileDispatcher: public Dispatcher, public AsyncFile { 880 public: 881 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) { 882 set_readable(true); 883 884 ss_->Add(this); 885 886 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK); 887 } 888 889 virtual ~FileDispatcher() { 890 ss_->Remove(this); 891 } 892 893 SocketServer* socketserver() { return ss_; } 894 895 virtual int GetDescriptor() { 896 return fd_; 897 } 898 899 virtual bool IsDescriptorClosed() { 900 return false; 901 } 902 903 virtual uint32 GetRequestedEvents() { 904 return flags_; 905 } 906 907 virtual void OnPreEvent(uint32 ff) { 908 } 909 910 virtual void OnEvent(uint32 ff, int err) { 911 if ((ff & DE_READ) != 0) 912 SignalReadEvent(this); 913 if ((ff & DE_WRITE) != 0) 914 SignalWriteEvent(this); 915 if ((ff & DE_CLOSE) != 0) 916 SignalCloseEvent(this, err); 917 } 918 919 virtual bool readable() { 920 return (flags_ & DE_READ) != 0; 921 } 922 923 virtual void set_readable(bool value) { 924 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ); 925 } 926 927 virtual bool writable() { 928 return (flags_ & DE_WRITE) != 0; 929 } 930 931 virtual void set_writable(bool value) { 932 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE); 933 } 934 935 private: 936 PhysicalSocketServer* ss_; 937 int fd_; 938 int flags_; 939 }; 940 941 AsyncFile* PhysicalSocketServer::CreateFile(int fd) { 942 return new FileDispatcher(fd, this); 943 } 944 945 #endif // POSIX 946 947 #ifdef WIN32 948 static uint32 FlagsToEvents(uint32 events) { 949 uint32 ffFD = FD_CLOSE; 950 if (events & DE_READ) 951 ffFD |= FD_READ; 952 if (events & DE_WRITE) 953 ffFD |= FD_WRITE; 954 if (events & DE_CONNECT) 955 ffFD |= FD_CONNECT; 956 if (events & DE_ACCEPT) 957 ffFD |= FD_ACCEPT; 958 return ffFD; 959 } 960 961 class EventDispatcher : public Dispatcher { 962 public: 963 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) { 964 hev_ = WSACreateEvent(); 965 if (hev_) { 966 ss_->Add(this); 967 } 968 } 969 970 ~EventDispatcher() { 971 if (hev_ != NULL) { 972 ss_->Remove(this); 973 WSACloseEvent(hev_); 974 hev_ = NULL; 975 } 976 } 977 978 virtual void Signal() { 979 if (hev_ != NULL) 980 WSASetEvent(hev_); 981 } 982 983 virtual uint32 GetRequestedEvents() { 984 return 0; 985 } 986 987 virtual void OnPreEvent(uint32 ff) { 988 WSAResetEvent(hev_); 989 } 990 991 virtual void OnEvent(uint32 ff, int err) { 992 } 993 994 virtual WSAEVENT GetWSAEvent() { 995 return hev_; 996 } 997 998 virtual SOCKET GetSocket() { 999 return INVALID_SOCKET; 1000 } 1001 1002 virtual bool CheckSignalClose() { return false; } 1003 1004 private: 1005 PhysicalSocketServer* ss_; 1006 WSAEVENT hev_; 1007 }; 1008 1009 class SocketDispatcher : public Dispatcher, public PhysicalSocket { 1010 public: 1011 static int next_id_; 1012 int id_; 1013 bool signal_close_; 1014 int signal_err_; 1015 1016 SocketDispatcher(PhysicalSocketServer* ss) 1017 : PhysicalSocket(ss), 1018 id_(0), 1019 signal_close_(false) { 1020 } 1021 1022 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) 1023 : PhysicalSocket(ss, s), 1024 id_(0), 1025 signal_close_(false) { 1026 } 1027 1028 virtual ~SocketDispatcher() { 1029 Close(); 1030 } 1031 1032 bool Initialize() { 1033 ASSERT(s_ != INVALID_SOCKET); 1034 // Must be a non-blocking 1035 u_long argp = 1; 1036 ioctlsocket(s_, FIONBIO, &argp); 1037 ss_->Add(this); 1038 return true; 1039 } 1040 1041 virtual bool Create(int type) { 1042 // Create socket 1043 if (!PhysicalSocket::Create(type)) 1044 return false; 1045 1046 if (!Initialize()) 1047 return false; 1048 1049 do { id_ = ++next_id_; } while (id_ == 0); 1050 return true; 1051 } 1052 1053 virtual int Close() { 1054 if (s_ == INVALID_SOCKET) 1055 return 0; 1056 1057 id_ = 0; 1058 signal_close_ = false; 1059 ss_->Remove(this); 1060 return PhysicalSocket::Close(); 1061 } 1062 1063 virtual uint32 GetRequestedEvents() { 1064 return enabled_events_; 1065 } 1066 1067 virtual void OnPreEvent(uint32 ff) { 1068 if ((ff & DE_CONNECT) != 0) 1069 state_ = CS_CONNECTED; 1070 // We set CS_CLOSED from CheckSignalClose. 1071 } 1072 1073 virtual void OnEvent(uint32 ff, int err) { 1074 int cache_id = id_; 1075 if ((ff & DE_READ) != 0) { 1076 enabled_events_ &= ~DE_READ; 1077 SignalReadEvent(this); 1078 } 1079 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { 1080 enabled_events_ &= ~DE_WRITE; 1081 SignalWriteEvent(this); 1082 } 1083 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { 1084 if (ff != DE_CONNECT) 1085 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; 1086 enabled_events_ &= ~DE_CONNECT; 1087 #ifdef _DEBUG 1088 dbg_addr_ = "Connected @ "; 1089 dbg_addr_.append(GetRemoteAddress().ToString()); 1090 #endif // _DEBUG 1091 SignalConnectEvent(this); 1092 } 1093 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { 1094 enabled_events_ &= ~DE_ACCEPT; 1095 SignalReadEvent(this); 1096 } 1097 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { 1098 signal_close_ = true; 1099 signal_err_ = err; 1100 } 1101 } 1102 1103 virtual WSAEVENT GetWSAEvent() { 1104 return WSA_INVALID_EVENT; 1105 } 1106 1107 virtual SOCKET GetSocket() { 1108 return s_; 1109 } 1110 1111 virtual bool CheckSignalClose() { 1112 if (!signal_close_) 1113 return false; 1114 1115 char ch; 1116 if (recv(s_, &ch, 1, MSG_PEEK) > 0) 1117 return false; 1118 1119 state_ = CS_CLOSED; 1120 signal_close_ = false; 1121 SignalCloseEvent(this, signal_err_); 1122 return true; 1123 } 1124 }; 1125 1126 int SocketDispatcher::next_id_ = 0; 1127 1128 #endif // WIN32 1129 1130 // Sets the value of a boolean value to false when signaled. 1131 class Signaler : public EventDispatcher { 1132 public: 1133 Signaler(PhysicalSocketServer* ss, bool* pf) 1134 : EventDispatcher(ss), pf_(pf) { 1135 } 1136 virtual ~Signaler() { } 1137 1138 void OnEvent(uint32 ff, int err) { 1139 if (pf_) 1140 *pf_ = false; 1141 } 1142 1143 private: 1144 bool *pf_; 1145 }; 1146 1147 PhysicalSocketServer::PhysicalSocketServer() 1148 : fWait_(false), 1149 last_tick_tracked_(0), 1150 last_tick_dispatch_count_(0) { 1151 signal_wakeup_ = new Signaler(this, &fWait_); 1152 #ifdef WIN32 1153 socket_ev_ = WSACreateEvent(); 1154 #endif 1155 } 1156 1157 PhysicalSocketServer::~PhysicalSocketServer() { 1158 #ifdef WIN32 1159 WSACloseEvent(socket_ev_); 1160 #endif 1161 #ifdef POSIX 1162 signal_dispatcher_.reset(); 1163 #endif 1164 delete signal_wakeup_; 1165 ASSERT(dispatchers_.empty()); 1166 } 1167 1168 void PhysicalSocketServer::WakeUp() { 1169 signal_wakeup_->Signal(); 1170 } 1171 1172 Socket* PhysicalSocketServer::CreateSocket(int type) { 1173 PhysicalSocket* socket = new PhysicalSocket(this); 1174 if (socket->Create(type)) { 1175 return socket; 1176 } else { 1177 delete socket; 1178 return 0; 1179 } 1180 } 1181 1182 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) { 1183 SocketDispatcher* dispatcher = new SocketDispatcher(this); 1184 if (dispatcher->Create(type)) { 1185 return dispatcher; 1186 } else { 1187 delete dispatcher; 1188 return 0; 1189 } 1190 } 1191 1192 AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) { 1193 SocketDispatcher* dispatcher = new SocketDispatcher(s, this); 1194 if (dispatcher->Initialize()) { 1195 return dispatcher; 1196 } else { 1197 delete dispatcher; 1198 return 0; 1199 } 1200 } 1201 1202 void PhysicalSocketServer::Add(Dispatcher *pdispatcher) { 1203 CritScope cs(&crit_); 1204 // Prevent duplicates. This can cause dead dispatchers to stick around. 1205 DispatcherList::iterator pos = std::find(dispatchers_.begin(), 1206 dispatchers_.end(), 1207 pdispatcher); 1208 if (pos != dispatchers_.end()) 1209 return; 1210 dispatchers_.push_back(pdispatcher); 1211 } 1212 1213 void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) { 1214 CritScope cs(&crit_); 1215 DispatcherList::iterator pos = std::find(dispatchers_.begin(), 1216 dispatchers_.end(), 1217 pdispatcher); 1218 ASSERT(pos != dispatchers_.end()); 1219 size_t index = pos - dispatchers_.begin(); 1220 dispatchers_.erase(pos); 1221 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end(); 1222 ++it) { 1223 if (index < **it) { 1224 --**it; 1225 } 1226 } 1227 } 1228 1229 #ifdef POSIX 1230 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { 1231 // Calculate timing information 1232 1233 struct timeval *ptvWait = NULL; 1234 struct timeval tvWait; 1235 struct timeval tvStop; 1236 if (cmsWait != kForever) { 1237 // Calculate wait timeval 1238 tvWait.tv_sec = cmsWait / 1000; 1239 tvWait.tv_usec = (cmsWait % 1000) * 1000; 1240 ptvWait = &tvWait; 1241 1242 // Calculate when to return in a timeval 1243 gettimeofday(&tvStop, NULL); 1244 tvStop.tv_sec += tvWait.tv_sec; 1245 tvStop.tv_usec += tvWait.tv_usec; 1246 if (tvStop.tv_usec >= 1000000) { 1247 tvStop.tv_usec -= 1000000; 1248 tvStop.tv_sec += 1; 1249 } 1250 } 1251 1252 // Zero all fd_sets. Don't need to do this inside the loop since 1253 // select() zeros the descriptors not signaled 1254 1255 fd_set fdsRead; 1256 FD_ZERO(&fdsRead); 1257 fd_set fdsWrite; 1258 FD_ZERO(&fdsWrite); 1259 1260 fWait_ = true; 1261 1262 while (fWait_) { 1263 int fdmax = -1; 1264 { 1265 CritScope cr(&crit_); 1266 for (size_t i = 0; i < dispatchers_.size(); ++i) { 1267 // Query dispatchers for read and write wait state 1268 Dispatcher *pdispatcher = dispatchers_[i]; 1269 ASSERT(pdispatcher); 1270 if (!process_io && (pdispatcher != signal_wakeup_)) 1271 continue; 1272 int fd = pdispatcher->GetDescriptor(); 1273 if (fd > fdmax) 1274 fdmax = fd; 1275 1276 uint32 ff = pdispatcher->GetRequestedEvents(); 1277 if (ff & (DE_READ | DE_ACCEPT)) 1278 FD_SET(fd, &fdsRead); 1279 if (ff & (DE_WRITE | DE_CONNECT)) 1280 FD_SET(fd, &fdsWrite); 1281 } 1282 } 1283 1284 // Wait then call handlers as appropriate 1285 // < 0 means error 1286 // 0 means timeout 1287 // > 0 means count of descriptors ready 1288 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait); 1289 1290 // If error, return error. 1291 if (n < 0) { 1292 if (errno != EINTR) { 1293 LOG_E(LS_ERROR, EN, errno) << "select"; 1294 return false; 1295 } 1296 // Else ignore the error and keep going. If this EINTR was for one of the 1297 // signals managed by this PhysicalSocketServer, the 1298 // PosixSignalDeliveryDispatcher will be in the signaled state in the next 1299 // iteration. 1300 } else if (n == 0) { 1301 // If timeout, return success 1302 return true; 1303 } else { 1304 // We have signaled descriptors 1305 CritScope cr(&crit_); 1306 for (size_t i = 0; i < dispatchers_.size(); ++i) { 1307 Dispatcher *pdispatcher = dispatchers_[i]; 1308 int fd = pdispatcher->GetDescriptor(); 1309 uint32 ff = 0; 1310 int errcode = 0; 1311 1312 // Reap any error code, which can be signaled through reads or writes. 1313 // TODO: Should we set errcode if getsockopt fails? 1314 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) { 1315 socklen_t len = sizeof(errcode); 1316 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len); 1317 } 1318 1319 // Check readable descriptors. If we're waiting on an accept, signal 1320 // that. Otherwise we're waiting for data, check to see if we're 1321 // readable or really closed. 1322 // TODO: Only peek at TCP descriptors. 1323 if (FD_ISSET(fd, &fdsRead)) { 1324 FD_CLR(fd, &fdsRead); 1325 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) { 1326 ff |= DE_ACCEPT; 1327 } else if (errcode || pdispatcher->IsDescriptorClosed()) { 1328 ff |= DE_CLOSE; 1329 } else { 1330 ff |= DE_READ; 1331 } 1332 } 1333 1334 // Check writable descriptors. If we're waiting on a connect, detect 1335 // success versus failure by the reaped error code. 1336 if (FD_ISSET(fd, &fdsWrite)) { 1337 FD_CLR(fd, &fdsWrite); 1338 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) { 1339 if (!errcode) { 1340 ff |= DE_CONNECT; 1341 } else { 1342 ff |= DE_CLOSE; 1343 } 1344 } else { 1345 ff |= DE_WRITE; 1346 } 1347 } 1348 1349 // Tell the descriptor about the event. 1350 if (ff != 0) { 1351 pdispatcher->OnPreEvent(ff); 1352 pdispatcher->OnEvent(ff, errcode); 1353 } 1354 } 1355 } 1356 1357 // Recalc the time remaining to wait. Doing it here means it doesn't get 1358 // calced twice the first time through the loop 1359 1360 if (cmsWait != kForever) { 1361 ptvWait->tv_sec = 0; 1362 ptvWait->tv_usec = 0; 1363 struct timeval tvT; 1364 gettimeofday(&tvT, NULL); 1365 if ((tvStop.tv_sec > tvT.tv_sec) 1366 || ((tvStop.tv_sec == tvT.tv_sec) 1367 && (tvStop.tv_usec > tvT.tv_usec))) { 1368 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec; 1369 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec; 1370 if (ptvWait->tv_usec < 0) { 1371 ASSERT(ptvWait->tv_sec > 0); 1372 ptvWait->tv_usec += 1000000; 1373 ptvWait->tv_sec -= 1; 1374 } 1375 } 1376 } 1377 } 1378 1379 return true; 1380 } 1381 1382 static void GlobalSignalHandler(int signum) { 1383 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum); 1384 } 1385 1386 bool PhysicalSocketServer::SetPosixSignalHandler(int signum, 1387 void (*handler)(int)) { 1388 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler, 1389 // otherwise set one. 1390 if (handler == SIG_IGN || handler == SIG_DFL) { 1391 if (!InstallSignal(signum, handler)) { 1392 return false; 1393 } 1394 if (signal_dispatcher_.get()) { 1395 signal_dispatcher_->ClearHandler(signum); 1396 if (!signal_dispatcher_->HasHandlers()) { 1397 signal_dispatcher_.reset(); 1398 } 1399 } 1400 } else { 1401 if (!signal_dispatcher_.get()) { 1402 signal_dispatcher_.reset(new PosixSignalDispatcher(this)); 1403 } 1404 signal_dispatcher_->SetHandler(signum, handler); 1405 if (!InstallSignal(signum, &GlobalSignalHandler)) { 1406 return false; 1407 } 1408 } 1409 return true; 1410 } 1411 1412 bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) { 1413 struct sigaction act; 1414 // It doesn't really matter what we set this mask to. 1415 if (sigemptyset(&act.sa_mask) != 0) { 1416 LOG_ERR(LS_ERROR) << "Couldn't set mask"; 1417 return false; 1418 } 1419 act.sa_handler = handler; 1420 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it 1421 // and it's a nuisance. Though some syscalls still return EINTR and there's no 1422 // real standard for which ones. :( 1423 act.sa_flags = SA_RESTART; 1424 if (sigaction(signum, &act, NULL) != 0) { 1425 LOG_ERR(LS_ERROR) << "Couldn't set sigaction"; 1426 return false; 1427 } 1428 return true; 1429 } 1430 #endif // POSIX 1431 1432 #ifdef WIN32 1433 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { 1434 int cmsTotal = cmsWait; 1435 int cmsElapsed = 0; 1436 uint32 msStart = Time(); 1437 1438 #if LOGGING 1439 if (last_tick_dispatch_count_ == 0) { 1440 last_tick_tracked_ = msStart; 1441 } 1442 #endif 1443 1444 fWait_ = true; 1445 while (fWait_) { 1446 std::vector<WSAEVENT> events; 1447 std::vector<Dispatcher *> event_owners; 1448 1449 events.push_back(socket_ev_); 1450 1451 { 1452 CritScope cr(&crit_); 1453 size_t i = 0; 1454 iterators_.push_back(&i); 1455 // Don't track dispatchers_.size(), because we want to pick up any new 1456 // dispatchers that were added while processing the loop. 1457 while (i < dispatchers_.size()) { 1458 Dispatcher* disp = dispatchers_[i++]; 1459 if (!process_io && (disp != signal_wakeup_)) 1460 continue; 1461 SOCKET s = disp->GetSocket(); 1462 if (disp->CheckSignalClose()) { 1463 // We just signalled close, don't poll this socket 1464 } else if (s != INVALID_SOCKET) { 1465 WSAEventSelect(s, 1466 events[0], 1467 FlagsToEvents(disp->GetRequestedEvents())); 1468 } else { 1469 events.push_back(disp->GetWSAEvent()); 1470 event_owners.push_back(disp); 1471 } 1472 } 1473 ASSERT(iterators_.back() == &i); 1474 iterators_.pop_back(); 1475 } 1476 1477 // Which is shorter, the delay wait or the asked wait? 1478 1479 int cmsNext; 1480 if (cmsWait == kForever) { 1481 cmsNext = cmsWait; 1482 } else { 1483 cmsNext = _max(0, cmsTotal - cmsElapsed); 1484 } 1485 1486 // Wait for one of the events to signal 1487 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), 1488 &events[0], 1489 false, 1490 cmsNext, 1491 false); 1492 1493 #if 0 // LOGGING 1494 // we track this information purely for logging purposes. 1495 last_tick_dispatch_count_++; 1496 if (last_tick_dispatch_count_ >= 1000) { 1497 int32 elapsed = TimeSince(last_tick_tracked_); 1498 LOG(INFO) << "PhysicalSocketServer took " << elapsed 1499 << "ms for 1000 events"; 1500 1501 // If we get more than 1000 events in a second, we are spinning badly 1502 // (normally it should take about 8-20 seconds). 1503 ASSERT(elapsed > 1000); 1504 1505 last_tick_tracked_ = Time(); 1506 last_tick_dispatch_count_ = 0; 1507 } 1508 #endif 1509 1510 if (dw == WSA_WAIT_FAILED) { 1511 // Failed? 1512 // TODO: need a better strategy than this! 1513 int error = WSAGetLastError(); 1514 ASSERT(false); 1515 return false; 1516 } else if (dw == WSA_WAIT_TIMEOUT) { 1517 // Timeout? 1518 return true; 1519 } else { 1520 // Figure out which one it is and call it 1521 CritScope cr(&crit_); 1522 int index = dw - WSA_WAIT_EVENT_0; 1523 if (index > 0) { 1524 --index; // The first event is the socket event 1525 event_owners[index]->OnPreEvent(0); 1526 event_owners[index]->OnEvent(0, 0); 1527 } else if (process_io) { 1528 size_t i = 0, end = dispatchers_.size(); 1529 iterators_.push_back(&i); 1530 iterators_.push_back(&end); // Don't iterate over new dispatchers. 1531 while (i < end) { 1532 Dispatcher* disp = dispatchers_[i++]; 1533 SOCKET s = disp->GetSocket(); 1534 if (s == INVALID_SOCKET) 1535 continue; 1536 1537 WSANETWORKEVENTS wsaEvents; 1538 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); 1539 if (err == 0) { 1540 1541 #if LOGGING 1542 { 1543 if ((wsaEvents.lNetworkEvents & FD_READ) && 1544 wsaEvents.iErrorCode[FD_READ_BIT] != 0) { 1545 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error " 1546 << wsaEvents.iErrorCode[FD_READ_BIT]; 1547 } 1548 if ((wsaEvents.lNetworkEvents & FD_WRITE) && 1549 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { 1550 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error " 1551 << wsaEvents.iErrorCode[FD_WRITE_BIT]; 1552 } 1553 if ((wsaEvents.lNetworkEvents & FD_CONNECT) && 1554 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { 1555 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error " 1556 << wsaEvents.iErrorCode[FD_CONNECT_BIT]; 1557 } 1558 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && 1559 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { 1560 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error " 1561 << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; 1562 } 1563 if ((wsaEvents.lNetworkEvents & FD_CLOSE) && 1564 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { 1565 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error " 1566 << wsaEvents.iErrorCode[FD_CLOSE_BIT]; 1567 } 1568 } 1569 #endif 1570 uint32 ff = 0; 1571 int errcode = 0; 1572 if (wsaEvents.lNetworkEvents & FD_READ) 1573 ff |= DE_READ; 1574 if (wsaEvents.lNetworkEvents & FD_WRITE) 1575 ff |= DE_WRITE; 1576 if (wsaEvents.lNetworkEvents & FD_CONNECT) { 1577 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { 1578 ff |= DE_CONNECT; 1579 } else { 1580 ff |= DE_CLOSE; 1581 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; 1582 } 1583 } 1584 if (wsaEvents.lNetworkEvents & FD_ACCEPT) 1585 ff |= DE_ACCEPT; 1586 if (wsaEvents.lNetworkEvents & FD_CLOSE) { 1587 ff |= DE_CLOSE; 1588 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; 1589 } 1590 if (ff != 0) { 1591 disp->OnPreEvent(ff); 1592 disp->OnEvent(ff, errcode); 1593 } 1594 } 1595 } 1596 ASSERT(iterators_.back() == &end); 1597 iterators_.pop_back(); 1598 ASSERT(iterators_.back() == &i); 1599 iterators_.pop_back(); 1600 } 1601 1602 // Reset the network event until new activity occurs 1603 WSAResetEvent(socket_ev_); 1604 } 1605 1606 // Break? 1607 if (!fWait_) 1608 break; 1609 cmsElapsed = TimeSince(msStart); 1610 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) { 1611 break; 1612 } 1613 } 1614 1615 // Done 1616 return true; 1617 } 1618 #endif // WIN32 1619 1620 } // namespace talk_base 1621