Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_JSREGEXP_H_
     29 #define V8_JSREGEXP_H_
     30 
     31 #include "allocation.h"
     32 #include "assembler.h"
     33 #include "zone-inl.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 class NodeVisitor;
     39 class RegExpCompiler;
     40 class RegExpMacroAssembler;
     41 class RegExpNode;
     42 class RegExpTree;
     43 class BoyerMooreLookahead;
     44 
     45 class RegExpImpl {
     46  public:
     47   // Whether V8 is compiled with native regexp support or not.
     48   static bool UsesNativeRegExp() {
     49 #ifdef V8_INTERPRETED_REGEXP
     50     return false;
     51 #else
     52     return true;
     53 #endif
     54   }
     55 
     56   // Creates a regular expression literal in the old space.
     57   // This function calls the garbage collector if necessary.
     58   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
     59                                             Handle<String> pattern,
     60                                             Handle<String> flags,
     61                                             bool* has_pending_exception);
     62 
     63   // Returns a string representation of a regular expression.
     64   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     65   // This function calls the garbage collector if necessary.
     66   static Handle<String> ToString(Handle<Object> value);
     67 
     68   // Parses the RegExp pattern and prepares the JSRegExp object with
     69   // generic data and choice of implementation - as well as what
     70   // the implementation wants to store in the data field.
     71   // Returns false if compilation fails.
     72   static Handle<Object> Compile(Handle<JSRegExp> re,
     73                                 Handle<String> pattern,
     74                                 Handle<String> flags);
     75 
     76   // See ECMA-262 section 15.10.6.2.
     77   // This function calls the garbage collector if necessary.
     78   static Handle<Object> Exec(Handle<JSRegExp> regexp,
     79                              Handle<String> subject,
     80                              int index,
     81                              Handle<JSArray> lastMatchInfo);
     82 
     83   // Prepares a JSRegExp object with Irregexp-specific data.
     84   static void IrregexpInitialize(Handle<JSRegExp> re,
     85                                  Handle<String> pattern,
     86                                  JSRegExp::Flags flags,
     87                                  int capture_register_count);
     88 
     89 
     90   static void AtomCompile(Handle<JSRegExp> re,
     91                           Handle<String> pattern,
     92                           JSRegExp::Flags flags,
     93                           Handle<String> match_pattern);
     94 
     95 
     96   static int AtomExecRaw(Handle<JSRegExp> regexp,
     97                          Handle<String> subject,
     98                          int index,
     99                          int32_t* output,
    100                          int output_size);
    101 
    102 
    103   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
    104                                  Handle<String> subject,
    105                                  int index,
    106                                  Handle<JSArray> lastMatchInfo);
    107 
    108   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
    109 
    110   // Prepare a RegExp for being executed one or more times (using
    111   // IrregexpExecOnce) on the subject.
    112   // This ensures that the regexp is compiled for the subject, and that
    113   // the subject is flat.
    114   // Returns the number of integer spaces required by IrregexpExecOnce
    115   // as its "registers" argument.  If the regexp cannot be compiled,
    116   // an exception is set as pending, and this function returns negative.
    117   static int IrregexpPrepare(Handle<JSRegExp> regexp,
    118                              Handle<String> subject);
    119 
    120   // Execute a regular expression on the subject, starting from index.
    121   // If matching succeeds, return the number of matches.  This can be larger
    122   // than one in the case of global regular expressions.
    123   // The captures and subcaptures are stored into the registers vector.
    124   // If matching fails, returns RE_FAILURE.
    125   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
    126   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
    127                              Handle<String> subject,
    128                              int index,
    129                              int32_t* output,
    130                              int output_size);
    131 
    132   // Execute an Irregexp bytecode pattern.
    133   // On a successful match, the result is a JSArray containing
    134   // captured positions.  On a failure, the result is the null value.
    135   // Returns an empty handle in case of an exception.
    136   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
    137                                      Handle<String> subject,
    138                                      int index,
    139                                      Handle<JSArray> lastMatchInfo);
    140 
    141   // Set last match info.  If match is NULL, then setting captures is omitted.
    142   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
    143                                           Handle<String> subject,
    144                                           int capture_count,
    145                                           int32_t* match);
    146 
    147 
    148   class GlobalCache {
    149    public:
    150     GlobalCache(Handle<JSRegExp> regexp,
    151                 Handle<String> subject,
    152                 bool is_global,
    153                 Isolate* isolate);
    154 
    155     INLINE(~GlobalCache());
    156 
    157     // Fetch the next entry in the cache for global regexp match results.
    158     // This does not set the last match info.  Upon failure, NULL is returned.
    159     // The cause can be checked with Result().  The previous
    160     // result is still in available in memory when a failure happens.
    161     INLINE(int32_t* FetchNext());
    162 
    163     INLINE(int32_t* LastSuccessfulMatch());
    164 
    165     INLINE(bool HasException()) { return num_matches_ < 0; }
    166 
    167    private:
    168     int num_matches_;
    169     int max_matches_;
    170     int current_match_index_;
    171     int registers_per_match_;
    172     // Pointer to the last set of captures.
    173     int32_t* register_array_;
    174     int register_array_size_;
    175     Handle<JSRegExp> regexp_;
    176     Handle<String> subject_;
    177   };
    178 
    179 
    180   // Array index in the lastMatchInfo array.
    181   static const int kLastCaptureCount = 0;
    182   static const int kLastSubject = 1;
    183   static const int kLastInput = 2;
    184   static const int kFirstCapture = 3;
    185   static const int kLastMatchOverhead = 3;
    186 
    187   // Direct offset into the lastMatchInfo array.
    188   static const int kLastCaptureCountOffset =
    189       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    190   static const int kLastSubjectOffset =
    191       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    192   static const int kLastInputOffset =
    193       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    194   static const int kFirstCaptureOffset =
    195       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    196 
    197   // Used to access the lastMatchInfo array.
    198   static int GetCapture(FixedArray* array, int index) {
    199     return Smi::cast(array->get(index + kFirstCapture))->value();
    200   }
    201 
    202   static void SetLastCaptureCount(FixedArray* array, int to) {
    203     array->set(kLastCaptureCount, Smi::FromInt(to));
    204   }
    205 
    206   static void SetLastSubject(FixedArray* array, String* to) {
    207     array->set(kLastSubject, to);
    208   }
    209 
    210   static void SetLastInput(FixedArray* array, String* to) {
    211     array->set(kLastInput, to);
    212   }
    213 
    214   static void SetCapture(FixedArray* array, int index, int to) {
    215     array->set(index + kFirstCapture, Smi::FromInt(to));
    216   }
    217 
    218   static int GetLastCaptureCount(FixedArray* array) {
    219     return Smi::cast(array->get(kLastCaptureCount))->value();
    220   }
    221 
    222   // For acting on the JSRegExp data FixedArray.
    223   static int IrregexpMaxRegisterCount(FixedArray* re);
    224   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    225   static int IrregexpNumberOfCaptures(FixedArray* re);
    226   static int IrregexpNumberOfRegisters(FixedArray* re);
    227   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
    228   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
    229 
    230   // Limit the space regexps take up on the heap.  In order to limit this we
    231   // would like to keep track of the amount of regexp code on the heap.  This
    232   // is not tracked, however.  As a conservative approximation we track the
    233   // total regexp code compiled including code that has subsequently been freed
    234   // and the total executable memory at any point.
    235   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    236   static const int kRegWxpCompiledLimit = 1 * MB;
    237 
    238  private:
    239   static bool CompileIrregexp(
    240       Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
    241   static inline bool EnsureCompiledIrregexp(
    242       Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
    243 };
    244 
    245 
    246 // Represents the location of one element relative to the intersection of
    247 // two sets. Corresponds to the four areas of a Venn diagram.
    248 enum ElementInSetsRelation {
    249   kInsideNone = 0,
    250   kInsideFirst = 1,
    251   kInsideSecond = 2,
    252   kInsideBoth = 3
    253 };
    254 
    255 
    256 // Represents code units in the range from from_ to to_, both ends are
    257 // inclusive.
    258 class CharacterRange {
    259  public:
    260   CharacterRange() : from_(0), to_(0) { }
    261   // For compatibility with the CHECK_OK macro
    262   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
    263   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
    264   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
    265                              Zone* zone);
    266   static Vector<const int> GetWordBounds();
    267   static inline CharacterRange Singleton(uc16 value) {
    268     return CharacterRange(value, value);
    269   }
    270   static inline CharacterRange Range(uc16 from, uc16 to) {
    271     ASSERT(from <= to);
    272     return CharacterRange(from, to);
    273   }
    274   static inline CharacterRange Everything() {
    275     return CharacterRange(0, 0xFFFF);
    276   }
    277   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
    278   uc16 from() const { return from_; }
    279   void set_from(uc16 value) { from_ = value; }
    280   uc16 to() const { return to_; }
    281   void set_to(uc16 value) { to_ = value; }
    282   bool is_valid() { return from_ <= to_; }
    283   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
    284   bool IsSingleton() { return (from_ == to_); }
    285   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii,
    286                           Zone* zone);
    287   static void Split(ZoneList<CharacterRange>* base,
    288                     Vector<const int> overlay,
    289                     ZoneList<CharacterRange>** included,
    290                     ZoneList<CharacterRange>** excluded,
    291                     Zone* zone);
    292   // Whether a range list is in canonical form: Ranges ordered by from value,
    293   // and ranges non-overlapping and non-adjacent.
    294   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
    295   // Convert range list to canonical form. The characters covered by the ranges
    296   // will still be the same, but no character is in more than one range, and
    297   // adjacent ranges are merged. The resulting list may be shorter than the
    298   // original, but cannot be longer.
    299   static void Canonicalize(ZoneList<CharacterRange>* ranges);
    300   // Negate the contents of a character range in canonical form.
    301   static void Negate(ZoneList<CharacterRange>* src,
    302                      ZoneList<CharacterRange>* dst,
    303                      Zone* zone);
    304   static const int kStartMarker = (1 << 24);
    305   static const int kPayloadMask = (1 << 24) - 1;
    306 
    307  private:
    308   uc16 from_;
    309   uc16 to_;
    310 };
    311 
    312 
    313 // A set of unsigned integers that behaves especially well on small
    314 // integers (< 32).  May do zone-allocation.
    315 class OutSet: public ZoneObject {
    316  public:
    317   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    318   OutSet* Extend(unsigned value, Zone* zone);
    319   bool Get(unsigned value);
    320   static const unsigned kFirstLimit = 32;
    321 
    322  private:
    323   // Destructively set a value in this set.  In most cases you want
    324   // to use Extend instead to ensure that only one instance exists
    325   // that contains the same values.
    326   void Set(unsigned value, Zone* zone);
    327 
    328   // The successors are a list of sets that contain the same values
    329   // as this set and the one more value that is not present in this
    330   // set.
    331   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
    332 
    333   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    334       : first_(first), remaining_(remaining), successors_(NULL) { }
    335   uint32_t first_;
    336   ZoneList<unsigned>* remaining_;
    337   ZoneList<OutSet*>* successors_;
    338   friend class Trace;
    339 };
    340 
    341 
    342 // A mapping from integers, specified as ranges, to a set of integers.
    343 // Used for mapping character ranges to choices.
    344 class DispatchTable : public ZoneObject {
    345  public:
    346   explicit DispatchTable(Zone* zone) : tree_(zone) { }
    347 
    348   class Entry {
    349    public:
    350     Entry() : from_(0), to_(0), out_set_(NULL) { }
    351     Entry(uc16 from, uc16 to, OutSet* out_set)
    352         : from_(from), to_(to), out_set_(out_set) { }
    353     uc16 from() { return from_; }
    354     uc16 to() { return to_; }
    355     void set_to(uc16 value) { to_ = value; }
    356     void AddValue(int value, Zone* zone) {
    357       out_set_ = out_set_->Extend(value, zone);
    358     }
    359     OutSet* out_set() { return out_set_; }
    360    private:
    361     uc16 from_;
    362     uc16 to_;
    363     OutSet* out_set_;
    364   };
    365 
    366   class Config {
    367    public:
    368     typedef uc16 Key;
    369     typedef Entry Value;
    370     static const uc16 kNoKey;
    371     static const Entry NoValue() { return Value(); }
    372     static inline int Compare(uc16 a, uc16 b) {
    373       if (a == b)
    374         return 0;
    375       else if (a < b)
    376         return -1;
    377       else
    378         return 1;
    379     }
    380   };
    381 
    382   void AddRange(CharacterRange range, int value, Zone* zone);
    383   OutSet* Get(uc16 value);
    384   void Dump();
    385 
    386   template <typename Callback>
    387   void ForEach(Callback* callback) {
    388     return tree()->ForEach(callback);
    389   }
    390 
    391  private:
    392   // There can't be a static empty set since it allocates its
    393   // successors in a zone and caches them.
    394   OutSet* empty() { return &empty_; }
    395   OutSet empty_;
    396   ZoneSplayTree<Config>* tree() { return &tree_; }
    397   ZoneSplayTree<Config> tree_;
    398 };
    399 
    400 
    401 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    402   VISIT(End)                                                         \
    403   VISIT(Action)                                                      \
    404   VISIT(Choice)                                                      \
    405   VISIT(BackReference)                                               \
    406   VISIT(Assertion)                                                   \
    407   VISIT(Text)
    408 
    409 
    410 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
    411   VISIT(Disjunction)                                                 \
    412   VISIT(Alternative)                                                 \
    413   VISIT(Assertion)                                                   \
    414   VISIT(CharacterClass)                                              \
    415   VISIT(Atom)                                                        \
    416   VISIT(Quantifier)                                                  \
    417   VISIT(Capture)                                                     \
    418   VISIT(Lookahead)                                                   \
    419   VISIT(BackReference)                                               \
    420   VISIT(Empty)                                                       \
    421   VISIT(Text)
    422 
    423 
    424 #define FORWARD_DECLARE(Name) class RegExp##Name;
    425 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
    426 #undef FORWARD_DECLARE
    427 
    428 
    429 class TextElement V8_FINAL BASE_EMBEDDED {
    430  public:
    431   enum TextType {
    432     ATOM,
    433     CHAR_CLASS
    434   };
    435 
    436   static TextElement Atom(RegExpAtom* atom);
    437   static TextElement CharClass(RegExpCharacterClass* char_class);
    438 
    439   int cp_offset() const { return cp_offset_; }
    440   void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    441   int length() const;
    442 
    443   TextType text_type() const { return text_type_; }
    444 
    445   RegExpTree* tree() const { return tree_; }
    446 
    447   RegExpAtom* atom() const {
    448     ASSERT(text_type() == ATOM);
    449     return reinterpret_cast<RegExpAtom*>(tree());
    450   }
    451 
    452   RegExpCharacterClass* char_class() const {
    453     ASSERT(text_type() == CHAR_CLASS);
    454     return reinterpret_cast<RegExpCharacterClass*>(tree());
    455   }
    456 
    457  private:
    458   TextElement(TextType text_type, RegExpTree* tree)
    459       : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
    460 
    461   int cp_offset_;
    462   TextType text_type_;
    463   RegExpTree* tree_;
    464 };
    465 
    466 
    467 class Trace;
    468 
    469 
    470 struct NodeInfo {
    471   NodeInfo()
    472       : being_analyzed(false),
    473         been_analyzed(false),
    474         follows_word_interest(false),
    475         follows_newline_interest(false),
    476         follows_start_interest(false),
    477         at_end(false),
    478         visited(false),
    479         replacement_calculated(false) { }
    480 
    481   // Returns true if the interests and assumptions of this node
    482   // matches the given one.
    483   bool Matches(NodeInfo* that) {
    484     return (at_end == that->at_end) &&
    485            (follows_word_interest == that->follows_word_interest) &&
    486            (follows_newline_interest == that->follows_newline_interest) &&
    487            (follows_start_interest == that->follows_start_interest);
    488   }
    489 
    490   // Updates the interests of this node given the interests of the
    491   // node preceding it.
    492   void AddFromPreceding(NodeInfo* that) {
    493     at_end |= that->at_end;
    494     follows_word_interest |= that->follows_word_interest;
    495     follows_newline_interest |= that->follows_newline_interest;
    496     follows_start_interest |= that->follows_start_interest;
    497   }
    498 
    499   bool HasLookbehind() {
    500     return follows_word_interest ||
    501            follows_newline_interest ||
    502            follows_start_interest;
    503   }
    504 
    505   // Sets the interests of this node to include the interests of the
    506   // following node.
    507   void AddFromFollowing(NodeInfo* that) {
    508     follows_word_interest |= that->follows_word_interest;
    509     follows_newline_interest |= that->follows_newline_interest;
    510     follows_start_interest |= that->follows_start_interest;
    511   }
    512 
    513   void ResetCompilationState() {
    514     being_analyzed = false;
    515     been_analyzed = false;
    516   }
    517 
    518   bool being_analyzed: 1;
    519   bool been_analyzed: 1;
    520 
    521   // These bits are set of this node has to know what the preceding
    522   // character was.
    523   bool follows_word_interest: 1;
    524   bool follows_newline_interest: 1;
    525   bool follows_start_interest: 1;
    526 
    527   bool at_end: 1;
    528   bool visited: 1;
    529   bool replacement_calculated: 1;
    530 };
    531 
    532 
    533 // Details of a quick mask-compare check that can look ahead in the
    534 // input stream.
    535 class QuickCheckDetails {
    536  public:
    537   QuickCheckDetails()
    538       : characters_(0),
    539         mask_(0),
    540         value_(0),
    541         cannot_match_(false) { }
    542   explicit QuickCheckDetails(int characters)
    543       : characters_(characters),
    544         mask_(0),
    545         value_(0),
    546         cannot_match_(false) { }
    547   bool Rationalize(bool ascii);
    548   // Merge in the information from another branch of an alternation.
    549   void Merge(QuickCheckDetails* other, int from_index);
    550   // Advance the current position by some amount.
    551   void Advance(int by, bool ascii);
    552   void Clear();
    553   bool cannot_match() { return cannot_match_; }
    554   void set_cannot_match() { cannot_match_ = true; }
    555   struct Position {
    556     Position() : mask(0), value(0), determines_perfectly(false) { }
    557     uc16 mask;
    558     uc16 value;
    559     bool determines_perfectly;
    560   };
    561   int characters() { return characters_; }
    562   void set_characters(int characters) { characters_ = characters; }
    563   Position* positions(int index) {
    564     ASSERT(index >= 0);
    565     ASSERT(index < characters_);
    566     return positions_ + index;
    567   }
    568   uint32_t mask() { return mask_; }
    569   uint32_t value() { return value_; }
    570 
    571  private:
    572   // How many characters do we have quick check information from.  This is
    573   // the same for all branches of a choice node.
    574   int characters_;
    575   Position positions_[4];
    576   // These values are the condensate of the above array after Rationalize().
    577   uint32_t mask_;
    578   uint32_t value_;
    579   // If set to true, there is no way this quick check can match at all.
    580   // E.g., if it requires to be at the start of the input, and isn't.
    581   bool cannot_match_;
    582 };
    583 
    584 
    585 extern int kUninitializedRegExpNodePlaceHolder;
    586 
    587 
    588 class RegExpNode: public ZoneObject {
    589  public:
    590   explicit RegExpNode(Zone* zone)
    591   : replacement_(NULL), trace_count_(0), zone_(zone) {
    592     bm_info_[0] = bm_info_[1] = NULL;
    593   }
    594   virtual ~RegExpNode();
    595   virtual void Accept(NodeVisitor* visitor) = 0;
    596   // Generates a goto to this node or actually generates the code at this point.
    597   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    598   // How many characters must this node consume at a minimum in order to
    599   // succeed.  If we have found at least 'still_to_find' characters that
    600   // must be consumed there is no need to ask any following nodes whether
    601   // they are sure to eat any more characters.  The not_at_start argument is
    602   // used to indicate that we know we are not at the start of the input.  In
    603   // this case anchored branches will always fail and can be ignored when
    604   // determining how many characters are consumed on success.
    605   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
    606   // Emits some quick code that checks whether the preloaded characters match.
    607   // Falls through on certain failure, jumps to the label on possible success.
    608   // If the node cannot make a quick check it does nothing and returns false.
    609   bool EmitQuickCheck(RegExpCompiler* compiler,
    610                       Trace* trace,
    611                       bool preload_has_checked_bounds,
    612                       Label* on_possible_success,
    613                       QuickCheckDetails* details_return,
    614                       bool fall_through_on_failure);
    615   // For a given number of characters this returns a mask and a value.  The
    616   // next n characters are anded with the mask and compared with the value.
    617   // A comparison failure indicates the node cannot match the next n characters.
    618   // A comparison success indicates the node may match.
    619   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    620                                     RegExpCompiler* compiler,
    621                                     int characters_filled_in,
    622                                     bool not_at_start) = 0;
    623   static const int kNodeIsTooComplexForGreedyLoops = -1;
    624   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    625   // Only returns the successor for a text node of length 1 that matches any
    626   // character and that has no guards on it.
    627   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    628       RegExpCompiler* compiler) {
    629     return NULL;
    630   }
    631 
    632   // Collects information on the possible code units (mod 128) that can match if
    633   // we look forward.  This is used for a Boyer-Moore-like string searching
    634   // implementation.  TODO(erikcorry):  This should share more code with
    635   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
    636   // the number of nodes we are willing to look at in order to create this data.
    637   static const int kRecursionBudget = 200;
    638   virtual void FillInBMInfo(int offset,
    639                             int budget,
    640                             BoyerMooreLookahead* bm,
    641                             bool not_at_start) {
    642     UNREACHABLE();
    643   }
    644 
    645   // If we know that the input is ASCII then there are some nodes that can
    646   // never match.  This method returns a node that can be substituted for
    647   // itself, or NULL if the node can never match.
    648   virtual RegExpNode* FilterASCII(int depth, bool ignore_case) { return this; }
    649   // Helper for FilterASCII.
    650   RegExpNode* replacement() {
    651     ASSERT(info()->replacement_calculated);
    652     return replacement_;
    653   }
    654   RegExpNode* set_replacement(RegExpNode* replacement) {
    655     info()->replacement_calculated = true;
    656     replacement_ =  replacement;
    657     return replacement;  // For convenience.
    658   }
    659 
    660   // We want to avoid recalculating the lookahead info, so we store it on the
    661   // node.  Only info that is for this node is stored.  We can tell that the
    662   // info is for this node when offset == 0, so the information is calculated
    663   // relative to this node.
    664   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
    665     if (offset == 0) set_bm_info(not_at_start, bm);
    666   }
    667 
    668   Label* label() { return &label_; }
    669   // If non-generic code is generated for a node (i.e. the node is not at the
    670   // start of the trace) then it cannot be reused.  This variable sets a limit
    671   // on how often we allow that to happen before we insist on starting a new
    672   // trace and generating generic code for a node that can be reused by flushing
    673   // the deferred actions in the current trace and generating a goto.
    674   static const int kMaxCopiesCodeGenerated = 10;
    675 
    676   NodeInfo* info() { return &info_; }
    677 
    678   BoyerMooreLookahead* bm_info(bool not_at_start) {
    679     return bm_info_[not_at_start ? 1 : 0];
    680   }
    681 
    682   Zone* zone() const { return zone_; }
    683 
    684  protected:
    685   enum LimitResult { DONE, CONTINUE };
    686   RegExpNode* replacement_;
    687 
    688   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    689 
    690   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
    691     bm_info_[not_at_start ? 1 : 0] = bm;
    692   }
    693 
    694  private:
    695   static const int kFirstCharBudget = 10;
    696   Label label_;
    697   NodeInfo info_;
    698   // This variable keeps track of how many times code has been generated for
    699   // this node (in different traces).  We don't keep track of where the
    700   // generated code is located unless the code is generated at the start of
    701   // a trace, in which case it is generic and can be reused by flushing the
    702   // deferred operations in the current trace and generating a goto.
    703   int trace_count_;
    704   BoyerMooreLookahead* bm_info_[2];
    705 
    706   Zone* zone_;
    707 };
    708 
    709 
    710 // A simple closed interval.
    711 class Interval {
    712  public:
    713   Interval() : from_(kNone), to_(kNone) { }
    714   Interval(int from, int to) : from_(from), to_(to) { }
    715   Interval Union(Interval that) {
    716     if (that.from_ == kNone)
    717       return *this;
    718     else if (from_ == kNone)
    719       return that;
    720     else
    721       return Interval(Min(from_, that.from_), Max(to_, that.to_));
    722   }
    723   bool Contains(int value) {
    724     return (from_ <= value) && (value <= to_);
    725   }
    726   bool is_empty() { return from_ == kNone; }
    727   int from() const { return from_; }
    728   int to() const { return to_; }
    729   static Interval Empty() { return Interval(); }
    730   static const int kNone = -1;
    731  private:
    732   int from_;
    733   int to_;
    734 };
    735 
    736 
    737 class SeqRegExpNode: public RegExpNode {
    738  public:
    739   explicit SeqRegExpNode(RegExpNode* on_success)
    740       : RegExpNode(on_success->zone()), on_success_(on_success) { }
    741   RegExpNode* on_success() { return on_success_; }
    742   void set_on_success(RegExpNode* node) { on_success_ = node; }
    743   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
    744   virtual void FillInBMInfo(int offset,
    745                             int budget,
    746                             BoyerMooreLookahead* bm,
    747                             bool not_at_start) {
    748     on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
    749     if (offset == 0) set_bm_info(not_at_start, bm);
    750   }
    751 
    752  protected:
    753   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
    754 
    755  private:
    756   RegExpNode* on_success_;
    757 };
    758 
    759 
    760 class ActionNode: public SeqRegExpNode {
    761  public:
    762   enum ActionType {
    763     SET_REGISTER,
    764     INCREMENT_REGISTER,
    765     STORE_POSITION,
    766     BEGIN_SUBMATCH,
    767     POSITIVE_SUBMATCH_SUCCESS,
    768     EMPTY_MATCH_CHECK,
    769     CLEAR_CAPTURES
    770   };
    771   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    772   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    773   static ActionNode* StorePosition(int reg,
    774                                    bool is_capture,
    775                                    RegExpNode* on_success);
    776   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    777   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    778                                    int position_reg,
    779                                    RegExpNode* on_success);
    780   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    781                                              int restore_reg,
    782                                              int clear_capture_count,
    783                                              int clear_capture_from,
    784                                              RegExpNode* on_success);
    785   static ActionNode* EmptyMatchCheck(int start_register,
    786                                      int repetition_register,
    787                                      int repetition_limit,
    788                                      RegExpNode* on_success);
    789   virtual void Accept(NodeVisitor* visitor);
    790   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    791   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    792   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    793                                     RegExpCompiler* compiler,
    794                                     int filled_in,
    795                                     bool not_at_start) {
    796     return on_success()->GetQuickCheckDetails(
    797         details, compiler, filled_in, not_at_start);
    798   }
    799   virtual void FillInBMInfo(int offset,
    800                             int budget,
    801                             BoyerMooreLookahead* bm,
    802                             bool not_at_start);
    803   ActionType action_type() { return action_type_; }
    804   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    805   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    806 
    807  private:
    808   union {
    809     struct {
    810       int reg;
    811       int value;
    812     } u_store_register;
    813     struct {
    814       int reg;
    815     } u_increment_register;
    816     struct {
    817       int reg;
    818       bool is_capture;
    819     } u_position_register;
    820     struct {
    821       int stack_pointer_register;
    822       int current_position_register;
    823       int clear_register_count;
    824       int clear_register_from;
    825     } u_submatch;
    826     struct {
    827       int start_register;
    828       int repetition_register;
    829       int repetition_limit;
    830     } u_empty_match_check;
    831     struct {
    832       int range_from;
    833       int range_to;
    834     } u_clear_captures;
    835   } data_;
    836   ActionNode(ActionType action_type, RegExpNode* on_success)
    837       : SeqRegExpNode(on_success),
    838         action_type_(action_type) { }
    839   ActionType action_type_;
    840   friend class DotPrinter;
    841 };
    842 
    843 
    844 class TextNode: public SeqRegExpNode {
    845  public:
    846   TextNode(ZoneList<TextElement>* elms,
    847            RegExpNode* on_success)
    848       : SeqRegExpNode(on_success),
    849         elms_(elms) { }
    850   TextNode(RegExpCharacterClass* that,
    851            RegExpNode* on_success)
    852       : SeqRegExpNode(on_success),
    853         elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
    854     elms_->Add(TextElement::CharClass(that), zone());
    855   }
    856   virtual void Accept(NodeVisitor* visitor);
    857   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    858   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    859   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    860                                     RegExpCompiler* compiler,
    861                                     int characters_filled_in,
    862                                     bool not_at_start);
    863   ZoneList<TextElement>* elements() { return elms_; }
    864   void MakeCaseIndependent(bool is_ascii);
    865   virtual int GreedyLoopTextLength();
    866   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    867       RegExpCompiler* compiler);
    868   virtual void FillInBMInfo(int offset,
    869                             int budget,
    870                             BoyerMooreLookahead* bm,
    871                             bool not_at_start);
    872   void CalculateOffsets();
    873   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
    874 
    875  private:
    876   enum TextEmitPassType {
    877     NON_ASCII_MATCH,             // Check for characters that can't match.
    878     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    879     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    880     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    881     CHARACTER_CLASS_MATCH        // Character class.
    882   };
    883   static bool SkipPass(int pass, bool ignore_case);
    884   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    885   static const int kLastPass = CHARACTER_CLASS_MATCH;
    886   void TextEmitPass(RegExpCompiler* compiler,
    887                     TextEmitPassType pass,
    888                     bool preloaded,
    889                     Trace* trace,
    890                     bool first_element_checked,
    891                     int* checked_up_to);
    892   int Length();
    893   ZoneList<TextElement>* elms_;
    894 };
    895 
    896 
    897 class AssertionNode: public SeqRegExpNode {
    898  public:
    899   enum AssertionType {
    900     AT_END,
    901     AT_START,
    902     AT_BOUNDARY,
    903     AT_NON_BOUNDARY,
    904     AFTER_NEWLINE
    905   };
    906   static AssertionNode* AtEnd(RegExpNode* on_success) {
    907     return new(on_success->zone()) AssertionNode(AT_END, on_success);
    908   }
    909   static AssertionNode* AtStart(RegExpNode* on_success) {
    910     return new(on_success->zone()) AssertionNode(AT_START, on_success);
    911   }
    912   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    913     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
    914   }
    915   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    916     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
    917   }
    918   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    919     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
    920   }
    921   virtual void Accept(NodeVisitor* visitor);
    922   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    923   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    924   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    925                                     RegExpCompiler* compiler,
    926                                     int filled_in,
    927                                     bool not_at_start);
    928   virtual void FillInBMInfo(int offset,
    929                             int budget,
    930                             BoyerMooreLookahead* bm,
    931                             bool not_at_start);
    932   AssertionType assertion_type() { return assertion_type_; }
    933 
    934  private:
    935   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
    936   enum IfPrevious { kIsNonWord, kIsWord };
    937   void BacktrackIfPrevious(RegExpCompiler* compiler,
    938                            Trace* trace,
    939                            IfPrevious backtrack_if_previous);
    940   AssertionNode(AssertionType t, RegExpNode* on_success)
    941       : SeqRegExpNode(on_success), assertion_type_(t) { }
    942   AssertionType assertion_type_;
    943 };
    944 
    945 
    946 class BackReferenceNode: public SeqRegExpNode {
    947  public:
    948   BackReferenceNode(int start_reg,
    949                     int end_reg,
    950                     RegExpNode* on_success)
    951       : SeqRegExpNode(on_success),
    952         start_reg_(start_reg),
    953         end_reg_(end_reg) { }
    954   virtual void Accept(NodeVisitor* visitor);
    955   int start_register() { return start_reg_; }
    956   int end_register() { return end_reg_; }
    957   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    958   virtual int EatsAtLeast(int still_to_find,
    959                           int recursion_depth,
    960                           bool not_at_start);
    961   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    962                                     RegExpCompiler* compiler,
    963                                     int characters_filled_in,
    964                                     bool not_at_start) {
    965     return;
    966   }
    967   virtual void FillInBMInfo(int offset,
    968                             int budget,
    969                             BoyerMooreLookahead* bm,
    970                             bool not_at_start);
    971 
    972  private:
    973   int start_reg_;
    974   int end_reg_;
    975 };
    976 
    977 
    978 class EndNode: public RegExpNode {
    979  public:
    980   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    981   explicit EndNode(Action action, Zone* zone)
    982       : RegExpNode(zone), action_(action) { }
    983   virtual void Accept(NodeVisitor* visitor);
    984   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    985   virtual int EatsAtLeast(int still_to_find,
    986                           int recursion_depth,
    987                           bool not_at_start) { return 0; }
    988   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    989                                     RegExpCompiler* compiler,
    990                                     int characters_filled_in,
    991                                     bool not_at_start) {
    992     // Returning 0 from EatsAtLeast should ensure we never get here.
    993     UNREACHABLE();
    994   }
    995   virtual void FillInBMInfo(int offset,
    996                             int budget,
    997                             BoyerMooreLookahead* bm,
    998                             bool not_at_start) {
    999     // Returning 0 from EatsAtLeast should ensure we never get here.
   1000     UNREACHABLE();
   1001   }
   1002 
   1003  private:
   1004   Action action_;
   1005 };
   1006 
   1007 
   1008 class NegativeSubmatchSuccess: public EndNode {
   1009  public:
   1010   NegativeSubmatchSuccess(int stack_pointer_reg,
   1011                           int position_reg,
   1012                           int clear_capture_count,
   1013                           int clear_capture_start,
   1014                           Zone* zone)
   1015       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
   1016         stack_pointer_register_(stack_pointer_reg),
   1017         current_position_register_(position_reg),
   1018         clear_capture_count_(clear_capture_count),
   1019         clear_capture_start_(clear_capture_start) { }
   1020   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1021 
   1022  private:
   1023   int stack_pointer_register_;
   1024   int current_position_register_;
   1025   int clear_capture_count_;
   1026   int clear_capture_start_;
   1027 };
   1028 
   1029 
   1030 class Guard: public ZoneObject {
   1031  public:
   1032   enum Relation { LT, GEQ };
   1033   Guard(int reg, Relation op, int value)
   1034       : reg_(reg),
   1035         op_(op),
   1036         value_(value) { }
   1037   int reg() { return reg_; }
   1038   Relation op() { return op_; }
   1039   int value() { return value_; }
   1040 
   1041  private:
   1042   int reg_;
   1043   Relation op_;
   1044   int value_;
   1045 };
   1046 
   1047 
   1048 class GuardedAlternative {
   1049  public:
   1050   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
   1051   void AddGuard(Guard* guard, Zone* zone);
   1052   RegExpNode* node() { return node_; }
   1053   void set_node(RegExpNode* node) { node_ = node; }
   1054   ZoneList<Guard*>* guards() { return guards_; }
   1055 
   1056  private:
   1057   RegExpNode* node_;
   1058   ZoneList<Guard*>* guards_;
   1059 };
   1060 
   1061 
   1062 class AlternativeGeneration;
   1063 
   1064 
   1065 class ChoiceNode: public RegExpNode {
   1066  public:
   1067   explicit ChoiceNode(int expected_size, Zone* zone)
   1068       : RegExpNode(zone),
   1069         alternatives_(new(zone)
   1070                       ZoneList<GuardedAlternative>(expected_size, zone)),
   1071         table_(NULL),
   1072         not_at_start_(false),
   1073         being_calculated_(false) { }
   1074   virtual void Accept(NodeVisitor* visitor);
   1075   void AddAlternative(GuardedAlternative node) {
   1076     alternatives()->Add(node, zone());
   1077   }
   1078   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
   1079   DispatchTable* GetTable(bool ignore_case);
   1080   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1081   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1082   int EatsAtLeastHelper(int still_to_find,
   1083                         int budget,
   1084                         RegExpNode* ignore_this_node,
   1085                         bool not_at_start);
   1086   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1087                                     RegExpCompiler* compiler,
   1088                                     int characters_filled_in,
   1089                                     bool not_at_start);
   1090   virtual void FillInBMInfo(int offset,
   1091                             int budget,
   1092                             BoyerMooreLookahead* bm,
   1093                             bool not_at_start);
   1094 
   1095   bool being_calculated() { return being_calculated_; }
   1096   bool not_at_start() { return not_at_start_; }
   1097   void set_not_at_start() { not_at_start_ = true; }
   1098   void set_being_calculated(bool b) { being_calculated_ = b; }
   1099   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
   1100   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1101 
   1102  protected:
   1103   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
   1104   ZoneList<GuardedAlternative>* alternatives_;
   1105 
   1106  private:
   1107   friend class DispatchTableConstructor;
   1108   friend class Analysis;
   1109   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1110                      Guard* guard,
   1111                      Trace* trace);
   1112   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
   1113   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
   1114                                  Trace* trace,
   1115                                  GuardedAlternative alternative,
   1116                                  AlternativeGeneration* alt_gen,
   1117                                  int preload_characters,
   1118                                  bool next_expects_preload);
   1119   DispatchTable* table_;
   1120   // If true, this node is never checked at the start of the input.
   1121   // Allows a new trace to start with at_start() set to false.
   1122   bool not_at_start_;
   1123   bool being_calculated_;
   1124 };
   1125 
   1126 
   1127 class NegativeLookaheadChoiceNode: public ChoiceNode {
   1128  public:
   1129   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
   1130                                        GuardedAlternative then_do_this,
   1131                                        Zone* zone)
   1132       : ChoiceNode(2, zone) {
   1133     AddAlternative(this_must_fail);
   1134     AddAlternative(then_do_this);
   1135   }
   1136   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1137   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1138                                     RegExpCompiler* compiler,
   1139                                     int characters_filled_in,
   1140                                     bool not_at_start);
   1141   virtual void FillInBMInfo(int offset,
   1142                             int budget,
   1143                             BoyerMooreLookahead* bm,
   1144                             bool not_at_start) {
   1145     alternatives_->at(1).node()->FillInBMInfo(
   1146         offset, budget - 1, bm, not_at_start);
   1147     if (offset == 0) set_bm_info(not_at_start, bm);
   1148   }
   1149   // For a negative lookahead we don't emit the quick check for the
   1150   // alternative that is expected to fail.  This is because quick check code
   1151   // starts by loading enough characters for the alternative that takes fewest
   1152   // characters, but on a negative lookahead the negative branch did not take
   1153   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1154   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
   1155   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1156 };
   1157 
   1158 
   1159 class LoopChoiceNode: public ChoiceNode {
   1160  public:
   1161   explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
   1162       : ChoiceNode(2, zone),
   1163         loop_node_(NULL),
   1164         continue_node_(NULL),
   1165         body_can_be_zero_length_(body_can_be_zero_length) { }
   1166   void AddLoopAlternative(GuardedAlternative alt);
   1167   void AddContinueAlternative(GuardedAlternative alt);
   1168   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1169   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
   1170   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1171                                     RegExpCompiler* compiler,
   1172                                     int characters_filled_in,
   1173                                     bool not_at_start);
   1174   virtual void FillInBMInfo(int offset,
   1175                             int budget,
   1176                             BoyerMooreLookahead* bm,
   1177                             bool not_at_start);
   1178   RegExpNode* loop_node() { return loop_node_; }
   1179   RegExpNode* continue_node() { return continue_node_; }
   1180   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1181   virtual void Accept(NodeVisitor* visitor);
   1182   virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
   1183 
   1184  private:
   1185   // AddAlternative is made private for loop nodes because alternatives
   1186   // should not be added freely, we need to keep track of which node
   1187   // goes back to the node itself.
   1188   void AddAlternative(GuardedAlternative node) {
   1189     ChoiceNode::AddAlternative(node);
   1190   }
   1191 
   1192   RegExpNode* loop_node_;
   1193   RegExpNode* continue_node_;
   1194   bool body_can_be_zero_length_;
   1195 };
   1196 
   1197 
   1198 // Improve the speed that we scan for an initial point where a non-anchored
   1199 // regexp can match by using a Boyer-Moore-like table. This is done by
   1200 // identifying non-greedy non-capturing loops in the nodes that eat any
   1201 // character one at a time.  For example in the middle of the regexp
   1202 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
   1203 // inserted at the start of any non-anchored regexp.
   1204 //
   1205 // When we have found such a loop we look ahead in the nodes to find the set of
   1206 // characters that can come at given distances. For example for the regexp
   1207 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
   1208 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
   1209 // the lookahead info where the set of characters is reasonably constrained. In
   1210 // our example this is from index 1 to 2 (0 is not constrained). We can now
   1211 // look 3 characters ahead and if we don't find one of [f, o] (the union of
   1212 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
   1213 //
   1214 // For Unicode input strings we do the same, but modulo 128.
   1215 //
   1216 // We also look at the first string fed to the regexp and use that to get a hint
   1217 // of the character frequencies in the inputs. This affects the assessment of
   1218 // whether the set of characters is 'reasonably constrained'.
   1219 //
   1220 // We also have another lookahead mechanism (called quick check in the code),
   1221 // which uses a wide load of multiple characters followed by a mask and compare
   1222 // to determine whether a match is possible at this point.
   1223 enum ContainedInLattice {
   1224   kNotYet = 0,
   1225   kLatticeIn = 1,
   1226   kLatticeOut = 2,
   1227   kLatticeUnknown = 3  // Can also mean both in and out.
   1228 };
   1229 
   1230 
   1231 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
   1232   return static_cast<ContainedInLattice>(a | b);
   1233 }
   1234 
   1235 
   1236 ContainedInLattice AddRange(ContainedInLattice a,
   1237                             const int* ranges,
   1238                             int ranges_size,
   1239                             Interval new_range);
   1240 
   1241 
   1242 class BoyerMoorePositionInfo : public ZoneObject {
   1243  public:
   1244   explicit BoyerMoorePositionInfo(Zone* zone)
   1245       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
   1246         map_count_(0),
   1247         w_(kNotYet),
   1248         s_(kNotYet),
   1249         d_(kNotYet),
   1250         surrogate_(kNotYet) {
   1251      for (int i = 0; i < kMapSize; i++) {
   1252        map_->Add(false, zone);
   1253      }
   1254   }
   1255 
   1256   bool& at(int i) { return map_->at(i); }
   1257 
   1258   static const int kMapSize = 128;
   1259   static const int kMask = kMapSize - 1;
   1260 
   1261   int map_count() const { return map_count_; }
   1262 
   1263   void Set(int character);
   1264   void SetInterval(const Interval& interval);
   1265   void SetAll();
   1266   bool is_non_word() { return w_ == kLatticeOut; }
   1267   bool is_word() { return w_ == kLatticeIn; }
   1268 
   1269  private:
   1270   ZoneList<bool>* map_;
   1271   int map_count_;  // Number of set bits in the map.
   1272   ContainedInLattice w_;  // The \w character class.
   1273   ContainedInLattice s_;  // The \s character class.
   1274   ContainedInLattice d_;  // The \d character class.
   1275   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
   1276 };
   1277 
   1278 
   1279 class BoyerMooreLookahead : public ZoneObject {
   1280  public:
   1281   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
   1282 
   1283   int length() { return length_; }
   1284   int max_char() { return max_char_; }
   1285   RegExpCompiler* compiler() { return compiler_; }
   1286 
   1287   int Count(int map_number) {
   1288     return bitmaps_->at(map_number)->map_count();
   1289   }
   1290 
   1291   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
   1292 
   1293   void Set(int map_number, int character) {
   1294     if (character > max_char_) return;
   1295     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1296     info->Set(character);
   1297   }
   1298 
   1299   void SetInterval(int map_number, const Interval& interval) {
   1300     if (interval.from() > max_char_) return;
   1301     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1302     if (interval.to() > max_char_) {
   1303       info->SetInterval(Interval(interval.from(), max_char_));
   1304     } else {
   1305       info->SetInterval(interval);
   1306     }
   1307   }
   1308 
   1309   void SetAll(int map_number) {
   1310     bitmaps_->at(map_number)->SetAll();
   1311   }
   1312 
   1313   void SetRest(int from_map) {
   1314     for (int i = from_map; i < length_; i++) SetAll(i);
   1315   }
   1316   bool EmitSkipInstructions(RegExpMacroAssembler* masm);
   1317 
   1318  private:
   1319   // This is the value obtained by EatsAtLeast.  If we do not have at least this
   1320   // many characters left in the sample string then the match is bound to fail.
   1321   // Therefore it is OK to read a character this far ahead of the current match
   1322   // point.
   1323   int length_;
   1324   RegExpCompiler* compiler_;
   1325   // 0x7f for ASCII, 0xffff for UTF-16.
   1326   int max_char_;
   1327   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
   1328 
   1329   int GetSkipTable(int min_lookahead,
   1330                    int max_lookahead,
   1331                    Handle<ByteArray> boolean_skip_table);
   1332   bool FindWorthwhileInterval(int* from, int* to);
   1333   int FindBestInterval(
   1334     int max_number_of_chars, int old_biggest_points, int* from, int* to);
   1335 };
   1336 
   1337 
   1338 // There are many ways to generate code for a node.  This class encapsulates
   1339 // the current way we should be generating.  In other words it encapsulates
   1340 // the current state of the code generator.  The effect of this is that we
   1341 // generate code for paths that the matcher can take through the regular
   1342 // expression.  A given node in the regexp can be code-generated several times
   1343 // as it can be part of several traces.  For example for the regexp:
   1344 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1345 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1346 // to match foo is generated only once (the traces have a common prefix).  The
   1347 // code to store the capture is deferred and generated (twice) after the places
   1348 // where baz has been matched.
   1349 class Trace {
   1350  public:
   1351   // A value for a property that is either known to be true, know to be false,
   1352   // or not known.
   1353   enum TriBool {
   1354     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
   1355   };
   1356 
   1357   class DeferredAction {
   1358    public:
   1359     DeferredAction(ActionNode::ActionType action_type, int reg)
   1360         : action_type_(action_type), reg_(reg), next_(NULL) { }
   1361     DeferredAction* next() { return next_; }
   1362     bool Mentions(int reg);
   1363     int reg() { return reg_; }
   1364     ActionNode::ActionType action_type() { return action_type_; }
   1365    private:
   1366     ActionNode::ActionType action_type_;
   1367     int reg_;
   1368     DeferredAction* next_;
   1369     friend class Trace;
   1370   };
   1371 
   1372   class DeferredCapture : public DeferredAction {
   1373    public:
   1374     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1375         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1376           cp_offset_(trace->cp_offset()),
   1377           is_capture_(is_capture) { }
   1378     int cp_offset() { return cp_offset_; }
   1379     bool is_capture() { return is_capture_; }
   1380    private:
   1381     int cp_offset_;
   1382     bool is_capture_;
   1383     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1384   };
   1385 
   1386   class DeferredSetRegister : public DeferredAction {
   1387    public:
   1388     DeferredSetRegister(int reg, int value)
   1389         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1390           value_(value) { }
   1391     int value() { return value_; }
   1392    private:
   1393     int value_;
   1394   };
   1395 
   1396   class DeferredClearCaptures : public DeferredAction {
   1397    public:
   1398     explicit DeferredClearCaptures(Interval range)
   1399         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1400           range_(range) { }
   1401     Interval range() { return range_; }
   1402    private:
   1403     Interval range_;
   1404   };
   1405 
   1406   class DeferredIncrementRegister : public DeferredAction {
   1407    public:
   1408     explicit DeferredIncrementRegister(int reg)
   1409         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1410   };
   1411 
   1412   Trace()
   1413       : cp_offset_(0),
   1414         actions_(NULL),
   1415         backtrack_(NULL),
   1416         stop_node_(NULL),
   1417         loop_label_(NULL),
   1418         characters_preloaded_(0),
   1419         bound_checked_up_to_(0),
   1420         flush_budget_(100),
   1421         at_start_(UNKNOWN) { }
   1422 
   1423   // End the trace.  This involves flushing the deferred actions in the trace
   1424   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1425   // done we can start a new trace or go to one that has already been
   1426   // generated.
   1427   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1428   int cp_offset() { return cp_offset_; }
   1429   DeferredAction* actions() { return actions_; }
   1430   // A trivial trace is one that has no deferred actions or other state that
   1431   // affects the assumptions used when generating code.  There is no recorded
   1432   // backtrack location in a trivial trace, so with a trivial trace we will
   1433   // generate code that, on a failure to match, gets the backtrack location
   1434   // from the backtrack stack rather than using a direct jump instruction.  We
   1435   // always start code generation with a trivial trace and non-trivial traces
   1436   // are created as we emit code for nodes or add to the list of deferred
   1437   // actions in the trace.  The location of the code generated for a node using
   1438   // a trivial trace is recorded in a label in the node so that gotos can be
   1439   // generated to that code.
   1440   bool is_trivial() {
   1441     return backtrack_ == NULL &&
   1442            actions_ == NULL &&
   1443            cp_offset_ == 0 &&
   1444            characters_preloaded_ == 0 &&
   1445            bound_checked_up_to_ == 0 &&
   1446            quick_check_performed_.characters() == 0 &&
   1447            at_start_ == UNKNOWN;
   1448   }
   1449   TriBool at_start() { return at_start_; }
   1450   void set_at_start(bool at_start) {
   1451     at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
   1452   }
   1453   Label* backtrack() { return backtrack_; }
   1454   Label* loop_label() { return loop_label_; }
   1455   RegExpNode* stop_node() { return stop_node_; }
   1456   int characters_preloaded() { return characters_preloaded_; }
   1457   int bound_checked_up_to() { return bound_checked_up_to_; }
   1458   int flush_budget() { return flush_budget_; }
   1459   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1460   bool mentions_reg(int reg);
   1461   // Returns true if a deferred position store exists to the specified
   1462   // register and stores the offset in the out-parameter.  Otherwise
   1463   // returns false.
   1464   bool GetStoredPosition(int reg, int* cp_offset);
   1465   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1466   // new traces - the intention is that traces are immutable after creation.
   1467   void add_action(DeferredAction* new_action) {
   1468     ASSERT(new_action->next_ == NULL);
   1469     new_action->next_ = actions_;
   1470     actions_ = new_action;
   1471   }
   1472   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1473   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1474   void set_loop_label(Label* label) { loop_label_ = label; }
   1475   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1476   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1477   void set_flush_budget(int to) { flush_budget_ = to; }
   1478   void set_quick_check_performed(QuickCheckDetails* d) {
   1479     quick_check_performed_ = *d;
   1480   }
   1481   void InvalidateCurrentCharacter();
   1482   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1483 
   1484  private:
   1485   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
   1486   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1487                               int max_register,
   1488                               OutSet& affected_registers,
   1489                               OutSet* registers_to_pop,
   1490                               OutSet* registers_to_clear,
   1491                               Zone* zone);
   1492   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1493                                 int max_register,
   1494                                 OutSet& registers_to_pop,
   1495                                 OutSet& registers_to_clear);
   1496   int cp_offset_;
   1497   DeferredAction* actions_;
   1498   Label* backtrack_;
   1499   RegExpNode* stop_node_;
   1500   Label* loop_label_;
   1501   int characters_preloaded_;
   1502   int bound_checked_up_to_;
   1503   QuickCheckDetails quick_check_performed_;
   1504   int flush_budget_;
   1505   TriBool at_start_;
   1506 };
   1507 
   1508 
   1509 class NodeVisitor {
   1510  public:
   1511   virtual ~NodeVisitor() { }
   1512 #define DECLARE_VISIT(Type)                                          \
   1513   virtual void Visit##Type(Type##Node* that) = 0;
   1514 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1515 #undef DECLARE_VISIT
   1516   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1517 };
   1518 
   1519 
   1520 // Node visitor used to add the start set of the alternatives to the
   1521 // dispatch table of a choice node.
   1522 class DispatchTableConstructor: public NodeVisitor {
   1523  public:
   1524   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
   1525                            Zone* zone)
   1526       : table_(table),
   1527         choice_index_(-1),
   1528         ignore_case_(ignore_case),
   1529         zone_(zone) { }
   1530 
   1531   void BuildTable(ChoiceNode* node);
   1532 
   1533   void AddRange(CharacterRange range) {
   1534     table()->AddRange(range, choice_index_, zone_);
   1535   }
   1536 
   1537   void AddInverse(ZoneList<CharacterRange>* ranges);
   1538 
   1539 #define DECLARE_VISIT(Type)                                          \
   1540   virtual void Visit##Type(Type##Node* that);
   1541 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1542 #undef DECLARE_VISIT
   1543 
   1544   DispatchTable* table() { return table_; }
   1545   void set_choice_index(int value) { choice_index_ = value; }
   1546 
   1547  protected:
   1548   DispatchTable* table_;
   1549   int choice_index_;
   1550   bool ignore_case_;
   1551   Zone* zone_;
   1552 };
   1553 
   1554 
   1555 // Assertion propagation moves information about assertions such as
   1556 // \b to the affected nodes.  For instance, in /.\b./ information must
   1557 // be propagated to the first '.' that whatever follows needs to know
   1558 // if it matched a word or a non-word, and to the second '.' that it
   1559 // has to check if it succeeds a word or non-word.  In this case the
   1560 // result will be something like:
   1561 //
   1562 //   +-------+        +------------+
   1563 //   |   .   |        |      .     |
   1564 //   +-------+  --->  +------------+
   1565 //   | word? |        | check word |
   1566 //   +-------+        +------------+
   1567 class Analysis: public NodeVisitor {
   1568  public:
   1569   Analysis(bool ignore_case, bool is_ascii)
   1570       : ignore_case_(ignore_case),
   1571         is_ascii_(is_ascii),
   1572         error_message_(NULL) { }
   1573   void EnsureAnalyzed(RegExpNode* node);
   1574 
   1575 #define DECLARE_VISIT(Type)                                          \
   1576   virtual void Visit##Type(Type##Node* that);
   1577 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1578 #undef DECLARE_VISIT
   1579   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1580 
   1581   bool has_failed() { return error_message_ != NULL; }
   1582   const char* error_message() {
   1583     ASSERT(error_message_ != NULL);
   1584     return error_message_;
   1585   }
   1586   void fail(const char* error_message) {
   1587     error_message_ = error_message;
   1588   }
   1589 
   1590  private:
   1591   bool ignore_case_;
   1592   bool is_ascii_;
   1593   const char* error_message_;
   1594 
   1595   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1596 };
   1597 
   1598 
   1599 struct RegExpCompileData {
   1600   RegExpCompileData()
   1601     : tree(NULL),
   1602       node(NULL),
   1603       simple(true),
   1604       contains_anchor(false),
   1605       capture_count(0) { }
   1606   RegExpTree* tree;
   1607   RegExpNode* node;
   1608   bool simple;
   1609   bool contains_anchor;
   1610   Handle<String> error;
   1611   int capture_count;
   1612 };
   1613 
   1614 
   1615 class RegExpEngine: public AllStatic {
   1616  public:
   1617   struct CompilationResult {
   1618     CompilationResult(Isolate* isolate, const char* error_message)
   1619         : error_message(error_message),
   1620           code(isolate->heap()->the_hole_value()),
   1621           num_registers(0) {}
   1622     CompilationResult(Object* code, int registers)
   1623       : error_message(NULL),
   1624         code(code),
   1625         num_registers(registers) {}
   1626     const char* error_message;
   1627     Object* code;
   1628     int num_registers;
   1629   };
   1630 
   1631   static CompilationResult Compile(RegExpCompileData* input,
   1632                                    bool ignore_case,
   1633                                    bool global,
   1634                                    bool multiline,
   1635                                    Handle<String> pattern,
   1636                                    Handle<String> sample_subject,
   1637                                    bool is_ascii, Zone* zone);
   1638 
   1639   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1640 };
   1641 
   1642 
   1643 } }  // namespace v8::internal
   1644 
   1645 #endif  // V8_JSREGEXP_H_
   1646