Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_X64
     31 
     32 #include "code-stubs.h"
     33 #include "codegen.h"
     34 #include "compiler.h"
     35 #include "debug.h"
     36 #include "full-codegen.h"
     37 #include "isolate-inl.h"
     38 #include "parser.h"
     39 #include "scopes.h"
     40 #include "stub-cache.h"
     41 
     42 namespace v8 {
     43 namespace internal {
     44 
     45 #define __ ACCESS_MASM(masm_)
     46 
     47 
     48 class JumpPatchSite BASE_EMBEDDED {
     49  public:
     50   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
     51 #ifdef DEBUG
     52     info_emitted_ = false;
     53 #endif
     54   }
     55 
     56   ~JumpPatchSite() {
     57     ASSERT(patch_site_.is_bound() == info_emitted_);
     58   }
     59 
     60   void EmitJumpIfNotSmi(Register reg,
     61                         Label* target,
     62                         Label::Distance near_jump = Label::kFar) {
     63     __ testb(reg, Immediate(kSmiTagMask));
     64     EmitJump(not_carry, target, near_jump);   // Always taken before patched.
     65   }
     66 
     67   void EmitJumpIfSmi(Register reg,
     68                      Label* target,
     69                      Label::Distance near_jump = Label::kFar) {
     70     __ testb(reg, Immediate(kSmiTagMask));
     71     EmitJump(carry, target, near_jump);  // Never taken before patched.
     72   }
     73 
     74   void EmitPatchInfo() {
     75     if (patch_site_.is_bound()) {
     76       int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
     77       ASSERT(is_int8(delta_to_patch_site));
     78       __ testl(rax, Immediate(delta_to_patch_site));
     79 #ifdef DEBUG
     80       info_emitted_ = true;
     81 #endif
     82     } else {
     83       __ nop();  // Signals no inlined code.
     84     }
     85   }
     86 
     87  private:
     88   // jc will be patched with jz, jnc will become jnz.
     89   void EmitJump(Condition cc, Label* target, Label::Distance near_jump) {
     90     ASSERT(!patch_site_.is_bound() && !info_emitted_);
     91     ASSERT(cc == carry || cc == not_carry);
     92     __ bind(&patch_site_);
     93     __ j(cc, target, near_jump);
     94   }
     95 
     96   MacroAssembler* masm_;
     97   Label patch_site_;
     98 #ifdef DEBUG
     99   bool info_emitted_;
    100 #endif
    101 };
    102 
    103 
    104 // Generate code for a JS function.  On entry to the function the receiver
    105 // and arguments have been pushed on the stack left to right, with the
    106 // return address on top of them.  The actual argument count matches the
    107 // formal parameter count expected by the function.
    108 //
    109 // The live registers are:
    110 //   o rdi: the JS function object being called (i.e. ourselves)
    111 //   o rsi: our context
    112 //   o rbp: our caller's frame pointer
    113 //   o rsp: stack pointer (pointing to return address)
    114 //
    115 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
    116 // frames-x64.h for its layout.
    117 void FullCodeGenerator::Generate() {
    118   CompilationInfo* info = info_;
    119   handler_table_ =
    120       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
    121   profiling_counter_ = isolate()->factory()->NewCell(
    122       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
    123   SetFunctionPosition(function());
    124   Comment cmnt(masm_, "[ function compiled by full code generator");
    125 
    126   ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    127 
    128 #ifdef DEBUG
    129   if (strlen(FLAG_stop_at) > 0 &&
    130       info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
    131     __ int3();
    132   }
    133 #endif
    134 
    135   // Strict mode functions and builtins need to replace the receiver
    136   // with undefined when called as functions (without an explicit
    137   // receiver object). rcx is zero for method calls and non-zero for
    138   // function calls.
    139   if (!info->is_classic_mode() || info->is_native()) {
    140     Label ok;
    141     __ testq(rcx, rcx);
    142     __ j(zero, &ok, Label::kNear);
    143     StackArgumentsAccessor args(rsp, info->scope()->num_parameters());
    144     __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
    145     __ movq(args.GetReceiverOperand(), kScratchRegister);
    146     __ bind(&ok);
    147   }
    148 
    149   // Open a frame scope to indicate that there is a frame on the stack.  The
    150   // MANUAL indicates that the scope shouldn't actually generate code to set up
    151   // the frame (that is done below).
    152   FrameScope frame_scope(masm_, StackFrame::MANUAL);
    153 
    154   info->set_prologue_offset(masm_->pc_offset());
    155   __ Prologue(BUILD_FUNCTION_FRAME);
    156   info->AddNoFrameRange(0, masm_->pc_offset());
    157 
    158   { Comment cmnt(masm_, "[ Allocate locals");
    159     int locals_count = info->scope()->num_stack_slots();
    160     // Generators allocate locals, if any, in context slots.
    161     ASSERT(!info->function()->is_generator() || locals_count == 0);
    162     if (locals_count == 1) {
    163       __ PushRoot(Heap::kUndefinedValueRootIndex);
    164     } else if (locals_count > 1) {
    165       __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
    166       for (int i = 0; i < locals_count; i++) {
    167         __ push(rdx);
    168       }
    169     }
    170   }
    171 
    172   bool function_in_register = true;
    173 
    174   // Possibly allocate a local context.
    175   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    176   if (heap_slots > 0) {
    177     Comment cmnt(masm_, "[ Allocate context");
    178     // Argument to NewContext is the function, which is still in rdi.
    179     __ push(rdi);
    180     if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
    181       __ Push(info->scope()->GetScopeInfo());
    182       __ CallRuntime(Runtime::kNewGlobalContext, 2);
    183     } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    184       FastNewContextStub stub(heap_slots);
    185       __ CallStub(&stub);
    186     } else {
    187       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    188     }
    189     function_in_register = false;
    190     // Context is returned in both rax and rsi.  It replaces the context
    191     // passed to us.  It's saved in the stack and kept live in rsi.
    192     __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
    193 
    194     // Copy any necessary parameters into the context.
    195     int num_parameters = info->scope()->num_parameters();
    196     for (int i = 0; i < num_parameters; i++) {
    197       Variable* var = scope()->parameter(i);
    198       if (var->IsContextSlot()) {
    199         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    200             (num_parameters - 1 - i) * kPointerSize;
    201         // Load parameter from stack.
    202         __ movq(rax, Operand(rbp, parameter_offset));
    203         // Store it in the context.
    204         int context_offset = Context::SlotOffset(var->index());
    205         __ movq(Operand(rsi, context_offset), rax);
    206         // Update the write barrier.  This clobbers rax and rbx.
    207         __ RecordWriteContextSlot(
    208             rsi, context_offset, rax, rbx, kDontSaveFPRegs);
    209       }
    210     }
    211   }
    212 
    213   // Possibly allocate an arguments object.
    214   Variable* arguments = scope()->arguments();
    215   if (arguments != NULL) {
    216     // Arguments object must be allocated after the context object, in
    217     // case the "arguments" or ".arguments" variables are in the context.
    218     Comment cmnt(masm_, "[ Allocate arguments object");
    219     if (function_in_register) {
    220       __ push(rdi);
    221     } else {
    222       __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
    223     }
    224     // The receiver is just before the parameters on the caller's stack.
    225     int num_parameters = info->scope()->num_parameters();
    226     int offset = num_parameters * kPointerSize;
    227     __ lea(rdx,
    228            Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
    229     __ push(rdx);
    230     __ Push(Smi::FromInt(num_parameters));
    231     // Arguments to ArgumentsAccessStub:
    232     //   function, receiver address, parameter count.
    233     // The stub will rewrite receiver and parameter count if the previous
    234     // stack frame was an arguments adapter frame.
    235     ArgumentsAccessStub::Type type;
    236     if (!is_classic_mode()) {
    237       type = ArgumentsAccessStub::NEW_STRICT;
    238     } else if (function()->has_duplicate_parameters()) {
    239       type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
    240     } else {
    241       type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
    242     }
    243     ArgumentsAccessStub stub(type);
    244     __ CallStub(&stub);
    245 
    246     SetVar(arguments, rax, rbx, rdx);
    247   }
    248 
    249   if (FLAG_trace) {
    250     __ CallRuntime(Runtime::kTraceEnter, 0);
    251   }
    252 
    253   // Visit the declarations and body unless there is an illegal
    254   // redeclaration.
    255   if (scope()->HasIllegalRedeclaration()) {
    256     Comment cmnt(masm_, "[ Declarations");
    257     scope()->VisitIllegalRedeclaration(this);
    258 
    259   } else {
    260     PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
    261     { Comment cmnt(masm_, "[ Declarations");
    262       // For named function expressions, declare the function name as a
    263       // constant.
    264       if (scope()->is_function_scope() && scope()->function() != NULL) {
    265         VariableDeclaration* function = scope()->function();
    266         ASSERT(function->proxy()->var()->mode() == CONST ||
    267                function->proxy()->var()->mode() == CONST_HARMONY);
    268         ASSERT(function->proxy()->var()->location() != Variable::UNALLOCATED);
    269         VisitVariableDeclaration(function);
    270       }
    271       VisitDeclarations(scope()->declarations());
    272     }
    273 
    274     { Comment cmnt(masm_, "[ Stack check");
    275       PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
    276       Label ok;
    277       __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
    278       __ j(above_equal, &ok, Label::kNear);
    279       __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
    280       __ bind(&ok);
    281     }
    282 
    283     { Comment cmnt(masm_, "[ Body");
    284       ASSERT(loop_depth() == 0);
    285       VisitStatements(function()->body());
    286       ASSERT(loop_depth() == 0);
    287     }
    288   }
    289 
    290   // Always emit a 'return undefined' in case control fell off the end of
    291   // the body.
    292   { Comment cmnt(masm_, "[ return <undefined>;");
    293     __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
    294     EmitReturnSequence();
    295   }
    296 }
    297 
    298 
    299 void FullCodeGenerator::ClearAccumulator() {
    300   __ Set(rax, 0);
    301 }
    302 
    303 
    304 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
    305   __ movq(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
    306   __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset),
    307                     Smi::FromInt(-delta));
    308 }
    309 
    310 
    311 void FullCodeGenerator::EmitProfilingCounterReset() {
    312   int reset_value = FLAG_interrupt_budget;
    313   if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
    314     // Self-optimization is a one-off thing; if it fails, don't try again.
    315     reset_value = Smi::kMaxValue;
    316   }
    317   __ movq(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
    318   __ Move(kScratchRegister, Smi::FromInt(reset_value));
    319   __ movq(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister);
    320 }
    321 
    322 
    323 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
    324                                                 Label* back_edge_target) {
    325   Comment cmnt(masm_, "[ Back edge bookkeeping");
    326   Label ok;
    327 
    328   int weight = 1;
    329   if (FLAG_weighted_back_edges) {
    330     ASSERT(back_edge_target->is_bound());
    331     int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
    332     weight = Min(kMaxBackEdgeWeight,
    333                  Max(1, distance / kCodeSizeMultiplier));
    334   }
    335   EmitProfilingCounterDecrement(weight);
    336   __ j(positive, &ok, Label::kNear);
    337   __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
    338 
    339   // Record a mapping of this PC offset to the OSR id.  This is used to find
    340   // the AST id from the unoptimized code in order to use it as a key into
    341   // the deoptimization input data found in the optimized code.
    342   RecordBackEdge(stmt->OsrEntryId());
    343 
    344   EmitProfilingCounterReset();
    345 
    346   __ bind(&ok);
    347   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
    348   // Record a mapping of the OSR id to this PC.  This is used if the OSR
    349   // entry becomes the target of a bailout.  We don't expect it to be, but
    350   // we want it to work if it is.
    351   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
    352 }
    353 
    354 
    355 void FullCodeGenerator::EmitReturnSequence() {
    356   Comment cmnt(masm_, "[ Return sequence");
    357   if (return_label_.is_bound()) {
    358     __ jmp(&return_label_);
    359   } else {
    360     __ bind(&return_label_);
    361     if (FLAG_trace) {
    362       __ push(rax);
    363       __ CallRuntime(Runtime::kTraceExit, 1);
    364     }
    365     if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
    366       // Pretend that the exit is a backwards jump to the entry.
    367       int weight = 1;
    368       if (info_->ShouldSelfOptimize()) {
    369         weight = FLAG_interrupt_budget / FLAG_self_opt_count;
    370       } else if (FLAG_weighted_back_edges) {
    371         int distance = masm_->pc_offset();
    372         weight = Min(kMaxBackEdgeWeight,
    373                      Max(1, distance / kCodeSizeMultiplier));
    374       }
    375       EmitProfilingCounterDecrement(weight);
    376       Label ok;
    377       __ j(positive, &ok, Label::kNear);
    378       __ push(rax);
    379       if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
    380         __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
    381         __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
    382       } else {
    383         __ call(isolate()->builtins()->InterruptCheck(),
    384                 RelocInfo::CODE_TARGET);
    385       }
    386       __ pop(rax);
    387       EmitProfilingCounterReset();
    388       __ bind(&ok);
    389     }
    390 #ifdef DEBUG
    391     // Add a label for checking the size of the code used for returning.
    392     Label check_exit_codesize;
    393     masm_->bind(&check_exit_codesize);
    394 #endif
    395     CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
    396     __ RecordJSReturn();
    397     // Do not use the leave instruction here because it is too short to
    398     // patch with the code required by the debugger.
    399     __ movq(rsp, rbp);
    400     __ pop(rbp);
    401     int no_frame_start = masm_->pc_offset();
    402 
    403     int arguments_bytes = (info_->scope()->num_parameters() + 1) * kPointerSize;
    404     __ Ret(arguments_bytes, rcx);
    405 
    406 #ifdef ENABLE_DEBUGGER_SUPPORT
    407     // Add padding that will be overwritten by a debugger breakpoint.  We
    408     // have just generated at least 7 bytes: "movq rsp, rbp; pop rbp; ret k"
    409     // (3 + 1 + 3).
    410     const int kPadding = Assembler::kJSReturnSequenceLength - 7;
    411     for (int i = 0; i < kPadding; ++i) {
    412       masm_->int3();
    413     }
    414     // Check that the size of the code used for returning is large enough
    415     // for the debugger's requirements.
    416     ASSERT(Assembler::kJSReturnSequenceLength <=
    417            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
    418 #endif
    419     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
    420   }
    421 }
    422 
    423 
    424 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
    425   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    426 }
    427 
    428 
    429 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
    430   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    431   codegen()->GetVar(result_register(), var);
    432 }
    433 
    434 
    435 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
    436   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    437   MemOperand operand = codegen()->VarOperand(var, result_register());
    438   __ push(operand);
    439 }
    440 
    441 
    442 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
    443   codegen()->GetVar(result_register(), var);
    444   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    445   codegen()->DoTest(this);
    446 }
    447 
    448 
    449 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
    450 }
    451 
    452 
    453 void FullCodeGenerator::AccumulatorValueContext::Plug(
    454     Heap::RootListIndex index) const {
    455   __ LoadRoot(result_register(), index);
    456 }
    457 
    458 
    459 void FullCodeGenerator::StackValueContext::Plug(
    460     Heap::RootListIndex index) const {
    461   __ PushRoot(index);
    462 }
    463 
    464 
    465 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
    466   codegen()->PrepareForBailoutBeforeSplit(condition(),
    467                                           true,
    468                                           true_label_,
    469                                           false_label_);
    470   if (index == Heap::kUndefinedValueRootIndex ||
    471       index == Heap::kNullValueRootIndex ||
    472       index == Heap::kFalseValueRootIndex) {
    473     if (false_label_ != fall_through_) __ jmp(false_label_);
    474   } else if (index == Heap::kTrueValueRootIndex) {
    475     if (true_label_ != fall_through_) __ jmp(true_label_);
    476   } else {
    477     __ LoadRoot(result_register(), index);
    478     codegen()->DoTest(this);
    479   }
    480 }
    481 
    482 
    483 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
    484 }
    485 
    486 
    487 void FullCodeGenerator::AccumulatorValueContext::Plug(
    488     Handle<Object> lit) const {
    489   if (lit->IsSmi()) {
    490     __ SafeMove(result_register(), Smi::cast(*lit));
    491   } else {
    492     __ Move(result_register(), lit);
    493   }
    494 }
    495 
    496 
    497 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
    498   if (lit->IsSmi()) {
    499     __ SafePush(Smi::cast(*lit));
    500   } else {
    501     __ Push(lit);
    502   }
    503 }
    504 
    505 
    506 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
    507   codegen()->PrepareForBailoutBeforeSplit(condition(),
    508                                           true,
    509                                           true_label_,
    510                                           false_label_);
    511   ASSERT(!lit->IsUndetectableObject());  // There are no undetectable literals.
    512   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
    513     if (false_label_ != fall_through_) __ jmp(false_label_);
    514   } else if (lit->IsTrue() || lit->IsJSObject()) {
    515     if (true_label_ != fall_through_) __ jmp(true_label_);
    516   } else if (lit->IsString()) {
    517     if (String::cast(*lit)->length() == 0) {
    518       if (false_label_ != fall_through_) __ jmp(false_label_);
    519     } else {
    520       if (true_label_ != fall_through_) __ jmp(true_label_);
    521     }
    522   } else if (lit->IsSmi()) {
    523     if (Smi::cast(*lit)->value() == 0) {
    524       if (false_label_ != fall_through_) __ jmp(false_label_);
    525     } else {
    526       if (true_label_ != fall_through_) __ jmp(true_label_);
    527     }
    528   } else {
    529     // For simplicity we always test the accumulator register.
    530     __ Move(result_register(), lit);
    531     codegen()->DoTest(this);
    532   }
    533 }
    534 
    535 
    536 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
    537                                                    Register reg) const {
    538   ASSERT(count > 0);
    539   __ Drop(count);
    540 }
    541 
    542 
    543 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
    544     int count,
    545     Register reg) const {
    546   ASSERT(count > 0);
    547   __ Drop(count);
    548   __ Move(result_register(), reg);
    549 }
    550 
    551 
    552 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
    553                                                        Register reg) const {
    554   ASSERT(count > 0);
    555   if (count > 1) __ Drop(count - 1);
    556   __ movq(Operand(rsp, 0), reg);
    557 }
    558 
    559 
    560 void FullCodeGenerator::TestContext::DropAndPlug(int count,
    561                                                  Register reg) const {
    562   ASSERT(count > 0);
    563   // For simplicity we always test the accumulator register.
    564   __ Drop(count);
    565   __ Move(result_register(), reg);
    566   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    567   codegen()->DoTest(this);
    568 }
    569 
    570 
    571 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
    572                                             Label* materialize_false) const {
    573   ASSERT(materialize_true == materialize_false);
    574   __ bind(materialize_true);
    575 }
    576 
    577 
    578 void FullCodeGenerator::AccumulatorValueContext::Plug(
    579     Label* materialize_true,
    580     Label* materialize_false) const {
    581   Label done;
    582   __ bind(materialize_true);
    583   __ Move(result_register(), isolate()->factory()->true_value());
    584   __ jmp(&done, Label::kNear);
    585   __ bind(materialize_false);
    586   __ Move(result_register(), isolate()->factory()->false_value());
    587   __ bind(&done);
    588 }
    589 
    590 
    591 void FullCodeGenerator::StackValueContext::Plug(
    592     Label* materialize_true,
    593     Label* materialize_false) const {
    594   Label done;
    595   __ bind(materialize_true);
    596   __ Push(isolate()->factory()->true_value());
    597   __ jmp(&done, Label::kNear);
    598   __ bind(materialize_false);
    599   __ Push(isolate()->factory()->false_value());
    600   __ bind(&done);
    601 }
    602 
    603 
    604 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
    605                                           Label* materialize_false) const {
    606   ASSERT(materialize_true == true_label_);
    607   ASSERT(materialize_false == false_label_);
    608 }
    609 
    610 
    611 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
    612 }
    613 
    614 
    615 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
    616   Heap::RootListIndex value_root_index =
    617       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
    618   __ LoadRoot(result_register(), value_root_index);
    619 }
    620 
    621 
    622 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
    623   Heap::RootListIndex value_root_index =
    624       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
    625   __ PushRoot(value_root_index);
    626 }
    627 
    628 
    629 void FullCodeGenerator::TestContext::Plug(bool flag) const {
    630   codegen()->PrepareForBailoutBeforeSplit(condition(),
    631                                           true,
    632                                           true_label_,
    633                                           false_label_);
    634   if (flag) {
    635     if (true_label_ != fall_through_) __ jmp(true_label_);
    636   } else {
    637     if (false_label_ != fall_through_) __ jmp(false_label_);
    638   }
    639 }
    640 
    641 
    642 void FullCodeGenerator::DoTest(Expression* condition,
    643                                Label* if_true,
    644                                Label* if_false,
    645                                Label* fall_through) {
    646   Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
    647   CallIC(ic, RelocInfo::CODE_TARGET, condition->test_id());
    648   __ testq(result_register(), result_register());
    649   // The stub returns nonzero for true.
    650   Split(not_zero, if_true, if_false, fall_through);
    651 }
    652 
    653 
    654 void FullCodeGenerator::Split(Condition cc,
    655                               Label* if_true,
    656                               Label* if_false,
    657                               Label* fall_through) {
    658   if (if_false == fall_through) {
    659     __ j(cc, if_true);
    660   } else if (if_true == fall_through) {
    661     __ j(NegateCondition(cc), if_false);
    662   } else {
    663     __ j(cc, if_true);
    664     __ jmp(if_false);
    665   }
    666 }
    667 
    668 
    669 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
    670   ASSERT(var->IsStackAllocated());
    671   // Offset is negative because higher indexes are at lower addresses.
    672   int offset = -var->index() * kPointerSize;
    673   // Adjust by a (parameter or local) base offset.
    674   if (var->IsParameter()) {
    675     offset += kFPOnStackSize + kPCOnStackSize +
    676               (info_->scope()->num_parameters() - 1) * kPointerSize;
    677   } else {
    678     offset += JavaScriptFrameConstants::kLocal0Offset;
    679   }
    680   return Operand(rbp, offset);
    681 }
    682 
    683 
    684 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
    685   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    686   if (var->IsContextSlot()) {
    687     int context_chain_length = scope()->ContextChainLength(var->scope());
    688     __ LoadContext(scratch, context_chain_length);
    689     return ContextOperand(scratch, var->index());
    690   } else {
    691     return StackOperand(var);
    692   }
    693 }
    694 
    695 
    696 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
    697   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    698   MemOperand location = VarOperand(var, dest);
    699   __ movq(dest, location);
    700 }
    701 
    702 
    703 void FullCodeGenerator::SetVar(Variable* var,
    704                                Register src,
    705                                Register scratch0,
    706                                Register scratch1) {
    707   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    708   ASSERT(!scratch0.is(src));
    709   ASSERT(!scratch0.is(scratch1));
    710   ASSERT(!scratch1.is(src));
    711   MemOperand location = VarOperand(var, scratch0);
    712   __ movq(location, src);
    713 
    714   // Emit the write barrier code if the location is in the heap.
    715   if (var->IsContextSlot()) {
    716     int offset = Context::SlotOffset(var->index());
    717     __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
    718   }
    719 }
    720 
    721 
    722 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
    723                                                      bool should_normalize,
    724                                                      Label* if_true,
    725                                                      Label* if_false) {
    726   // Only prepare for bailouts before splits if we're in a test
    727   // context. Otherwise, we let the Visit function deal with the
    728   // preparation to avoid preparing with the same AST id twice.
    729   if (!context()->IsTest() || !info_->IsOptimizable()) return;
    730 
    731   Label skip;
    732   if (should_normalize) __ jmp(&skip, Label::kNear);
    733   PrepareForBailout(expr, TOS_REG);
    734   if (should_normalize) {
    735     __ CompareRoot(rax, Heap::kTrueValueRootIndex);
    736     Split(equal, if_true, if_false, NULL);
    737     __ bind(&skip);
    738   }
    739 }
    740 
    741 
    742 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
    743   // The variable in the declaration always resides in the current context.
    744   ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
    745   if (generate_debug_code_) {
    746     // Check that we're not inside a with or catch context.
    747     __ movq(rbx, FieldOperand(rsi, HeapObject::kMapOffset));
    748     __ CompareRoot(rbx, Heap::kWithContextMapRootIndex);
    749     __ Check(not_equal, kDeclarationInWithContext);
    750     __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex);
    751     __ Check(not_equal, kDeclarationInCatchContext);
    752   }
    753 }
    754 
    755 
    756 void FullCodeGenerator::VisitVariableDeclaration(
    757     VariableDeclaration* declaration) {
    758   // If it was not possible to allocate the variable at compile time, we
    759   // need to "declare" it at runtime to make sure it actually exists in the
    760   // local context.
    761   VariableProxy* proxy = declaration->proxy();
    762   VariableMode mode = declaration->mode();
    763   Variable* variable = proxy->var();
    764   bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
    765   switch (variable->location()) {
    766     case Variable::UNALLOCATED:
    767       globals_->Add(variable->name(), zone());
    768       globals_->Add(variable->binding_needs_init()
    769                         ? isolate()->factory()->the_hole_value()
    770                     : isolate()->factory()->undefined_value(),
    771                     zone());
    772       break;
    773 
    774     case Variable::PARAMETER:
    775     case Variable::LOCAL:
    776       if (hole_init) {
    777         Comment cmnt(masm_, "[ VariableDeclaration");
    778         __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
    779         __ movq(StackOperand(variable), kScratchRegister);
    780       }
    781       break;
    782 
    783     case Variable::CONTEXT:
    784       if (hole_init) {
    785         Comment cmnt(masm_, "[ VariableDeclaration");
    786         EmitDebugCheckDeclarationContext(variable);
    787         __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
    788         __ movq(ContextOperand(rsi, variable->index()), kScratchRegister);
    789         // No write barrier since the hole value is in old space.
    790         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    791       }
    792       break;
    793 
    794     case Variable::LOOKUP: {
    795       Comment cmnt(masm_, "[ VariableDeclaration");
    796       __ push(rsi);
    797       __ Push(variable->name());
    798       // Declaration nodes are always introduced in one of four modes.
    799       ASSERT(IsDeclaredVariableMode(mode));
    800       PropertyAttributes attr =
    801           IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
    802       __ Push(Smi::FromInt(attr));
    803       // Push initial value, if any.
    804       // Note: For variables we must not push an initial value (such as
    805       // 'undefined') because we may have a (legal) redeclaration and we
    806       // must not destroy the current value.
    807       if (hole_init) {
    808         __ PushRoot(Heap::kTheHoleValueRootIndex);
    809       } else {
    810         __ Push(Smi::FromInt(0));  // Indicates no initial value.
    811       }
    812       __ CallRuntime(Runtime::kDeclareContextSlot, 4);
    813       break;
    814     }
    815   }
    816 }
    817 
    818 
    819 void FullCodeGenerator::VisitFunctionDeclaration(
    820     FunctionDeclaration* declaration) {
    821   VariableProxy* proxy = declaration->proxy();
    822   Variable* variable = proxy->var();
    823   switch (variable->location()) {
    824     case Variable::UNALLOCATED: {
    825       globals_->Add(variable->name(), zone());
    826       Handle<SharedFunctionInfo> function =
    827           Compiler::BuildFunctionInfo(declaration->fun(), script());
    828       // Check for stack-overflow exception.
    829       if (function.is_null()) return SetStackOverflow();
    830       globals_->Add(function, zone());
    831       break;
    832     }
    833 
    834     case Variable::PARAMETER:
    835     case Variable::LOCAL: {
    836       Comment cmnt(masm_, "[ FunctionDeclaration");
    837       VisitForAccumulatorValue(declaration->fun());
    838       __ movq(StackOperand(variable), result_register());
    839       break;
    840     }
    841 
    842     case Variable::CONTEXT: {
    843       Comment cmnt(masm_, "[ FunctionDeclaration");
    844       EmitDebugCheckDeclarationContext(variable);
    845       VisitForAccumulatorValue(declaration->fun());
    846       __ movq(ContextOperand(rsi, variable->index()), result_register());
    847       int offset = Context::SlotOffset(variable->index());
    848       // We know that we have written a function, which is not a smi.
    849       __ RecordWriteContextSlot(rsi,
    850                                 offset,
    851                                 result_register(),
    852                                 rcx,
    853                                 kDontSaveFPRegs,
    854                                 EMIT_REMEMBERED_SET,
    855                                 OMIT_SMI_CHECK);
    856       PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    857       break;
    858     }
    859 
    860     case Variable::LOOKUP: {
    861       Comment cmnt(masm_, "[ FunctionDeclaration");
    862       __ push(rsi);
    863       __ Push(variable->name());
    864       __ Push(Smi::FromInt(NONE));
    865       VisitForStackValue(declaration->fun());
    866       __ CallRuntime(Runtime::kDeclareContextSlot, 4);
    867       break;
    868     }
    869   }
    870 }
    871 
    872 
    873 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
    874   Variable* variable = declaration->proxy()->var();
    875   ASSERT(variable->location() == Variable::CONTEXT);
    876   ASSERT(variable->interface()->IsFrozen());
    877 
    878   Comment cmnt(masm_, "[ ModuleDeclaration");
    879   EmitDebugCheckDeclarationContext(variable);
    880 
    881   // Load instance object.
    882   __ LoadContext(rax, scope_->ContextChainLength(scope_->GlobalScope()));
    883   __ movq(rax, ContextOperand(rax, variable->interface()->Index()));
    884   __ movq(rax, ContextOperand(rax, Context::EXTENSION_INDEX));
    885 
    886   // Assign it.
    887   __ movq(ContextOperand(rsi, variable->index()), rax);
    888   // We know that we have written a module, which is not a smi.
    889   __ RecordWriteContextSlot(rsi,
    890                             Context::SlotOffset(variable->index()),
    891                             rax,
    892                             rcx,
    893                             kDontSaveFPRegs,
    894                             EMIT_REMEMBERED_SET,
    895                             OMIT_SMI_CHECK);
    896   PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
    897 
    898   // Traverse into body.
    899   Visit(declaration->module());
    900 }
    901 
    902 
    903 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
    904   VariableProxy* proxy = declaration->proxy();
    905   Variable* variable = proxy->var();
    906   switch (variable->location()) {
    907     case Variable::UNALLOCATED:
    908       // TODO(rossberg)
    909       break;
    910 
    911     case Variable::CONTEXT: {
    912       Comment cmnt(masm_, "[ ImportDeclaration");
    913       EmitDebugCheckDeclarationContext(variable);
    914       // TODO(rossberg)
    915       break;
    916     }
    917 
    918     case Variable::PARAMETER:
    919     case Variable::LOCAL:
    920     case Variable::LOOKUP:
    921       UNREACHABLE();
    922   }
    923 }
    924 
    925 
    926 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
    927   // TODO(rossberg)
    928 }
    929 
    930 
    931 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
    932   // Call the runtime to declare the globals.
    933   __ push(rsi);  // The context is the first argument.
    934   __ Push(pairs);
    935   __ Push(Smi::FromInt(DeclareGlobalsFlags()));
    936   __ CallRuntime(Runtime::kDeclareGlobals, 3);
    937   // Return value is ignored.
    938 }
    939 
    940 
    941 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
    942   // Call the runtime to declare the modules.
    943   __ Push(descriptions);
    944   __ CallRuntime(Runtime::kDeclareModules, 1);
    945   // Return value is ignored.
    946 }
    947 
    948 
    949 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
    950   Comment cmnt(masm_, "[ SwitchStatement");
    951   Breakable nested_statement(this, stmt);
    952   SetStatementPosition(stmt);
    953 
    954   // Keep the switch value on the stack until a case matches.
    955   VisitForStackValue(stmt->tag());
    956   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
    957 
    958   ZoneList<CaseClause*>* clauses = stmt->cases();
    959   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
    960 
    961   Label next_test;  // Recycled for each test.
    962   // Compile all the tests with branches to their bodies.
    963   for (int i = 0; i < clauses->length(); i++) {
    964     CaseClause* clause = clauses->at(i);
    965     clause->body_target()->Unuse();
    966 
    967     // The default is not a test, but remember it as final fall through.
    968     if (clause->is_default()) {
    969       default_clause = clause;
    970       continue;
    971     }
    972 
    973     Comment cmnt(masm_, "[ Case comparison");
    974     __ bind(&next_test);
    975     next_test.Unuse();
    976 
    977     // Compile the label expression.
    978     VisitForAccumulatorValue(clause->label());
    979 
    980     // Perform the comparison as if via '==='.
    981     __ movq(rdx, Operand(rsp, 0));  // Switch value.
    982     bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
    983     JumpPatchSite patch_site(masm_);
    984     if (inline_smi_code) {
    985       Label slow_case;
    986       __ movq(rcx, rdx);
    987       __ or_(rcx, rax);
    988       patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
    989 
    990       __ cmpq(rdx, rax);
    991       __ j(not_equal, &next_test);
    992       __ Drop(1);  // Switch value is no longer needed.
    993       __ jmp(clause->body_target());
    994       __ bind(&slow_case);
    995     }
    996 
    997     // Record position before stub call for type feedback.
    998     SetSourcePosition(clause->position());
    999     Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
   1000     CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
   1001     patch_site.EmitPatchInfo();
   1002 
   1003     __ testq(rax, rax);
   1004     __ j(not_equal, &next_test);
   1005     __ Drop(1);  // Switch value is no longer needed.
   1006     __ jmp(clause->body_target());
   1007   }
   1008 
   1009   // Discard the test value and jump to the default if present, otherwise to
   1010   // the end of the statement.
   1011   __ bind(&next_test);
   1012   __ Drop(1);  // Switch value is no longer needed.
   1013   if (default_clause == NULL) {
   1014     __ jmp(nested_statement.break_label());
   1015   } else {
   1016     __ jmp(default_clause->body_target());
   1017   }
   1018 
   1019   // Compile all the case bodies.
   1020   for (int i = 0; i < clauses->length(); i++) {
   1021     Comment cmnt(masm_, "[ Case body");
   1022     CaseClause* clause = clauses->at(i);
   1023     __ bind(clause->body_target());
   1024     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
   1025     VisitStatements(clause->statements());
   1026   }
   1027 
   1028   __ bind(nested_statement.break_label());
   1029   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1030 }
   1031 
   1032 
   1033 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
   1034   Comment cmnt(masm_, "[ ForInStatement");
   1035   SetStatementPosition(stmt);
   1036 
   1037   Label loop, exit;
   1038   ForIn loop_statement(this, stmt);
   1039   increment_loop_depth();
   1040 
   1041   // Get the object to enumerate over. If the object is null or undefined, skip
   1042   // over the loop.  See ECMA-262 version 5, section 12.6.4.
   1043   VisitForAccumulatorValue(stmt->enumerable());
   1044   __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
   1045   __ j(equal, &exit);
   1046   Register null_value = rdi;
   1047   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
   1048   __ cmpq(rax, null_value);
   1049   __ j(equal, &exit);
   1050 
   1051   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
   1052 
   1053   // Convert the object to a JS object.
   1054   Label convert, done_convert;
   1055   __ JumpIfSmi(rax, &convert);
   1056   __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   1057   __ j(above_equal, &done_convert);
   1058   __ bind(&convert);
   1059   __ push(rax);
   1060   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1061   __ bind(&done_convert);
   1062   __ push(rax);
   1063 
   1064   // Check for proxies.
   1065   Label call_runtime;
   1066   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   1067   __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx);
   1068   __ j(below_equal, &call_runtime);
   1069 
   1070   // Check cache validity in generated code. This is a fast case for
   1071   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
   1072   // guarantee cache validity, call the runtime system to check cache
   1073   // validity or get the property names in a fixed array.
   1074   __ CheckEnumCache(null_value, &call_runtime);
   1075 
   1076   // The enum cache is valid.  Load the map of the object being
   1077   // iterated over and use the cache for the iteration.
   1078   Label use_cache;
   1079   __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
   1080   __ jmp(&use_cache, Label::kNear);
   1081 
   1082   // Get the set of properties to enumerate.
   1083   __ bind(&call_runtime);
   1084   __ push(rax);  // Duplicate the enumerable object on the stack.
   1085   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
   1086 
   1087   // If we got a map from the runtime call, we can do a fast
   1088   // modification check. Otherwise, we got a fixed array, and we have
   1089   // to do a slow check.
   1090   Label fixed_array;
   1091   __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
   1092                  Heap::kMetaMapRootIndex);
   1093   __ j(not_equal, &fixed_array);
   1094 
   1095   // We got a map in register rax. Get the enumeration cache from it.
   1096   __ bind(&use_cache);
   1097 
   1098   Label no_descriptors;
   1099 
   1100   __ EnumLength(rdx, rax);
   1101   __ Cmp(rdx, Smi::FromInt(0));
   1102   __ j(equal, &no_descriptors);
   1103 
   1104   __ LoadInstanceDescriptors(rax, rcx);
   1105   __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset));
   1106   __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
   1107 
   1108   // Set up the four remaining stack slots.
   1109   __ push(rax);  // Map.
   1110   __ push(rcx);  // Enumeration cache.
   1111   __ push(rdx);  // Number of valid entries for the map in the enum cache.
   1112   __ Push(Smi::FromInt(0));  // Initial index.
   1113   __ jmp(&loop);
   1114 
   1115   __ bind(&no_descriptors);
   1116   __ addq(rsp, Immediate(kPointerSize));
   1117   __ jmp(&exit);
   1118 
   1119   // We got a fixed array in register rax. Iterate through that.
   1120   Label non_proxy;
   1121   __ bind(&fixed_array);
   1122 
   1123   Handle<Cell> cell = isolate()->factory()->NewCell(
   1124       Handle<Object>(Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker),
   1125                      isolate()));
   1126   RecordTypeFeedbackCell(stmt->ForInFeedbackId(), cell);
   1127   __ Move(rbx, cell);
   1128   __ Move(FieldOperand(rbx, Cell::kValueOffset),
   1129           Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker));
   1130 
   1131   __ Move(rbx, Smi::FromInt(1));  // Smi indicates slow check
   1132   __ movq(rcx, Operand(rsp, 0 * kPointerSize));  // Get enumerated object
   1133   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   1134   __ CmpObjectType(rcx, LAST_JS_PROXY_TYPE, rcx);
   1135   __ j(above, &non_proxy);
   1136   __ Move(rbx, Smi::FromInt(0));  // Zero indicates proxy
   1137   __ bind(&non_proxy);
   1138   __ push(rbx);  // Smi
   1139   __ push(rax);  // Array
   1140   __ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset));
   1141   __ push(rax);  // Fixed array length (as smi).
   1142   __ Push(Smi::FromInt(0));  // Initial index.
   1143 
   1144   // Generate code for doing the condition check.
   1145   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1146   __ bind(&loop);
   1147   __ movq(rax, Operand(rsp, 0 * kPointerSize));  // Get the current index.
   1148   __ cmpq(rax, Operand(rsp, 1 * kPointerSize));  // Compare to the array length.
   1149   __ j(above_equal, loop_statement.break_label());
   1150 
   1151   // Get the current entry of the array into register rbx.
   1152   __ movq(rbx, Operand(rsp, 2 * kPointerSize));
   1153   SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2);
   1154   __ movq(rbx, FieldOperand(rbx,
   1155                             index.reg,
   1156                             index.scale,
   1157                             FixedArray::kHeaderSize));
   1158 
   1159   // Get the expected map from the stack or a smi in the
   1160   // permanent slow case into register rdx.
   1161   __ movq(rdx, Operand(rsp, 3 * kPointerSize));
   1162 
   1163   // Check if the expected map still matches that of the enumerable.
   1164   // If not, we may have to filter the key.
   1165   Label update_each;
   1166   __ movq(rcx, Operand(rsp, 4 * kPointerSize));
   1167   __ cmpq(rdx, FieldOperand(rcx, HeapObject::kMapOffset));
   1168   __ j(equal, &update_each, Label::kNear);
   1169 
   1170   // For proxies, no filtering is done.
   1171   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
   1172   __ Cmp(rdx, Smi::FromInt(0));
   1173   __ j(equal, &update_each, Label::kNear);
   1174 
   1175   // Convert the entry to a string or null if it isn't a property
   1176   // anymore. If the property has been removed while iterating, we
   1177   // just skip it.
   1178   __ push(rcx);  // Enumerable.
   1179   __ push(rbx);  // Current entry.
   1180   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
   1181   __ Cmp(rax, Smi::FromInt(0));
   1182   __ j(equal, loop_statement.continue_label());
   1183   __ movq(rbx, rax);
   1184 
   1185   // Update the 'each' property or variable from the possibly filtered
   1186   // entry in register rbx.
   1187   __ bind(&update_each);
   1188   __ movq(result_register(), rbx);
   1189   // Perform the assignment as if via '='.
   1190   { EffectContext context(this);
   1191     EmitAssignment(stmt->each());
   1192   }
   1193 
   1194   // Generate code for the body of the loop.
   1195   Visit(stmt->body());
   1196 
   1197   // Generate code for going to the next element by incrementing the
   1198   // index (smi) stored on top of the stack.
   1199   __ bind(loop_statement.continue_label());
   1200   __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
   1201 
   1202   EmitBackEdgeBookkeeping(stmt, &loop);
   1203   __ jmp(&loop);
   1204 
   1205   // Remove the pointers stored on the stack.
   1206   __ bind(loop_statement.break_label());
   1207   __ addq(rsp, Immediate(5 * kPointerSize));
   1208 
   1209   // Exit and decrement the loop depth.
   1210   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1211   __ bind(&exit);
   1212   decrement_loop_depth();
   1213 }
   1214 
   1215 
   1216 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
   1217   Comment cmnt(masm_, "[ ForOfStatement");
   1218   SetStatementPosition(stmt);
   1219 
   1220   Iteration loop_statement(this, stmt);
   1221   increment_loop_depth();
   1222 
   1223   // var iterator = iterable[@@iterator]()
   1224   VisitForAccumulatorValue(stmt->assign_iterator());
   1225 
   1226   // As with for-in, skip the loop if the iterator is null or undefined.
   1227   __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
   1228   __ j(equal, loop_statement.break_label());
   1229   __ CompareRoot(rax, Heap::kNullValueRootIndex);
   1230   __ j(equal, loop_statement.break_label());
   1231 
   1232   // Convert the iterator to a JS object.
   1233   Label convert, done_convert;
   1234   __ JumpIfSmi(rax, &convert);
   1235   __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   1236   __ j(above_equal, &done_convert);
   1237   __ bind(&convert);
   1238   __ push(rax);
   1239   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1240   __ bind(&done_convert);
   1241 
   1242   // Loop entry.
   1243   __ bind(loop_statement.continue_label());
   1244 
   1245   // result = iterator.next()
   1246   VisitForEffect(stmt->next_result());
   1247 
   1248   // if (result.done) break;
   1249   Label result_not_done;
   1250   VisitForControl(stmt->result_done(),
   1251                   loop_statement.break_label(),
   1252                   &result_not_done,
   1253                   &result_not_done);
   1254   __ bind(&result_not_done);
   1255 
   1256   // each = result.value
   1257   VisitForEffect(stmt->assign_each());
   1258 
   1259   // Generate code for the body of the loop.
   1260   Visit(stmt->body());
   1261 
   1262   // Check stack before looping.
   1263   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
   1264   EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
   1265   __ jmp(loop_statement.continue_label());
   1266 
   1267   // Exit and decrement the loop depth.
   1268   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1269   __ bind(loop_statement.break_label());
   1270   decrement_loop_depth();
   1271 }
   1272 
   1273 
   1274 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
   1275                                        bool pretenure) {
   1276   // Use the fast case closure allocation code that allocates in new
   1277   // space for nested functions that don't need literals cloning. If
   1278   // we're running with the --always-opt or the --prepare-always-opt
   1279   // flag, we need to use the runtime function so that the new function
   1280   // we are creating here gets a chance to have its code optimized and
   1281   // doesn't just get a copy of the existing unoptimized code.
   1282   if (!FLAG_always_opt &&
   1283       !FLAG_prepare_always_opt &&
   1284       !pretenure &&
   1285       scope()->is_function_scope() &&
   1286       info->num_literals() == 0) {
   1287     FastNewClosureStub stub(info->language_mode(), info->is_generator());
   1288     __ Move(rbx, info);
   1289     __ CallStub(&stub);
   1290   } else {
   1291     __ push(rsi);
   1292     __ Push(info);
   1293     __ Push(pretenure
   1294             ? isolate()->factory()->true_value()
   1295             : isolate()->factory()->false_value());
   1296     __ CallRuntime(Runtime::kNewClosure, 3);
   1297   }
   1298   context()->Plug(rax);
   1299 }
   1300 
   1301 
   1302 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
   1303   Comment cmnt(masm_, "[ VariableProxy");
   1304   EmitVariableLoad(expr);
   1305 }
   1306 
   1307 
   1308 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
   1309                                                       TypeofState typeof_state,
   1310                                                       Label* slow) {
   1311   Register context = rsi;
   1312   Register temp = rdx;
   1313 
   1314   Scope* s = scope();
   1315   while (s != NULL) {
   1316     if (s->num_heap_slots() > 0) {
   1317       if (s->calls_non_strict_eval()) {
   1318         // Check that extension is NULL.
   1319         __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
   1320                 Immediate(0));
   1321         __ j(not_equal, slow);
   1322       }
   1323       // Load next context in chain.
   1324       __ movq(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
   1325       // Walk the rest of the chain without clobbering rsi.
   1326       context = temp;
   1327     }
   1328     // If no outer scope calls eval, we do not need to check more
   1329     // context extensions.  If we have reached an eval scope, we check
   1330     // all extensions from this point.
   1331     if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
   1332     s = s->outer_scope();
   1333   }
   1334 
   1335   if (s != NULL && s->is_eval_scope()) {
   1336     // Loop up the context chain.  There is no frame effect so it is
   1337     // safe to use raw labels here.
   1338     Label next, fast;
   1339     if (!context.is(temp)) {
   1340       __ movq(temp, context);
   1341     }
   1342     // Load map for comparison into register, outside loop.
   1343     __ LoadRoot(kScratchRegister, Heap::kNativeContextMapRootIndex);
   1344     __ bind(&next);
   1345     // Terminate at native context.
   1346     __ cmpq(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset));
   1347     __ j(equal, &fast, Label::kNear);
   1348     // Check that extension is NULL.
   1349     __ cmpq(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0));
   1350     __ j(not_equal, slow);
   1351     // Load next context in chain.
   1352     __ movq(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
   1353     __ jmp(&next);
   1354     __ bind(&fast);
   1355   }
   1356 
   1357   // All extension objects were empty and it is safe to use a global
   1358   // load IC call.
   1359   __ movq(rax, GlobalObjectOperand());
   1360   __ Move(rcx, var->name());
   1361   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1362   RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
   1363       ? RelocInfo::CODE_TARGET
   1364       : RelocInfo::CODE_TARGET_CONTEXT;
   1365   CallIC(ic, mode);
   1366 }
   1367 
   1368 
   1369 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
   1370                                                                 Label* slow) {
   1371   ASSERT(var->IsContextSlot());
   1372   Register context = rsi;
   1373   Register temp = rbx;
   1374 
   1375   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
   1376     if (s->num_heap_slots() > 0) {
   1377       if (s->calls_non_strict_eval()) {
   1378         // Check that extension is NULL.
   1379         __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
   1380                 Immediate(0));
   1381         __ j(not_equal, slow);
   1382       }
   1383       __ movq(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
   1384       // Walk the rest of the chain without clobbering rsi.
   1385       context = temp;
   1386     }
   1387   }
   1388   // Check that last extension is NULL.
   1389   __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
   1390   __ j(not_equal, slow);
   1391 
   1392   // This function is used only for loads, not stores, so it's safe to
   1393   // return an rsi-based operand (the write barrier cannot be allowed to
   1394   // destroy the rsi register).
   1395   return ContextOperand(context, var->index());
   1396 }
   1397 
   1398 
   1399 void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
   1400                                                   TypeofState typeof_state,
   1401                                                   Label* slow,
   1402                                                   Label* done) {
   1403   // Generate fast-case code for variables that might be shadowed by
   1404   // eval-introduced variables.  Eval is used a lot without
   1405   // introducing variables.  In those cases, we do not want to
   1406   // perform a runtime call for all variables in the scope
   1407   // containing the eval.
   1408   if (var->mode() == DYNAMIC_GLOBAL) {
   1409     EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
   1410     __ jmp(done);
   1411   } else if (var->mode() == DYNAMIC_LOCAL) {
   1412     Variable* local = var->local_if_not_shadowed();
   1413     __ movq(rax, ContextSlotOperandCheckExtensions(local, slow));
   1414     if (local->mode() == LET ||
   1415         local->mode() == CONST ||
   1416         local->mode() == CONST_HARMONY) {
   1417       __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
   1418       __ j(not_equal, done);
   1419       if (local->mode() == CONST) {
   1420         __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   1421       } else {  // LET || CONST_HARMONY
   1422         __ Push(var->name());
   1423         __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1424       }
   1425     }
   1426     __ jmp(done);
   1427   }
   1428 }
   1429 
   1430 
   1431 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
   1432   // Record position before possible IC call.
   1433   SetSourcePosition(proxy->position());
   1434   Variable* var = proxy->var();
   1435 
   1436   // Three cases: global variables, lookup variables, and all other types of
   1437   // variables.
   1438   switch (var->location()) {
   1439     case Variable::UNALLOCATED: {
   1440       Comment cmnt(masm_, "Global variable");
   1441       // Use inline caching. Variable name is passed in rcx and the global
   1442       // object on the stack.
   1443       __ Move(rcx, var->name());
   1444       __ movq(rax, GlobalObjectOperand());
   1445       Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1446       CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   1447       context()->Plug(rax);
   1448       break;
   1449     }
   1450 
   1451     case Variable::PARAMETER:
   1452     case Variable::LOCAL:
   1453     case Variable::CONTEXT: {
   1454       Comment cmnt(masm_, var->IsContextSlot() ? "Context slot" : "Stack slot");
   1455       if (var->binding_needs_init()) {
   1456         // var->scope() may be NULL when the proxy is located in eval code and
   1457         // refers to a potential outside binding. Currently those bindings are
   1458         // always looked up dynamically, i.e. in that case
   1459         //     var->location() == LOOKUP.
   1460         // always holds.
   1461         ASSERT(var->scope() != NULL);
   1462 
   1463         // Check if the binding really needs an initialization check. The check
   1464         // can be skipped in the following situation: we have a LET or CONST
   1465         // binding in harmony mode, both the Variable and the VariableProxy have
   1466         // the same declaration scope (i.e. they are both in global code, in the
   1467         // same function or in the same eval code) and the VariableProxy is in
   1468         // the source physically located after the initializer of the variable.
   1469         //
   1470         // We cannot skip any initialization checks for CONST in non-harmony
   1471         // mode because const variables may be declared but never initialized:
   1472         //   if (false) { const x; }; var y = x;
   1473         //
   1474         // The condition on the declaration scopes is a conservative check for
   1475         // nested functions that access a binding and are called before the
   1476         // binding is initialized:
   1477         //   function() { f(); let x = 1; function f() { x = 2; } }
   1478         //
   1479         bool skip_init_check;
   1480         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
   1481           skip_init_check = false;
   1482         } else {
   1483           // Check that we always have valid source position.
   1484           ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
   1485           ASSERT(proxy->position() != RelocInfo::kNoPosition);
   1486           skip_init_check = var->mode() != CONST &&
   1487               var->initializer_position() < proxy->position();
   1488         }
   1489 
   1490         if (!skip_init_check) {
   1491           // Let and const need a read barrier.
   1492           Label done;
   1493           GetVar(rax, var);
   1494           __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
   1495           __ j(not_equal, &done, Label::kNear);
   1496           if (var->mode() == LET || var->mode() == CONST_HARMONY) {
   1497             // Throw a reference error when using an uninitialized let/const
   1498             // binding in harmony mode.
   1499             __ Push(var->name());
   1500             __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1501           } else {
   1502             // Uninitalized const bindings outside of harmony mode are unholed.
   1503             ASSERT(var->mode() == CONST);
   1504             __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   1505           }
   1506           __ bind(&done);
   1507           context()->Plug(rax);
   1508           break;
   1509         }
   1510       }
   1511       context()->Plug(var);
   1512       break;
   1513     }
   1514 
   1515     case Variable::LOOKUP: {
   1516       Label done, slow;
   1517       // Generate code for loading from variables potentially shadowed
   1518       // by eval-introduced variables.
   1519       EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
   1520       __ bind(&slow);
   1521       Comment cmnt(masm_, "Lookup slot");
   1522       __ push(rsi);  // Context.
   1523       __ Push(var->name());
   1524       __ CallRuntime(Runtime::kLoadContextSlot, 2);
   1525       __ bind(&done);
   1526       context()->Plug(rax);
   1527       break;
   1528     }
   1529   }
   1530 }
   1531 
   1532 
   1533 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
   1534   Comment cmnt(masm_, "[ RegExpLiteral");
   1535   Label materialized;
   1536   // Registers will be used as follows:
   1537   // rdi = JS function.
   1538   // rcx = literals array.
   1539   // rbx = regexp literal.
   1540   // rax = regexp literal clone.
   1541   __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1542   __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
   1543   int literal_offset =
   1544       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
   1545   __ movq(rbx, FieldOperand(rcx, literal_offset));
   1546   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
   1547   __ j(not_equal, &materialized, Label::kNear);
   1548 
   1549   // Create regexp literal using runtime function
   1550   // Result will be in rax.
   1551   __ push(rcx);
   1552   __ Push(Smi::FromInt(expr->literal_index()));
   1553   __ Push(expr->pattern());
   1554   __ Push(expr->flags());
   1555   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
   1556   __ movq(rbx, rax);
   1557 
   1558   __ bind(&materialized);
   1559   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   1560   Label allocated, runtime_allocate;
   1561   __ Allocate(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
   1562   __ jmp(&allocated);
   1563 
   1564   __ bind(&runtime_allocate);
   1565   __ push(rbx);
   1566   __ Push(Smi::FromInt(size));
   1567   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
   1568   __ pop(rbx);
   1569 
   1570   __ bind(&allocated);
   1571   // Copy the content into the newly allocated memory.
   1572   // (Unroll copy loop once for better throughput).
   1573   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
   1574     __ movq(rdx, FieldOperand(rbx, i));
   1575     __ movq(rcx, FieldOperand(rbx, i + kPointerSize));
   1576     __ movq(FieldOperand(rax, i), rdx);
   1577     __ movq(FieldOperand(rax, i + kPointerSize), rcx);
   1578   }
   1579   if ((size % (2 * kPointerSize)) != 0) {
   1580     __ movq(rdx, FieldOperand(rbx, size - kPointerSize));
   1581     __ movq(FieldOperand(rax, size - kPointerSize), rdx);
   1582   }
   1583   context()->Plug(rax);
   1584 }
   1585 
   1586 
   1587 void FullCodeGenerator::EmitAccessor(Expression* expression) {
   1588   if (expression == NULL) {
   1589     __ PushRoot(Heap::kNullValueRootIndex);
   1590   } else {
   1591     VisitForStackValue(expression);
   1592   }
   1593 }
   1594 
   1595 
   1596 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
   1597   Comment cmnt(masm_, "[ ObjectLiteral");
   1598 
   1599   expr->BuildConstantProperties(isolate());
   1600   Handle<FixedArray> constant_properties = expr->constant_properties();
   1601   int flags = expr->fast_elements()
   1602       ? ObjectLiteral::kFastElements
   1603       : ObjectLiteral::kNoFlags;
   1604   flags |= expr->has_function()
   1605       ? ObjectLiteral::kHasFunction
   1606       : ObjectLiteral::kNoFlags;
   1607   int properties_count = constant_properties->length() / 2;
   1608   if ((FLAG_track_double_fields && expr->may_store_doubles()) ||
   1609       expr->depth() > 1 || Serializer::enabled() ||
   1610       flags != ObjectLiteral::kFastElements ||
   1611       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
   1612     __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1613     __ push(FieldOperand(rdi, JSFunction::kLiteralsOffset));
   1614     __ Push(Smi::FromInt(expr->literal_index()));
   1615     __ Push(constant_properties);
   1616     __ Push(Smi::FromInt(flags));
   1617     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
   1618   } else {
   1619     __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1620     __ movq(rax, FieldOperand(rdi, JSFunction::kLiteralsOffset));
   1621     __ Move(rbx, Smi::FromInt(expr->literal_index()));
   1622     __ Move(rcx, constant_properties);
   1623     __ Move(rdx, Smi::FromInt(flags));
   1624     FastCloneShallowObjectStub stub(properties_count);
   1625     __ CallStub(&stub);
   1626   }
   1627 
   1628   // If result_saved is true the result is on top of the stack.  If
   1629   // result_saved is false the result is in rax.
   1630   bool result_saved = false;
   1631 
   1632   // Mark all computed expressions that are bound to a key that
   1633   // is shadowed by a later occurrence of the same key. For the
   1634   // marked expressions, no store code is emitted.
   1635   expr->CalculateEmitStore(zone());
   1636 
   1637   AccessorTable accessor_table(zone());
   1638   for (int i = 0; i < expr->properties()->length(); i++) {
   1639     ObjectLiteral::Property* property = expr->properties()->at(i);
   1640     if (property->IsCompileTimeValue()) continue;
   1641 
   1642     Literal* key = property->key();
   1643     Expression* value = property->value();
   1644     if (!result_saved) {
   1645       __ push(rax);  // Save result on the stack
   1646       result_saved = true;
   1647     }
   1648     switch (property->kind()) {
   1649       case ObjectLiteral::Property::CONSTANT:
   1650         UNREACHABLE();
   1651       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
   1652         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
   1653         // Fall through.
   1654       case ObjectLiteral::Property::COMPUTED:
   1655         if (key->value()->IsInternalizedString()) {
   1656           if (property->emit_store()) {
   1657             VisitForAccumulatorValue(value);
   1658             __ Move(rcx, key->value());
   1659             __ movq(rdx, Operand(rsp, 0));
   1660             Handle<Code> ic = is_classic_mode()
   1661                 ? isolate()->builtins()->StoreIC_Initialize()
   1662                 : isolate()->builtins()->StoreIC_Initialize_Strict();
   1663             CallIC(ic, RelocInfo::CODE_TARGET, key->LiteralFeedbackId());
   1664             PrepareForBailoutForId(key->id(), NO_REGISTERS);
   1665           } else {
   1666             VisitForEffect(value);
   1667           }
   1668           break;
   1669         }
   1670         __ push(Operand(rsp, 0));  // Duplicate receiver.
   1671         VisitForStackValue(key);
   1672         VisitForStackValue(value);
   1673         if (property->emit_store()) {
   1674           __ Push(Smi::FromInt(NONE));    // PropertyAttributes
   1675           __ CallRuntime(Runtime::kSetProperty, 4);
   1676         } else {
   1677           __ Drop(3);
   1678         }
   1679         break;
   1680       case ObjectLiteral::Property::PROTOTYPE:
   1681         __ push(Operand(rsp, 0));  // Duplicate receiver.
   1682         VisitForStackValue(value);
   1683         if (property->emit_store()) {
   1684           __ CallRuntime(Runtime::kSetPrototype, 2);
   1685         } else {
   1686           __ Drop(2);
   1687         }
   1688         break;
   1689       case ObjectLiteral::Property::GETTER:
   1690         accessor_table.lookup(key)->second->getter = value;
   1691         break;
   1692       case ObjectLiteral::Property::SETTER:
   1693         accessor_table.lookup(key)->second->setter = value;
   1694         break;
   1695     }
   1696   }
   1697 
   1698   // Emit code to define accessors, using only a single call to the runtime for
   1699   // each pair of corresponding getters and setters.
   1700   for (AccessorTable::Iterator it = accessor_table.begin();
   1701        it != accessor_table.end();
   1702        ++it) {
   1703     __ push(Operand(rsp, 0));  // Duplicate receiver.
   1704     VisitForStackValue(it->first);
   1705     EmitAccessor(it->second->getter);
   1706     EmitAccessor(it->second->setter);
   1707     __ Push(Smi::FromInt(NONE));
   1708     __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
   1709   }
   1710 
   1711   if (expr->has_function()) {
   1712     ASSERT(result_saved);
   1713     __ push(Operand(rsp, 0));
   1714     __ CallRuntime(Runtime::kToFastProperties, 1);
   1715   }
   1716 
   1717   if (result_saved) {
   1718     context()->PlugTOS();
   1719   } else {
   1720     context()->Plug(rax);
   1721   }
   1722 }
   1723 
   1724 
   1725 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
   1726   Comment cmnt(masm_, "[ ArrayLiteral");
   1727 
   1728   expr->BuildConstantElements(isolate());
   1729   int flags = expr->depth() == 1
   1730       ? ArrayLiteral::kShallowElements
   1731       : ArrayLiteral::kNoFlags;
   1732 
   1733   ZoneList<Expression*>* subexprs = expr->values();
   1734   int length = subexprs->length();
   1735   Handle<FixedArray> constant_elements = expr->constant_elements();
   1736   ASSERT_EQ(2, constant_elements->length());
   1737   ElementsKind constant_elements_kind =
   1738       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
   1739   bool has_constant_fast_elements =
   1740       IsFastObjectElementsKind(constant_elements_kind);
   1741   Handle<FixedArrayBase> constant_elements_values(
   1742       FixedArrayBase::cast(constant_elements->get(1)));
   1743 
   1744   AllocationSiteMode allocation_site_mode = FLAG_track_allocation_sites
   1745       ? TRACK_ALLOCATION_SITE : DONT_TRACK_ALLOCATION_SITE;
   1746   if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
   1747     // If the only customer of allocation sites is transitioning, then
   1748     // we can turn it off if we don't have anywhere else to transition to.
   1749     allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
   1750   }
   1751 
   1752   Heap* heap = isolate()->heap();
   1753   if (has_constant_fast_elements &&
   1754       constant_elements_values->map() == heap->fixed_cow_array_map()) {
   1755     // If the elements are already FAST_*_ELEMENTS, the boilerplate cannot
   1756     // change, so it's possible to specialize the stub in advance.
   1757     __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), 1);
   1758     __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1759     __ movq(rax, FieldOperand(rbx, JSFunction::kLiteralsOffset));
   1760     __ Move(rbx, Smi::FromInt(expr->literal_index()));
   1761     __ Move(rcx, constant_elements);
   1762     FastCloneShallowArrayStub stub(
   1763         FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS,
   1764         allocation_site_mode,
   1765         length);
   1766     __ CallStub(&stub);
   1767   } else if (expr->depth() > 1 || Serializer::enabled() ||
   1768              length > FastCloneShallowArrayStub::kMaximumClonedLength) {
   1769     __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1770     __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
   1771     __ Push(Smi::FromInt(expr->literal_index()));
   1772     __ Push(constant_elements);
   1773     __ Push(Smi::FromInt(flags));
   1774     __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
   1775   } else {
   1776     ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind) ||
   1777            FLAG_smi_only_arrays);
   1778     FastCloneShallowArrayStub::Mode mode =
   1779         FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
   1780 
   1781     // If the elements are already FAST_*_ELEMENTS, the boilerplate cannot
   1782     // change, so it's possible to specialize the stub in advance.
   1783     if (has_constant_fast_elements) {
   1784       mode = FastCloneShallowArrayStub::CLONE_ELEMENTS;
   1785     }
   1786 
   1787     __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1788     __ movq(rax, FieldOperand(rbx, JSFunction::kLiteralsOffset));
   1789     __ Move(rbx, Smi::FromInt(expr->literal_index()));
   1790     __ Move(rcx, constant_elements);
   1791     FastCloneShallowArrayStub stub(mode, allocation_site_mode, length);
   1792     __ CallStub(&stub);
   1793   }
   1794 
   1795   bool result_saved = false;  // Is the result saved to the stack?
   1796 
   1797   // Emit code to evaluate all the non-constant subexpressions and to store
   1798   // them into the newly cloned array.
   1799   for (int i = 0; i < length; i++) {
   1800     Expression* subexpr = subexprs->at(i);
   1801     // If the subexpression is a literal or a simple materialized literal it
   1802     // is already set in the cloned array.
   1803     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
   1804 
   1805     if (!result_saved) {
   1806       __ push(rax);  // array literal
   1807       __ Push(Smi::FromInt(expr->literal_index()));
   1808       result_saved = true;
   1809     }
   1810     VisitForAccumulatorValue(subexpr);
   1811 
   1812     if (IsFastObjectElementsKind(constant_elements_kind)) {
   1813       // Fast-case array literal with ElementsKind of FAST_*_ELEMENTS, they
   1814       // cannot transition and don't need to call the runtime stub.
   1815       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
   1816       __ movq(rbx, Operand(rsp, kPointerSize));  // Copy of array literal.
   1817       __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
   1818       // Store the subexpression value in the array's elements.
   1819       __ movq(FieldOperand(rbx, offset), result_register());
   1820       // Update the write barrier for the array store.
   1821       __ RecordWriteField(rbx, offset, result_register(), rcx,
   1822                           kDontSaveFPRegs,
   1823                           EMIT_REMEMBERED_SET,
   1824                           INLINE_SMI_CHECK);
   1825     } else {
   1826       // Store the subexpression value in the array's elements.
   1827       __ Move(rcx, Smi::FromInt(i));
   1828       StoreArrayLiteralElementStub stub;
   1829       __ CallStub(&stub);
   1830     }
   1831 
   1832     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
   1833   }
   1834 
   1835   if (result_saved) {
   1836     __ addq(rsp, Immediate(kPointerSize));  // literal index
   1837     context()->PlugTOS();
   1838   } else {
   1839     context()->Plug(rax);
   1840   }
   1841 }
   1842 
   1843 
   1844 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
   1845   Comment cmnt(masm_, "[ Assignment");
   1846   // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
   1847   // on the left-hand side.
   1848   if (!expr->target()->IsValidLeftHandSide()) {
   1849     VisitForEffect(expr->target());
   1850     return;
   1851   }
   1852 
   1853   // Left-hand side can only be a property, a global or a (parameter or local)
   1854   // slot.
   1855   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   1856   LhsKind assign_type = VARIABLE;
   1857   Property* property = expr->target()->AsProperty();
   1858   if (property != NULL) {
   1859     assign_type = (property->key()->IsPropertyName())
   1860         ? NAMED_PROPERTY
   1861         : KEYED_PROPERTY;
   1862   }
   1863 
   1864   // Evaluate LHS expression.
   1865   switch (assign_type) {
   1866     case VARIABLE:
   1867       // Nothing to do here.
   1868       break;
   1869     case NAMED_PROPERTY:
   1870       if (expr->is_compound()) {
   1871         // We need the receiver both on the stack and in the accumulator.
   1872         VisitForAccumulatorValue(property->obj());
   1873         __ push(result_register());
   1874       } else {
   1875         VisitForStackValue(property->obj());
   1876       }
   1877       break;
   1878     case KEYED_PROPERTY: {
   1879       if (expr->is_compound()) {
   1880         VisitForStackValue(property->obj());
   1881         VisitForAccumulatorValue(property->key());
   1882         __ movq(rdx, Operand(rsp, 0));
   1883         __ push(rax);
   1884       } else {
   1885         VisitForStackValue(property->obj());
   1886         VisitForStackValue(property->key());
   1887       }
   1888       break;
   1889     }
   1890   }
   1891 
   1892   // For compound assignments we need another deoptimization point after the
   1893   // variable/property load.
   1894   if (expr->is_compound()) {
   1895     { AccumulatorValueContext context(this);
   1896       switch (assign_type) {
   1897         case VARIABLE:
   1898           EmitVariableLoad(expr->target()->AsVariableProxy());
   1899           PrepareForBailout(expr->target(), TOS_REG);
   1900           break;
   1901         case NAMED_PROPERTY:
   1902           EmitNamedPropertyLoad(property);
   1903           PrepareForBailoutForId(property->LoadId(), TOS_REG);
   1904           break;
   1905         case KEYED_PROPERTY:
   1906           EmitKeyedPropertyLoad(property);
   1907           PrepareForBailoutForId(property->LoadId(), TOS_REG);
   1908           break;
   1909       }
   1910     }
   1911 
   1912     Token::Value op = expr->binary_op();
   1913     __ push(rax);  // Left operand goes on the stack.
   1914     VisitForAccumulatorValue(expr->value());
   1915 
   1916     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
   1917         ? OVERWRITE_RIGHT
   1918         : NO_OVERWRITE;
   1919     SetSourcePosition(expr->position() + 1);
   1920     AccumulatorValueContext context(this);
   1921     if (ShouldInlineSmiCase(op)) {
   1922       EmitInlineSmiBinaryOp(expr->binary_operation(),
   1923                             op,
   1924                             mode,
   1925                             expr->target(),
   1926                             expr->value());
   1927     } else {
   1928       EmitBinaryOp(expr->binary_operation(), op, mode);
   1929     }
   1930     // Deoptimization point in case the binary operation may have side effects.
   1931     PrepareForBailout(expr->binary_operation(), TOS_REG);
   1932   } else {
   1933     VisitForAccumulatorValue(expr->value());
   1934   }
   1935 
   1936   // Record source position before possible IC call.
   1937   SetSourcePosition(expr->position());
   1938 
   1939   // Store the value.
   1940   switch (assign_type) {
   1941     case VARIABLE:
   1942       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
   1943                              expr->op());
   1944       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   1945       context()->Plug(rax);
   1946       break;
   1947     case NAMED_PROPERTY:
   1948       EmitNamedPropertyAssignment(expr);
   1949       break;
   1950     case KEYED_PROPERTY:
   1951       EmitKeyedPropertyAssignment(expr);
   1952       break;
   1953   }
   1954 }
   1955 
   1956 
   1957 void FullCodeGenerator::VisitYield(Yield* expr) {
   1958   Comment cmnt(masm_, "[ Yield");
   1959   // Evaluate yielded value first; the initial iterator definition depends on
   1960   // this.  It stays on the stack while we update the iterator.
   1961   VisitForStackValue(expr->expression());
   1962 
   1963   switch (expr->yield_kind()) {
   1964     case Yield::SUSPEND:
   1965       // Pop value from top-of-stack slot; box result into result register.
   1966       EmitCreateIteratorResult(false);
   1967       __ push(result_register());
   1968       // Fall through.
   1969     case Yield::INITIAL: {
   1970       Label suspend, continuation, post_runtime, resume;
   1971 
   1972       __ jmp(&suspend);
   1973 
   1974       __ bind(&continuation);
   1975       __ jmp(&resume);
   1976 
   1977       __ bind(&suspend);
   1978       VisitForAccumulatorValue(expr->generator_object());
   1979       ASSERT(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
   1980       __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
   1981               Smi::FromInt(continuation.pos()));
   1982       __ movq(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
   1983       __ movq(rcx, rsi);
   1984       __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
   1985                           kDontSaveFPRegs);
   1986       __ lea(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset));
   1987       __ cmpq(rsp, rbx);
   1988       __ j(equal, &post_runtime);
   1989       __ push(rax);  // generator object
   1990       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
   1991       __ movq(context_register(),
   1992               Operand(rbp, StandardFrameConstants::kContextOffset));
   1993       __ bind(&post_runtime);
   1994 
   1995       __ pop(result_register());
   1996       EmitReturnSequence();
   1997 
   1998       __ bind(&resume);
   1999       context()->Plug(result_register());
   2000       break;
   2001     }
   2002 
   2003     case Yield::FINAL: {
   2004       VisitForAccumulatorValue(expr->generator_object());
   2005       __ Move(FieldOperand(result_register(),
   2006                            JSGeneratorObject::kContinuationOffset),
   2007               Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
   2008       // Pop value from top-of-stack slot, box result into result register.
   2009       EmitCreateIteratorResult(true);
   2010       EmitUnwindBeforeReturn();
   2011       EmitReturnSequence();
   2012       break;
   2013     }
   2014 
   2015     case Yield::DELEGATING: {
   2016       VisitForStackValue(expr->generator_object());
   2017 
   2018       // Initial stack layout is as follows:
   2019       // [sp + 1 * kPointerSize] iter
   2020       // [sp + 0 * kPointerSize] g
   2021 
   2022       Label l_catch, l_try, l_suspend, l_continuation, l_resume;
   2023       Label l_next, l_call, l_loop;
   2024       // Initial send value is undefined.
   2025       __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   2026       __ jmp(&l_next);
   2027 
   2028       // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
   2029       __ bind(&l_catch);
   2030       handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
   2031       __ LoadRoot(rcx, Heap::kthrow_stringRootIndex);    // "throw"
   2032       __ push(rcx);
   2033       __ push(Operand(rsp, 2 * kPointerSize));           // iter
   2034       __ push(rax);                                      // exception
   2035       __ jmp(&l_call);
   2036 
   2037       // try { received = %yield result }
   2038       // Shuffle the received result above a try handler and yield it without
   2039       // re-boxing.
   2040       __ bind(&l_try);
   2041       __ pop(rax);                                       // result
   2042       __ PushTryHandler(StackHandler::CATCH, expr->index());
   2043       const int handler_size = StackHandlerConstants::kSize;
   2044       __ push(rax);                                      // result
   2045       __ jmp(&l_suspend);
   2046       __ bind(&l_continuation);
   2047       __ jmp(&l_resume);
   2048       __ bind(&l_suspend);
   2049       const int generator_object_depth = kPointerSize + handler_size;
   2050       __ movq(rax, Operand(rsp, generator_object_depth));
   2051       __ push(rax);                                      // g
   2052       ASSERT(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
   2053       __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
   2054               Smi::FromInt(l_continuation.pos()));
   2055       __ movq(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
   2056       __ movq(rcx, rsi);
   2057       __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
   2058                           kDontSaveFPRegs);
   2059       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
   2060       __ movq(context_register(),
   2061               Operand(rbp, StandardFrameConstants::kContextOffset));
   2062       __ pop(rax);                                       // result
   2063       EmitReturnSequence();
   2064       __ bind(&l_resume);                                // received in rax
   2065       __ PopTryHandler();
   2066 
   2067       // receiver = iter; f = 'next'; arg = received;
   2068       __ bind(&l_next);
   2069       __ LoadRoot(rcx, Heap::knext_stringRootIndex);     // "next"
   2070       __ push(rcx);
   2071       __ push(Operand(rsp, 2 * kPointerSize));           // iter
   2072       __ push(rax);                                      // received
   2073 
   2074       // result = receiver[f](arg);
   2075       __ bind(&l_call);
   2076       Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(1);
   2077       CallIC(ic);
   2078       __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2079       __ Drop(1);  // The key is still on the stack; drop it.
   2080 
   2081       // if (!result.done) goto l_try;
   2082       __ bind(&l_loop);
   2083       __ push(rax);                                      // save result
   2084       __ LoadRoot(rcx, Heap::kdone_stringRootIndex);     // "done"
   2085       Handle<Code> done_ic = isolate()->builtins()->LoadIC_Initialize();
   2086       CallIC(done_ic);                                   // result.done in rax
   2087       Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
   2088       CallIC(bool_ic);
   2089       __ testq(result_register(), result_register());
   2090       __ j(zero, &l_try);
   2091 
   2092       // result.value
   2093       __ pop(rax);                                       // result
   2094       __ LoadRoot(rcx, Heap::kvalue_stringRootIndex);    // "value"
   2095       Handle<Code> value_ic = isolate()->builtins()->LoadIC_Initialize();
   2096       CallIC(value_ic);                                  // result.value in rax
   2097       context()->DropAndPlug(2, rax);                    // drop iter and g
   2098       break;
   2099     }
   2100   }
   2101 }
   2102 
   2103 
   2104 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
   2105     Expression *value,
   2106     JSGeneratorObject::ResumeMode resume_mode) {
   2107   // The value stays in rax, and is ultimately read by the resumed generator, as
   2108   // if the CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it.  rbx
   2109   // will hold the generator object until the activation has been resumed.
   2110   VisitForStackValue(generator);
   2111   VisitForAccumulatorValue(value);
   2112   __ pop(rbx);
   2113 
   2114   // Check generator state.
   2115   Label wrong_state, done;
   2116   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting <= 0);
   2117   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed <= 0);
   2118   __ SmiCompare(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
   2119                 Smi::FromInt(0));
   2120   __ j(less_equal, &wrong_state);
   2121 
   2122   // Load suspended function and context.
   2123   __ movq(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
   2124   __ movq(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
   2125 
   2126   // Push receiver.
   2127   __ push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
   2128 
   2129   // Push holes for arguments to generator function.
   2130   __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   2131   __ movsxlq(rdx,
   2132              FieldOperand(rdx,
   2133                           SharedFunctionInfo::kFormalParameterCountOffset));
   2134   __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
   2135   Label push_argument_holes, push_frame;
   2136   __ bind(&push_argument_holes);
   2137   __ subq(rdx, Immediate(1));
   2138   __ j(carry, &push_frame);
   2139   __ push(rcx);
   2140   __ jmp(&push_argument_holes);
   2141 
   2142   // Enter a new JavaScript frame, and initialize its slots as they were when
   2143   // the generator was suspended.
   2144   Label resume_frame;
   2145   __ bind(&push_frame);
   2146   __ call(&resume_frame);
   2147   __ jmp(&done);
   2148   __ bind(&resume_frame);
   2149   __ push(rbp);  // Caller's frame pointer.
   2150   __ movq(rbp, rsp);
   2151   __ push(rsi);  // Callee's context.
   2152   __ push(rdi);  // Callee's JS Function.
   2153 
   2154   // Load the operand stack size.
   2155   __ movq(rdx, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset));
   2156   __ movq(rdx, FieldOperand(rdx, FixedArray::kLengthOffset));
   2157   __ SmiToInteger32(rdx, rdx);
   2158 
   2159   // If we are sending a value and there is no operand stack, we can jump back
   2160   // in directly.
   2161   if (resume_mode == JSGeneratorObject::NEXT) {
   2162     Label slow_resume;
   2163     __ cmpq(rdx, Immediate(0));
   2164     __ j(not_zero, &slow_resume);
   2165     __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
   2166     __ SmiToInteger64(rcx,
   2167         FieldOperand(rbx, JSGeneratorObject::kContinuationOffset));
   2168     __ addq(rdx, rcx);
   2169     __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
   2170             Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
   2171     __ jmp(rdx);
   2172     __ bind(&slow_resume);
   2173   }
   2174 
   2175   // Otherwise, we push holes for the operand stack and call the runtime to fix
   2176   // up the stack and the handlers.
   2177   Label push_operand_holes, call_resume;
   2178   __ bind(&push_operand_holes);
   2179   __ subq(rdx, Immediate(1));
   2180   __ j(carry, &call_resume);
   2181   __ push(rcx);
   2182   __ jmp(&push_operand_holes);
   2183   __ bind(&call_resume);
   2184   __ push(rbx);
   2185   __ push(result_register());
   2186   __ Push(Smi::FromInt(resume_mode));
   2187   __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
   2188   // Not reached: the runtime call returns elsewhere.
   2189   __ Abort(kGeneratorFailedToResume);
   2190 
   2191   // Throw error if we attempt to operate on a running generator.
   2192   __ bind(&wrong_state);
   2193   __ push(rbx);
   2194   __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
   2195 
   2196   __ bind(&done);
   2197   context()->Plug(result_register());
   2198 }
   2199 
   2200 
   2201 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
   2202   Label gc_required;
   2203   Label allocated;
   2204 
   2205   Handle<Map> map(isolate()->native_context()->generator_result_map());
   2206 
   2207   __ Allocate(map->instance_size(), rax, rcx, rdx, &gc_required, TAG_OBJECT);
   2208   __ jmp(&allocated);
   2209 
   2210   __ bind(&gc_required);
   2211   __ Push(Smi::FromInt(map->instance_size()));
   2212   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
   2213   __ movq(context_register(),
   2214           Operand(rbp, StandardFrameConstants::kContextOffset));
   2215 
   2216   __ bind(&allocated);
   2217   __ Move(rbx, map);
   2218   __ pop(rcx);
   2219   __ Move(rdx, isolate()->factory()->ToBoolean(done));
   2220   ASSERT_EQ(map->instance_size(), 5 * kPointerSize);
   2221   __ movq(FieldOperand(rax, HeapObject::kMapOffset), rbx);
   2222   __ Move(FieldOperand(rax, JSObject::kPropertiesOffset),
   2223           isolate()->factory()->empty_fixed_array());
   2224   __ Move(FieldOperand(rax, JSObject::kElementsOffset),
   2225           isolate()->factory()->empty_fixed_array());
   2226   __ movq(FieldOperand(rax, JSGeneratorObject::kResultValuePropertyOffset),
   2227           rcx);
   2228   __ movq(FieldOperand(rax, JSGeneratorObject::kResultDonePropertyOffset),
   2229           rdx);
   2230 
   2231   // Only the value field needs a write barrier, as the other values are in the
   2232   // root set.
   2233   __ RecordWriteField(rax, JSGeneratorObject::kResultValuePropertyOffset,
   2234                       rcx, rdx, kDontSaveFPRegs);
   2235 }
   2236 
   2237 
   2238 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
   2239   SetSourcePosition(prop->position());
   2240   Literal* key = prop->key()->AsLiteral();
   2241   __ Move(rcx, key->value());
   2242   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   2243   CallIC(ic, RelocInfo::CODE_TARGET, prop->PropertyFeedbackId());
   2244 }
   2245 
   2246 
   2247 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
   2248   SetSourcePosition(prop->position());
   2249   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
   2250   CallIC(ic, RelocInfo::CODE_TARGET, prop->PropertyFeedbackId());
   2251 }
   2252 
   2253 
   2254 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
   2255                                               Token::Value op,
   2256                                               OverwriteMode mode,
   2257                                               Expression* left,
   2258                                               Expression* right) {
   2259   // Do combined smi check of the operands. Left operand is on the
   2260   // stack (popped into rdx). Right operand is in rax but moved into
   2261   // rcx to make the shifts easier.
   2262   Label done, stub_call, smi_case;
   2263   __ pop(rdx);
   2264   __ movq(rcx, rax);
   2265   __ or_(rax, rdx);
   2266   JumpPatchSite patch_site(masm_);
   2267   patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear);
   2268 
   2269   __ bind(&stub_call);
   2270   __ movq(rax, rcx);
   2271   BinaryOpICStub stub(op, mode);
   2272   CallIC(stub.GetCode(isolate()), RelocInfo::CODE_TARGET,
   2273          expr->BinaryOperationFeedbackId());
   2274   patch_site.EmitPatchInfo();
   2275   __ jmp(&done, Label::kNear);
   2276 
   2277   __ bind(&smi_case);
   2278   switch (op) {
   2279     case Token::SAR:
   2280       __ SmiShiftArithmeticRight(rax, rdx, rcx);
   2281       break;
   2282     case Token::SHL:
   2283       __ SmiShiftLeft(rax, rdx, rcx);
   2284       break;
   2285     case Token::SHR:
   2286       __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call);
   2287       break;
   2288     case Token::ADD:
   2289       __ SmiAdd(rax, rdx, rcx, &stub_call);
   2290       break;
   2291     case Token::SUB:
   2292       __ SmiSub(rax, rdx, rcx, &stub_call);
   2293       break;
   2294     case Token::MUL:
   2295       __ SmiMul(rax, rdx, rcx, &stub_call);
   2296       break;
   2297     case Token::BIT_OR:
   2298       __ SmiOr(rax, rdx, rcx);
   2299       break;
   2300     case Token::BIT_AND:
   2301       __ SmiAnd(rax, rdx, rcx);
   2302       break;
   2303     case Token::BIT_XOR:
   2304       __ SmiXor(rax, rdx, rcx);
   2305       break;
   2306     default:
   2307       UNREACHABLE();
   2308       break;
   2309   }
   2310 
   2311   __ bind(&done);
   2312   context()->Plug(rax);
   2313 }
   2314 
   2315 
   2316 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
   2317                                      Token::Value op,
   2318                                      OverwriteMode mode) {
   2319   __ pop(rdx);
   2320   BinaryOpICStub stub(op, mode);
   2321   JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
   2322   CallIC(stub.GetCode(isolate()), RelocInfo::CODE_TARGET,
   2323          expr->BinaryOperationFeedbackId());
   2324   patch_site.EmitPatchInfo();
   2325   context()->Plug(rax);
   2326 }
   2327 
   2328 
   2329 void FullCodeGenerator::EmitAssignment(Expression* expr) {
   2330   // Invalid left-hand sides are rewritten by the parser to have a 'throw
   2331   // ReferenceError' on the left-hand side.
   2332   if (!expr->IsValidLeftHandSide()) {
   2333     VisitForEffect(expr);
   2334     return;
   2335   }
   2336 
   2337   // Left-hand side can only be a property, a global or a (parameter or local)
   2338   // slot.
   2339   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   2340   LhsKind assign_type = VARIABLE;
   2341   Property* prop = expr->AsProperty();
   2342   if (prop != NULL) {
   2343     assign_type = (prop->key()->IsPropertyName())
   2344         ? NAMED_PROPERTY
   2345         : KEYED_PROPERTY;
   2346   }
   2347 
   2348   switch (assign_type) {
   2349     case VARIABLE: {
   2350       Variable* var = expr->AsVariableProxy()->var();
   2351       EffectContext context(this);
   2352       EmitVariableAssignment(var, Token::ASSIGN);
   2353       break;
   2354     }
   2355     case NAMED_PROPERTY: {
   2356       __ push(rax);  // Preserve value.
   2357       VisitForAccumulatorValue(prop->obj());
   2358       __ movq(rdx, rax);
   2359       __ pop(rax);  // Restore value.
   2360       __ Move(rcx, prop->key()->AsLiteral()->value());
   2361       Handle<Code> ic = is_classic_mode()
   2362           ? isolate()->builtins()->StoreIC_Initialize()
   2363           : isolate()->builtins()->StoreIC_Initialize_Strict();
   2364       CallIC(ic);
   2365       break;
   2366     }
   2367     case KEYED_PROPERTY: {
   2368       __ push(rax);  // Preserve value.
   2369       VisitForStackValue(prop->obj());
   2370       VisitForAccumulatorValue(prop->key());
   2371       __ movq(rcx, rax);
   2372       __ pop(rdx);
   2373       __ pop(rax);  // Restore value.
   2374       Handle<Code> ic = is_classic_mode()
   2375           ? isolate()->builtins()->KeyedStoreIC_Initialize()
   2376           : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   2377       CallIC(ic);
   2378       break;
   2379     }
   2380   }
   2381   context()->Plug(rax);
   2382 }
   2383 
   2384 
   2385 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
   2386                                                Token::Value op) {
   2387   if (var->IsUnallocated()) {
   2388     // Global var, const, or let.
   2389     __ Move(rcx, var->name());
   2390     __ movq(rdx, GlobalObjectOperand());
   2391     Handle<Code> ic = is_classic_mode()
   2392         ? isolate()->builtins()->StoreIC_Initialize()
   2393         : isolate()->builtins()->StoreIC_Initialize_Strict();
   2394     CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   2395   } else if (op == Token::INIT_CONST) {
   2396     // Const initializers need a write barrier.
   2397     ASSERT(!var->IsParameter());  // No const parameters.
   2398     if (var->IsStackLocal()) {
   2399       Label skip;
   2400       __ movq(rdx, StackOperand(var));
   2401       __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
   2402       __ j(not_equal, &skip);
   2403       __ movq(StackOperand(var), rax);
   2404       __ bind(&skip);
   2405     } else {
   2406       ASSERT(var->IsContextSlot() || var->IsLookupSlot());
   2407       // Like var declarations, const declarations are hoisted to function
   2408       // scope.  However, unlike var initializers, const initializers are
   2409       // able to drill a hole to that function context, even from inside a
   2410       // 'with' context.  We thus bypass the normal static scope lookup for
   2411       // var->IsContextSlot().
   2412       __ push(rax);
   2413       __ push(rsi);
   2414       __ Push(var->name());
   2415       __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
   2416     }
   2417 
   2418   } else if (var->mode() == LET && op != Token::INIT_LET) {
   2419     // Non-initializing assignment to let variable needs a write barrier.
   2420     if (var->IsLookupSlot()) {
   2421       __ push(rax);  // Value.
   2422       __ push(rsi);  // Context.
   2423       __ Push(var->name());
   2424       __ Push(Smi::FromInt(language_mode()));
   2425       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   2426     } else {
   2427       ASSERT(var->IsStackAllocated() || var->IsContextSlot());
   2428       Label assign;
   2429       MemOperand location = VarOperand(var, rcx);
   2430       __ movq(rdx, location);
   2431       __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
   2432       __ j(not_equal, &assign, Label::kNear);
   2433       __ Push(var->name());
   2434       __ CallRuntime(Runtime::kThrowReferenceError, 1);
   2435       __ bind(&assign);
   2436       __ movq(location, rax);
   2437       if (var->IsContextSlot()) {
   2438         __ movq(rdx, rax);
   2439         __ RecordWriteContextSlot(
   2440             rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
   2441       }
   2442     }
   2443 
   2444   } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
   2445     // Assignment to var or initializing assignment to let/const
   2446     // in harmony mode.
   2447     if (var->IsStackAllocated() || var->IsContextSlot()) {
   2448       MemOperand location = VarOperand(var, rcx);
   2449       if (generate_debug_code_ && op == Token::INIT_LET) {
   2450         // Check for an uninitialized let binding.
   2451         __ movq(rdx, location);
   2452         __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
   2453         __ Check(equal, kLetBindingReInitialization);
   2454       }
   2455       // Perform the assignment.
   2456       __ movq(location, rax);
   2457       if (var->IsContextSlot()) {
   2458         __ movq(rdx, rax);
   2459         __ RecordWriteContextSlot(
   2460             rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
   2461       }
   2462     } else {
   2463       ASSERT(var->IsLookupSlot());
   2464       __ push(rax);  // Value.
   2465       __ push(rsi);  // Context.
   2466       __ Push(var->name());
   2467       __ Push(Smi::FromInt(language_mode()));
   2468       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   2469     }
   2470   }
   2471   // Non-initializing assignments to consts are ignored.
   2472 }
   2473 
   2474 
   2475 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
   2476   // Assignment to a property, using a named store IC.
   2477   Property* prop = expr->target()->AsProperty();
   2478   ASSERT(prop != NULL);
   2479   ASSERT(prop->key()->AsLiteral() != NULL);
   2480 
   2481   // Record source code position before IC call.
   2482   SetSourcePosition(expr->position());
   2483   __ Move(rcx, prop->key()->AsLiteral()->value());
   2484   __ pop(rdx);
   2485   Handle<Code> ic = is_classic_mode()
   2486       ? isolate()->builtins()->StoreIC_Initialize()
   2487       : isolate()->builtins()->StoreIC_Initialize_Strict();
   2488   CallIC(ic, RelocInfo::CODE_TARGET, expr->AssignmentFeedbackId());
   2489 
   2490   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2491   context()->Plug(rax);
   2492 }
   2493 
   2494 
   2495 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
   2496   // Assignment to a property, using a keyed store IC.
   2497 
   2498   __ pop(rcx);
   2499   __ pop(rdx);
   2500   // Record source code position before IC call.
   2501   SetSourcePosition(expr->position());
   2502   Handle<Code> ic = is_classic_mode()
   2503       ? isolate()->builtins()->KeyedStoreIC_Initialize()
   2504       : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   2505   CallIC(ic, RelocInfo::CODE_TARGET, expr->AssignmentFeedbackId());
   2506 
   2507   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2508   context()->Plug(rax);
   2509 }
   2510 
   2511 
   2512 void FullCodeGenerator::VisitProperty(Property* expr) {
   2513   Comment cmnt(masm_, "[ Property");
   2514   Expression* key = expr->key();
   2515 
   2516   if (key->IsPropertyName()) {
   2517     VisitForAccumulatorValue(expr->obj());
   2518     EmitNamedPropertyLoad(expr);
   2519     PrepareForBailoutForId(expr->LoadId(), TOS_REG);
   2520     context()->Plug(rax);
   2521   } else {
   2522     VisitForStackValue(expr->obj());
   2523     VisitForAccumulatorValue(expr->key());
   2524     __ pop(rdx);
   2525     EmitKeyedPropertyLoad(expr);
   2526     context()->Plug(rax);
   2527   }
   2528 }
   2529 
   2530 
   2531 void FullCodeGenerator::CallIC(Handle<Code> code,
   2532                                RelocInfo::Mode rmode,
   2533                                TypeFeedbackId ast_id) {
   2534   ic_total_count_++;
   2535   __ call(code, rmode, ast_id);
   2536 }
   2537 
   2538 
   2539 void FullCodeGenerator::EmitCallWithIC(Call* expr,
   2540                                        Handle<Object> name,
   2541                                        RelocInfo::Mode mode) {
   2542   // Code common for calls using the IC.
   2543   ZoneList<Expression*>* args = expr->arguments();
   2544   int arg_count = args->length();
   2545   { PreservePositionScope scope(masm()->positions_recorder());
   2546     for (int i = 0; i < arg_count; i++) {
   2547       VisitForStackValue(args->at(i));
   2548     }
   2549     __ Move(rcx, name);
   2550   }
   2551   // Record source position for debugger.
   2552   SetSourcePosition(expr->position());
   2553   // Call the IC initialization code.
   2554   Handle<Code> ic =
   2555       isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   2556   CallIC(ic, mode, expr->CallFeedbackId());
   2557   RecordJSReturnSite(expr);
   2558   // Restore context register.
   2559   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2560   context()->Plug(rax);
   2561 }
   2562 
   2563 
   2564 void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
   2565                                             Expression* key) {
   2566   // Load the key.
   2567   VisitForAccumulatorValue(key);
   2568 
   2569   // Swap the name of the function and the receiver on the stack to follow
   2570   // the calling convention for call ICs.
   2571   __ pop(rcx);
   2572   __ push(rax);
   2573   __ push(rcx);
   2574 
   2575   // Load the arguments.
   2576   ZoneList<Expression*>* args = expr->arguments();
   2577   int arg_count = args->length();
   2578   { PreservePositionScope scope(masm()->positions_recorder());
   2579     for (int i = 0; i < arg_count; i++) {
   2580       VisitForStackValue(args->at(i));
   2581     }
   2582   }
   2583   // Record source position for debugger.
   2584   SetSourcePosition(expr->position());
   2585   // Call the IC initialization code.
   2586   Handle<Code> ic =
   2587       isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
   2588   __ movq(rcx, Operand(rsp, (arg_count + 1) * kPointerSize));  // Key.
   2589   CallIC(ic, RelocInfo::CODE_TARGET, expr->CallFeedbackId());
   2590   RecordJSReturnSite(expr);
   2591   // Restore context register.
   2592   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2593   context()->DropAndPlug(1, rax);  // Drop the key still on the stack.
   2594 }
   2595 
   2596 
   2597 void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
   2598   // Code common for calls using the call stub.
   2599   ZoneList<Expression*>* args = expr->arguments();
   2600   int arg_count = args->length();
   2601   { PreservePositionScope scope(masm()->positions_recorder());
   2602     for (int i = 0; i < arg_count; i++) {
   2603       VisitForStackValue(args->at(i));
   2604     }
   2605   }
   2606   // Record source position for debugger.
   2607   SetSourcePosition(expr->position());
   2608 
   2609   // Record call targets in unoptimized code.
   2610   flags = static_cast<CallFunctionFlags>(flags | RECORD_CALL_TARGET);
   2611   Handle<Object> uninitialized =
   2612       TypeFeedbackCells::UninitializedSentinel(isolate());
   2613   Handle<Cell> cell = isolate()->factory()->NewCell(uninitialized);
   2614   RecordTypeFeedbackCell(expr->CallFeedbackId(), cell);
   2615   __ Move(rbx, cell);
   2616 
   2617   CallFunctionStub stub(arg_count, flags);
   2618   __ movq(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
   2619   __ CallStub(&stub, expr->CallFeedbackId());
   2620   RecordJSReturnSite(expr);
   2621   // Restore context register.
   2622   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2623   // Discard the function left on TOS.
   2624   context()->DropAndPlug(1, rax);
   2625 }
   2626 
   2627 
   2628 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
   2629   // Push copy of the first argument or undefined if it doesn't exist.
   2630   if (arg_count > 0) {
   2631     __ push(Operand(rsp, arg_count * kPointerSize));
   2632   } else {
   2633     __ PushRoot(Heap::kUndefinedValueRootIndex);
   2634   }
   2635 
   2636   // Push the receiver of the enclosing function and do runtime call.
   2637   StackArgumentsAccessor args(rbp, info_->scope()->num_parameters());
   2638   __ push(args.GetReceiverOperand());
   2639 
   2640   // Push the language mode.
   2641   __ Push(Smi::FromInt(language_mode()));
   2642 
   2643   // Push the start position of the scope the calls resides in.
   2644   __ Push(Smi::FromInt(scope()->start_position()));
   2645 
   2646   // Do the runtime call.
   2647   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
   2648 }
   2649 
   2650 
   2651 void FullCodeGenerator::VisitCall(Call* expr) {
   2652 #ifdef DEBUG
   2653   // We want to verify that RecordJSReturnSite gets called on all paths
   2654   // through this function.  Avoid early returns.
   2655   expr->return_is_recorded_ = false;
   2656 #endif
   2657 
   2658   Comment cmnt(masm_, "[ Call");
   2659   Expression* callee = expr->expression();
   2660   VariableProxy* proxy = callee->AsVariableProxy();
   2661   Property* property = callee->AsProperty();
   2662 
   2663   if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
   2664     // In a call to eval, we first call %ResolvePossiblyDirectEval to
   2665     // resolve the function we need to call and the receiver of the call.
   2666     // Then we call the resolved function using the given arguments.
   2667     ZoneList<Expression*>* args = expr->arguments();
   2668     int arg_count = args->length();
   2669     { PreservePositionScope pos_scope(masm()->positions_recorder());
   2670       VisitForStackValue(callee);
   2671       __ PushRoot(Heap::kUndefinedValueRootIndex);  // Reserved receiver slot.
   2672 
   2673       // Push the arguments.
   2674       for (int i = 0; i < arg_count; i++) {
   2675         VisitForStackValue(args->at(i));
   2676       }
   2677 
   2678       // Push a copy of the function (found below the arguments) and resolve
   2679       // eval.
   2680       __ push(Operand(rsp, (arg_count + 1) * kPointerSize));
   2681       EmitResolvePossiblyDirectEval(arg_count);
   2682 
   2683       // The runtime call returns a pair of values in rax (function) and
   2684       // rdx (receiver). Touch up the stack with the right values.
   2685       __ movq(Operand(rsp, (arg_count + 0) * kPointerSize), rdx);
   2686       __ movq(Operand(rsp, (arg_count + 1) * kPointerSize), rax);
   2687     }
   2688     // Record source position for debugger.
   2689     SetSourcePosition(expr->position());
   2690     CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
   2691     __ movq(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
   2692     __ CallStub(&stub);
   2693     RecordJSReturnSite(expr);
   2694     // Restore context register.
   2695     __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2696     context()->DropAndPlug(1, rax);
   2697   } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
   2698     // Call to a global variable.  Push global object as receiver for the
   2699     // call IC lookup.
   2700     __ push(GlobalObjectOperand());
   2701     EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
   2702   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   2703     // Call to a lookup slot (dynamically introduced variable).
   2704     Label slow, done;
   2705 
   2706     { PreservePositionScope scope(masm()->positions_recorder());
   2707       // Generate code for loading from variables potentially shadowed by
   2708       // eval-introduced variables.
   2709       EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
   2710     }
   2711     __ bind(&slow);
   2712     // Call the runtime to find the function to call (returned in rax) and
   2713     // the object holding it (returned in rdx).
   2714     __ push(context_register());
   2715     __ Push(proxy->name());
   2716     __ CallRuntime(Runtime::kLoadContextSlot, 2);
   2717     __ push(rax);  // Function.
   2718     __ push(rdx);  // Receiver.
   2719 
   2720     // If fast case code has been generated, emit code to push the function
   2721     // and receiver and have the slow path jump around this code.
   2722     if (done.is_linked()) {
   2723       Label call;
   2724       __ jmp(&call, Label::kNear);
   2725       __ bind(&done);
   2726       // Push function.
   2727       __ push(rax);
   2728       // The receiver is implicitly the global receiver. Indicate this by
   2729       // passing the hole to the call function stub.
   2730       __ PushRoot(Heap::kTheHoleValueRootIndex);
   2731       __ bind(&call);
   2732     }
   2733 
   2734     // The receiver is either the global receiver or an object found by
   2735     // LoadContextSlot. That object could be the hole if the receiver is
   2736     // implicitly the global object.
   2737     EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
   2738   } else if (property != NULL) {
   2739     { PreservePositionScope scope(masm()->positions_recorder());
   2740       VisitForStackValue(property->obj());
   2741     }
   2742     if (property->key()->IsPropertyName()) {
   2743       EmitCallWithIC(expr,
   2744                      property->key()->AsLiteral()->value(),
   2745                      RelocInfo::CODE_TARGET);
   2746     } else {
   2747       EmitKeyedCallWithIC(expr, property->key());
   2748     }
   2749   } else {
   2750     // Call to an arbitrary expression not handled specially above.
   2751     { PreservePositionScope scope(masm()->positions_recorder());
   2752       VisitForStackValue(callee);
   2753     }
   2754     // Load global receiver object.
   2755     __ movq(rbx, GlobalObjectOperand());
   2756     __ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
   2757     // Emit function call.
   2758     EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
   2759   }
   2760 
   2761 #ifdef DEBUG
   2762   // RecordJSReturnSite should have been called.
   2763   ASSERT(expr->return_is_recorded_);
   2764 #endif
   2765 }
   2766 
   2767 
   2768 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
   2769   Comment cmnt(masm_, "[ CallNew");
   2770   // According to ECMA-262, section 11.2.2, page 44, the function
   2771   // expression in new calls must be evaluated before the
   2772   // arguments.
   2773 
   2774   // Push constructor on the stack.  If it's not a function it's used as
   2775   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
   2776   // ignored.
   2777   VisitForStackValue(expr->expression());
   2778 
   2779   // Push the arguments ("left-to-right") on the stack.
   2780   ZoneList<Expression*>* args = expr->arguments();
   2781   int arg_count = args->length();
   2782   for (int i = 0; i < arg_count; i++) {
   2783     VisitForStackValue(args->at(i));
   2784   }
   2785 
   2786   // Call the construct call builtin that handles allocation and
   2787   // constructor invocation.
   2788   SetSourcePosition(expr->position());
   2789 
   2790   // Load function and argument count into rdi and rax.
   2791   __ Set(rax, arg_count);
   2792   __ movq(rdi, Operand(rsp, arg_count * kPointerSize));
   2793 
   2794   // Record call targets in unoptimized code, but not in the snapshot.
   2795   Handle<Object> uninitialized =
   2796       TypeFeedbackCells::UninitializedSentinel(isolate());
   2797   Handle<Cell> cell = isolate()->factory()->NewCell(uninitialized);
   2798   RecordTypeFeedbackCell(expr->CallNewFeedbackId(), cell);
   2799   __ Move(rbx, cell);
   2800 
   2801   CallConstructStub stub(RECORD_CALL_TARGET);
   2802   __ Call(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL);
   2803   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
   2804   context()->Plug(rax);
   2805 }
   2806 
   2807 
   2808 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
   2809   ZoneList<Expression*>* args = expr->arguments();
   2810   ASSERT(args->length() == 1);
   2811 
   2812   VisitForAccumulatorValue(args->at(0));
   2813 
   2814   Label materialize_true, materialize_false;
   2815   Label* if_true = NULL;
   2816   Label* if_false = NULL;
   2817   Label* fall_through = NULL;
   2818   context()->PrepareTest(&materialize_true, &materialize_false,
   2819                          &if_true, &if_false, &fall_through);
   2820 
   2821   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2822   __ JumpIfSmi(rax, if_true);
   2823   __ jmp(if_false);
   2824 
   2825   context()->Plug(if_true, if_false);
   2826 }
   2827 
   2828 
   2829 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
   2830   ZoneList<Expression*>* args = expr->arguments();
   2831   ASSERT(args->length() == 1);
   2832 
   2833   VisitForAccumulatorValue(args->at(0));
   2834 
   2835   Label materialize_true, materialize_false;
   2836   Label* if_true = NULL;
   2837   Label* if_false = NULL;
   2838   Label* fall_through = NULL;
   2839   context()->PrepareTest(&materialize_true, &materialize_false,
   2840                          &if_true, &if_false, &fall_through);
   2841 
   2842   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2843   Condition non_negative_smi = masm()->CheckNonNegativeSmi(rax);
   2844   Split(non_negative_smi, if_true, if_false, fall_through);
   2845 
   2846   context()->Plug(if_true, if_false);
   2847 }
   2848 
   2849 
   2850 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
   2851   ZoneList<Expression*>* args = expr->arguments();
   2852   ASSERT(args->length() == 1);
   2853 
   2854   VisitForAccumulatorValue(args->at(0));
   2855 
   2856   Label materialize_true, materialize_false;
   2857   Label* if_true = NULL;
   2858   Label* if_false = NULL;
   2859   Label* fall_through = NULL;
   2860   context()->PrepareTest(&materialize_true, &materialize_false,
   2861                          &if_true, &if_false, &fall_through);
   2862 
   2863   __ JumpIfSmi(rax, if_false);
   2864   __ CompareRoot(rax, Heap::kNullValueRootIndex);
   2865   __ j(equal, if_true);
   2866   __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
   2867   // Undetectable objects behave like undefined when tested with typeof.
   2868   __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
   2869            Immediate(1 << Map::kIsUndetectable));
   2870   __ j(not_zero, if_false);
   2871   __ movzxbq(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   2872   __ cmpq(rbx, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2873   __ j(below, if_false);
   2874   __ cmpq(rbx, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2875   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2876   Split(below_equal, if_true, if_false, fall_through);
   2877 
   2878   context()->Plug(if_true, if_false);
   2879 }
   2880 
   2881 
   2882 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
   2883   ZoneList<Expression*>* args = expr->arguments();
   2884   ASSERT(args->length() == 1);
   2885 
   2886   VisitForAccumulatorValue(args->at(0));
   2887 
   2888   Label materialize_true, materialize_false;
   2889   Label* if_true = NULL;
   2890   Label* if_false = NULL;
   2891   Label* fall_through = NULL;
   2892   context()->PrepareTest(&materialize_true, &materialize_false,
   2893                          &if_true, &if_false, &fall_through);
   2894 
   2895   __ JumpIfSmi(rax, if_false);
   2896   __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
   2897   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2898   Split(above_equal, if_true, if_false, fall_through);
   2899 
   2900   context()->Plug(if_true, if_false);
   2901 }
   2902 
   2903 
   2904 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
   2905   ZoneList<Expression*>* args = expr->arguments();
   2906   ASSERT(args->length() == 1);
   2907 
   2908   VisitForAccumulatorValue(args->at(0));
   2909 
   2910   Label materialize_true, materialize_false;
   2911   Label* if_true = NULL;
   2912   Label* if_false = NULL;
   2913   Label* fall_through = NULL;
   2914   context()->PrepareTest(&materialize_true, &materialize_false,
   2915                          &if_true, &if_false, &fall_through);
   2916 
   2917   __ JumpIfSmi(rax, if_false);
   2918   __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
   2919   __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
   2920            Immediate(1 << Map::kIsUndetectable));
   2921   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2922   Split(not_zero, if_true, if_false, fall_through);
   2923 
   2924   context()->Plug(if_true, if_false);
   2925 }
   2926 
   2927 
   2928 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
   2929     CallRuntime* expr) {
   2930   ZoneList<Expression*>* args = expr->arguments();
   2931   ASSERT(args->length() == 1);
   2932 
   2933   VisitForAccumulatorValue(args->at(0));
   2934 
   2935   Label materialize_true, materialize_false, skip_lookup;
   2936   Label* if_true = NULL;
   2937   Label* if_false = NULL;
   2938   Label* fall_through = NULL;
   2939   context()->PrepareTest(&materialize_true, &materialize_false,
   2940                          &if_true, &if_false, &fall_through);
   2941 
   2942   __ AssertNotSmi(rax);
   2943 
   2944   // Check whether this map has already been checked to be safe for default
   2945   // valueOf.
   2946   __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
   2947   __ testb(FieldOperand(rbx, Map::kBitField2Offset),
   2948            Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
   2949   __ j(not_zero, &skip_lookup);
   2950 
   2951   // Check for fast case object. Generate false result for slow case object.
   2952   __ movq(rcx, FieldOperand(rax, JSObject::kPropertiesOffset));
   2953   __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
   2954   __ CompareRoot(rcx, Heap::kHashTableMapRootIndex);
   2955   __ j(equal, if_false);
   2956 
   2957   // Look for valueOf string in the descriptor array, and indicate false if
   2958   // found. Since we omit an enumeration index check, if it is added via a
   2959   // transition that shares its descriptor array, this is a false positive.
   2960   Label entry, loop, done;
   2961 
   2962   // Skip loop if no descriptors are valid.
   2963   __ NumberOfOwnDescriptors(rcx, rbx);
   2964   __ cmpq(rcx, Immediate(0));
   2965   __ j(equal, &done);
   2966 
   2967   __ LoadInstanceDescriptors(rbx, r8);
   2968   // rbx: descriptor array.
   2969   // rcx: valid entries in the descriptor array.
   2970   // Calculate the end of the descriptor array.
   2971   __ imul(rcx, rcx, Immediate(DescriptorArray::kDescriptorSize));
   2972   SmiIndex index = masm_->SmiToIndex(rdx, rcx, kPointerSizeLog2);
   2973   __ lea(rcx,
   2974          Operand(
   2975              r8, index.reg, index.scale, DescriptorArray::kFirstOffset));
   2976   // Calculate location of the first key name.
   2977   __ addq(r8, Immediate(DescriptorArray::kFirstOffset));
   2978   // Loop through all the keys in the descriptor array. If one of these is the
   2979   // internalized string "valueOf" the result is false.
   2980   __ jmp(&entry);
   2981   __ bind(&loop);
   2982   __ movq(rdx, FieldOperand(r8, 0));
   2983   __ Cmp(rdx, isolate()->factory()->value_of_string());
   2984   __ j(equal, if_false);
   2985   __ addq(r8, Immediate(DescriptorArray::kDescriptorSize * kPointerSize));
   2986   __ bind(&entry);
   2987   __ cmpq(r8, rcx);
   2988   __ j(not_equal, &loop);
   2989 
   2990   __ bind(&done);
   2991 
   2992   // Set the bit in the map to indicate that there is no local valueOf field.
   2993   __ or_(FieldOperand(rbx, Map::kBitField2Offset),
   2994          Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
   2995 
   2996   __ bind(&skip_lookup);
   2997 
   2998   // If a valueOf property is not found on the object check that its
   2999   // prototype is the un-modified String prototype. If not result is false.
   3000   __ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
   3001   __ testq(rcx, Immediate(kSmiTagMask));
   3002   __ j(zero, if_false);
   3003   __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
   3004   __ movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   3005   __ movq(rdx, FieldOperand(rdx, GlobalObject::kNativeContextOffset));
   3006   __ cmpq(rcx,
   3007           ContextOperand(rdx, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
   3008   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3009   Split(equal, if_true, if_false, fall_through);
   3010 
   3011   context()->Plug(if_true, if_false);
   3012 }
   3013 
   3014 
   3015 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
   3016   ZoneList<Expression*>* args = expr->arguments();
   3017   ASSERT(args->length() == 1);
   3018 
   3019   VisitForAccumulatorValue(args->at(0));
   3020 
   3021   Label materialize_true, materialize_false;
   3022   Label* if_true = NULL;
   3023   Label* if_false = NULL;
   3024   Label* fall_through = NULL;
   3025   context()->PrepareTest(&materialize_true, &materialize_false,
   3026                          &if_true, &if_false, &fall_through);
   3027 
   3028   __ JumpIfSmi(rax, if_false);
   3029   __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
   3030   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3031   Split(equal, if_true, if_false, fall_through);
   3032 
   3033   context()->Plug(if_true, if_false);
   3034 }
   3035 
   3036 
   3037 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
   3038   ZoneList<Expression*>* args = expr->arguments();
   3039   ASSERT(args->length() == 1);
   3040 
   3041   VisitForAccumulatorValue(args->at(0));
   3042 
   3043   Label materialize_true, materialize_false;
   3044   Label* if_true = NULL;
   3045   Label* if_false = NULL;
   3046   Label* fall_through = NULL;
   3047   context()->PrepareTest(&materialize_true, &materialize_false,
   3048                          &if_true, &if_false, &fall_through);
   3049 
   3050   Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
   3051   __ CheckMap(rax, map, if_false, DO_SMI_CHECK);
   3052   __ cmpl(FieldOperand(rax, HeapNumber::kExponentOffset),
   3053           Immediate(0x80000000));
   3054   __ j(not_equal, if_false);
   3055   __ cmpl(FieldOperand(rax, HeapNumber::kMantissaOffset),
   3056           Immediate(0x00000000));
   3057   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3058   Split(equal, if_true, if_false, fall_through);
   3059 
   3060   context()->Plug(if_true, if_false);
   3061 }
   3062 
   3063 
   3064 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
   3065   ZoneList<Expression*>* args = expr->arguments();
   3066   ASSERT(args->length() == 1);
   3067 
   3068   VisitForAccumulatorValue(args->at(0));
   3069 
   3070   Label materialize_true, materialize_false;
   3071   Label* if_true = NULL;
   3072   Label* if_false = NULL;
   3073   Label* fall_through = NULL;
   3074   context()->PrepareTest(&materialize_true, &materialize_false,
   3075                          &if_true, &if_false, &fall_through);
   3076 
   3077   __ JumpIfSmi(rax, if_false);
   3078   __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
   3079   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3080   Split(equal, if_true, if_false, fall_through);
   3081 
   3082   context()->Plug(if_true, if_false);
   3083 }
   3084 
   3085 
   3086 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
   3087   ZoneList<Expression*>* args = expr->arguments();
   3088   ASSERT(args->length() == 1);
   3089 
   3090   VisitForAccumulatorValue(args->at(0));
   3091 
   3092   Label materialize_true, materialize_false;
   3093   Label* if_true = NULL;
   3094   Label* if_false = NULL;
   3095   Label* fall_through = NULL;
   3096   context()->PrepareTest(&materialize_true, &materialize_false,
   3097                          &if_true, &if_false, &fall_through);
   3098 
   3099   __ JumpIfSmi(rax, if_false);
   3100   __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx);
   3101   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3102   Split(equal, if_true, if_false, fall_through);
   3103 
   3104   context()->Plug(if_true, if_false);
   3105 }
   3106 
   3107 
   3108 
   3109 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
   3110   ASSERT(expr->arguments()->length() == 0);
   3111 
   3112   Label materialize_true, materialize_false;
   3113   Label* if_true = NULL;
   3114   Label* if_false = NULL;
   3115   Label* fall_through = NULL;
   3116   context()->PrepareTest(&materialize_true, &materialize_false,
   3117                          &if_true, &if_false, &fall_through);
   3118 
   3119   // Get the frame pointer for the calling frame.
   3120   __ movq(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   3121 
   3122   // Skip the arguments adaptor frame if it exists.
   3123   Label check_frame_marker;
   3124   __ Cmp(Operand(rax, StandardFrameConstants::kContextOffset),
   3125          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   3126   __ j(not_equal, &check_frame_marker);
   3127   __ movq(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset));
   3128 
   3129   // Check the marker in the calling frame.
   3130   __ bind(&check_frame_marker);
   3131   __ Cmp(Operand(rax, StandardFrameConstants::kMarkerOffset),
   3132          Smi::FromInt(StackFrame::CONSTRUCT));
   3133   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3134   Split(equal, if_true, if_false, fall_through);
   3135 
   3136   context()->Plug(if_true, if_false);
   3137 }
   3138 
   3139 
   3140 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
   3141   ZoneList<Expression*>* args = expr->arguments();
   3142   ASSERT(args->length() == 2);
   3143 
   3144   // Load the two objects into registers and perform the comparison.
   3145   VisitForStackValue(args->at(0));
   3146   VisitForAccumulatorValue(args->at(1));
   3147 
   3148   Label materialize_true, materialize_false;
   3149   Label* if_true = NULL;
   3150   Label* if_false = NULL;
   3151   Label* fall_through = NULL;
   3152   context()->PrepareTest(&materialize_true, &materialize_false,
   3153                          &if_true, &if_false, &fall_through);
   3154 
   3155   __ pop(rbx);
   3156   __ cmpq(rax, rbx);
   3157   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3158   Split(equal, if_true, if_false, fall_through);
   3159 
   3160   context()->Plug(if_true, if_false);
   3161 }
   3162 
   3163 
   3164 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
   3165   ZoneList<Expression*>* args = expr->arguments();
   3166   ASSERT(args->length() == 1);
   3167 
   3168   // ArgumentsAccessStub expects the key in rdx and the formal
   3169   // parameter count in rax.
   3170   VisitForAccumulatorValue(args->at(0));
   3171   __ movq(rdx, rax);
   3172   __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
   3173   ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
   3174   __ CallStub(&stub);
   3175   context()->Plug(rax);
   3176 }
   3177 
   3178 
   3179 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
   3180   ASSERT(expr->arguments()->length() == 0);
   3181 
   3182   Label exit;
   3183   // Get the number of formal parameters.
   3184   __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
   3185 
   3186   // Check if the calling frame is an arguments adaptor frame.
   3187   __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   3188   __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
   3189          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   3190   __ j(not_equal, &exit, Label::kNear);
   3191 
   3192   // Arguments adaptor case: Read the arguments length from the
   3193   // adaptor frame.
   3194   __ movq(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   3195 
   3196   __ bind(&exit);
   3197   __ AssertSmi(rax);
   3198   context()->Plug(rax);
   3199 }
   3200 
   3201 
   3202 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
   3203   ZoneList<Expression*>* args = expr->arguments();
   3204   ASSERT(args->length() == 1);
   3205   Label done, null, function, non_function_constructor;
   3206 
   3207   VisitForAccumulatorValue(args->at(0));
   3208 
   3209   // If the object is a smi, we return null.
   3210   __ JumpIfSmi(rax, &null);
   3211 
   3212   // Check that the object is a JS object but take special care of JS
   3213   // functions to make sure they have 'Function' as their class.
   3214   // Assume that there are only two callable types, and one of them is at
   3215   // either end of the type range for JS object types. Saves extra comparisons.
   3216   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   3217   __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
   3218   // Map is now in rax.
   3219   __ j(below, &null);
   3220   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   3221                 FIRST_SPEC_OBJECT_TYPE + 1);
   3222   __ j(equal, &function);
   3223 
   3224   __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
   3225   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   3226                 LAST_SPEC_OBJECT_TYPE - 1);
   3227   __ j(equal, &function);
   3228   // Assume that there is no larger type.
   3229   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
   3230 
   3231   // Check if the constructor in the map is a JS function.
   3232   __ movq(rax, FieldOperand(rax, Map::kConstructorOffset));
   3233   __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
   3234   __ j(not_equal, &non_function_constructor);
   3235 
   3236   // rax now contains the constructor function. Grab the
   3237   // instance class name from there.
   3238   __ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
   3239   __ movq(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
   3240   __ jmp(&done);
   3241 
   3242   // Functions have class 'Function'.
   3243   __ bind(&function);
   3244   __ Move(rax, isolate()->factory()->function_class_string());
   3245   __ jmp(&done);
   3246 
   3247   // Objects with a non-function constructor have class 'Object'.
   3248   __ bind(&non_function_constructor);
   3249   __ Move(rax, isolate()->factory()->Object_string());
   3250   __ jmp(&done);
   3251 
   3252   // Non-JS objects have class null.
   3253   __ bind(&null);
   3254   __ LoadRoot(rax, Heap::kNullValueRootIndex);
   3255 
   3256   // All done.
   3257   __ bind(&done);
   3258 
   3259   context()->Plug(rax);
   3260 }
   3261 
   3262 
   3263 void FullCodeGenerator::EmitLog(CallRuntime* expr) {
   3264   // Conditionally generate a log call.
   3265   // Args:
   3266   //   0 (literal string): The type of logging (corresponds to the flags).
   3267   //     This is used to determine whether or not to generate the log call.
   3268   //   1 (string): Format string.  Access the string at argument index 2
   3269   //     with '%2s' (see Logger::LogRuntime for all the formats).
   3270   //   2 (array): Arguments to the format string.
   3271   ZoneList<Expression*>* args = expr->arguments();
   3272   ASSERT_EQ(args->length(), 3);
   3273   if (CodeGenerator::ShouldGenerateLog(isolate(), args->at(0))) {
   3274     VisitForStackValue(args->at(1));
   3275     VisitForStackValue(args->at(2));
   3276     __ CallRuntime(Runtime::kLog, 2);
   3277   }
   3278   // Finally, we're expected to leave a value on the top of the stack.
   3279   __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   3280   context()->Plug(rax);
   3281 }
   3282 
   3283 
   3284 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
   3285   // Load the arguments on the stack and call the stub.
   3286   SubStringStub stub;
   3287   ZoneList<Expression*>* args = expr->arguments();
   3288   ASSERT(args->length() == 3);
   3289   VisitForStackValue(args->at(0));
   3290   VisitForStackValue(args->at(1));
   3291   VisitForStackValue(args->at(2));
   3292   __ CallStub(&stub);
   3293   context()->Plug(rax);
   3294 }
   3295 
   3296 
   3297 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
   3298   // Load the arguments on the stack and call the stub.
   3299   RegExpExecStub stub;
   3300   ZoneList<Expression*>* args = expr->arguments();
   3301   ASSERT(args->length() == 4);
   3302   VisitForStackValue(args->at(0));
   3303   VisitForStackValue(args->at(1));
   3304   VisitForStackValue(args->at(2));
   3305   VisitForStackValue(args->at(3));
   3306   __ CallStub(&stub);
   3307   context()->Plug(rax);
   3308 }
   3309 
   3310 
   3311 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
   3312   ZoneList<Expression*>* args = expr->arguments();
   3313   ASSERT(args->length() == 1);
   3314 
   3315   VisitForAccumulatorValue(args->at(0));  // Load the object.
   3316 
   3317   Label done;
   3318   // If the object is a smi return the object.
   3319   __ JumpIfSmi(rax, &done);
   3320   // If the object is not a value type, return the object.
   3321   __ CmpObjectType(rax, JS_VALUE_TYPE, rbx);
   3322   __ j(not_equal, &done);
   3323   __ movq(rax, FieldOperand(rax, JSValue::kValueOffset));
   3324 
   3325   __ bind(&done);
   3326   context()->Plug(rax);
   3327 }
   3328 
   3329 
   3330 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
   3331   ZoneList<Expression*>* args = expr->arguments();
   3332   ASSERT(args->length() == 2);
   3333   ASSERT_NE(NULL, args->at(1)->AsLiteral());
   3334   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
   3335 
   3336   VisitForAccumulatorValue(args->at(0));  // Load the object.
   3337 
   3338   Label runtime, done, not_date_object;
   3339   Register object = rax;
   3340   Register result = rax;
   3341   Register scratch = rcx;
   3342 
   3343   __ JumpIfSmi(object, &not_date_object);
   3344   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
   3345   __ j(not_equal, &not_date_object);
   3346 
   3347   if (index->value() == 0) {
   3348     __ movq(result, FieldOperand(object, JSDate::kValueOffset));
   3349     __ jmp(&done);
   3350   } else {
   3351     if (index->value() < JSDate::kFirstUncachedField) {
   3352       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   3353       Operand stamp_operand = __ ExternalOperand(stamp);
   3354       __ movq(scratch, stamp_operand);
   3355       __ cmpq(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
   3356       __ j(not_equal, &runtime, Label::kNear);
   3357       __ movq(result, FieldOperand(object, JSDate::kValueOffset +
   3358                                            kPointerSize * index->value()));
   3359       __ jmp(&done);
   3360     }
   3361     __ bind(&runtime);
   3362     __ PrepareCallCFunction(2);
   3363     __ movq(arg_reg_1, object);
   3364     __ movq(arg_reg_2, index, RelocInfo::NONE64);
   3365     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   3366     __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   3367     __ jmp(&done);
   3368   }
   3369 
   3370   __ bind(&not_date_object);
   3371   __ CallRuntime(Runtime::kThrowNotDateError, 0);
   3372   __ bind(&done);
   3373   context()->Plug(rax);
   3374 }
   3375 
   3376 
   3377 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
   3378   ZoneList<Expression*>* args = expr->arguments();
   3379   ASSERT_EQ(3, args->length());
   3380 
   3381   Register string = rax;
   3382   Register index = rbx;
   3383   Register value = rcx;
   3384 
   3385   VisitForStackValue(args->at(1));  // index
   3386   VisitForStackValue(args->at(2));  // value
   3387   VisitForAccumulatorValue(args->at(0));  // string
   3388   __ pop(value);
   3389   __ pop(index);
   3390 
   3391   if (FLAG_debug_code) {
   3392     __ ThrowIf(NegateCondition(__ CheckSmi(value)), kNonSmiValue);
   3393     __ ThrowIf(NegateCondition(__ CheckSmi(index)), kNonSmiValue);
   3394   }
   3395 
   3396   __ SmiToInteger32(value, value);
   3397   __ SmiToInteger32(index, index);
   3398 
   3399   if (FLAG_debug_code) {
   3400     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   3401     __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
   3402   }
   3403 
   3404   __ movb(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
   3405           value);
   3406   context()->Plug(string);
   3407 }
   3408 
   3409 
   3410 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
   3411   ZoneList<Expression*>* args = expr->arguments();
   3412   ASSERT_EQ(3, args->length());
   3413 
   3414   Register string = rax;
   3415   Register index = rbx;
   3416   Register value = rcx;
   3417 
   3418   VisitForStackValue(args->at(1));  // index
   3419   VisitForStackValue(args->at(2));  // value
   3420   VisitForAccumulatorValue(args->at(0));  // string
   3421   __ pop(value);
   3422   __ pop(index);
   3423 
   3424   if (FLAG_debug_code) {
   3425     __ ThrowIf(NegateCondition(__ CheckSmi(value)), kNonSmiValue);
   3426     __ ThrowIf(NegateCondition(__ CheckSmi(index)), kNonSmiValue);
   3427   }
   3428 
   3429   __ SmiToInteger32(value, value);
   3430   __ SmiToInteger32(index, index);
   3431 
   3432   if (FLAG_debug_code) {
   3433     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   3434     __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
   3435   }
   3436 
   3437   __ movw(FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize),
   3438           value);
   3439   context()->Plug(rax);
   3440 }
   3441 
   3442 
   3443 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
   3444   // Load the arguments on the stack and call the runtime function.
   3445   ZoneList<Expression*>* args = expr->arguments();
   3446   ASSERT(args->length() == 2);
   3447   VisitForStackValue(args->at(0));
   3448   VisitForStackValue(args->at(1));
   3449   MathPowStub stub(MathPowStub::ON_STACK);
   3450   __ CallStub(&stub);
   3451   context()->Plug(rax);
   3452 }
   3453 
   3454 
   3455 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
   3456   ZoneList<Expression*>* args = expr->arguments();
   3457   ASSERT(args->length() == 2);
   3458 
   3459   VisitForStackValue(args->at(0));  // Load the object.
   3460   VisitForAccumulatorValue(args->at(1));  // Load the value.
   3461   __ pop(rbx);  // rax = value. rbx = object.
   3462 
   3463   Label done;
   3464   // If the object is a smi, return the value.
   3465   __ JumpIfSmi(rbx, &done);
   3466 
   3467   // If the object is not a value type, return the value.
   3468   __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx);
   3469   __ j(not_equal, &done);
   3470 
   3471   // Store the value.
   3472   __ movq(FieldOperand(rbx, JSValue::kValueOffset), rax);
   3473   // Update the write barrier.  Save the value as it will be
   3474   // overwritten by the write barrier code and is needed afterward.
   3475   __ movq(rdx, rax);
   3476   __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs);
   3477 
   3478   __ bind(&done);
   3479   context()->Plug(rax);
   3480 }
   3481 
   3482 
   3483 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
   3484   ZoneList<Expression*>* args = expr->arguments();
   3485   ASSERT_EQ(args->length(), 1);
   3486 
   3487   // Load the argument into rax and call the stub.
   3488   VisitForAccumulatorValue(args->at(0));
   3489 
   3490   NumberToStringStub stub;
   3491   __ CallStub(&stub);
   3492   context()->Plug(rax);
   3493 }
   3494 
   3495 
   3496 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
   3497   ZoneList<Expression*>* args = expr->arguments();
   3498   ASSERT(args->length() == 1);
   3499 
   3500   VisitForAccumulatorValue(args->at(0));
   3501 
   3502   Label done;
   3503   StringCharFromCodeGenerator generator(rax, rbx);
   3504   generator.GenerateFast(masm_);
   3505   __ jmp(&done);
   3506 
   3507   NopRuntimeCallHelper call_helper;
   3508   generator.GenerateSlow(masm_, call_helper);
   3509 
   3510   __ bind(&done);
   3511   context()->Plug(rbx);
   3512 }
   3513 
   3514 
   3515 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
   3516   ZoneList<Expression*>* args = expr->arguments();
   3517   ASSERT(args->length() == 2);
   3518 
   3519   VisitForStackValue(args->at(0));
   3520   VisitForAccumulatorValue(args->at(1));
   3521 
   3522   Register object = rbx;
   3523   Register index = rax;
   3524   Register result = rdx;
   3525 
   3526   __ pop(object);
   3527 
   3528   Label need_conversion;
   3529   Label index_out_of_range;
   3530   Label done;
   3531   StringCharCodeAtGenerator generator(object,
   3532                                       index,
   3533                                       result,
   3534                                       &need_conversion,
   3535                                       &need_conversion,
   3536                                       &index_out_of_range,
   3537                                       STRING_INDEX_IS_NUMBER);
   3538   generator.GenerateFast(masm_);
   3539   __ jmp(&done);
   3540 
   3541   __ bind(&index_out_of_range);
   3542   // When the index is out of range, the spec requires us to return
   3543   // NaN.
   3544   __ LoadRoot(result, Heap::kNanValueRootIndex);
   3545   __ jmp(&done);
   3546 
   3547   __ bind(&need_conversion);
   3548   // Move the undefined value into the result register, which will
   3549   // trigger conversion.
   3550   __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3551   __ jmp(&done);
   3552 
   3553   NopRuntimeCallHelper call_helper;
   3554   generator.GenerateSlow(masm_, call_helper);
   3555 
   3556   __ bind(&done);
   3557   context()->Plug(result);
   3558 }
   3559 
   3560 
   3561 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
   3562   ZoneList<Expression*>* args = expr->arguments();
   3563   ASSERT(args->length() == 2);
   3564 
   3565   VisitForStackValue(args->at(0));
   3566   VisitForAccumulatorValue(args->at(1));
   3567 
   3568   Register object = rbx;
   3569   Register index = rax;
   3570   Register scratch = rdx;
   3571   Register result = rax;
   3572 
   3573   __ pop(object);
   3574 
   3575   Label need_conversion;
   3576   Label index_out_of_range;
   3577   Label done;
   3578   StringCharAtGenerator generator(object,
   3579                                   index,
   3580                                   scratch,
   3581                                   result,
   3582                                   &need_conversion,
   3583                                   &need_conversion,
   3584                                   &index_out_of_range,
   3585                                   STRING_INDEX_IS_NUMBER);
   3586   generator.GenerateFast(masm_);
   3587   __ jmp(&done);
   3588 
   3589   __ bind(&index_out_of_range);
   3590   // When the index is out of range, the spec requires us to return
   3591   // the empty string.
   3592   __ LoadRoot(result, Heap::kempty_stringRootIndex);
   3593   __ jmp(&done);
   3594 
   3595   __ bind(&need_conversion);
   3596   // Move smi zero into the result register, which will trigger
   3597   // conversion.
   3598   __ Move(result, Smi::FromInt(0));
   3599   __ jmp(&done);
   3600 
   3601   NopRuntimeCallHelper call_helper;
   3602   generator.GenerateSlow(masm_, call_helper);
   3603 
   3604   __ bind(&done);
   3605   context()->Plug(result);
   3606 }
   3607 
   3608 
   3609 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
   3610   ZoneList<Expression*>* args = expr->arguments();
   3611   ASSERT_EQ(2, args->length());
   3612 
   3613   if (FLAG_new_string_add) {
   3614     VisitForStackValue(args->at(0));
   3615     VisitForAccumulatorValue(args->at(1));
   3616 
   3617     __ pop(rdx);
   3618     NewStringAddStub stub(STRING_ADD_CHECK_BOTH, NOT_TENURED);
   3619     __ CallStub(&stub);
   3620   } else {
   3621     VisitForStackValue(args->at(0));
   3622     VisitForStackValue(args->at(1));
   3623 
   3624     StringAddStub stub(STRING_ADD_CHECK_BOTH);
   3625     __ CallStub(&stub);
   3626   }
   3627   context()->Plug(rax);
   3628 }
   3629 
   3630 
   3631 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
   3632   ZoneList<Expression*>* args = expr->arguments();
   3633   ASSERT_EQ(2, args->length());
   3634 
   3635   VisitForStackValue(args->at(0));
   3636   VisitForStackValue(args->at(1));
   3637 
   3638   StringCompareStub stub;
   3639   __ CallStub(&stub);
   3640   context()->Plug(rax);
   3641 }
   3642 
   3643 
   3644 void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
   3645   // Load the argument on the stack and call the stub.
   3646   TranscendentalCacheStub stub(TranscendentalCache::LOG,
   3647                                TranscendentalCacheStub::TAGGED);
   3648   ZoneList<Expression*>* args = expr->arguments();
   3649   ASSERT(args->length() == 1);
   3650   VisitForStackValue(args->at(0));
   3651   __ CallStub(&stub);
   3652   context()->Plug(rax);
   3653 }
   3654 
   3655 
   3656 void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
   3657   // Load the argument on the stack and call the runtime function.
   3658   ZoneList<Expression*>* args = expr->arguments();
   3659   ASSERT(args->length() == 1);
   3660   VisitForStackValue(args->at(0));
   3661   __ CallRuntime(Runtime::kMath_sqrt, 1);
   3662   context()->Plug(rax);
   3663 }
   3664 
   3665 
   3666 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
   3667   ZoneList<Expression*>* args = expr->arguments();
   3668   ASSERT(args->length() >= 2);
   3669 
   3670   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
   3671   for (int i = 0; i < arg_count + 1; i++) {
   3672     VisitForStackValue(args->at(i));
   3673   }
   3674   VisitForAccumulatorValue(args->last());  // Function.
   3675 
   3676   Label runtime, done;
   3677   // Check for non-function argument (including proxy).
   3678   __ JumpIfSmi(rax, &runtime);
   3679   __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
   3680   __ j(not_equal, &runtime);
   3681 
   3682   // InvokeFunction requires the function in rdi. Move it in there.
   3683   __ movq(rdi, result_register());
   3684   ParameterCount count(arg_count);
   3685   __ InvokeFunction(rdi, count, CALL_FUNCTION,
   3686                     NullCallWrapper(), CALL_AS_METHOD);
   3687   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   3688   __ jmp(&done);
   3689 
   3690   __ bind(&runtime);
   3691   __ push(rax);
   3692   __ CallRuntime(Runtime::kCall, args->length());
   3693   __ bind(&done);
   3694 
   3695   context()->Plug(rax);
   3696 }
   3697 
   3698 
   3699 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
   3700   RegExpConstructResultStub stub;
   3701   ZoneList<Expression*>* args = expr->arguments();
   3702   ASSERT(args->length() == 3);
   3703   VisitForStackValue(args->at(0));
   3704   VisitForStackValue(args->at(1));
   3705   VisitForStackValue(args->at(2));
   3706   __ CallStub(&stub);
   3707   context()->Plug(rax);
   3708 }
   3709 
   3710 
   3711 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
   3712   ZoneList<Expression*>* args = expr->arguments();
   3713   ASSERT_EQ(2, args->length());
   3714 
   3715   ASSERT_NE(NULL, args->at(0)->AsLiteral());
   3716   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
   3717 
   3718   Handle<FixedArray> jsfunction_result_caches(
   3719       isolate()->native_context()->jsfunction_result_caches());
   3720   if (jsfunction_result_caches->length() <= cache_id) {
   3721     __ Abort(kAttemptToUseUndefinedCache);
   3722     __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   3723     context()->Plug(rax);
   3724     return;
   3725   }
   3726 
   3727   VisitForAccumulatorValue(args->at(1));
   3728 
   3729   Register key = rax;
   3730   Register cache = rbx;
   3731   Register tmp = rcx;
   3732   __ movq(cache, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX));
   3733   __ movq(cache,
   3734           FieldOperand(cache, GlobalObject::kNativeContextOffset));
   3735   __ movq(cache,
   3736           ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
   3737   __ movq(cache,
   3738           FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
   3739 
   3740   Label done, not_found;
   3741   // tmp now holds finger offset as a smi.
   3742   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
   3743   __ movq(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
   3744   SmiIndex index =
   3745       __ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2);
   3746   __ cmpq(key, FieldOperand(cache,
   3747                             index.reg,
   3748                             index.scale,
   3749                             FixedArray::kHeaderSize));
   3750   __ j(not_equal, &not_found, Label::kNear);
   3751   __ movq(rax, FieldOperand(cache,
   3752                             index.reg,
   3753                             index.scale,
   3754                             FixedArray::kHeaderSize + kPointerSize));
   3755   __ jmp(&done, Label::kNear);
   3756 
   3757   __ bind(&not_found);
   3758   // Call runtime to perform the lookup.
   3759   __ push(cache);
   3760   __ push(key);
   3761   __ CallRuntime(Runtime::kGetFromCache, 2);
   3762 
   3763   __ bind(&done);
   3764   context()->Plug(rax);
   3765 }
   3766 
   3767 
   3768 void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
   3769   ZoneList<Expression*>* args = expr->arguments();
   3770   ASSERT_EQ(2, args->length());
   3771 
   3772   Register right = rax;
   3773   Register left = rbx;
   3774   Register tmp = rcx;
   3775 
   3776   VisitForStackValue(args->at(0));
   3777   VisitForAccumulatorValue(args->at(1));
   3778   __ pop(left);
   3779 
   3780   Label done, fail, ok;
   3781   __ cmpq(left, right);
   3782   __ j(equal, &ok, Label::kNear);
   3783   // Fail if either is a non-HeapObject.
   3784   Condition either_smi = masm()->CheckEitherSmi(left, right, tmp);
   3785   __ j(either_smi, &fail, Label::kNear);
   3786   __ j(zero, &fail, Label::kNear);
   3787   __ movq(tmp, FieldOperand(left, HeapObject::kMapOffset));
   3788   __ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset),
   3789           Immediate(JS_REGEXP_TYPE));
   3790   __ j(not_equal, &fail, Label::kNear);
   3791   __ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset));
   3792   __ j(not_equal, &fail, Label::kNear);
   3793   __ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset));
   3794   __ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset));
   3795   __ j(equal, &ok, Label::kNear);
   3796   __ bind(&fail);
   3797   __ Move(rax, isolate()->factory()->false_value());
   3798   __ jmp(&done, Label::kNear);
   3799   __ bind(&ok);
   3800   __ Move(rax, isolate()->factory()->true_value());
   3801   __ bind(&done);
   3802 
   3803   context()->Plug(rax);
   3804 }
   3805 
   3806 
   3807 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
   3808   ZoneList<Expression*>* args = expr->arguments();
   3809   ASSERT(args->length() == 1);
   3810 
   3811   VisitForAccumulatorValue(args->at(0));
   3812 
   3813   Label materialize_true, materialize_false;
   3814   Label* if_true = NULL;
   3815   Label* if_false = NULL;
   3816   Label* fall_through = NULL;
   3817   context()->PrepareTest(&materialize_true, &materialize_false,
   3818                          &if_true, &if_false, &fall_through);
   3819 
   3820   __ testl(FieldOperand(rax, String::kHashFieldOffset),
   3821            Immediate(String::kContainsCachedArrayIndexMask));
   3822   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3823   __ j(zero, if_true);
   3824   __ jmp(if_false);
   3825 
   3826   context()->Plug(if_true, if_false);
   3827 }
   3828 
   3829 
   3830 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
   3831   ZoneList<Expression*>* args = expr->arguments();
   3832   ASSERT(args->length() == 1);
   3833   VisitForAccumulatorValue(args->at(0));
   3834 
   3835   __ AssertString(rax);
   3836 
   3837   __ movl(rax, FieldOperand(rax, String::kHashFieldOffset));
   3838   ASSERT(String::kHashShift >= kSmiTagSize);
   3839   __ IndexFromHash(rax, rax);
   3840 
   3841   context()->Plug(rax);
   3842 }
   3843 
   3844 
   3845 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
   3846   Label bailout, return_result, done, one_char_separator, long_separator,
   3847       non_trivial_array, not_size_one_array, loop,
   3848       loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
   3849   ZoneList<Expression*>* args = expr->arguments();
   3850   ASSERT(args->length() == 2);
   3851   // We will leave the separator on the stack until the end of the function.
   3852   VisitForStackValue(args->at(1));
   3853   // Load this to rax (= array)
   3854   VisitForAccumulatorValue(args->at(0));
   3855   // All aliases of the same register have disjoint lifetimes.
   3856   Register array = rax;
   3857   Register elements = no_reg;  // Will be rax.
   3858 
   3859   Register index = rdx;
   3860 
   3861   Register string_length = rcx;
   3862 
   3863   Register string = rsi;
   3864 
   3865   Register scratch = rbx;
   3866 
   3867   Register array_length = rdi;
   3868   Register result_pos = no_reg;  // Will be rdi.
   3869 
   3870   Operand separator_operand =    Operand(rsp, 2 * kPointerSize);
   3871   Operand result_operand =       Operand(rsp, 1 * kPointerSize);
   3872   Operand array_length_operand = Operand(rsp, 0 * kPointerSize);
   3873   // Separator operand is already pushed. Make room for the two
   3874   // other stack fields, and clear the direction flag in anticipation
   3875   // of calling CopyBytes.
   3876   __ subq(rsp, Immediate(2 * kPointerSize));
   3877   __ cld();
   3878   // Check that the array is a JSArray
   3879   __ JumpIfSmi(array, &bailout);
   3880   __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
   3881   __ j(not_equal, &bailout);
   3882 
   3883   // Check that the array has fast elements.
   3884   __ CheckFastElements(scratch, &bailout);
   3885 
   3886   // Array has fast elements, so its length must be a smi.
   3887   // If the array has length zero, return the empty string.
   3888   __ movq(array_length, FieldOperand(array, JSArray::kLengthOffset));
   3889   __ SmiCompare(array_length, Smi::FromInt(0));
   3890   __ j(not_zero, &non_trivial_array);
   3891   __ LoadRoot(rax, Heap::kempty_stringRootIndex);
   3892   __ jmp(&return_result);
   3893 
   3894   // Save the array length on the stack.
   3895   __ bind(&non_trivial_array);
   3896   __ SmiToInteger32(array_length, array_length);
   3897   __ movl(array_length_operand, array_length);
   3898 
   3899   // Save the FixedArray containing array's elements.
   3900   // End of array's live range.
   3901   elements = array;
   3902   __ movq(elements, FieldOperand(array, JSArray::kElementsOffset));
   3903   array = no_reg;
   3904 
   3905 
   3906   // Check that all array elements are sequential ASCII strings, and
   3907   // accumulate the sum of their lengths, as a smi-encoded value.
   3908   __ Set(index, 0);
   3909   __ Set(string_length, 0);
   3910   // Loop condition: while (index < array_length).
   3911   // Live loop registers: index(int32), array_length(int32), string(String*),
   3912   //                      scratch, string_length(int32), elements(FixedArray*).
   3913   if (generate_debug_code_) {
   3914     __ cmpq(index, array_length);
   3915     __ Assert(below, kNoEmptyArraysHereInEmitFastAsciiArrayJoin);
   3916   }
   3917   __ bind(&loop);
   3918   __ movq(string, FieldOperand(elements,
   3919                                index,
   3920                                times_pointer_size,
   3921                                FixedArray::kHeaderSize));
   3922   __ JumpIfSmi(string, &bailout);
   3923   __ movq(scratch, FieldOperand(string, HeapObject::kMapOffset));
   3924   __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   3925   __ andb(scratch, Immediate(
   3926       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
   3927   __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
   3928   __ j(not_equal, &bailout);
   3929   __ AddSmiField(string_length,
   3930                  FieldOperand(string, SeqOneByteString::kLengthOffset));
   3931   __ j(overflow, &bailout);
   3932   __ incl(index);
   3933   __ cmpl(index, array_length);
   3934   __ j(less, &loop);
   3935 
   3936   // Live registers:
   3937   // string_length: Sum of string lengths.
   3938   // elements: FixedArray of strings.
   3939   // index: Array length.
   3940   // array_length: Array length.
   3941 
   3942   // If array_length is 1, return elements[0], a string.
   3943   __ cmpl(array_length, Immediate(1));
   3944   __ j(not_equal, &not_size_one_array);
   3945   __ movq(rax, FieldOperand(elements, FixedArray::kHeaderSize));
   3946   __ jmp(&return_result);
   3947 
   3948   __ bind(&not_size_one_array);
   3949 
   3950   // End of array_length live range.
   3951   result_pos = array_length;
   3952   array_length = no_reg;
   3953 
   3954   // Live registers:
   3955   // string_length: Sum of string lengths.
   3956   // elements: FixedArray of strings.
   3957   // index: Array length.
   3958 
   3959   // Check that the separator is a sequential ASCII string.
   3960   __ movq(string, separator_operand);
   3961   __ JumpIfSmi(string, &bailout);
   3962   __ movq(scratch, FieldOperand(string, HeapObject::kMapOffset));
   3963   __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   3964   __ andb(scratch, Immediate(
   3965       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
   3966   __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
   3967   __ j(not_equal, &bailout);
   3968 
   3969   // Live registers:
   3970   // string_length: Sum of string lengths.
   3971   // elements: FixedArray of strings.
   3972   // index: Array length.
   3973   // string: Separator string.
   3974 
   3975   // Add (separator length times (array_length - 1)) to string_length.
   3976   __ SmiToInteger32(scratch,
   3977                     FieldOperand(string, SeqOneByteString::kLengthOffset));
   3978   __ decl(index);
   3979   __ imull(scratch, index);
   3980   __ j(overflow, &bailout);
   3981   __ addl(string_length, scratch);
   3982   __ j(overflow, &bailout);
   3983 
   3984   // Live registers and stack values:
   3985   //   string_length: Total length of result string.
   3986   //   elements: FixedArray of strings.
   3987   __ AllocateAsciiString(result_pos, string_length, scratch,
   3988                          index, string, &bailout);
   3989   __ movq(result_operand, result_pos);
   3990   __ lea(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
   3991 
   3992   __ movq(string, separator_operand);
   3993   __ SmiCompare(FieldOperand(string, SeqOneByteString::kLengthOffset),
   3994                 Smi::FromInt(1));
   3995   __ j(equal, &one_char_separator);
   3996   __ j(greater, &long_separator);
   3997 
   3998 
   3999   // Empty separator case:
   4000   __ Set(index, 0);
   4001   __ movl(scratch, array_length_operand);
   4002   __ jmp(&loop_1_condition);
   4003   // Loop condition: while (index < array_length).
   4004   __ bind(&loop_1);
   4005   // Each iteration of the loop concatenates one string to the result.
   4006   // Live values in registers:
   4007   //   index: which element of the elements array we are adding to the result.
   4008   //   result_pos: the position to which we are currently copying characters.
   4009   //   elements: the FixedArray of strings we are joining.
   4010   //   scratch: array length.
   4011 
   4012   // Get string = array[index].
   4013   __ movq(string, FieldOperand(elements, index,
   4014                                times_pointer_size,
   4015                                FixedArray::kHeaderSize));
   4016   __ SmiToInteger32(string_length,
   4017                     FieldOperand(string, String::kLengthOffset));
   4018   __ lea(string,
   4019          FieldOperand(string, SeqOneByteString::kHeaderSize));
   4020   __ CopyBytes(result_pos, string, string_length);
   4021   __ incl(index);
   4022   __ bind(&loop_1_condition);
   4023   __ cmpl(index, scratch);
   4024   __ j(less, &loop_1);  // Loop while (index < array_length).
   4025   __ jmp(&done);
   4026 
   4027   // Generic bailout code used from several places.
   4028   __ bind(&bailout);
   4029   __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
   4030   __ jmp(&return_result);
   4031 
   4032 
   4033   // One-character separator case
   4034   __ bind(&one_char_separator);
   4035   // Get the separator ASCII character value.
   4036   // Register "string" holds the separator.
   4037   __ movzxbl(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
   4038   __ Set(index, 0);
   4039   // Jump into the loop after the code that copies the separator, so the first
   4040   // element is not preceded by a separator
   4041   __ jmp(&loop_2_entry);
   4042   // Loop condition: while (index < length).
   4043   __ bind(&loop_2);
   4044   // Each iteration of the loop concatenates one string to the result.
   4045   // Live values in registers:
   4046   //   elements: The FixedArray of strings we are joining.
   4047   //   index: which element of the elements array we are adding to the result.
   4048   //   result_pos: the position to which we are currently copying characters.
   4049   //   scratch: Separator character.
   4050 
   4051   // Copy the separator character to the result.
   4052   __ movb(Operand(result_pos, 0), scratch);
   4053   __ incq(result_pos);
   4054 
   4055   __ bind(&loop_2_entry);
   4056   // Get string = array[index].
   4057   __ movq(string, FieldOperand(elements, index,
   4058                                times_pointer_size,
   4059                                FixedArray::kHeaderSize));
   4060   __ SmiToInteger32(string_length,
   4061                     FieldOperand(string, String::kLengthOffset));
   4062   __ lea(string,
   4063          FieldOperand(string, SeqOneByteString::kHeaderSize));
   4064   __ CopyBytes(result_pos, string, string_length);
   4065   __ incl(index);
   4066   __ cmpl(index, array_length_operand);
   4067   __ j(less, &loop_2);  // End while (index < length).
   4068   __ jmp(&done);
   4069 
   4070 
   4071   // Long separator case (separator is more than one character).
   4072   __ bind(&long_separator);
   4073 
   4074   // Make elements point to end of elements array, and index
   4075   // count from -array_length to zero, so we don't need to maintain
   4076   // a loop limit.
   4077   __ movl(index, array_length_operand);
   4078   __ lea(elements, FieldOperand(elements, index, times_pointer_size,
   4079                                 FixedArray::kHeaderSize));
   4080   __ neg(index);
   4081 
   4082   // Replace separator string with pointer to its first character, and
   4083   // make scratch be its length.
   4084   __ movq(string, separator_operand);
   4085   __ SmiToInteger32(scratch,
   4086                     FieldOperand(string, String::kLengthOffset));
   4087   __ lea(string,
   4088          FieldOperand(string, SeqOneByteString::kHeaderSize));
   4089   __ movq(separator_operand, string);
   4090 
   4091   // Jump into the loop after the code that copies the separator, so the first
   4092   // element is not preceded by a separator
   4093   __ jmp(&loop_3_entry);
   4094   // Loop condition: while (index < length).
   4095   __ bind(&loop_3);
   4096   // Each iteration of the loop concatenates one string to the result.
   4097   // Live values in registers:
   4098   //   index: which element of the elements array we are adding to the result.
   4099   //   result_pos: the position to which we are currently copying characters.
   4100   //   scratch: Separator length.
   4101   //   separator_operand (rsp[0x10]): Address of first char of separator.
   4102 
   4103   // Copy the separator to the result.
   4104   __ movq(string, separator_operand);
   4105   __ movl(string_length, scratch);
   4106   __ CopyBytes(result_pos, string, string_length, 2);
   4107 
   4108   __ bind(&loop_3_entry);
   4109   // Get string = array[index].
   4110   __ movq(string, Operand(elements, index, times_pointer_size, 0));
   4111   __ SmiToInteger32(string_length,
   4112                     FieldOperand(string, String::kLengthOffset));
   4113   __ lea(string,
   4114          FieldOperand(string, SeqOneByteString::kHeaderSize));
   4115   __ CopyBytes(result_pos, string, string_length);
   4116   __ incq(index);
   4117   __ j(not_equal, &loop_3);  // Loop while (index < 0).
   4118 
   4119   __ bind(&done);
   4120   __ movq(rax, result_operand);
   4121 
   4122   __ bind(&return_result);
   4123   // Drop temp values from the stack, and restore context register.
   4124   __ addq(rsp, Immediate(3 * kPointerSize));
   4125   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   4126   context()->Plug(rax);
   4127 }
   4128 
   4129 
   4130 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
   4131   Handle<String> name = expr->name();
   4132   if (name->length() > 0 && name->Get(0) == '_') {
   4133     Comment cmnt(masm_, "[ InlineRuntimeCall");
   4134     EmitInlineRuntimeCall(expr);
   4135     return;
   4136   }
   4137 
   4138   Comment cmnt(masm_, "[ CallRuntime");
   4139   ZoneList<Expression*>* args = expr->arguments();
   4140 
   4141   if (expr->is_jsruntime()) {
   4142     // Prepare for calling JS runtime function.
   4143     __ movq(rax, GlobalObjectOperand());
   4144     __ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset));
   4145   }
   4146 
   4147   // Push the arguments ("left-to-right").
   4148   int arg_count = args->length();
   4149   for (int i = 0; i < arg_count; i++) {
   4150     VisitForStackValue(args->at(i));
   4151   }
   4152 
   4153   if (expr->is_jsruntime()) {
   4154     // Call the JS runtime function using a call IC.
   4155     __ Move(rcx, expr->name());
   4156     RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
   4157     Handle<Code> ic =
   4158         isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   4159     CallIC(ic, mode, expr->CallRuntimeFeedbackId());
   4160     // Restore context register.
   4161     __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   4162   } else {
   4163     __ CallRuntime(expr->function(), arg_count);
   4164   }
   4165   context()->Plug(rax);
   4166 }
   4167 
   4168 
   4169 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
   4170   switch (expr->op()) {
   4171     case Token::DELETE: {
   4172       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
   4173       Property* property = expr->expression()->AsProperty();
   4174       VariableProxy* proxy = expr->expression()->AsVariableProxy();
   4175 
   4176       if (property != NULL) {
   4177         VisitForStackValue(property->obj());
   4178         VisitForStackValue(property->key());
   4179         StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
   4180             ? kNonStrictMode : kStrictMode;
   4181         __ Push(Smi::FromInt(strict_mode_flag));
   4182         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   4183         context()->Plug(rax);
   4184       } else if (proxy != NULL) {
   4185         Variable* var = proxy->var();
   4186         // Delete of an unqualified identifier is disallowed in strict mode
   4187         // but "delete this" is allowed.
   4188         ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
   4189         if (var->IsUnallocated()) {
   4190           __ push(GlobalObjectOperand());
   4191           __ Push(var->name());
   4192           __ Push(Smi::FromInt(kNonStrictMode));
   4193           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   4194           context()->Plug(rax);
   4195         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
   4196           // Result of deleting non-global variables is false.  'this' is
   4197           // not really a variable, though we implement it as one.  The
   4198           // subexpression does not have side effects.
   4199           context()->Plug(var->is_this());
   4200         } else {
   4201           // Non-global variable.  Call the runtime to try to delete from the
   4202           // context where the variable was introduced.
   4203           __ push(context_register());
   4204           __ Push(var->name());
   4205           __ CallRuntime(Runtime::kDeleteContextSlot, 2);
   4206           context()->Plug(rax);
   4207         }
   4208       } else {
   4209         // Result of deleting non-property, non-variable reference is true.
   4210         // The subexpression may have side effects.
   4211         VisitForEffect(expr->expression());
   4212         context()->Plug(true);
   4213       }
   4214       break;
   4215     }
   4216 
   4217     case Token::VOID: {
   4218       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
   4219       VisitForEffect(expr->expression());
   4220       context()->Plug(Heap::kUndefinedValueRootIndex);
   4221       break;
   4222     }
   4223 
   4224     case Token::NOT: {
   4225       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
   4226       if (context()->IsEffect()) {
   4227         // Unary NOT has no side effects so it's only necessary to visit the
   4228         // subexpression.  Match the optimizing compiler by not branching.
   4229         VisitForEffect(expr->expression());
   4230       } else if (context()->IsTest()) {
   4231         const TestContext* test = TestContext::cast(context());
   4232         // The labels are swapped for the recursive call.
   4233         VisitForControl(expr->expression(),
   4234                         test->false_label(),
   4235                         test->true_label(),
   4236                         test->fall_through());
   4237         context()->Plug(test->true_label(), test->false_label());
   4238       } else {
   4239         // We handle value contexts explicitly rather than simply visiting
   4240         // for control and plugging the control flow into the context,
   4241         // because we need to prepare a pair of extra administrative AST ids
   4242         // for the optimizing compiler.
   4243         ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
   4244         Label materialize_true, materialize_false, done;
   4245         VisitForControl(expr->expression(),
   4246                         &materialize_false,
   4247                         &materialize_true,
   4248                         &materialize_true);
   4249         __ bind(&materialize_true);
   4250         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
   4251         if (context()->IsAccumulatorValue()) {
   4252           __ LoadRoot(rax, Heap::kTrueValueRootIndex);
   4253         } else {
   4254           __ PushRoot(Heap::kTrueValueRootIndex);
   4255         }
   4256         __ jmp(&done, Label::kNear);
   4257         __ bind(&materialize_false);
   4258         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
   4259         if (context()->IsAccumulatorValue()) {
   4260           __ LoadRoot(rax, Heap::kFalseValueRootIndex);
   4261         } else {
   4262           __ PushRoot(Heap::kFalseValueRootIndex);
   4263         }
   4264         __ bind(&done);
   4265       }
   4266       break;
   4267     }
   4268 
   4269     case Token::TYPEOF: {
   4270       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
   4271       { StackValueContext context(this);
   4272         VisitForTypeofValue(expr->expression());
   4273       }
   4274       __ CallRuntime(Runtime::kTypeof, 1);
   4275       context()->Plug(rax);
   4276       break;
   4277     }
   4278 
   4279     default:
   4280       UNREACHABLE();
   4281   }
   4282 }
   4283 
   4284 
   4285 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
   4286   Comment cmnt(masm_, "[ CountOperation");
   4287   SetSourcePosition(expr->position());
   4288 
   4289   // Invalid left-hand-sides are rewritten to have a 'throw
   4290   // ReferenceError' as the left-hand side.
   4291   if (!expr->expression()->IsValidLeftHandSide()) {
   4292     VisitForEffect(expr->expression());
   4293     return;
   4294   }
   4295 
   4296   // Expression can only be a property, a global or a (parameter or local)
   4297   // slot.
   4298   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   4299   LhsKind assign_type = VARIABLE;
   4300   Property* prop = expr->expression()->AsProperty();
   4301   // In case of a property we use the uninitialized expression context
   4302   // of the key to detect a named property.
   4303   if (prop != NULL) {
   4304     assign_type =
   4305         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
   4306   }
   4307 
   4308   // Evaluate expression and get value.
   4309   if (assign_type == VARIABLE) {
   4310     ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
   4311     AccumulatorValueContext context(this);
   4312     EmitVariableLoad(expr->expression()->AsVariableProxy());
   4313   } else {
   4314     // Reserve space for result of postfix operation.
   4315     if (expr->is_postfix() && !context()->IsEffect()) {
   4316       __ Push(Smi::FromInt(0));
   4317     }
   4318     if (assign_type == NAMED_PROPERTY) {
   4319       VisitForAccumulatorValue(prop->obj());
   4320       __ push(rax);  // Copy of receiver, needed for later store.
   4321       EmitNamedPropertyLoad(prop);
   4322     } else {
   4323       VisitForStackValue(prop->obj());
   4324       VisitForAccumulatorValue(prop->key());
   4325       __ movq(rdx, Operand(rsp, 0));  // Leave receiver on stack
   4326       __ push(rax);  // Copy of key, needed for later store.
   4327       EmitKeyedPropertyLoad(prop);
   4328     }
   4329   }
   4330 
   4331   // We need a second deoptimization point after loading the value
   4332   // in case evaluating the property load my have a side effect.
   4333   if (assign_type == VARIABLE) {
   4334     PrepareForBailout(expr->expression(), TOS_REG);
   4335   } else {
   4336     PrepareForBailoutForId(prop->LoadId(), TOS_REG);
   4337   }
   4338 
   4339   // Inline smi case if we are in a loop.
   4340   Label done, stub_call;
   4341   JumpPatchSite patch_site(masm_);
   4342   if (ShouldInlineSmiCase(expr->op())) {
   4343     Label slow;
   4344     patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear);
   4345 
   4346     // Save result for postfix expressions.
   4347     if (expr->is_postfix()) {
   4348       if (!context()->IsEffect()) {
   4349         // Save the result on the stack. If we have a named or keyed property
   4350         // we store the result under the receiver that is currently on top
   4351         // of the stack.
   4352         switch (assign_type) {
   4353           case VARIABLE:
   4354             __ push(rax);
   4355             break;
   4356           case NAMED_PROPERTY:
   4357             __ movq(Operand(rsp, kPointerSize), rax);
   4358             break;
   4359           case KEYED_PROPERTY:
   4360             __ movq(Operand(rsp, 2 * kPointerSize), rax);
   4361             break;
   4362         }
   4363       }
   4364     }
   4365 
   4366     SmiOperationExecutionMode mode;
   4367     mode.Add(PRESERVE_SOURCE_REGISTER);
   4368     mode.Add(BAILOUT_ON_NO_OVERFLOW);
   4369     if (expr->op() == Token::INC) {
   4370       __ SmiAddConstant(rax, rax, Smi::FromInt(1), mode, &done, Label::kNear);
   4371     } else {
   4372       __ SmiSubConstant(rax, rax, Smi::FromInt(1), mode, &done, Label::kNear);
   4373     }
   4374     __ jmp(&stub_call, Label::kNear);
   4375     __ bind(&slow);
   4376   }
   4377 
   4378   ToNumberStub convert_stub;
   4379   __ CallStub(&convert_stub);
   4380 
   4381   // Save result for postfix expressions.
   4382   if (expr->is_postfix()) {
   4383     if (!context()->IsEffect()) {
   4384       // Save the result on the stack. If we have a named or keyed property
   4385       // we store the result under the receiver that is currently on top
   4386       // of the stack.
   4387       switch (assign_type) {
   4388         case VARIABLE:
   4389           __ push(rax);
   4390           break;
   4391         case NAMED_PROPERTY:
   4392           __ movq(Operand(rsp, kPointerSize), rax);
   4393           break;
   4394         case KEYED_PROPERTY:
   4395           __ movq(Operand(rsp, 2 * kPointerSize), rax);
   4396           break;
   4397       }
   4398     }
   4399   }
   4400 
   4401   // Record position before stub call.
   4402   SetSourcePosition(expr->position());
   4403 
   4404   // Call stub for +1/-1.
   4405   __ bind(&stub_call);
   4406   __ movq(rdx, rax);
   4407   __ Move(rax, Smi::FromInt(1));
   4408   BinaryOpICStub stub(expr->binary_op(), NO_OVERWRITE);
   4409   CallIC(stub.GetCode(isolate()),
   4410          RelocInfo::CODE_TARGET,
   4411          expr->CountBinOpFeedbackId());
   4412   patch_site.EmitPatchInfo();
   4413   __ bind(&done);
   4414 
   4415   // Store the value returned in rax.
   4416   switch (assign_type) {
   4417     case VARIABLE:
   4418       if (expr->is_postfix()) {
   4419         // Perform the assignment as if via '='.
   4420         { EffectContext context(this);
   4421           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4422                                  Token::ASSIGN);
   4423           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4424           context.Plug(rax);
   4425         }
   4426         // For all contexts except kEffect: We have the result on
   4427         // top of the stack.
   4428         if (!context()->IsEffect()) {
   4429           context()->PlugTOS();
   4430         }
   4431       } else {
   4432         // Perform the assignment as if via '='.
   4433         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4434                                Token::ASSIGN);
   4435         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4436         context()->Plug(rax);
   4437       }
   4438       break;
   4439     case NAMED_PROPERTY: {
   4440       __ Move(rcx, prop->key()->AsLiteral()->value());
   4441       __ pop(rdx);
   4442       Handle<Code> ic = is_classic_mode()
   4443           ? isolate()->builtins()->StoreIC_Initialize()
   4444           : isolate()->builtins()->StoreIC_Initialize_Strict();
   4445       CallIC(ic, RelocInfo::CODE_TARGET, expr->CountStoreFeedbackId());
   4446       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4447       if (expr->is_postfix()) {
   4448         if (!context()->IsEffect()) {
   4449           context()->PlugTOS();
   4450         }
   4451       } else {
   4452         context()->Plug(rax);
   4453       }
   4454       break;
   4455     }
   4456     case KEYED_PROPERTY: {
   4457       __ pop(rcx);
   4458       __ pop(rdx);
   4459       Handle<Code> ic = is_classic_mode()
   4460           ? isolate()->builtins()->KeyedStoreIC_Initialize()
   4461           : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   4462       CallIC(ic, RelocInfo::CODE_TARGET, expr->CountStoreFeedbackId());
   4463       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4464       if (expr->is_postfix()) {
   4465         if (!context()->IsEffect()) {
   4466           context()->PlugTOS();
   4467         }
   4468       } else {
   4469         context()->Plug(rax);
   4470       }
   4471       break;
   4472     }
   4473   }
   4474 }
   4475 
   4476 
   4477 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
   4478   VariableProxy* proxy = expr->AsVariableProxy();
   4479   ASSERT(!context()->IsEffect());
   4480   ASSERT(!context()->IsTest());
   4481 
   4482   if (proxy != NULL && proxy->var()->IsUnallocated()) {
   4483     Comment cmnt(masm_, "Global variable");
   4484     __ Move(rcx, proxy->name());
   4485     __ movq(rax, GlobalObjectOperand());
   4486     Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   4487     // Use a regular load, not a contextual load, to avoid a reference
   4488     // error.
   4489     CallIC(ic);
   4490     PrepareForBailout(expr, TOS_REG);
   4491     context()->Plug(rax);
   4492   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   4493     Label done, slow;
   4494 
   4495     // Generate code for loading from variables potentially shadowed
   4496     // by eval-introduced variables.
   4497     EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
   4498 
   4499     __ bind(&slow);
   4500     __ push(rsi);
   4501     __ Push(proxy->name());
   4502     __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
   4503     PrepareForBailout(expr, TOS_REG);
   4504     __ bind(&done);
   4505 
   4506     context()->Plug(rax);
   4507   } else {
   4508     // This expression cannot throw a reference error at the top level.
   4509     VisitInDuplicateContext(expr);
   4510   }
   4511 }
   4512 
   4513 
   4514 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
   4515                                                  Expression* sub_expr,
   4516                                                  Handle<String> check) {
   4517   Label materialize_true, materialize_false;
   4518   Label* if_true = NULL;
   4519   Label* if_false = NULL;
   4520   Label* fall_through = NULL;
   4521   context()->PrepareTest(&materialize_true, &materialize_false,
   4522                          &if_true, &if_false, &fall_through);
   4523 
   4524   { AccumulatorValueContext context(this);
   4525     VisitForTypeofValue(sub_expr);
   4526   }
   4527   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4528 
   4529   if (check->Equals(isolate()->heap()->number_string())) {
   4530     __ JumpIfSmi(rax, if_true);
   4531     __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
   4532     __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex);
   4533     Split(equal, if_true, if_false, fall_through);
   4534   } else if (check->Equals(isolate()->heap()->string_string())) {
   4535     __ JumpIfSmi(rax, if_false);
   4536     // Check for undetectable objects => false.
   4537     __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
   4538     __ j(above_equal, if_false);
   4539     __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
   4540              Immediate(1 << Map::kIsUndetectable));
   4541     Split(zero, if_true, if_false, fall_through);
   4542   } else if (check->Equals(isolate()->heap()->symbol_string())) {
   4543     __ JumpIfSmi(rax, if_false);
   4544     __ CmpObjectType(rax, SYMBOL_TYPE, rdx);
   4545     Split(equal, if_true, if_false, fall_through);
   4546   } else if (check->Equals(isolate()->heap()->boolean_string())) {
   4547     __ CompareRoot(rax, Heap::kTrueValueRootIndex);
   4548     __ j(equal, if_true);
   4549     __ CompareRoot(rax, Heap::kFalseValueRootIndex);
   4550     Split(equal, if_true, if_false, fall_through);
   4551   } else if (FLAG_harmony_typeof &&
   4552              check->Equals(isolate()->heap()->null_string())) {
   4553     __ CompareRoot(rax, Heap::kNullValueRootIndex);
   4554     Split(equal, if_true, if_false, fall_through);
   4555   } else if (check->Equals(isolate()->heap()->undefined_string())) {
   4556     __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
   4557     __ j(equal, if_true);
   4558     __ JumpIfSmi(rax, if_false);
   4559     // Check for undetectable objects => true.
   4560     __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
   4561     __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
   4562              Immediate(1 << Map::kIsUndetectable));
   4563     Split(not_zero, if_true, if_false, fall_through);
   4564   } else if (check->Equals(isolate()->heap()->function_string())) {
   4565     __ JumpIfSmi(rax, if_false);
   4566     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   4567     __ CmpObjectType(rax, JS_FUNCTION_TYPE, rdx);
   4568     __ j(equal, if_true);
   4569     __ CmpInstanceType(rdx, JS_FUNCTION_PROXY_TYPE);
   4570     Split(equal, if_true, if_false, fall_through);
   4571   } else if (check->Equals(isolate()->heap()->object_string())) {
   4572     __ JumpIfSmi(rax, if_false);
   4573     if (!FLAG_harmony_typeof) {
   4574       __ CompareRoot(rax, Heap::kNullValueRootIndex);
   4575       __ j(equal, if_true);
   4576     }
   4577     __ CmpObjectType(rax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, rdx);
   4578     __ j(below, if_false);
   4579     __ CmpInstanceType(rdx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   4580     __ j(above, if_false);
   4581     // Check for undetectable objects => false.
   4582     __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
   4583              Immediate(1 << Map::kIsUndetectable));
   4584     Split(zero, if_true, if_false, fall_through);
   4585   } else {
   4586     if (if_false != fall_through) __ jmp(if_false);
   4587   }
   4588   context()->Plug(if_true, if_false);
   4589 }
   4590 
   4591 
   4592 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
   4593   Comment cmnt(masm_, "[ CompareOperation");
   4594   SetSourcePosition(expr->position());
   4595 
   4596   // First we try a fast inlined version of the compare when one of
   4597   // the operands is a literal.
   4598   if (TryLiteralCompare(expr)) return;
   4599 
   4600   // Always perform the comparison for its control flow.  Pack the result
   4601   // into the expression's context after the comparison is performed.
   4602   Label materialize_true, materialize_false;
   4603   Label* if_true = NULL;
   4604   Label* if_false = NULL;
   4605   Label* fall_through = NULL;
   4606   context()->PrepareTest(&materialize_true, &materialize_false,
   4607                          &if_true, &if_false, &fall_through);
   4608 
   4609   Token::Value op = expr->op();
   4610   VisitForStackValue(expr->left());
   4611   switch (op) {
   4612     case Token::IN:
   4613       VisitForStackValue(expr->right());
   4614       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
   4615       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
   4616       __ CompareRoot(rax, Heap::kTrueValueRootIndex);
   4617       Split(equal, if_true, if_false, fall_through);
   4618       break;
   4619 
   4620     case Token::INSTANCEOF: {
   4621       VisitForStackValue(expr->right());
   4622       InstanceofStub stub(InstanceofStub::kNoFlags);
   4623       __ CallStub(&stub);
   4624       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4625       __ testq(rax, rax);
   4626        // The stub returns 0 for true.
   4627       Split(zero, if_true, if_false, fall_through);
   4628       break;
   4629     }
   4630 
   4631     default: {
   4632       VisitForAccumulatorValue(expr->right());
   4633       Condition cc = CompareIC::ComputeCondition(op);
   4634       __ pop(rdx);
   4635 
   4636       bool inline_smi_code = ShouldInlineSmiCase(op);
   4637       JumpPatchSite patch_site(masm_);
   4638       if (inline_smi_code) {
   4639         Label slow_case;
   4640         __ movq(rcx, rdx);
   4641         __ or_(rcx, rax);
   4642         patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
   4643         __ cmpq(rdx, rax);
   4644         Split(cc, if_true, if_false, NULL);
   4645         __ bind(&slow_case);
   4646       }
   4647 
   4648       // Record position and call the compare IC.
   4649       SetSourcePosition(expr->position());
   4650       Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   4651       CallIC(ic, RelocInfo::CODE_TARGET, expr->CompareOperationFeedbackId());
   4652       patch_site.EmitPatchInfo();
   4653 
   4654       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4655       __ testq(rax, rax);
   4656       Split(cc, if_true, if_false, fall_through);
   4657     }
   4658   }
   4659 
   4660   // Convert the result of the comparison into one expected for this
   4661   // expression's context.
   4662   context()->Plug(if_true, if_false);
   4663 }
   4664 
   4665 
   4666 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
   4667                                               Expression* sub_expr,
   4668                                               NilValue nil) {
   4669   Label materialize_true, materialize_false;
   4670   Label* if_true = NULL;
   4671   Label* if_false = NULL;
   4672   Label* fall_through = NULL;
   4673   context()->PrepareTest(&materialize_true, &materialize_false,
   4674                          &if_true, &if_false, &fall_through);
   4675 
   4676   VisitForAccumulatorValue(sub_expr);
   4677   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4678   if (expr->op() == Token::EQ_STRICT) {
   4679     Heap::RootListIndex nil_value = nil == kNullValue ?
   4680         Heap::kNullValueRootIndex :
   4681         Heap::kUndefinedValueRootIndex;
   4682     __ CompareRoot(rax, nil_value);
   4683     Split(equal, if_true, if_false, fall_through);
   4684   } else {
   4685     Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
   4686     CallIC(ic, RelocInfo::CODE_TARGET, expr->CompareOperationFeedbackId());
   4687     __ testq(rax, rax);
   4688     Split(not_zero, if_true, if_false, fall_through);
   4689   }
   4690   context()->Plug(if_true, if_false);
   4691 }
   4692 
   4693 
   4694 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
   4695   __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   4696   context()->Plug(rax);
   4697 }
   4698 
   4699 
   4700 Register FullCodeGenerator::result_register() {
   4701   return rax;
   4702 }
   4703 
   4704 
   4705 Register FullCodeGenerator::context_register() {
   4706   return rsi;
   4707 }
   4708 
   4709 
   4710 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
   4711   ASSERT(IsAligned(frame_offset, kPointerSize));
   4712   __ movq(Operand(rbp, frame_offset), value);
   4713 }
   4714 
   4715 
   4716 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
   4717   __ movq(dst, ContextOperand(rsi, context_index));
   4718 }
   4719 
   4720 
   4721 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
   4722   Scope* declaration_scope = scope()->DeclarationScope();
   4723   if (declaration_scope->is_global_scope() ||
   4724       declaration_scope->is_module_scope()) {
   4725     // Contexts nested in the native context have a canonical empty function
   4726     // as their closure, not the anonymous closure containing the global
   4727     // code.  Pass a smi sentinel and let the runtime look up the empty
   4728     // function.
   4729     __ Push(Smi::FromInt(0));
   4730   } else if (declaration_scope->is_eval_scope()) {
   4731     // Contexts created by a call to eval have the same closure as the
   4732     // context calling eval, not the anonymous closure containing the eval
   4733     // code.  Fetch it from the context.
   4734     __ push(ContextOperand(rsi, Context::CLOSURE_INDEX));
   4735   } else {
   4736     ASSERT(declaration_scope->is_function_scope());
   4737     __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   4738   }
   4739 }
   4740 
   4741 
   4742 // ----------------------------------------------------------------------------
   4743 // Non-local control flow support.
   4744 
   4745 
   4746 void FullCodeGenerator::EnterFinallyBlock() {
   4747   ASSERT(!result_register().is(rdx));
   4748   ASSERT(!result_register().is(rcx));
   4749   // Cook return address on top of stack (smi encoded Code* delta)
   4750   __ PopReturnAddressTo(rdx);
   4751   __ Move(rcx, masm_->CodeObject());
   4752   __ subq(rdx, rcx);
   4753   __ Integer32ToSmi(rdx, rdx);
   4754   __ push(rdx);
   4755 
   4756   // Store result register while executing finally block.
   4757   __ push(result_register());
   4758 
   4759   // Store pending message while executing finally block.
   4760   ExternalReference pending_message_obj =
   4761       ExternalReference::address_of_pending_message_obj(isolate());
   4762   __ Load(rdx, pending_message_obj);
   4763   __ push(rdx);
   4764 
   4765   ExternalReference has_pending_message =
   4766       ExternalReference::address_of_has_pending_message(isolate());
   4767   __ Load(rdx, has_pending_message);
   4768   __ Integer32ToSmi(rdx, rdx);
   4769   __ push(rdx);
   4770 
   4771   ExternalReference pending_message_script =
   4772       ExternalReference::address_of_pending_message_script(isolate());
   4773   __ Load(rdx, pending_message_script);
   4774   __ push(rdx);
   4775 }
   4776 
   4777 
   4778 void FullCodeGenerator::ExitFinallyBlock() {
   4779   ASSERT(!result_register().is(rdx));
   4780   ASSERT(!result_register().is(rcx));
   4781   // Restore pending message from stack.
   4782   __ pop(rdx);
   4783   ExternalReference pending_message_script =
   4784       ExternalReference::address_of_pending_message_script(isolate());
   4785   __ Store(pending_message_script, rdx);
   4786 
   4787   __ pop(rdx);
   4788   __ SmiToInteger32(rdx, rdx);
   4789   ExternalReference has_pending_message =
   4790       ExternalReference::address_of_has_pending_message(isolate());
   4791   __ Store(has_pending_message, rdx);
   4792 
   4793   __ pop(rdx);
   4794   ExternalReference pending_message_obj =
   4795       ExternalReference::address_of_pending_message_obj(isolate());
   4796   __ Store(pending_message_obj, rdx);
   4797 
   4798   // Restore result register from stack.
   4799   __ pop(result_register());
   4800 
   4801   // Uncook return address.
   4802   __ pop(rdx);
   4803   __ SmiToInteger32(rdx, rdx);
   4804   __ Move(rcx, masm_->CodeObject());
   4805   __ addq(rdx, rcx);
   4806   __ jmp(rdx);
   4807 }
   4808 
   4809 
   4810 #undef __
   4811 
   4812 #define __ ACCESS_MASM(masm())
   4813 
   4814 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
   4815     int* stack_depth,
   4816     int* context_length) {
   4817   // The macros used here must preserve the result register.
   4818 
   4819   // Because the handler block contains the context of the finally
   4820   // code, we can restore it directly from there for the finally code
   4821   // rather than iteratively unwinding contexts via their previous
   4822   // links.
   4823   __ Drop(*stack_depth);  // Down to the handler block.
   4824   if (*context_length > 0) {
   4825     // Restore the context to its dedicated register and the stack.
   4826     __ movq(rsi, Operand(rsp, StackHandlerConstants::kContextOffset));
   4827     __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
   4828   }
   4829   __ PopTryHandler();
   4830   __ call(finally_entry_);
   4831 
   4832   *stack_depth = 0;
   4833   *context_length = 0;
   4834   return previous_;
   4835 }
   4836 
   4837 
   4838 #undef __
   4839 
   4840 
   4841 static const byte kJnsInstruction = 0x79;
   4842 static const byte kJnsOffset = 0x1d;
   4843 static const byte kCallInstruction = 0xe8;
   4844 static const byte kNopByteOne = 0x66;
   4845 static const byte kNopByteTwo = 0x90;
   4846 
   4847 
   4848 void BackEdgeTable::PatchAt(Code* unoptimized_code,
   4849                             Address pc,
   4850                             BackEdgeState target_state,
   4851                             Code* replacement_code) {
   4852   Address call_target_address = pc - kIntSize;
   4853   Address jns_instr_address = call_target_address - 3;
   4854   Address jns_offset_address = call_target_address - 2;
   4855 
   4856   switch (target_state) {
   4857     case INTERRUPT:
   4858       //     sub <profiling_counter>, <delta>  ;; Not changed
   4859       //     jns ok
   4860       //     call <interrupt stub>
   4861       //   ok:
   4862       *jns_instr_address = kJnsInstruction;
   4863       *jns_offset_address = kJnsOffset;
   4864       break;
   4865     case ON_STACK_REPLACEMENT:
   4866     case OSR_AFTER_STACK_CHECK:
   4867       //     sub <profiling_counter>, <delta>  ;; Not changed
   4868       //     nop
   4869       //     nop
   4870       //     call <on-stack replacment>
   4871       //   ok:
   4872       *jns_instr_address = kNopByteOne;
   4873       *jns_offset_address = kNopByteTwo;
   4874       break;
   4875   }
   4876 
   4877   Assembler::set_target_address_at(call_target_address,
   4878                                    replacement_code->entry());
   4879   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
   4880       unoptimized_code, call_target_address, replacement_code);
   4881 }
   4882 
   4883 
   4884 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
   4885     Isolate* isolate,
   4886     Code* unoptimized_code,
   4887     Address pc) {
   4888   Address call_target_address = pc - kIntSize;
   4889   Address jns_instr_address = call_target_address - 3;
   4890   ASSERT_EQ(kCallInstruction, *(call_target_address - 1));
   4891 
   4892   if (*jns_instr_address == kJnsInstruction) {
   4893     ASSERT_EQ(kJnsOffset, *(call_target_address - 2));
   4894     ASSERT_EQ(isolate->builtins()->InterruptCheck()->entry(),
   4895               Assembler::target_address_at(call_target_address));
   4896     return INTERRUPT;
   4897   }
   4898 
   4899   ASSERT_EQ(kNopByteOne, *jns_instr_address);
   4900   ASSERT_EQ(kNopByteTwo, *(call_target_address - 2));
   4901 
   4902   if (Assembler::target_address_at(call_target_address) ==
   4903       isolate->builtins()->OnStackReplacement()->entry()) {
   4904     return ON_STACK_REPLACEMENT;
   4905   }
   4906 
   4907   ASSERT_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
   4908             Assembler::target_address_at(call_target_address));
   4909   return OSR_AFTER_STACK_CHECK;
   4910 }
   4911 
   4912 
   4913 } }  // namespace v8::internal
   4914 
   4915 #endif  // V8_TARGET_ARCH_X64
   4916