Home | History | Annotate | Download | only in Core
      1 //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SimpleConstraintManager, a class that holds code shared
     11 //  between BasicConstraintManager and RangeConstraintManager.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "SimpleConstraintManager.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     19 
     20 namespace clang {
     21 
     22 namespace ento {
     23 
     24 SimpleConstraintManager::~SimpleConstraintManager() {}
     25 
     26 bool SimpleConstraintManager::canReasonAbout(SVal X) const {
     27   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
     28   if (SymVal && SymVal->isExpression()) {
     29     const SymExpr *SE = SymVal->getSymbol();
     30 
     31     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
     32       switch (SIE->getOpcode()) {
     33           // We don't reason yet about bitwise-constraints on symbolic values.
     34         case BO_And:
     35         case BO_Or:
     36         case BO_Xor:
     37           return false;
     38         // We don't reason yet about these arithmetic constraints on
     39         // symbolic values.
     40         case BO_Mul:
     41         case BO_Div:
     42         case BO_Rem:
     43         case BO_Shl:
     44         case BO_Shr:
     45           return false;
     46         // All other cases.
     47         default:
     48           return true;
     49       }
     50     }
     51 
     52     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
     53       if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
     54         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
     55         if (Loc::isLocType(SSE->getLHS()->getType())) {
     56           assert(Loc::isLocType(SSE->getRHS()->getType()));
     57           return true;
     58         }
     59       }
     60     }
     61 
     62     return false;
     63   }
     64 
     65   return true;
     66 }
     67 
     68 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
     69                                                DefinedSVal Cond,
     70                                                bool Assumption) {
     71   if (Optional<NonLoc> NV = Cond.getAs<NonLoc>())
     72     return assume(state, *NV, Assumption);
     73   return assume(state, Cond.castAs<Loc>(), Assumption);
     74 }
     75 
     76 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, Loc cond,
     77                                                bool assumption) {
     78   state = assumeAux(state, cond, assumption);
     79   if (NotifyAssumeClients && SU)
     80     return SU->processAssume(state, cond, assumption);
     81   return state;
     82 }
     83 
     84 ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
     85                                                   Loc Cond, bool Assumption) {
     86   switch (Cond.getSubKind()) {
     87   default:
     88     assert (false && "'Assume' not implemented for this Loc.");
     89     return state;
     90 
     91   case loc::MemRegionKind: {
     92     // FIXME: Should this go into the storemanager?
     93     const MemRegion *R = Cond.castAs<loc::MemRegionVal>().getRegion();
     94 
     95     // FIXME: now we only find the first symbolic region.
     96     if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
     97       const llvm::APSInt &zero = getBasicVals().getZeroWithPtrWidth();
     98       if (Assumption)
     99         return assumeSymNE(state, SymR->getSymbol(), zero, zero);
    100       else
    101         return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
    102     }
    103 
    104     // FALL-THROUGH.
    105   }
    106 
    107   case loc::GotoLabelKind:
    108     return Assumption ? state : NULL;
    109 
    110   case loc::ConcreteIntKind: {
    111     bool b = Cond.castAs<loc::ConcreteInt>().getValue() != 0;
    112     bool isFeasible = b ? Assumption : !Assumption;
    113     return isFeasible ? state : NULL;
    114   }
    115   } // end switch
    116 }
    117 
    118 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
    119                                                NonLoc cond,
    120                                                bool assumption) {
    121   state = assumeAux(state, cond, assumption);
    122   if (NotifyAssumeClients && SU)
    123     return SU->processAssume(state, cond, assumption);
    124   return state;
    125 }
    126 
    127 
    128 ProgramStateRef
    129 SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
    130                                             SymbolRef Sym, bool Assumption) {
    131   BasicValueFactory &BVF = getBasicVals();
    132   QualType T = Sym->getType();
    133 
    134   // None of the constraint solvers currently support non-integer types.
    135   if (!T->isIntegralOrEnumerationType())
    136     return State;
    137 
    138   const llvm::APSInt &zero = BVF.getValue(0, T);
    139   if (Assumption)
    140     return assumeSymNE(State, Sym, zero, zero);
    141   else
    142     return assumeSymEQ(State, Sym, zero, zero);
    143 }
    144 
    145 ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
    146                                                   NonLoc Cond,
    147                                                   bool Assumption) {
    148 
    149   // We cannot reason about SymSymExprs, and can only reason about some
    150   // SymIntExprs.
    151   if (!canReasonAbout(Cond)) {
    152     // Just add the constraint to the expression without trying to simplify.
    153     SymbolRef sym = Cond.getAsSymExpr();
    154     return assumeAuxForSymbol(state, sym, Assumption);
    155   }
    156 
    157   switch (Cond.getSubKind()) {
    158   default:
    159     llvm_unreachable("'Assume' not implemented for this NonLoc");
    160 
    161   case nonloc::SymbolValKind: {
    162     nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
    163     SymbolRef sym = SV.getSymbol();
    164     assert(sym);
    165 
    166     // Handle SymbolData.
    167     if (!SV.isExpression()) {
    168       return assumeAuxForSymbol(state, sym, Assumption);
    169 
    170     // Handle symbolic expression.
    171     } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
    172       // We can only simplify expressions whose RHS is an integer.
    173 
    174       BinaryOperator::Opcode op = SE->getOpcode();
    175       if (BinaryOperator::isComparisonOp(op)) {
    176         if (!Assumption)
    177           op = BinaryOperator::negateComparisonOp(op);
    178 
    179         return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
    180       }
    181 
    182     } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
    183       // Translate "a != b" to "(b - a) != 0".
    184       // We invert the order of the operands as a heuristic for how loop
    185       // conditions are usually written ("begin != end") as compared to length
    186       // calculations ("end - begin"). The more correct thing to do would be to
    187       // canonicalize "a - b" and "b - a", which would allow us to treat
    188       // "a != b" and "b != a" the same.
    189       SymbolManager &SymMgr = getSymbolManager();
    190       BinaryOperator::Opcode Op = SSE->getOpcode();
    191       assert(BinaryOperator::isComparisonOp(Op));
    192 
    193       // For now, we only support comparing pointers.
    194       assert(Loc::isLocType(SSE->getLHS()->getType()));
    195       assert(Loc::isLocType(SSE->getRHS()->getType()));
    196       QualType DiffTy = SymMgr.getContext().getPointerDiffType();
    197       SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
    198                                                    SSE->getLHS(), DiffTy);
    199 
    200       const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
    201       Op = BinaryOperator::reverseComparisonOp(Op);
    202       if (!Assumption)
    203         Op = BinaryOperator::negateComparisonOp(Op);
    204       return assumeSymRel(state, Subtraction, Op, Zero);
    205     }
    206 
    207     // If we get here, there's nothing else we can do but treat the symbol as
    208     // opaque.
    209     return assumeAuxForSymbol(state, sym, Assumption);
    210   }
    211 
    212   case nonloc::ConcreteIntKind: {
    213     bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
    214     bool isFeasible = b ? Assumption : !Assumption;
    215     return isFeasible ? state : NULL;
    216   }
    217 
    218   case nonloc::LocAsIntegerKind:
    219     return assumeAux(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
    220                      Assumption);
    221   } // end switch
    222 }
    223 
    224 static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
    225   // Is it a "($sym+constant1)" expression?
    226   if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
    227     BinaryOperator::Opcode Op = SE->getOpcode();
    228     if (Op == BO_Add || Op == BO_Sub) {
    229       Sym = SE->getLHS();
    230       Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
    231 
    232       // Don't forget to negate the adjustment if it's being subtracted.
    233       // This should happen /after/ promotion, in case the value being
    234       // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
    235       if (Op == BO_Sub)
    236         Adjustment = -Adjustment;
    237     }
    238   }
    239 }
    240 
    241 ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
    242                                                      const SymExpr *LHS,
    243                                                      BinaryOperator::Opcode op,
    244                                                      const llvm::APSInt& Int) {
    245   assert(BinaryOperator::isComparisonOp(op) &&
    246          "Non-comparison ops should be rewritten as comparisons to zero.");
    247 
    248   // Get the type used for calculating wraparound.
    249   BasicValueFactory &BVF = getBasicVals();
    250   APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
    251 
    252   // We only handle simple comparisons of the form "$sym == constant"
    253   // or "($sym+constant1) == constant2".
    254   // The adjustment is "constant1" in the above expression. It's used to
    255   // "slide" the solution range around for modular arithmetic. For example,
    256   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
    257   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
    258   // the subclasses of SimpleConstraintManager to handle the adjustment.
    259   SymbolRef Sym = LHS;
    260   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
    261   computeAdjustment(Sym, Adjustment);
    262 
    263   // Convert the right-hand side integer as necessary.
    264   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
    265   llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
    266 
    267   // Prefer unsigned comparisons.
    268   if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
    269       ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
    270     Adjustment.setIsSigned(false);
    271 
    272   switch (op) {
    273   default:
    274     llvm_unreachable("invalid operation not caught by assertion above");
    275 
    276   case BO_EQ:
    277     return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
    278 
    279   case BO_NE:
    280     return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
    281 
    282   case BO_GT:
    283     return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
    284 
    285   case BO_GE:
    286     return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
    287 
    288   case BO_LT:
    289     return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
    290 
    291   case BO_LE:
    292     return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
    293   } // end switch
    294 }
    295 
    296 } // end of namespace ento
    297 
    298 } // end of namespace clang
    299