Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define EIGEN_NO_STATIC_ASSERT
     11 
     12 #include "main.h"
     13 
     14 template<typename MatrixType> void basicStuff(const MatrixType& m)
     15 {
     16   typedef typename MatrixType::Index Index;
     17   typedef typename MatrixType::Scalar Scalar;
     18   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     19   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     20 
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   // this test relies a lot on Random.h, and there's not much more that we can do
     25   // to test it, hence I consider that we will have tested Random.h
     26   MatrixType m1 = MatrixType::Random(rows, cols),
     27              m2 = MatrixType::Random(rows, cols),
     28              m3(rows, cols),
     29              mzero = MatrixType::Zero(rows, cols),
     30              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
     31   VectorType v1 = VectorType::Random(rows),
     32              vzero = VectorType::Zero(rows);
     33   SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
     34 
     35   Scalar x = 0;
     36   while(x == Scalar(0)) x = internal::random<Scalar>();
     37 
     38   Index r = internal::random<Index>(0, rows-1),
     39         c = internal::random<Index>(0, cols-1);
     40 
     41   m1.coeffRef(r,c) = x;
     42   VERIFY_IS_APPROX(x, m1.coeff(r,c));
     43   m1(r,c) = x;
     44   VERIFY_IS_APPROX(x, m1(r,c));
     45   v1.coeffRef(r) = x;
     46   VERIFY_IS_APPROX(x, v1.coeff(r));
     47   v1(r) = x;
     48   VERIFY_IS_APPROX(x, v1(r));
     49   v1[r] = x;
     50   VERIFY_IS_APPROX(x, v1[r]);
     51 
     52   VERIFY_IS_APPROX(               v1,    v1);
     53   VERIFY_IS_NOT_APPROX(           v1,    2*v1);
     54   VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
     55   if(!NumTraits<Scalar>::IsInteger)
     56     VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.norm());
     57   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
     58   VERIFY_IS_APPROX(               vzero, v1-v1);
     59   VERIFY_IS_APPROX(               m1,    m1);
     60   VERIFY_IS_NOT_APPROX(           m1,    2*m1);
     61   VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
     62   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
     63   VERIFY_IS_APPROX(               mzero, m1-m1);
     64 
     65   // always test operator() on each read-only expression class,
     66   // in order to check const-qualifiers.
     67   // indeed, if an expression class (here Zero) is meant to be read-only,
     68   // hence has no _write() method, the corresponding MatrixBase method (here zero())
     69   // should return a const-qualified object so that it is the const-qualified
     70   // operator() that gets called, which in turn calls _read().
     71   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
     72 
     73   // now test copying a row-vector into a (column-)vector and conversely.
     74   square.col(r) = square.row(r).eval();
     75   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
     76   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
     77   rv = square.row(r);
     78   cv = square.col(r);
     79 
     80   VERIFY_IS_APPROX(rv, cv.transpose());
     81 
     82   if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
     83   {
     84     VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
     85   }
     86 
     87   if(cols!=1 && rows!=1)
     88   {
     89     VERIFY_RAISES_ASSERT(m1[0]);
     90     VERIFY_RAISES_ASSERT((m1+m1)[0]);
     91   }
     92 
     93   VERIFY_IS_APPROX(m3 = m1,m1);
     94   MatrixType m4;
     95   VERIFY_IS_APPROX(m4 = m1,m1);
     96 
     97   m3.real() = m1.real();
     98   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
     99   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
    100 
    101   // check == / != operators
    102   VERIFY(m1==m1);
    103   VERIFY(m1!=m2);
    104   VERIFY(!(m1==m2));
    105   VERIFY(!(m1!=m1));
    106   m1 = m2;
    107   VERIFY(m1==m2);
    108   VERIFY(!(m1!=m2));
    109 
    110   // check automatic transposition
    111   sm2.setZero();
    112   for(typename MatrixType::Index i=0;i<rows;++i)
    113     sm2.col(i) = sm1.row(i);
    114   VERIFY_IS_APPROX(sm2,sm1.transpose());
    115 
    116   sm2.setZero();
    117   for(typename MatrixType::Index i=0;i<rows;++i)
    118     sm2.col(i).noalias() = sm1.row(i);
    119   VERIFY_IS_APPROX(sm2,sm1.transpose());
    120 
    121   sm2.setZero();
    122   for(typename MatrixType::Index i=0;i<rows;++i)
    123     sm2.col(i).noalias() += sm1.row(i);
    124   VERIFY_IS_APPROX(sm2,sm1.transpose());
    125 
    126   sm2.setZero();
    127   for(typename MatrixType::Index i=0;i<rows;++i)
    128     sm2.col(i).noalias() -= sm1.row(i);
    129   VERIFY_IS_APPROX(sm2,-sm1.transpose());
    130 }
    131 
    132 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
    133 {
    134   typedef typename MatrixType::Index Index;
    135   typedef typename MatrixType::Scalar Scalar;
    136   typedef typename NumTraits<Scalar>::Real RealScalar;
    137   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
    138 
    139   Index rows = m.rows();
    140   Index cols = m.cols();
    141 
    142   Scalar s1 = internal::random<Scalar>(),
    143          s2 = internal::random<Scalar>();
    144 
    145   VERIFY(internal::real(s1)==internal::real_ref(s1));
    146   VERIFY(internal::imag(s1)==internal::imag_ref(s1));
    147   internal::real_ref(s1) = internal::real(s2);
    148   internal::imag_ref(s1) = internal::imag(s2);
    149   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
    150   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
    151 
    152   RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
    153                  rm2 = RealMatrixType::Random(rows,cols);
    154   MatrixType cm(rows,cols);
    155   cm.real() = rm1;
    156   cm.imag() = rm2;
    157   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
    158   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
    159   rm1.setZero();
    160   rm2.setZero();
    161   rm1 = cm.real();
    162   rm2 = cm.imag();
    163   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
    164   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
    165   cm.real().setZero();
    166   VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
    167   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
    168 }
    169 
    170 #ifdef EIGEN_TEST_PART_2
    171 void casting()
    172 {
    173   Matrix4f m = Matrix4f::Random(), m2;
    174   Matrix4d n = m.cast<double>();
    175   VERIFY(m.isApprox(n.cast<float>()));
    176   m2 = m.cast<float>(); // check the specialization when NewType == Type
    177   VERIFY(m.isApprox(m2));
    178 }
    179 #endif
    180 
    181 template <typename Scalar>
    182 void fixedSizeMatrixConstruction()
    183 {
    184   const Scalar raw[3] = {1,2,3};
    185   Matrix<Scalar,3,1> m(raw);
    186   Array<Scalar,3,1> a(raw);
    187   VERIFY(m(0) == 1);
    188   VERIFY(m(1) == 2);
    189   VERIFY(m(2) == 3);
    190   VERIFY(a(0) == 1);
    191   VERIFY(a(1) == 2);
    192   VERIFY(a(2) == 3);
    193 }
    194 
    195 void test_basicstuff()
    196 {
    197   for(int i = 0; i < g_repeat; i++) {
    198     CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
    199     CALL_SUBTEST_2( basicStuff(Matrix4d()) );
    200     CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    201     CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    202     CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    203     CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
    204     CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    205 
    206     CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    207     CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    208   }
    209 
    210   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
    211   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
    212   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
    213 
    214   CALL_SUBTEST_2(casting());
    215 }
    216