1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #define EIGEN_NO_STATIC_ASSERT 11 12 #include "main.h" 13 14 template<typename MatrixType> void basicStuff(const MatrixType& m) 15 { 16 typedef typename MatrixType::Index Index; 17 typedef typename MatrixType::Scalar Scalar; 18 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; 20 21 Index rows = m.rows(); 22 Index cols = m.cols(); 23 24 // this test relies a lot on Random.h, and there's not much more that we can do 25 // to test it, hence I consider that we will have tested Random.h 26 MatrixType m1 = MatrixType::Random(rows, cols), 27 m2 = MatrixType::Random(rows, cols), 28 m3(rows, cols), 29 mzero = MatrixType::Zero(rows, cols), 30 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); 31 VectorType v1 = VectorType::Random(rows), 32 vzero = VectorType::Zero(rows); 33 SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); 34 35 Scalar x = 0; 36 while(x == Scalar(0)) x = internal::random<Scalar>(); 37 38 Index r = internal::random<Index>(0, rows-1), 39 c = internal::random<Index>(0, cols-1); 40 41 m1.coeffRef(r,c) = x; 42 VERIFY_IS_APPROX(x, m1.coeff(r,c)); 43 m1(r,c) = x; 44 VERIFY_IS_APPROX(x, m1(r,c)); 45 v1.coeffRef(r) = x; 46 VERIFY_IS_APPROX(x, v1.coeff(r)); 47 v1(r) = x; 48 VERIFY_IS_APPROX(x, v1(r)); 49 v1[r] = x; 50 VERIFY_IS_APPROX(x, v1[r]); 51 52 VERIFY_IS_APPROX( v1, v1); 53 VERIFY_IS_NOT_APPROX( v1, 2*v1); 54 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); 55 if(!NumTraits<Scalar>::IsInteger) 56 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); 57 VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); 58 VERIFY_IS_APPROX( vzero, v1-v1); 59 VERIFY_IS_APPROX( m1, m1); 60 VERIFY_IS_NOT_APPROX( m1, 2*m1); 61 VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); 62 VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); 63 VERIFY_IS_APPROX( mzero, m1-m1); 64 65 // always test operator() on each read-only expression class, 66 // in order to check const-qualifiers. 67 // indeed, if an expression class (here Zero) is meant to be read-only, 68 // hence has no _write() method, the corresponding MatrixBase method (here zero()) 69 // should return a const-qualified object so that it is the const-qualified 70 // operator() that gets called, which in turn calls _read(). 71 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); 72 73 // now test copying a row-vector into a (column-)vector and conversely. 74 square.col(r) = square.row(r).eval(); 75 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); 76 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); 77 rv = square.row(r); 78 cv = square.col(r); 79 80 VERIFY_IS_APPROX(rv, cv.transpose()); 81 82 if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) 83 { 84 VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); 85 } 86 87 if(cols!=1 && rows!=1) 88 { 89 VERIFY_RAISES_ASSERT(m1[0]); 90 VERIFY_RAISES_ASSERT((m1+m1)[0]); 91 } 92 93 VERIFY_IS_APPROX(m3 = m1,m1); 94 MatrixType m4; 95 VERIFY_IS_APPROX(m4 = m1,m1); 96 97 m3.real() = m1.real(); 98 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); 99 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); 100 101 // check == / != operators 102 VERIFY(m1==m1); 103 VERIFY(m1!=m2); 104 VERIFY(!(m1==m2)); 105 VERIFY(!(m1!=m1)); 106 m1 = m2; 107 VERIFY(m1==m2); 108 VERIFY(!(m1!=m2)); 109 110 // check automatic transposition 111 sm2.setZero(); 112 for(typename MatrixType::Index i=0;i<rows;++i) 113 sm2.col(i) = sm1.row(i); 114 VERIFY_IS_APPROX(sm2,sm1.transpose()); 115 116 sm2.setZero(); 117 for(typename MatrixType::Index i=0;i<rows;++i) 118 sm2.col(i).noalias() = sm1.row(i); 119 VERIFY_IS_APPROX(sm2,sm1.transpose()); 120 121 sm2.setZero(); 122 for(typename MatrixType::Index i=0;i<rows;++i) 123 sm2.col(i).noalias() += sm1.row(i); 124 VERIFY_IS_APPROX(sm2,sm1.transpose()); 125 126 sm2.setZero(); 127 for(typename MatrixType::Index i=0;i<rows;++i) 128 sm2.col(i).noalias() -= sm1.row(i); 129 VERIFY_IS_APPROX(sm2,-sm1.transpose()); 130 } 131 132 template<typename MatrixType> void basicStuffComplex(const MatrixType& m) 133 { 134 typedef typename MatrixType::Index Index; 135 typedef typename MatrixType::Scalar Scalar; 136 typedef typename NumTraits<Scalar>::Real RealScalar; 137 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; 138 139 Index rows = m.rows(); 140 Index cols = m.cols(); 141 142 Scalar s1 = internal::random<Scalar>(), 143 s2 = internal::random<Scalar>(); 144 145 VERIFY(internal::real(s1)==internal::real_ref(s1)); 146 VERIFY(internal::imag(s1)==internal::imag_ref(s1)); 147 internal::real_ref(s1) = internal::real(s2); 148 internal::imag_ref(s1) = internal::imag(s2); 149 VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); 150 // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. 151 152 RealMatrixType rm1 = RealMatrixType::Random(rows,cols), 153 rm2 = RealMatrixType::Random(rows,cols); 154 MatrixType cm(rows,cols); 155 cm.real() = rm1; 156 cm.imag() = rm2; 157 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); 158 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); 159 rm1.setZero(); 160 rm2.setZero(); 161 rm1 = cm.real(); 162 rm2 = cm.imag(); 163 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); 164 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); 165 cm.real().setZero(); 166 VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); 167 VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); 168 } 169 170 #ifdef EIGEN_TEST_PART_2 171 void casting() 172 { 173 Matrix4f m = Matrix4f::Random(), m2; 174 Matrix4d n = m.cast<double>(); 175 VERIFY(m.isApprox(n.cast<float>())); 176 m2 = m.cast<float>(); // check the specialization when NewType == Type 177 VERIFY(m.isApprox(m2)); 178 } 179 #endif 180 181 template <typename Scalar> 182 void fixedSizeMatrixConstruction() 183 { 184 const Scalar raw[3] = {1,2,3}; 185 Matrix<Scalar,3,1> m(raw); 186 Array<Scalar,3,1> a(raw); 187 VERIFY(m(0) == 1); 188 VERIFY(m(1) == 2); 189 VERIFY(m(2) == 3); 190 VERIFY(a(0) == 1); 191 VERIFY(a(1) == 2); 192 VERIFY(a(2) == 3); 193 } 194 195 void test_basicstuff() 196 { 197 for(int i = 0; i < g_repeat; i++) { 198 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); 199 CALL_SUBTEST_2( basicStuff(Matrix4d()) ); 200 CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 201 CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 202 CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 203 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); 204 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 205 206 CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 207 CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 208 } 209 210 CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); 211 CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); 212 CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); 213 214 CALL_SUBTEST_2(casting()); 215 } 216