Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename MatrixType> void adjoint(const MatrixType& m)
     13 {
     14   /* this test covers the following files:
     15      Transpose.h Conjugate.h Dot.h
     16   */
     17 
     18   typedef typename MatrixType::Scalar Scalar;
     19   typedef typename NumTraits<Scalar>::Real RealScalar;
     20   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     21   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     22   int rows = m.rows();
     23   int cols = m.cols();
     24 
     25   RealScalar largerEps = test_precision<RealScalar>();
     26   if (ei_is_same_type<RealScalar,float>::ret)
     27     largerEps = RealScalar(1e-3f);
     28 
     29   MatrixType m1 = MatrixType::Random(rows, cols),
     30              m2 = MatrixType::Random(rows, cols),
     31              m3(rows, cols),
     32              mzero = MatrixType::Zero(rows, cols),
     33              identity = SquareMatrixType::Identity(rows, rows),
     34              square = SquareMatrixType::Random(rows, rows);
     35   VectorType v1 = VectorType::Random(rows),
     36              v2 = VectorType::Random(rows),
     37              v3 = VectorType::Random(rows),
     38              vzero = VectorType::Zero(rows);
     39 
     40   Scalar s1 = ei_random<Scalar>(),
     41          s2 = ei_random<Scalar>();
     42 
     43   // check basic compatibility of adjoint, transpose, conjugate
     44   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
     45   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
     46 
     47   // check multiplicative behavior
     48   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
     49   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     ei_conj(s1) * m1.adjoint());
     50 
     51   // check basic properties of dot, norm, norm2
     52   typedef typename NumTraits<Scalar>::Real RealScalar;
     53   VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3),   s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps));
     54   VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2),     ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps));
     55   VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)),               v2.eigen2_dot(v1));
     56   VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)),               v1.squaredNorm());
     57   if(NumTraits<Scalar>::HasFloatingPoint)
     58     VERIFY_IS_APPROX(v1.squaredNorm(),                      v1.norm() * v1.norm());
     59   VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)),  static_cast<RealScalar>(1));
     60   if(NumTraits<Scalar>::HasFloatingPoint)
     61     VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(),         static_cast<RealScalar>(1));
     62 
     63   // check compatibility of dot and adjoint
     64   VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps));
     65 
     66   // like in testBasicStuff, test operator() to check const-qualification
     67   int r = ei_random<int>(0, rows-1),
     68       c = ei_random<int>(0, cols-1);
     69   VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c)));
     70   VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c)));
     71 
     72   if(NumTraits<Scalar>::HasFloatingPoint)
     73   {
     74     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
     75     // normalized() in order to produce a consistent result.
     76     VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
     77   }
     78 
     79   // check inplace transpose
     80   m3 = m1;
     81   m3.transposeInPlace();
     82   VERIFY_IS_APPROX(m3,m1.transpose());
     83   m3.transposeInPlace();
     84   VERIFY_IS_APPROX(m3,m1);
     85 
     86 }
     87 
     88 void test_eigen2_adjoint()
     89 {
     90   for(int i = 0; i < g_repeat; i++) {
     91     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
     92     CALL_SUBTEST_2( adjoint(Matrix3d()) );
     93     CALL_SUBTEST_3( adjoint(Matrix4f()) );
     94     CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) );
     95     CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) );
     96     CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) );
     97   }
     98   // test a large matrix only once
     99   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
    100 }
    101 
    102