Home | History | Annotate | Download | only in Analysis
      1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass statically checks for common and easily-identified constructs
     11 // which produce undefined or likely unintended behavior in LLVM IR.
     12 //
     13 // It is not a guarantee of correctness, in two ways. First, it isn't
     14 // comprehensive. There are checks which could be done statically which are
     15 // not yet implemented. Some of these are indicated by TODO comments, but
     16 // those aren't comprehensive either. Second, many conditions cannot be
     17 // checked statically. This pass does no dynamic instrumentation, so it
     18 // can't check for all possible problems.
     19 //
     20 // Another limitation is that it assumes all code will be executed. A store
     21 // through a null pointer in a basic block which is never reached is harmless,
     22 // but this pass will warn about it anyway. This is the main reason why most
     23 // of these checks live here instead of in the Verifier pass.
     24 //
     25 // Optimization passes may make conditions that this pass checks for more or
     26 // less obvious. If an optimization pass appears to be introducing a warning,
     27 // it may be that the optimization pass is merely exposing an existing
     28 // condition in the code.
     29 //
     30 // This code may be run before instcombine. In many cases, instcombine checks
     31 // for the same kinds of things and turns instructions with undefined behavior
     32 // into unreachable (or equivalent). Because of this, this pass makes some
     33 // effort to look through bitcasts and so on.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/Analysis/Lint.h"
     38 #include "llvm/ADT/STLExtras.h"
     39 #include "llvm/Analysis/AliasAnalysis.h"
     40 #include "llvm/Analysis/ConstantFolding.h"
     41 #include "llvm/Analysis/Dominators.h"
     42 #include "llvm/Analysis/InstructionSimplify.h"
     43 #include "llvm/Analysis/Loads.h"
     44 #include "llvm/Analysis/Passes.h"
     45 #include "llvm/Analysis/ValueTracking.h"
     46 #include "llvm/Assembly/Writer.h"
     47 #include "llvm/IR/DataLayout.h"
     48 #include "llvm/IR/Function.h"
     49 #include "llvm/IR/IntrinsicInst.h"
     50 #include "llvm/InstVisitor.h"
     51 #include "llvm/Pass.h"
     52 #include "llvm/PassManager.h"
     53 #include "llvm/Support/CallSite.h"
     54 #include "llvm/Support/Debug.h"
     55 #include "llvm/Support/raw_ostream.h"
     56 #include "llvm/Target/TargetLibraryInfo.h"
     57 using namespace llvm;
     58 
     59 namespace {
     60   namespace MemRef {
     61     static unsigned Read     = 1;
     62     static unsigned Write    = 2;
     63     static unsigned Callee   = 4;
     64     static unsigned Branchee = 8;
     65   }
     66 
     67   class Lint : public FunctionPass, public InstVisitor<Lint> {
     68     friend class InstVisitor<Lint>;
     69 
     70     void visitFunction(Function &F);
     71 
     72     void visitCallSite(CallSite CS);
     73     void visitMemoryReference(Instruction &I, Value *Ptr,
     74                               uint64_t Size, unsigned Align,
     75                               Type *Ty, unsigned Flags);
     76 
     77     void visitCallInst(CallInst &I);
     78     void visitInvokeInst(InvokeInst &I);
     79     void visitReturnInst(ReturnInst &I);
     80     void visitLoadInst(LoadInst &I);
     81     void visitStoreInst(StoreInst &I);
     82     void visitXor(BinaryOperator &I);
     83     void visitSub(BinaryOperator &I);
     84     void visitLShr(BinaryOperator &I);
     85     void visitAShr(BinaryOperator &I);
     86     void visitShl(BinaryOperator &I);
     87     void visitSDiv(BinaryOperator &I);
     88     void visitUDiv(BinaryOperator &I);
     89     void visitSRem(BinaryOperator &I);
     90     void visitURem(BinaryOperator &I);
     91     void visitAllocaInst(AllocaInst &I);
     92     void visitVAArgInst(VAArgInst &I);
     93     void visitIndirectBrInst(IndirectBrInst &I);
     94     void visitExtractElementInst(ExtractElementInst &I);
     95     void visitInsertElementInst(InsertElementInst &I);
     96     void visitUnreachableInst(UnreachableInst &I);
     97 
     98     Value *findValue(Value *V, bool OffsetOk) const;
     99     Value *findValueImpl(Value *V, bool OffsetOk,
    100                          SmallPtrSet<Value *, 4> &Visited) const;
    101 
    102   public:
    103     Module *Mod;
    104     AliasAnalysis *AA;
    105     DominatorTree *DT;
    106     DataLayout *TD;
    107     TargetLibraryInfo *TLI;
    108 
    109     std::string Messages;
    110     raw_string_ostream MessagesStr;
    111 
    112     static char ID; // Pass identification, replacement for typeid
    113     Lint() : FunctionPass(ID), MessagesStr(Messages) {
    114       initializeLintPass(*PassRegistry::getPassRegistry());
    115     }
    116 
    117     virtual bool runOnFunction(Function &F);
    118 
    119     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    120       AU.setPreservesAll();
    121       AU.addRequired<AliasAnalysis>();
    122       AU.addRequired<TargetLibraryInfo>();
    123       AU.addRequired<DominatorTree>();
    124     }
    125     virtual void print(raw_ostream &O, const Module *M) const {}
    126 
    127     void WriteValue(const Value *V) {
    128       if (!V) return;
    129       if (isa<Instruction>(V)) {
    130         MessagesStr << *V << '\n';
    131       } else {
    132         WriteAsOperand(MessagesStr, V, true, Mod);
    133         MessagesStr << '\n';
    134       }
    135     }
    136 
    137     // CheckFailed - A check failed, so print out the condition and the message
    138     // that failed.  This provides a nice place to put a breakpoint if you want
    139     // to see why something is not correct.
    140     void CheckFailed(const Twine &Message,
    141                      const Value *V1 = 0, const Value *V2 = 0,
    142                      const Value *V3 = 0, const Value *V4 = 0) {
    143       MessagesStr << Message.str() << "\n";
    144       WriteValue(V1);
    145       WriteValue(V2);
    146       WriteValue(V3);
    147       WriteValue(V4);
    148     }
    149   };
    150 }
    151 
    152 char Lint::ID = 0;
    153 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
    154                       false, true)
    155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    156 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    157 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    158 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
    159                     false, true)
    160 
    161 // Assert - We know that cond should be true, if not print an error message.
    162 #define Assert(C, M) \
    163     do { if (!(C)) { CheckFailed(M); return; } } while (0)
    164 #define Assert1(C, M, V1) \
    165     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    166 #define Assert2(C, M, V1, V2) \
    167     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    168 #define Assert3(C, M, V1, V2, V3) \
    169     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    170 #define Assert4(C, M, V1, V2, V3, V4) \
    171     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    172 
    173 // Lint::run - This is the main Analysis entry point for a
    174 // function.
    175 //
    176 bool Lint::runOnFunction(Function &F) {
    177   Mod = F.getParent();
    178   AA = &getAnalysis<AliasAnalysis>();
    179   DT = &getAnalysis<DominatorTree>();
    180   TD = getAnalysisIfAvailable<DataLayout>();
    181   TLI = &getAnalysis<TargetLibraryInfo>();
    182   visit(F);
    183   dbgs() << MessagesStr.str();
    184   Messages.clear();
    185   return false;
    186 }
    187 
    188 void Lint::visitFunction(Function &F) {
    189   // This isn't undefined behavior, it's just a little unusual, and it's a
    190   // fairly common mistake to neglect to name a function.
    191   Assert1(F.hasName() || F.hasLocalLinkage(),
    192           "Unusual: Unnamed function with non-local linkage", &F);
    193 
    194   // TODO: Check for irreducible control flow.
    195 }
    196 
    197 void Lint::visitCallSite(CallSite CS) {
    198   Instruction &I = *CS.getInstruction();
    199   Value *Callee = CS.getCalledValue();
    200 
    201   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
    202                        0, 0, MemRef::Callee);
    203 
    204   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
    205     Assert1(CS.getCallingConv() == F->getCallingConv(),
    206             "Undefined behavior: Caller and callee calling convention differ",
    207             &I);
    208 
    209     FunctionType *FT = F->getFunctionType();
    210     unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
    211 
    212     Assert1(FT->isVarArg() ?
    213               FT->getNumParams() <= NumActualArgs :
    214               FT->getNumParams() == NumActualArgs,
    215             "Undefined behavior: Call argument count mismatches callee "
    216             "argument count", &I);
    217 
    218     Assert1(FT->getReturnType() == I.getType(),
    219             "Undefined behavior: Call return type mismatches "
    220             "callee return type", &I);
    221 
    222     // Check argument types (in case the callee was casted) and attributes.
    223     // TODO: Verify that caller and callee attributes are compatible.
    224     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    225     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    226     for (; AI != AE; ++AI) {
    227       Value *Actual = *AI;
    228       if (PI != PE) {
    229         Argument *Formal = PI++;
    230         Assert1(Formal->getType() == Actual->getType(),
    231                 "Undefined behavior: Call argument type mismatches "
    232                 "callee parameter type", &I);
    233 
    234         // Check that noalias arguments don't alias other arguments. This is
    235         // not fully precise because we don't know the sizes of the dereferenced
    236         // memory regions.
    237         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
    238           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
    239             if (AI != BI && (*BI)->getType()->isPointerTy()) {
    240               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
    241               Assert1(Result != AliasAnalysis::MustAlias &&
    242                       Result != AliasAnalysis::PartialAlias,
    243                       "Unusual: noalias argument aliases another argument", &I);
    244             }
    245 
    246         // Check that an sret argument points to valid memory.
    247         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
    248           Type *Ty =
    249             cast<PointerType>(Formal->getType())->getElementType();
    250           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
    251                                TD ? TD->getABITypeAlignment(Ty) : 0,
    252                                Ty, MemRef::Read | MemRef::Write);
    253         }
    254       }
    255     }
    256   }
    257 
    258   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    259     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    260          AI != AE; ++AI) {
    261       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
    262       Assert1(!isa<AllocaInst>(Obj),
    263               "Undefined behavior: Call with \"tail\" keyword references "
    264               "alloca", &I);
    265     }
    266 
    267 
    268   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    269     switch (II->getIntrinsicID()) {
    270     default: break;
    271 
    272     // TODO: Check more intrinsics
    273 
    274     case Intrinsic::memcpy: {
    275       MemCpyInst *MCI = cast<MemCpyInst>(&I);
    276       // TODO: If the size is known, use it.
    277       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
    278                            MCI->getAlignment(), 0,
    279                            MemRef::Write);
    280       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
    281                            MCI->getAlignment(), 0,
    282                            MemRef::Read);
    283 
    284       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
    285       // isn't expressive enough for what we really want to do. Known partial
    286       // overlap is not distinguished from the case where nothing is known.
    287       uint64_t Size = 0;
    288       if (const ConstantInt *Len =
    289             dyn_cast<ConstantInt>(findValue(MCI->getLength(),
    290                                             /*OffsetOk=*/false)))
    291         if (Len->getValue().isIntN(32))
    292           Size = Len->getValue().getZExtValue();
    293       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
    294               AliasAnalysis::MustAlias,
    295               "Undefined behavior: memcpy source and destination overlap", &I);
    296       break;
    297     }
    298     case Intrinsic::memmove: {
    299       MemMoveInst *MMI = cast<MemMoveInst>(&I);
    300       // TODO: If the size is known, use it.
    301       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
    302                            MMI->getAlignment(), 0,
    303                            MemRef::Write);
    304       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
    305                            MMI->getAlignment(), 0,
    306                            MemRef::Read);
    307       break;
    308     }
    309     case Intrinsic::memset: {
    310       MemSetInst *MSI = cast<MemSetInst>(&I);
    311       // TODO: If the size is known, use it.
    312       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
    313                            MSI->getAlignment(), 0,
    314                            MemRef::Write);
    315       break;
    316     }
    317 
    318     case Intrinsic::vastart:
    319       Assert1(I.getParent()->getParent()->isVarArg(),
    320               "Undefined behavior: va_start called in a non-varargs function",
    321               &I);
    322 
    323       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    324                            0, 0, MemRef::Read | MemRef::Write);
    325       break;
    326     case Intrinsic::vacopy:
    327       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    328                            0, 0, MemRef::Write);
    329       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
    330                            0, 0, MemRef::Read);
    331       break;
    332     case Intrinsic::vaend:
    333       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    334                            0, 0, MemRef::Read | MemRef::Write);
    335       break;
    336 
    337     case Intrinsic::stackrestore:
    338       // Stackrestore doesn't read or write memory, but it sets the
    339       // stack pointer, which the compiler may read from or write to
    340       // at any time, so check it for both readability and writeability.
    341       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    342                            0, 0, MemRef::Read | MemRef::Write);
    343       break;
    344     }
    345 }
    346 
    347 void Lint::visitCallInst(CallInst &I) {
    348   return visitCallSite(&I);
    349 }
    350 
    351 void Lint::visitInvokeInst(InvokeInst &I) {
    352   return visitCallSite(&I);
    353 }
    354 
    355 void Lint::visitReturnInst(ReturnInst &I) {
    356   Function *F = I.getParent()->getParent();
    357   Assert1(!F->doesNotReturn(),
    358           "Unusual: Return statement in function with noreturn attribute",
    359           &I);
    360 
    361   if (Value *V = I.getReturnValue()) {
    362     Value *Obj = findValue(V, /*OffsetOk=*/true);
    363     Assert1(!isa<AllocaInst>(Obj),
    364             "Unusual: Returning alloca value", &I);
    365   }
    366 }
    367 
    368 // TODO: Check that the reference is in bounds.
    369 // TODO: Check readnone/readonly function attributes.
    370 void Lint::visitMemoryReference(Instruction &I,
    371                                 Value *Ptr, uint64_t Size, unsigned Align,
    372                                 Type *Ty, unsigned Flags) {
    373   // If no memory is being referenced, it doesn't matter if the pointer
    374   // is valid.
    375   if (Size == 0)
    376     return;
    377 
    378   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
    379   Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
    380           "Undefined behavior: Null pointer dereference", &I);
    381   Assert1(!isa<UndefValue>(UnderlyingObject),
    382           "Undefined behavior: Undef pointer dereference", &I);
    383   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    384           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
    385           "Unusual: All-ones pointer dereference", &I);
    386   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    387           !cast<ConstantInt>(UnderlyingObject)->isOne(),
    388           "Unusual: Address one pointer dereference", &I);
    389 
    390   if (Flags & MemRef::Write) {
    391     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
    392       Assert1(!GV->isConstant(),
    393               "Undefined behavior: Write to read-only memory", &I);
    394     Assert1(!isa<Function>(UnderlyingObject) &&
    395             !isa<BlockAddress>(UnderlyingObject),
    396             "Undefined behavior: Write to text section", &I);
    397   }
    398   if (Flags & MemRef::Read) {
    399     Assert1(!isa<Function>(UnderlyingObject),
    400             "Unusual: Load from function body", &I);
    401     Assert1(!isa<BlockAddress>(UnderlyingObject),
    402             "Undefined behavior: Load from block address", &I);
    403   }
    404   if (Flags & MemRef::Callee) {
    405     Assert1(!isa<BlockAddress>(UnderlyingObject),
    406             "Undefined behavior: Call to block address", &I);
    407   }
    408   if (Flags & MemRef::Branchee) {
    409     Assert1(!isa<Constant>(UnderlyingObject) ||
    410             isa<BlockAddress>(UnderlyingObject),
    411             "Undefined behavior: Branch to non-blockaddress", &I);
    412   }
    413 
    414   // Check for buffer overflows and misalignment.
    415   // Only handles memory references that read/write something simple like an
    416   // alloca instruction or a global variable.
    417   int64_t Offset = 0;
    418   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
    419     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    420     // something we can handle and if so extract the size of this base object
    421     // along with its alignment.
    422     uint64_t BaseSize = AliasAnalysis::UnknownSize;
    423     unsigned BaseAlign = 0;
    424 
    425     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
    426       Type *ATy = AI->getAllocatedType();
    427       if (TD && !AI->isArrayAllocation() && ATy->isSized())
    428         BaseSize = TD->getTypeAllocSize(ATy);
    429       BaseAlign = AI->getAlignment();
    430       if (TD && BaseAlign == 0 && ATy->isSized())
    431         BaseAlign = TD->getABITypeAlignment(ATy);
    432     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
    433       // If the global may be defined differently in another compilation unit
    434       // then don't warn about funky memory accesses.
    435       if (GV->hasDefinitiveInitializer()) {
    436         Type *GTy = GV->getType()->getElementType();
    437         if (TD && GTy->isSized())
    438           BaseSize = TD->getTypeAllocSize(GTy);
    439         BaseAlign = GV->getAlignment();
    440         if (TD && BaseAlign == 0 && GTy->isSized())
    441           BaseAlign = TD->getABITypeAlignment(GTy);
    442       }
    443     }
    444 
    445     // Accesses from before the start or after the end of the object are not
    446     // defined.
    447     Assert1(Size == AliasAnalysis::UnknownSize ||
    448             BaseSize == AliasAnalysis::UnknownSize ||
    449             (Offset >= 0 && Offset + Size <= BaseSize),
    450             "Undefined behavior: Buffer overflow", &I);
    451 
    452     // Accesses that say that the memory is more aligned than it is are not
    453     // defined.
    454     if (TD && Align == 0 && Ty && Ty->isSized())
    455       Align = TD->getABITypeAlignment(Ty);
    456     Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
    457             "Undefined behavior: Memory reference address is misaligned", &I);
    458   }
    459 }
    460 
    461 void Lint::visitLoadInst(LoadInst &I) {
    462   visitMemoryReference(I, I.getPointerOperand(),
    463                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
    464                        I.getType(), MemRef::Read);
    465 }
    466 
    467 void Lint::visitStoreInst(StoreInst &I) {
    468   visitMemoryReference(I, I.getPointerOperand(),
    469                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
    470                        I.getAlignment(),
    471                        I.getOperand(0)->getType(), MemRef::Write);
    472 }
    473 
    474 void Lint::visitXor(BinaryOperator &I) {
    475   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    476           !isa<UndefValue>(I.getOperand(1)),
    477           "Undefined result: xor(undef, undef)", &I);
    478 }
    479 
    480 void Lint::visitSub(BinaryOperator &I) {
    481   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    482           !isa<UndefValue>(I.getOperand(1)),
    483           "Undefined result: sub(undef, undef)", &I);
    484 }
    485 
    486 void Lint::visitLShr(BinaryOperator &I) {
    487   if (ConstantInt *CI =
    488         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    489     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    490             "Undefined result: Shift count out of range", &I);
    491 }
    492 
    493 void Lint::visitAShr(BinaryOperator &I) {
    494   if (ConstantInt *CI =
    495         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    496     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    497             "Undefined result: Shift count out of range", &I);
    498 }
    499 
    500 void Lint::visitShl(BinaryOperator &I) {
    501   if (ConstantInt *CI =
    502         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    503     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    504             "Undefined result: Shift count out of range", &I);
    505 }
    506 
    507 static bool isZero(Value *V, DataLayout *TD) {
    508   // Assume undef could be zero.
    509   if (isa<UndefValue>(V)) return true;
    510 
    511   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
    512   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    513   ComputeMaskedBits(V, KnownZero, KnownOne, TD);
    514   return KnownZero.isAllOnesValue();
    515 }
    516 
    517 void Lint::visitSDiv(BinaryOperator &I) {
    518   Assert1(!isZero(I.getOperand(1), TD),
    519           "Undefined behavior: Division by zero", &I);
    520 }
    521 
    522 void Lint::visitUDiv(BinaryOperator &I) {
    523   Assert1(!isZero(I.getOperand(1), TD),
    524           "Undefined behavior: Division by zero", &I);
    525 }
    526 
    527 void Lint::visitSRem(BinaryOperator &I) {
    528   Assert1(!isZero(I.getOperand(1), TD),
    529           "Undefined behavior: Division by zero", &I);
    530 }
    531 
    532 void Lint::visitURem(BinaryOperator &I) {
    533   Assert1(!isZero(I.getOperand(1), TD),
    534           "Undefined behavior: Division by zero", &I);
    535 }
    536 
    537 void Lint::visitAllocaInst(AllocaInst &I) {
    538   if (isa<ConstantInt>(I.getArraySize()))
    539     // This isn't undefined behavior, it's just an obvious pessimization.
    540     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
    541             "Pessimization: Static alloca outside of entry block", &I);
    542 
    543   // TODO: Check for an unusual size (MSB set?)
    544 }
    545 
    546 void Lint::visitVAArgInst(VAArgInst &I) {
    547   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
    548                        MemRef::Read | MemRef::Write);
    549 }
    550 
    551 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
    552   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
    553                        MemRef::Branchee);
    554 
    555   Assert1(I.getNumDestinations() != 0,
    556           "Undefined behavior: indirectbr with no destinations", &I);
    557 }
    558 
    559 void Lint::visitExtractElementInst(ExtractElementInst &I) {
    560   if (ConstantInt *CI =
    561         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
    562                                         /*OffsetOk=*/false)))
    563     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
    564             "Undefined result: extractelement index out of range", &I);
    565 }
    566 
    567 void Lint::visitInsertElementInst(InsertElementInst &I) {
    568   if (ConstantInt *CI =
    569         dyn_cast<ConstantInt>(findValue(I.getOperand(2),
    570                                         /*OffsetOk=*/false)))
    571     Assert1(CI->getValue().ult(I.getType()->getNumElements()),
    572             "Undefined result: insertelement index out of range", &I);
    573 }
    574 
    575 void Lint::visitUnreachableInst(UnreachableInst &I) {
    576   // This isn't undefined behavior, it's merely suspicious.
    577   Assert1(&I == I.getParent()->begin() ||
    578           prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
    579           "Unusual: unreachable immediately preceded by instruction without "
    580           "side effects", &I);
    581 }
    582 
    583 /// findValue - Look through bitcasts and simple memory reference patterns
    584 /// to identify an equivalent, but more informative, value.  If OffsetOk
    585 /// is true, look through getelementptrs with non-zero offsets too.
    586 ///
    587 /// Most analysis passes don't require this logic, because instcombine
    588 /// will simplify most of these kinds of things away. But it's a goal of
    589 /// this Lint pass to be useful even on non-optimized IR.
    590 Value *Lint::findValue(Value *V, bool OffsetOk) const {
    591   SmallPtrSet<Value *, 4> Visited;
    592   return findValueImpl(V, OffsetOk, Visited);
    593 }
    594 
    595 /// findValueImpl - Implementation helper for findValue.
    596 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
    597                            SmallPtrSet<Value *, 4> &Visited) const {
    598   // Detect self-referential values.
    599   if (!Visited.insert(V))
    600     return UndefValue::get(V->getType());
    601 
    602   // TODO: Look through sext or zext cast, when the result is known to
    603   // be interpreted as signed or unsigned, respectively.
    604   // TODO: Look through eliminable cast pairs.
    605   // TODO: Look through calls with unique return values.
    606   // TODO: Look through vector insert/extract/shuffle.
    607   V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
    608   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    609     BasicBlock::iterator BBI = L;
    610     BasicBlock *BB = L->getParent();
    611     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    612     for (;;) {
    613       if (!VisitedBlocks.insert(BB)) break;
    614       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
    615                                               BB, BBI, 6, AA))
    616         return findValueImpl(U, OffsetOk, Visited);
    617       if (BBI != BB->begin()) break;
    618       BB = BB->getUniquePredecessor();
    619       if (!BB) break;
    620       BBI = BB->end();
    621     }
    622   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    623     if (Value *W = PN->hasConstantValue())
    624       if (W != V)
    625         return findValueImpl(W, OffsetOk, Visited);
    626   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    627     if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
    628                             Type::getInt64Ty(V->getContext())))
    629       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
    630   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    631     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
    632                                      Ex->getIndices()))
    633       if (W != V)
    634         return findValueImpl(W, OffsetOk, Visited);
    635   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    636     // Same as above, but for ConstantExpr instead of Instruction.
    637     if (Instruction::isCast(CE->getOpcode())) {
    638       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
    639                                CE->getOperand(0)->getType(),
    640                                CE->getType(),
    641                                TD ? TD->getIntPtrType(V->getContext()) :
    642                                     Type::getInt64Ty(V->getContext())))
    643         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    644     } else if (CE->getOpcode() == Instruction::ExtractValue) {
    645       ArrayRef<unsigned> Indices = CE->getIndices();
    646       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
    647         if (W != V)
    648           return findValueImpl(W, OffsetOk, Visited);
    649     }
    650   }
    651 
    652   // As a last resort, try SimplifyInstruction or constant folding.
    653   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    654     if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
    655       return findValueImpl(W, OffsetOk, Visited);
    656   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    657     if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
    658       if (W != V)
    659         return findValueImpl(W, OffsetOk, Visited);
    660   }
    661 
    662   return V;
    663 }
    664 
    665 //===----------------------------------------------------------------------===//
    666 //  Implement the public interfaces to this file...
    667 //===----------------------------------------------------------------------===//
    668 
    669 FunctionPass *llvm::createLintPass() {
    670   return new Lint();
    671 }
    672 
    673 /// lintFunction - Check a function for errors, printing messages on stderr.
    674 ///
    675 void llvm::lintFunction(const Function &f) {
    676   Function &F = const_cast<Function&>(f);
    677   assert(!F.isDeclaration() && "Cannot lint external functions");
    678 
    679   FunctionPassManager FPM(F.getParent());
    680   Lint *V = new Lint();
    681   FPM.add(V);
    682   FPM.run(F);
    683 }
    684 
    685 /// lintModule - Check a module for errors, printing messages on stderr.
    686 ///
    687 void llvm::lintModule(const Module &M) {
    688   PassManager PM;
    689   Lint *V = new Lint();
    690   PM.add(V);
    691   PM.run(const_cast<Module&>(M));
    692 }
    693