Home | History | Annotate | Download | only in Utils
      1 //===-- AArch64BaseInfo.cpp - AArch64 Base encoding information------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides basic encoding and assembly information for AArch64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "AArch64BaseInfo.h"
     14 #include "llvm/ADT/APFloat.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringExtras.h"
     17 #include "llvm/Support/Regex.h"
     18 
     19 using namespace llvm;
     20 
     21 StringRef NamedImmMapper::toString(uint32_t Value, bool &Valid) const {
     22   for (unsigned i = 0; i < NumPairs; ++i) {
     23     if (Pairs[i].Value == Value) {
     24       Valid = true;
     25       return Pairs[i].Name;
     26     }
     27   }
     28 
     29   Valid = false;
     30   return StringRef();
     31 }
     32 
     33 uint32_t NamedImmMapper::fromString(StringRef Name, bool &Valid) const {
     34   std::string LowerCaseName = Name.lower();
     35   for (unsigned i = 0; i < NumPairs; ++i) {
     36     if (Pairs[i].Name == LowerCaseName) {
     37       Valid = true;
     38       return Pairs[i].Value;
     39     }
     40   }
     41 
     42   Valid = false;
     43   return -1;
     44 }
     45 
     46 bool NamedImmMapper::validImm(uint32_t Value) const {
     47   return Value < TooBigImm;
     48 }
     49 
     50 const NamedImmMapper::Mapping A64AT::ATMapper::ATPairs[] = {
     51   {"s1e1r", S1E1R},
     52   {"s1e2r", S1E2R},
     53   {"s1e3r", S1E3R},
     54   {"s1e1w", S1E1W},
     55   {"s1e2w", S1E2W},
     56   {"s1e3w", S1E3W},
     57   {"s1e0r", S1E0R},
     58   {"s1e0w", S1E0W},
     59   {"s12e1r", S12E1R},
     60   {"s12e1w", S12E1W},
     61   {"s12e0r", S12E0R},
     62   {"s12e0w", S12E0W},
     63 };
     64 
     65 A64AT::ATMapper::ATMapper()
     66   : NamedImmMapper(ATPairs, 0) {}
     67 
     68 const NamedImmMapper::Mapping A64DB::DBarrierMapper::DBarrierPairs[] = {
     69   {"oshld", OSHLD},
     70   {"oshst", OSHST},
     71   {"osh", OSH},
     72   {"nshld", NSHLD},
     73   {"nshst", NSHST},
     74   {"nsh", NSH},
     75   {"ishld", ISHLD},
     76   {"ishst", ISHST},
     77   {"ish", ISH},
     78   {"ld", LD},
     79   {"st", ST},
     80   {"sy", SY}
     81 };
     82 
     83 A64DB::DBarrierMapper::DBarrierMapper()
     84   : NamedImmMapper(DBarrierPairs, 16u) {}
     85 
     86 const NamedImmMapper::Mapping A64DC::DCMapper::DCPairs[] = {
     87   {"zva", ZVA},
     88   {"ivac", IVAC},
     89   {"isw", ISW},
     90   {"cvac", CVAC},
     91   {"csw", CSW},
     92   {"cvau", CVAU},
     93   {"civac", CIVAC},
     94   {"cisw", CISW}
     95 };
     96 
     97 A64DC::DCMapper::DCMapper()
     98   : NamedImmMapper(DCPairs, 0) {}
     99 
    100 const NamedImmMapper::Mapping A64IC::ICMapper::ICPairs[] = {
    101   {"ialluis",  IALLUIS},
    102   {"iallu", IALLU},
    103   {"ivau", IVAU}
    104 };
    105 
    106 A64IC::ICMapper::ICMapper()
    107   : NamedImmMapper(ICPairs, 0) {}
    108 
    109 const NamedImmMapper::Mapping A64ISB::ISBMapper::ISBPairs[] = {
    110   {"sy",  SY},
    111 };
    112 
    113 A64ISB::ISBMapper::ISBMapper()
    114   : NamedImmMapper(ISBPairs, 16) {}
    115 
    116 const NamedImmMapper::Mapping A64PRFM::PRFMMapper::PRFMPairs[] = {
    117   {"pldl1keep", PLDL1KEEP},
    118   {"pldl1strm", PLDL1STRM},
    119   {"pldl2keep", PLDL2KEEP},
    120   {"pldl2strm", PLDL2STRM},
    121   {"pldl3keep", PLDL3KEEP},
    122   {"pldl3strm", PLDL3STRM},
    123   {"plil1keep", PLIL1KEEP},
    124   {"plil1strm", PLIL1STRM},
    125   {"plil2keep", PLIL2KEEP},
    126   {"plil2strm", PLIL2STRM},
    127   {"plil3keep", PLIL3KEEP},
    128   {"plil3strm", PLIL3STRM},
    129   {"pstl1keep", PSTL1KEEP},
    130   {"pstl1strm", PSTL1STRM},
    131   {"pstl2keep", PSTL2KEEP},
    132   {"pstl2strm", PSTL2STRM},
    133   {"pstl3keep", PSTL3KEEP},
    134   {"pstl3strm", PSTL3STRM}
    135 };
    136 
    137 A64PRFM::PRFMMapper::PRFMMapper()
    138   : NamedImmMapper(PRFMPairs, 32) {}
    139 
    140 const NamedImmMapper::Mapping A64PState::PStateMapper::PStatePairs[] = {
    141   {"spsel", SPSel},
    142   {"daifset", DAIFSet},
    143   {"daifclr", DAIFClr}
    144 };
    145 
    146 A64PState::PStateMapper::PStateMapper()
    147   : NamedImmMapper(PStatePairs, 0) {}
    148 
    149 const NamedImmMapper::Mapping A64SysReg::MRSMapper::MRSPairs[] = {
    150   {"mdccsr_el0", MDCCSR_EL0},
    151   {"dbgdtrrx_el0", DBGDTRRX_EL0},
    152   {"mdrar_el1", MDRAR_EL1},
    153   {"oslsr_el1", OSLSR_EL1},
    154   {"dbgauthstatus_el1", DBGAUTHSTATUS_EL1},
    155   {"pmceid0_el0", PMCEID0_EL0},
    156   {"pmceid1_el0", PMCEID1_EL0},
    157   {"midr_el1", MIDR_EL1},
    158   {"ccsidr_el1", CCSIDR_EL1},
    159   {"clidr_el1", CLIDR_EL1},
    160   {"ctr_el0", CTR_EL0},
    161   {"mpidr_el1", MPIDR_EL1},
    162   {"revidr_el1", REVIDR_EL1},
    163   {"aidr_el1", AIDR_EL1},
    164   {"dczid_el0", DCZID_EL0},
    165   {"id_pfr0_el1", ID_PFR0_EL1},
    166   {"id_pfr1_el1", ID_PFR1_EL1},
    167   {"id_dfr0_el1", ID_DFR0_EL1},
    168   {"id_afr0_el1", ID_AFR0_EL1},
    169   {"id_mmfr0_el1", ID_MMFR0_EL1},
    170   {"id_mmfr1_el1", ID_MMFR1_EL1},
    171   {"id_mmfr2_el1", ID_MMFR2_EL1},
    172   {"id_mmfr3_el1", ID_MMFR3_EL1},
    173   {"id_isar0_el1", ID_ISAR0_EL1},
    174   {"id_isar1_el1", ID_ISAR1_EL1},
    175   {"id_isar2_el1", ID_ISAR2_EL1},
    176   {"id_isar3_el1", ID_ISAR3_EL1},
    177   {"id_isar4_el1", ID_ISAR4_EL1},
    178   {"id_isar5_el1", ID_ISAR5_EL1},
    179   {"id_aa64pfr0_el1", ID_AA64PFR0_EL1},
    180   {"id_aa64pfr1_el1", ID_AA64PFR1_EL1},
    181   {"id_aa64dfr0_el1", ID_AA64DFR0_EL1},
    182   {"id_aa64dfr1_el1", ID_AA64DFR1_EL1},
    183   {"id_aa64afr0_el1", ID_AA64AFR0_EL1},
    184   {"id_aa64afr1_el1", ID_AA64AFR1_EL1},
    185   {"id_aa64isar0_el1", ID_AA64ISAR0_EL1},
    186   {"id_aa64isar1_el1", ID_AA64ISAR1_EL1},
    187   {"id_aa64mmfr0_el1", ID_AA64MMFR0_EL1},
    188   {"id_aa64mmfr1_el1", ID_AA64MMFR1_EL1},
    189   {"mvfr0_el1", MVFR0_EL1},
    190   {"mvfr1_el1", MVFR1_EL1},
    191   {"mvfr2_el1", MVFR2_EL1},
    192   {"rvbar_el1", RVBAR_EL1},
    193   {"rvbar_el2", RVBAR_EL2},
    194   {"rvbar_el3", RVBAR_EL3},
    195   {"isr_el1", ISR_EL1},
    196   {"cntpct_el0", CNTPCT_EL0},
    197   {"cntvct_el0", CNTVCT_EL0},
    198 
    199   // Trace registers
    200   {"trcstatr", TRCSTATR},
    201   {"trcidr8", TRCIDR8},
    202   {"trcidr9", TRCIDR9},
    203   {"trcidr10", TRCIDR10},
    204   {"trcidr11", TRCIDR11},
    205   {"trcidr12", TRCIDR12},
    206   {"trcidr13", TRCIDR13},
    207   {"trcidr0", TRCIDR0},
    208   {"trcidr1", TRCIDR1},
    209   {"trcidr2", TRCIDR2},
    210   {"trcidr3", TRCIDR3},
    211   {"trcidr4", TRCIDR4},
    212   {"trcidr5", TRCIDR5},
    213   {"trcidr6", TRCIDR6},
    214   {"trcidr7", TRCIDR7},
    215   {"trcoslsr", TRCOSLSR},
    216   {"trcpdsr", TRCPDSR},
    217   {"trcdevaff0", TRCDEVAFF0},
    218   {"trcdevaff1", TRCDEVAFF1},
    219   {"trclsr", TRCLSR},
    220   {"trcauthstatus", TRCAUTHSTATUS},
    221   {"trcdevarch", TRCDEVARCH},
    222   {"trcdevid", TRCDEVID},
    223   {"trcdevtype", TRCDEVTYPE},
    224   {"trcpidr4", TRCPIDR4},
    225   {"trcpidr5", TRCPIDR5},
    226   {"trcpidr6", TRCPIDR6},
    227   {"trcpidr7", TRCPIDR7},
    228   {"trcpidr0", TRCPIDR0},
    229   {"trcpidr1", TRCPIDR1},
    230   {"trcpidr2", TRCPIDR2},
    231   {"trcpidr3", TRCPIDR3},
    232   {"trccidr0", TRCCIDR0},
    233   {"trccidr1", TRCCIDR1},
    234   {"trccidr2", TRCCIDR2},
    235   {"trccidr3", TRCCIDR3},
    236 
    237   // GICv3 registers
    238   {"icc_iar1_el1", ICC_IAR1_EL1},
    239   {"icc_iar0_el1", ICC_IAR0_EL1},
    240   {"icc_hppir1_el1", ICC_HPPIR1_EL1},
    241   {"icc_hppir0_el1", ICC_HPPIR0_EL1},
    242   {"icc_rpr_el1", ICC_RPR_EL1},
    243   {"ich_vtr_el2", ICH_VTR_EL2},
    244   {"ich_eisr_el2", ICH_EISR_EL2},
    245   {"ich_elsr_el2", ICH_ELSR_EL2}
    246 };
    247 
    248 A64SysReg::MRSMapper::MRSMapper() {
    249     InstPairs = &MRSPairs[0];
    250     NumInstPairs = llvm::array_lengthof(MRSPairs);
    251 }
    252 
    253 const NamedImmMapper::Mapping A64SysReg::MSRMapper::MSRPairs[] = {
    254   {"dbgdtrtx_el0", DBGDTRTX_EL0},
    255   {"oslar_el1", OSLAR_EL1},
    256   {"pmswinc_el0", PMSWINC_EL0},
    257 
    258   // Trace registers
    259   {"trcoslar", TRCOSLAR},
    260   {"trclar", TRCLAR},
    261 
    262   // GICv3 registers
    263   {"icc_eoir1_el1", ICC_EOIR1_EL1},
    264   {"icc_eoir0_el1", ICC_EOIR0_EL1},
    265   {"icc_dir_el1", ICC_DIR_EL1},
    266   {"icc_sgi1r_el1", ICC_SGI1R_EL1},
    267   {"icc_asgi1r_el1", ICC_ASGI1R_EL1},
    268   {"icc_sgi0r_el1", ICC_SGI0R_EL1}
    269 };
    270 
    271 A64SysReg::MSRMapper::MSRMapper() {
    272     InstPairs = &MSRPairs[0];
    273     NumInstPairs = llvm::array_lengthof(MSRPairs);
    274 }
    275 
    276 
    277 const NamedImmMapper::Mapping A64SysReg::SysRegMapper::SysRegPairs[] = {
    278   {"osdtrrx_el1", OSDTRRX_EL1},
    279   {"osdtrtx_el1",  OSDTRTX_EL1},
    280   {"teecr32_el1", TEECR32_EL1},
    281   {"mdccint_el1", MDCCINT_EL1},
    282   {"mdscr_el1", MDSCR_EL1},
    283   {"dbgdtr_el0", DBGDTR_EL0},
    284   {"oseccr_el1", OSECCR_EL1},
    285   {"dbgvcr32_el2", DBGVCR32_EL2},
    286   {"dbgbvr0_el1", DBGBVR0_EL1},
    287   {"dbgbvr1_el1", DBGBVR1_EL1},
    288   {"dbgbvr2_el1", DBGBVR2_EL1},
    289   {"dbgbvr3_el1", DBGBVR3_EL1},
    290   {"dbgbvr4_el1", DBGBVR4_EL1},
    291   {"dbgbvr5_el1", DBGBVR5_EL1},
    292   {"dbgbvr6_el1", DBGBVR6_EL1},
    293   {"dbgbvr7_el1", DBGBVR7_EL1},
    294   {"dbgbvr8_el1", DBGBVR8_EL1},
    295   {"dbgbvr9_el1", DBGBVR9_EL1},
    296   {"dbgbvr10_el1", DBGBVR10_EL1},
    297   {"dbgbvr11_el1", DBGBVR11_EL1},
    298   {"dbgbvr12_el1", DBGBVR12_EL1},
    299   {"dbgbvr13_el1", DBGBVR13_EL1},
    300   {"dbgbvr14_el1", DBGBVR14_EL1},
    301   {"dbgbvr15_el1", DBGBVR15_EL1},
    302   {"dbgbcr0_el1", DBGBCR0_EL1},
    303   {"dbgbcr1_el1", DBGBCR1_EL1},
    304   {"dbgbcr2_el1", DBGBCR2_EL1},
    305   {"dbgbcr3_el1", DBGBCR3_EL1},
    306   {"dbgbcr4_el1", DBGBCR4_EL1},
    307   {"dbgbcr5_el1", DBGBCR5_EL1},
    308   {"dbgbcr6_el1", DBGBCR6_EL1},
    309   {"dbgbcr7_el1", DBGBCR7_EL1},
    310   {"dbgbcr8_el1", DBGBCR8_EL1},
    311   {"dbgbcr9_el1", DBGBCR9_EL1},
    312   {"dbgbcr10_el1", DBGBCR10_EL1},
    313   {"dbgbcr11_el1", DBGBCR11_EL1},
    314   {"dbgbcr12_el1", DBGBCR12_EL1},
    315   {"dbgbcr13_el1", DBGBCR13_EL1},
    316   {"dbgbcr14_el1", DBGBCR14_EL1},
    317   {"dbgbcr15_el1", DBGBCR15_EL1},
    318   {"dbgwvr0_el1", DBGWVR0_EL1},
    319   {"dbgwvr1_el1", DBGWVR1_EL1},
    320   {"dbgwvr2_el1", DBGWVR2_EL1},
    321   {"dbgwvr3_el1", DBGWVR3_EL1},
    322   {"dbgwvr4_el1", DBGWVR4_EL1},
    323   {"dbgwvr5_el1", DBGWVR5_EL1},
    324   {"dbgwvr6_el1", DBGWVR6_EL1},
    325   {"dbgwvr7_el1", DBGWVR7_EL1},
    326   {"dbgwvr8_el1", DBGWVR8_EL1},
    327   {"dbgwvr9_el1", DBGWVR9_EL1},
    328   {"dbgwvr10_el1", DBGWVR10_EL1},
    329   {"dbgwvr11_el1", DBGWVR11_EL1},
    330   {"dbgwvr12_el1", DBGWVR12_EL1},
    331   {"dbgwvr13_el1", DBGWVR13_EL1},
    332   {"dbgwvr14_el1", DBGWVR14_EL1},
    333   {"dbgwvr15_el1", DBGWVR15_EL1},
    334   {"dbgwcr0_el1", DBGWCR0_EL1},
    335   {"dbgwcr1_el1", DBGWCR1_EL1},
    336   {"dbgwcr2_el1", DBGWCR2_EL1},
    337   {"dbgwcr3_el1", DBGWCR3_EL1},
    338   {"dbgwcr4_el1", DBGWCR4_EL1},
    339   {"dbgwcr5_el1", DBGWCR5_EL1},
    340   {"dbgwcr6_el1", DBGWCR6_EL1},
    341   {"dbgwcr7_el1", DBGWCR7_EL1},
    342   {"dbgwcr8_el1", DBGWCR8_EL1},
    343   {"dbgwcr9_el1", DBGWCR9_EL1},
    344   {"dbgwcr10_el1", DBGWCR10_EL1},
    345   {"dbgwcr11_el1", DBGWCR11_EL1},
    346   {"dbgwcr12_el1", DBGWCR12_EL1},
    347   {"dbgwcr13_el1", DBGWCR13_EL1},
    348   {"dbgwcr14_el1", DBGWCR14_EL1},
    349   {"dbgwcr15_el1", DBGWCR15_EL1},
    350   {"teehbr32_el1", TEEHBR32_EL1},
    351   {"osdlr_el1", OSDLR_EL1},
    352   {"dbgprcr_el1", DBGPRCR_EL1},
    353   {"dbgclaimset_el1", DBGCLAIMSET_EL1},
    354   {"dbgclaimclr_el1", DBGCLAIMCLR_EL1},
    355   {"csselr_el1", CSSELR_EL1},
    356   {"vpidr_el2", VPIDR_EL2},
    357   {"vmpidr_el2", VMPIDR_EL2},
    358   {"sctlr_el1", SCTLR_EL1},
    359   {"sctlr_el2", SCTLR_EL2},
    360   {"sctlr_el3", SCTLR_EL3},
    361   {"actlr_el1", ACTLR_EL1},
    362   {"actlr_el2", ACTLR_EL2},
    363   {"actlr_el3", ACTLR_EL3},
    364   {"cpacr_el1", CPACR_EL1},
    365   {"hcr_el2", HCR_EL2},
    366   {"scr_el3", SCR_EL3},
    367   {"mdcr_el2", MDCR_EL2},
    368   {"sder32_el3", SDER32_EL3},
    369   {"cptr_el2", CPTR_EL2},
    370   {"cptr_el3", CPTR_EL3},
    371   {"hstr_el2", HSTR_EL2},
    372   {"hacr_el2", HACR_EL2},
    373   {"mdcr_el3", MDCR_EL3},
    374   {"ttbr0_el1", TTBR0_EL1},
    375   {"ttbr0_el2", TTBR0_EL2},
    376   {"ttbr0_el3", TTBR0_EL3},
    377   {"ttbr1_el1", TTBR1_EL1},
    378   {"tcr_el1", TCR_EL1},
    379   {"tcr_el2", TCR_EL2},
    380   {"tcr_el3", TCR_EL3},
    381   {"vttbr_el2", VTTBR_EL2},
    382   {"vtcr_el2", VTCR_EL2},
    383   {"dacr32_el2", DACR32_EL2},
    384   {"spsr_el1", SPSR_EL1},
    385   {"spsr_el2", SPSR_EL2},
    386   {"spsr_el3", SPSR_EL3},
    387   {"elr_el1", ELR_EL1},
    388   {"elr_el2", ELR_EL2},
    389   {"elr_el3", ELR_EL3},
    390   {"sp_el0", SP_EL0},
    391   {"sp_el1", SP_EL1},
    392   {"sp_el2", SP_EL2},
    393   {"spsel", SPSel},
    394   {"nzcv", NZCV},
    395   {"daif", DAIF},
    396   {"currentel", CurrentEL},
    397   {"spsr_irq", SPSR_irq},
    398   {"spsr_abt", SPSR_abt},
    399   {"spsr_und", SPSR_und},
    400   {"spsr_fiq", SPSR_fiq},
    401   {"fpcr", FPCR},
    402   {"fpsr", FPSR},
    403   {"dspsr_el0", DSPSR_EL0},
    404   {"dlr_el0", DLR_EL0},
    405   {"ifsr32_el2", IFSR32_EL2},
    406   {"afsr0_el1", AFSR0_EL1},
    407   {"afsr0_el2", AFSR0_EL2},
    408   {"afsr0_el3", AFSR0_EL3},
    409   {"afsr1_el1", AFSR1_EL1},
    410   {"afsr1_el2", AFSR1_EL2},
    411   {"afsr1_el3", AFSR1_EL3},
    412   {"esr_el1", ESR_EL1},
    413   {"esr_el2", ESR_EL2},
    414   {"esr_el3", ESR_EL3},
    415   {"fpexc32_el2", FPEXC32_EL2},
    416   {"far_el1", FAR_EL1},
    417   {"far_el2", FAR_EL2},
    418   {"far_el3", FAR_EL3},
    419   {"hpfar_el2", HPFAR_EL2},
    420   {"par_el1", PAR_EL1},
    421   {"pmcr_el0", PMCR_EL0},
    422   {"pmcntenset_el0", PMCNTENSET_EL0},
    423   {"pmcntenclr_el0", PMCNTENCLR_EL0},
    424   {"pmovsclr_el0", PMOVSCLR_EL0},
    425   {"pmselr_el0", PMSELR_EL0},
    426   {"pmccntr_el0", PMCCNTR_EL0},
    427   {"pmxevtyper_el0", PMXEVTYPER_EL0},
    428   {"pmxevcntr_el0", PMXEVCNTR_EL0},
    429   {"pmuserenr_el0", PMUSERENR_EL0},
    430   {"pmintenset_el1", PMINTENSET_EL1},
    431   {"pmintenclr_el1", PMINTENCLR_EL1},
    432   {"pmovsset_el0", PMOVSSET_EL0},
    433   {"mair_el1", MAIR_EL1},
    434   {"mair_el2", MAIR_EL2},
    435   {"mair_el3", MAIR_EL3},
    436   {"amair_el1", AMAIR_EL1},
    437   {"amair_el2", AMAIR_EL2},
    438   {"amair_el3", AMAIR_EL3},
    439   {"vbar_el1", VBAR_EL1},
    440   {"vbar_el2", VBAR_EL2},
    441   {"vbar_el3", VBAR_EL3},
    442   {"rmr_el1", RMR_EL1},
    443   {"rmr_el2", RMR_EL2},
    444   {"rmr_el3", RMR_EL3},
    445   {"contextidr_el1", CONTEXTIDR_EL1},
    446   {"tpidr_el0", TPIDR_EL0},
    447   {"tpidr_el2", TPIDR_EL2},
    448   {"tpidr_el3", TPIDR_EL3},
    449   {"tpidrro_el0", TPIDRRO_EL0},
    450   {"tpidr_el1", TPIDR_EL1},
    451   {"cntfrq_el0", CNTFRQ_EL0},
    452   {"cntvoff_el2", CNTVOFF_EL2},
    453   {"cntkctl_el1", CNTKCTL_EL1},
    454   {"cnthctl_el2", CNTHCTL_EL2},
    455   {"cntp_tval_el0", CNTP_TVAL_EL0},
    456   {"cnthp_tval_el2", CNTHP_TVAL_EL2},
    457   {"cntps_tval_el1", CNTPS_TVAL_EL1},
    458   {"cntp_ctl_el0", CNTP_CTL_EL0},
    459   {"cnthp_ctl_el2", CNTHP_CTL_EL2},
    460   {"cntps_ctl_el1", CNTPS_CTL_EL1},
    461   {"cntp_cval_el0", CNTP_CVAL_EL0},
    462   {"cnthp_cval_el2", CNTHP_CVAL_EL2},
    463   {"cntps_cval_el1", CNTPS_CVAL_EL1},
    464   {"cntv_tval_el0", CNTV_TVAL_EL0},
    465   {"cntv_ctl_el0", CNTV_CTL_EL0},
    466   {"cntv_cval_el0", CNTV_CVAL_EL0},
    467   {"pmevcntr0_el0", PMEVCNTR0_EL0},
    468   {"pmevcntr1_el0", PMEVCNTR1_EL0},
    469   {"pmevcntr2_el0", PMEVCNTR2_EL0},
    470   {"pmevcntr3_el0", PMEVCNTR3_EL0},
    471   {"pmevcntr4_el0", PMEVCNTR4_EL0},
    472   {"pmevcntr5_el0", PMEVCNTR5_EL0},
    473   {"pmevcntr6_el0", PMEVCNTR6_EL0},
    474   {"pmevcntr7_el0", PMEVCNTR7_EL0},
    475   {"pmevcntr8_el0", PMEVCNTR8_EL0},
    476   {"pmevcntr9_el0", PMEVCNTR9_EL0},
    477   {"pmevcntr10_el0", PMEVCNTR10_EL0},
    478   {"pmevcntr11_el0", PMEVCNTR11_EL0},
    479   {"pmevcntr12_el0", PMEVCNTR12_EL0},
    480   {"pmevcntr13_el0", PMEVCNTR13_EL0},
    481   {"pmevcntr14_el0", PMEVCNTR14_EL0},
    482   {"pmevcntr15_el0", PMEVCNTR15_EL0},
    483   {"pmevcntr16_el0", PMEVCNTR16_EL0},
    484   {"pmevcntr17_el0", PMEVCNTR17_EL0},
    485   {"pmevcntr18_el0", PMEVCNTR18_EL0},
    486   {"pmevcntr19_el0", PMEVCNTR19_EL0},
    487   {"pmevcntr20_el0", PMEVCNTR20_EL0},
    488   {"pmevcntr21_el0", PMEVCNTR21_EL0},
    489   {"pmevcntr22_el0", PMEVCNTR22_EL0},
    490   {"pmevcntr23_el0", PMEVCNTR23_EL0},
    491   {"pmevcntr24_el0", PMEVCNTR24_EL0},
    492   {"pmevcntr25_el0", PMEVCNTR25_EL0},
    493   {"pmevcntr26_el0", PMEVCNTR26_EL0},
    494   {"pmevcntr27_el0", PMEVCNTR27_EL0},
    495   {"pmevcntr28_el0", PMEVCNTR28_EL0},
    496   {"pmevcntr29_el0", PMEVCNTR29_EL0},
    497   {"pmevcntr30_el0", PMEVCNTR30_EL0},
    498   {"pmccfiltr_el0", PMCCFILTR_EL0},
    499   {"pmevtyper0_el0", PMEVTYPER0_EL0},
    500   {"pmevtyper1_el0", PMEVTYPER1_EL0},
    501   {"pmevtyper2_el0", PMEVTYPER2_EL0},
    502   {"pmevtyper3_el0", PMEVTYPER3_EL0},
    503   {"pmevtyper4_el0", PMEVTYPER4_EL0},
    504   {"pmevtyper5_el0", PMEVTYPER5_EL0},
    505   {"pmevtyper6_el0", PMEVTYPER6_EL0},
    506   {"pmevtyper7_el0", PMEVTYPER7_EL0},
    507   {"pmevtyper8_el0", PMEVTYPER8_EL0},
    508   {"pmevtyper9_el0", PMEVTYPER9_EL0},
    509   {"pmevtyper10_el0", PMEVTYPER10_EL0},
    510   {"pmevtyper11_el0", PMEVTYPER11_EL0},
    511   {"pmevtyper12_el0", PMEVTYPER12_EL0},
    512   {"pmevtyper13_el0", PMEVTYPER13_EL0},
    513   {"pmevtyper14_el0", PMEVTYPER14_EL0},
    514   {"pmevtyper15_el0", PMEVTYPER15_EL0},
    515   {"pmevtyper16_el0", PMEVTYPER16_EL0},
    516   {"pmevtyper17_el0", PMEVTYPER17_EL0},
    517   {"pmevtyper18_el0", PMEVTYPER18_EL0},
    518   {"pmevtyper19_el0", PMEVTYPER19_EL0},
    519   {"pmevtyper20_el0", PMEVTYPER20_EL0},
    520   {"pmevtyper21_el0", PMEVTYPER21_EL0},
    521   {"pmevtyper22_el0", PMEVTYPER22_EL0},
    522   {"pmevtyper23_el0", PMEVTYPER23_EL0},
    523   {"pmevtyper24_el0", PMEVTYPER24_EL0},
    524   {"pmevtyper25_el0", PMEVTYPER25_EL0},
    525   {"pmevtyper26_el0", PMEVTYPER26_EL0},
    526   {"pmevtyper27_el0", PMEVTYPER27_EL0},
    527   {"pmevtyper28_el0", PMEVTYPER28_EL0},
    528   {"pmevtyper29_el0", PMEVTYPER29_EL0},
    529   {"pmevtyper30_el0", PMEVTYPER30_EL0},
    530 
    531   // Trace registers
    532   {"trcprgctlr", TRCPRGCTLR},
    533   {"trcprocselr", TRCPROCSELR},
    534   {"trcconfigr", TRCCONFIGR},
    535   {"trcauxctlr", TRCAUXCTLR},
    536   {"trceventctl0r", TRCEVENTCTL0R},
    537   {"trceventctl1r", TRCEVENTCTL1R},
    538   {"trcstallctlr", TRCSTALLCTLR},
    539   {"trctsctlr", TRCTSCTLR},
    540   {"trcsyncpr", TRCSYNCPR},
    541   {"trcccctlr", TRCCCCTLR},
    542   {"trcbbctlr", TRCBBCTLR},
    543   {"trctraceidr", TRCTRACEIDR},
    544   {"trcqctlr", TRCQCTLR},
    545   {"trcvictlr", TRCVICTLR},
    546   {"trcviiectlr", TRCVIIECTLR},
    547   {"trcvissctlr", TRCVISSCTLR},
    548   {"trcvipcssctlr", TRCVIPCSSCTLR},
    549   {"trcvdctlr", TRCVDCTLR},
    550   {"trcvdsacctlr", TRCVDSACCTLR},
    551   {"trcvdarcctlr", TRCVDARCCTLR},
    552   {"trcseqevr0", TRCSEQEVR0},
    553   {"trcseqevr1", TRCSEQEVR1},
    554   {"trcseqevr2", TRCSEQEVR2},
    555   {"trcseqrstevr", TRCSEQRSTEVR},
    556   {"trcseqstr", TRCSEQSTR},
    557   {"trcextinselr", TRCEXTINSELR},
    558   {"trccntrldvr0", TRCCNTRLDVR0},
    559   {"trccntrldvr1", TRCCNTRLDVR1},
    560   {"trccntrldvr2", TRCCNTRLDVR2},
    561   {"trccntrldvr3", TRCCNTRLDVR3},
    562   {"trccntctlr0", TRCCNTCTLR0},
    563   {"trccntctlr1", TRCCNTCTLR1},
    564   {"trccntctlr2", TRCCNTCTLR2},
    565   {"trccntctlr3", TRCCNTCTLR3},
    566   {"trccntvr0", TRCCNTVR0},
    567   {"trccntvr1", TRCCNTVR1},
    568   {"trccntvr2", TRCCNTVR2},
    569   {"trccntvr3", TRCCNTVR3},
    570   {"trcimspec0", TRCIMSPEC0},
    571   {"trcimspec1", TRCIMSPEC1},
    572   {"trcimspec2", TRCIMSPEC2},
    573   {"trcimspec3", TRCIMSPEC3},
    574   {"trcimspec4", TRCIMSPEC4},
    575   {"trcimspec5", TRCIMSPEC5},
    576   {"trcimspec6", TRCIMSPEC6},
    577   {"trcimspec7", TRCIMSPEC7},
    578   {"trcrsctlr2", TRCRSCTLR2},
    579   {"trcrsctlr3", TRCRSCTLR3},
    580   {"trcrsctlr4", TRCRSCTLR4},
    581   {"trcrsctlr5", TRCRSCTLR5},
    582   {"trcrsctlr6", TRCRSCTLR6},
    583   {"trcrsctlr7", TRCRSCTLR7},
    584   {"trcrsctlr8", TRCRSCTLR8},
    585   {"trcrsctlr9", TRCRSCTLR9},
    586   {"trcrsctlr10", TRCRSCTLR10},
    587   {"trcrsctlr11", TRCRSCTLR11},
    588   {"trcrsctlr12", TRCRSCTLR12},
    589   {"trcrsctlr13", TRCRSCTLR13},
    590   {"trcrsctlr14", TRCRSCTLR14},
    591   {"trcrsctlr15", TRCRSCTLR15},
    592   {"trcrsctlr16", TRCRSCTLR16},
    593   {"trcrsctlr17", TRCRSCTLR17},
    594   {"trcrsctlr18", TRCRSCTLR18},
    595   {"trcrsctlr19", TRCRSCTLR19},
    596   {"trcrsctlr20", TRCRSCTLR20},
    597   {"trcrsctlr21", TRCRSCTLR21},
    598   {"trcrsctlr22", TRCRSCTLR22},
    599   {"trcrsctlr23", TRCRSCTLR23},
    600   {"trcrsctlr24", TRCRSCTLR24},
    601   {"trcrsctlr25", TRCRSCTLR25},
    602   {"trcrsctlr26", TRCRSCTLR26},
    603   {"trcrsctlr27", TRCRSCTLR27},
    604   {"trcrsctlr28", TRCRSCTLR28},
    605   {"trcrsctlr29", TRCRSCTLR29},
    606   {"trcrsctlr30", TRCRSCTLR30},
    607   {"trcrsctlr31", TRCRSCTLR31},
    608   {"trcssccr0", TRCSSCCR0},
    609   {"trcssccr1", TRCSSCCR1},
    610   {"trcssccr2", TRCSSCCR2},
    611   {"trcssccr3", TRCSSCCR3},
    612   {"trcssccr4", TRCSSCCR4},
    613   {"trcssccr5", TRCSSCCR5},
    614   {"trcssccr6", TRCSSCCR6},
    615   {"trcssccr7", TRCSSCCR7},
    616   {"trcsscsr0", TRCSSCSR0},
    617   {"trcsscsr1", TRCSSCSR1},
    618   {"trcsscsr2", TRCSSCSR2},
    619   {"trcsscsr3", TRCSSCSR3},
    620   {"trcsscsr4", TRCSSCSR4},
    621   {"trcsscsr5", TRCSSCSR5},
    622   {"trcsscsr6", TRCSSCSR6},
    623   {"trcsscsr7", TRCSSCSR7},
    624   {"trcsspcicr0", TRCSSPCICR0},
    625   {"trcsspcicr1", TRCSSPCICR1},
    626   {"trcsspcicr2", TRCSSPCICR2},
    627   {"trcsspcicr3", TRCSSPCICR3},
    628   {"trcsspcicr4", TRCSSPCICR4},
    629   {"trcsspcicr5", TRCSSPCICR5},
    630   {"trcsspcicr6", TRCSSPCICR6},
    631   {"trcsspcicr7", TRCSSPCICR7},
    632   {"trcpdcr", TRCPDCR},
    633   {"trcacvr0", TRCACVR0},
    634   {"trcacvr1", TRCACVR1},
    635   {"trcacvr2", TRCACVR2},
    636   {"trcacvr3", TRCACVR3},
    637   {"trcacvr4", TRCACVR4},
    638   {"trcacvr5", TRCACVR5},
    639   {"trcacvr6", TRCACVR6},
    640   {"trcacvr7", TRCACVR7},
    641   {"trcacvr8", TRCACVR8},
    642   {"trcacvr9", TRCACVR9},
    643   {"trcacvr10", TRCACVR10},
    644   {"trcacvr11", TRCACVR11},
    645   {"trcacvr12", TRCACVR12},
    646   {"trcacvr13", TRCACVR13},
    647   {"trcacvr14", TRCACVR14},
    648   {"trcacvr15", TRCACVR15},
    649   {"trcacatr0", TRCACATR0},
    650   {"trcacatr1", TRCACATR1},
    651   {"trcacatr2", TRCACATR2},
    652   {"trcacatr3", TRCACATR3},
    653   {"trcacatr4", TRCACATR4},
    654   {"trcacatr5", TRCACATR5},
    655   {"trcacatr6", TRCACATR6},
    656   {"trcacatr7", TRCACATR7},
    657   {"trcacatr8", TRCACATR8},
    658   {"trcacatr9", TRCACATR9},
    659   {"trcacatr10", TRCACATR10},
    660   {"trcacatr11", TRCACATR11},
    661   {"trcacatr12", TRCACATR12},
    662   {"trcacatr13", TRCACATR13},
    663   {"trcacatr14", TRCACATR14},
    664   {"trcacatr15", TRCACATR15},
    665   {"trcdvcvr0", TRCDVCVR0},
    666   {"trcdvcvr1", TRCDVCVR1},
    667   {"trcdvcvr2", TRCDVCVR2},
    668   {"trcdvcvr3", TRCDVCVR3},
    669   {"trcdvcvr4", TRCDVCVR4},
    670   {"trcdvcvr5", TRCDVCVR5},
    671   {"trcdvcvr6", TRCDVCVR6},
    672   {"trcdvcvr7", TRCDVCVR7},
    673   {"trcdvcmr0", TRCDVCMR0},
    674   {"trcdvcmr1", TRCDVCMR1},
    675   {"trcdvcmr2", TRCDVCMR2},
    676   {"trcdvcmr3", TRCDVCMR3},
    677   {"trcdvcmr4", TRCDVCMR4},
    678   {"trcdvcmr5", TRCDVCMR5},
    679   {"trcdvcmr6", TRCDVCMR6},
    680   {"trcdvcmr7", TRCDVCMR7},
    681   {"trccidcvr0", TRCCIDCVR0},
    682   {"trccidcvr1", TRCCIDCVR1},
    683   {"trccidcvr2", TRCCIDCVR2},
    684   {"trccidcvr3", TRCCIDCVR3},
    685   {"trccidcvr4", TRCCIDCVR4},
    686   {"trccidcvr5", TRCCIDCVR5},
    687   {"trccidcvr6", TRCCIDCVR6},
    688   {"trccidcvr7", TRCCIDCVR7},
    689   {"trcvmidcvr0", TRCVMIDCVR0},
    690   {"trcvmidcvr1", TRCVMIDCVR1},
    691   {"trcvmidcvr2", TRCVMIDCVR2},
    692   {"trcvmidcvr3", TRCVMIDCVR3},
    693   {"trcvmidcvr4", TRCVMIDCVR4},
    694   {"trcvmidcvr5", TRCVMIDCVR5},
    695   {"trcvmidcvr6", TRCVMIDCVR6},
    696   {"trcvmidcvr7", TRCVMIDCVR7},
    697   {"trccidcctlr0", TRCCIDCCTLR0},
    698   {"trccidcctlr1", TRCCIDCCTLR1},
    699   {"trcvmidcctlr0", TRCVMIDCCTLR0},
    700   {"trcvmidcctlr1", TRCVMIDCCTLR1},
    701   {"trcitctrl", TRCITCTRL},
    702   {"trcclaimset", TRCCLAIMSET},
    703   {"trcclaimclr", TRCCLAIMCLR},
    704 
    705   // GICv3 registers
    706   {"icc_bpr1_el1", ICC_BPR1_EL1},
    707   {"icc_bpr0_el1", ICC_BPR0_EL1},
    708   {"icc_pmr_el1", ICC_PMR_EL1},
    709   {"icc_ctlr_el1", ICC_CTLR_EL1},
    710   {"icc_ctlr_el3", ICC_CTLR_EL3},
    711   {"icc_sre_el1", ICC_SRE_EL1},
    712   {"icc_sre_el2", ICC_SRE_EL2},
    713   {"icc_sre_el3", ICC_SRE_EL3},
    714   {"icc_igrpen0_el1", ICC_IGRPEN0_EL1},
    715   {"icc_igrpen1_el1", ICC_IGRPEN1_EL1},
    716   {"icc_igrpen1_el3", ICC_IGRPEN1_EL3},
    717   {"icc_seien_el1", ICC_SEIEN_EL1},
    718   {"icc_ap0r0_el1", ICC_AP0R0_EL1},
    719   {"icc_ap0r1_el1", ICC_AP0R1_EL1},
    720   {"icc_ap0r2_el1", ICC_AP0R2_EL1},
    721   {"icc_ap0r3_el1", ICC_AP0R3_EL1},
    722   {"icc_ap1r0_el1", ICC_AP1R0_EL1},
    723   {"icc_ap1r1_el1", ICC_AP1R1_EL1},
    724   {"icc_ap1r2_el1", ICC_AP1R2_EL1},
    725   {"icc_ap1r3_el1", ICC_AP1R3_EL1},
    726   {"ich_ap0r0_el2", ICH_AP0R0_EL2},
    727   {"ich_ap0r1_el2", ICH_AP0R1_EL2},
    728   {"ich_ap0r2_el2", ICH_AP0R2_EL2},
    729   {"ich_ap0r3_el2", ICH_AP0R3_EL2},
    730   {"ich_ap1r0_el2", ICH_AP1R0_EL2},
    731   {"ich_ap1r1_el2", ICH_AP1R1_EL2},
    732   {"ich_ap1r2_el2", ICH_AP1R2_EL2},
    733   {"ich_ap1r3_el2", ICH_AP1R3_EL2},
    734   {"ich_hcr_el2", ICH_HCR_EL2},
    735   {"ich_misr_el2", ICH_MISR_EL2},
    736   {"ich_vmcr_el2", ICH_VMCR_EL2},
    737   {"ich_vseir_el2", ICH_VSEIR_EL2},
    738   {"ich_lr0_el2", ICH_LR0_EL2},
    739   {"ich_lr1_el2", ICH_LR1_EL2},
    740   {"ich_lr2_el2", ICH_LR2_EL2},
    741   {"ich_lr3_el2", ICH_LR3_EL2},
    742   {"ich_lr4_el2", ICH_LR4_EL2},
    743   {"ich_lr5_el2", ICH_LR5_EL2},
    744   {"ich_lr6_el2", ICH_LR6_EL2},
    745   {"ich_lr7_el2", ICH_LR7_EL2},
    746   {"ich_lr8_el2", ICH_LR8_EL2},
    747   {"ich_lr9_el2", ICH_LR9_EL2},
    748   {"ich_lr10_el2", ICH_LR10_EL2},
    749   {"ich_lr11_el2", ICH_LR11_EL2},
    750   {"ich_lr12_el2", ICH_LR12_EL2},
    751   {"ich_lr13_el2", ICH_LR13_EL2},
    752   {"ich_lr14_el2", ICH_LR14_EL2},
    753   {"ich_lr15_el2", ICH_LR15_EL2}
    754 };
    755 
    756 uint32_t
    757 A64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
    758   // First search the registers shared by all
    759   std::string NameLower = Name.lower();
    760   for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
    761     if (SysRegPairs[i].Name == NameLower) {
    762       Valid = true;
    763       return SysRegPairs[i].Value;
    764     }
    765   }
    766 
    767   // Now try the instruction-specific registers (either read-only or
    768   // write-only).
    769   for (unsigned i = 0; i < NumInstPairs; ++i) {
    770     if (InstPairs[i].Name == NameLower) {
    771       Valid = true;
    772       return InstPairs[i].Value;
    773     }
    774   }
    775 
    776   // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
    777   // are: 11 xxx 1x11 xxxx xxx
    778   Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
    779 
    780   SmallVector<StringRef, 4> Ops;
    781   if (!GenericRegPattern.match(NameLower, &Ops)) {
    782     Valid = false;
    783     return -1;
    784   }
    785 
    786   uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
    787   uint32_t Bits;
    788   Ops[1].getAsInteger(10, Op1);
    789   Ops[2].getAsInteger(10, CRn);
    790   Ops[3].getAsInteger(10, CRm);
    791   Ops[4].getAsInteger(10, Op2);
    792   Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
    793 
    794   Valid = true;
    795   return Bits;
    796 }
    797 
    798 std::string
    799 A64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
    800   for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
    801     if (SysRegPairs[i].Value == Bits) {
    802       Valid = true;
    803       return SysRegPairs[i].Name;
    804     }
    805   }
    806 
    807   for (unsigned i = 0; i < NumInstPairs; ++i) {
    808     if (InstPairs[i].Value == Bits) {
    809       Valid = true;
    810       return InstPairs[i].Name;
    811     }
    812   }
    813 
    814   uint32_t Op0 = (Bits >> 14) & 0x3;
    815   uint32_t Op1 = (Bits >> 11) & 0x7;
    816   uint32_t CRn = (Bits >> 7) & 0xf;
    817   uint32_t CRm = (Bits >> 3) & 0xf;
    818   uint32_t Op2 = Bits & 0x7;
    819 
    820   // Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
    821   // name.
    822   if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
    823       Valid = false;
    824       return "";
    825   }
    826 
    827   assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
    828 
    829   Valid = true;
    830   return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
    831                + "_c" + utostr(CRm) + "_" + utostr(Op2);
    832 }
    833 
    834 const NamedImmMapper::Mapping A64TLBI::TLBIMapper::TLBIPairs[] = {
    835   {"ipas2e1is", IPAS2E1IS},
    836   {"ipas2le1is", IPAS2LE1IS},
    837   {"vmalle1is", VMALLE1IS},
    838   {"alle2is", ALLE2IS},
    839   {"alle3is", ALLE3IS},
    840   {"vae1is", VAE1IS},
    841   {"vae2is", VAE2IS},
    842   {"vae3is", VAE3IS},
    843   {"aside1is", ASIDE1IS},
    844   {"vaae1is", VAAE1IS},
    845   {"alle1is", ALLE1IS},
    846   {"vale1is", VALE1IS},
    847   {"vale2is", VALE2IS},
    848   {"vale3is", VALE3IS},
    849   {"vmalls12e1is", VMALLS12E1IS},
    850   {"vaale1is", VAALE1IS},
    851   {"ipas2e1", IPAS2E1},
    852   {"ipas2le1", IPAS2LE1},
    853   {"vmalle1", VMALLE1},
    854   {"alle2", ALLE2},
    855   {"alle3", ALLE3},
    856   {"vae1", VAE1},
    857   {"vae2", VAE2},
    858   {"vae3", VAE3},
    859   {"aside1", ASIDE1},
    860   {"vaae1", VAAE1},
    861   {"alle1", ALLE1},
    862   {"vale1", VALE1},
    863   {"vale2", VALE2},
    864   {"vale3", VALE3},
    865   {"vmalls12e1", VMALLS12E1},
    866   {"vaale1", VAALE1}
    867 };
    868 
    869 A64TLBI::TLBIMapper::TLBIMapper()
    870   : NamedImmMapper(TLBIPairs, 0) {}
    871 
    872 bool A64Imms::isFPImm(const APFloat &Val, uint32_t &Imm8Bits) {
    873   const fltSemantics &Sem = Val.getSemantics();
    874   unsigned FracBits = APFloat::semanticsPrecision(Sem) - 1;
    875 
    876   uint32_t ExpMask;
    877   switch (FracBits) {
    878   case 10: // IEEE half-precision
    879     ExpMask = 0x1f;
    880     break;
    881   case 23: // IEEE single-precision
    882     ExpMask = 0xff;
    883     break;
    884   case 52: // IEEE double-precision
    885     ExpMask = 0x7ff;
    886     break;
    887   case 112: // IEEE quad-precision
    888     // No immediates are valid for double precision.
    889     return false;
    890   default:
    891     llvm_unreachable("Only half, single and double precision supported");
    892   }
    893 
    894   uint32_t ExpStart = FracBits;
    895   uint64_t FracMask = (1ULL << FracBits) - 1;
    896 
    897   uint32_t Sign = Val.isNegative();
    898 
    899   uint64_t Bits= Val.bitcastToAPInt().getLimitedValue();
    900   uint64_t Fraction = Bits & FracMask;
    901   int32_t Exponent = ((Bits >> ExpStart) & ExpMask);
    902   Exponent -= ExpMask >> 1;
    903 
    904   // S[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 5):imm8<5:0>:Zeros(19)
    905   // D[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 8):imm8<5:0>:Zeros(48)
    906   // This translates to: only 4 bits of fraction; -3 <= exp <= 4.
    907   uint64_t A64FracStart = FracBits - 4;
    908   uint64_t A64FracMask = 0xf;
    909 
    910   // Are there too many fraction bits?
    911   if (Fraction & ~(A64FracMask << A64FracStart))
    912     return false;
    913 
    914   if (Exponent < -3 || Exponent > 4)
    915     return false;
    916 
    917   uint32_t PackedFraction = (Fraction >> A64FracStart) & A64FracMask;
    918   uint32_t PackedExp = (Exponent + 7) & 0x7;
    919 
    920   Imm8Bits = (Sign << 7) | (PackedExp << 4) | PackedFraction;
    921   return true;
    922 }
    923 
    924 // Encoding of the immediate for logical (immediate) instructions:
    925 //
    926 // | N | imms   | immr   | size | R            | S            |
    927 // |---+--------+--------+------+--------------+--------------|
    928 // | 1 | ssssss | rrrrrr |   64 | UInt(rrrrrr) | UInt(ssssss) |
    929 // | 0 | 0sssss | xrrrrr |   32 | UInt(rrrrr)  | UInt(sssss)  |
    930 // | 0 | 10ssss | xxrrrr |   16 | UInt(rrrr)   | UInt(ssss)   |
    931 // | 0 | 110sss | xxxrrr |    8 | UInt(rrr)    | UInt(sss)    |
    932 // | 0 | 1110ss | xxxxrr |    4 | UInt(rr)     | UInt(ss)     |
    933 // | 0 | 11110s | xxxxxr |    2 | UInt(r)      | UInt(s)      |
    934 // | 0 | 11111x | -      |      | UNALLOCATED  |              |
    935 //
    936 // Columns 'R', 'S' and 'size' specify a "bitmask immediate" of size bits in
    937 // which the lower S+1 bits are ones and the remaining bits are zero, then
    938 // rotated right by R bits, which is then replicated across the datapath.
    939 //
    940 // + Values of 'N', 'imms' and 'immr' which do not match the above table are
    941 //   RESERVED.
    942 // + If all 's' bits in the imms field are set then the instruction is
    943 //   RESERVED.
    944 // + The 'x' bits in the 'immr' field are IGNORED.
    945 
    946 bool A64Imms::isLogicalImm(unsigned RegWidth, uint64_t Imm, uint32_t &Bits) {
    947   int RepeatWidth;
    948   int Rotation = 0;
    949   int Num1s = 0;
    950 
    951   // Because there are S+1 ones in the replicated mask, an immediate of all
    952   // zeros is not allowed. Filtering it here is probably more efficient.
    953   if (Imm == 0) return false;
    954 
    955   for (RepeatWidth = RegWidth; RepeatWidth > 1; RepeatWidth /= 2) {
    956     uint64_t RepeatMask = RepeatWidth == 64 ? -1 : (1ULL << RepeatWidth) - 1;
    957     uint64_t ReplicatedMask = Imm & RepeatMask;
    958 
    959     if (ReplicatedMask == 0) continue;
    960 
    961     // First we have to make sure the mask is actually repeated in each slot for
    962     // this width-specifier.
    963     bool IsReplicatedMask = true;
    964     for (unsigned i = RepeatWidth; i < RegWidth; i += RepeatWidth) {
    965       if (((Imm >> i) & RepeatMask) != ReplicatedMask) {
    966         IsReplicatedMask = false;
    967         break;
    968       }
    969     }
    970     if (!IsReplicatedMask) continue;
    971 
    972     // Now we have to work out the amount of rotation needed. The first part of
    973     // this calculation is actually independent of RepeatWidth, but the complex
    974     // case will depend on it.
    975     Rotation = countTrailingZeros(Imm);
    976     if (Rotation == 0) {
    977       // There were no leading zeros, which means it's either in place or there
    978       // are 1s at each end (e.g. 0x8003 needs rotating).
    979       Rotation = RegWidth == 64 ? CountLeadingOnes_64(Imm)
    980                                 : CountLeadingOnes_32(Imm);
    981       Rotation = RepeatWidth - Rotation;
    982     }
    983 
    984     uint64_t ReplicatedOnes = ReplicatedMask;
    985     if (Rotation != 0 && Rotation != 64)
    986       ReplicatedOnes = (ReplicatedMask >> Rotation)
    987         | ((ReplicatedMask << (RepeatWidth - Rotation)) & RepeatMask);
    988 
    989     // Of course, they may not actually be ones, so we have to check that:
    990     if (!isMask_64(ReplicatedOnes))
    991       continue;
    992 
    993     Num1s = CountTrailingOnes_64(ReplicatedOnes);
    994 
    995     // We know we've got an almost valid encoding (certainly, if this is invalid
    996     // no other parameters would work).
    997     break;
    998   }
    999 
   1000   // The encodings which would produce all 1s are RESERVED.
   1001   if (RepeatWidth == 1 || Num1s == RepeatWidth) return false;
   1002 
   1003   uint32_t N = RepeatWidth == 64;
   1004   uint32_t ImmR = RepeatWidth - Rotation;
   1005   uint32_t ImmS = Num1s - 1;
   1006 
   1007   switch (RepeatWidth) {
   1008   default: break; // No action required for other valid rotations.
   1009   case 16: ImmS |= 0x20; break; // 10ssss
   1010   case 8: ImmS |= 0x30; break;  // 110sss
   1011   case 4: ImmS |= 0x38; break;  // 1110ss
   1012   case 2: ImmS |= 0x3c; break;  // 11110s
   1013   }
   1014 
   1015   Bits = ImmS | (ImmR << 6) | (N << 12);
   1016 
   1017   return true;
   1018 }
   1019 
   1020 
   1021 bool A64Imms::isLogicalImmBits(unsigned RegWidth, uint32_t Bits,
   1022                                uint64_t &Imm) {
   1023   uint32_t N = Bits >> 12;
   1024   uint32_t ImmR = (Bits >> 6) & 0x3f;
   1025   uint32_t ImmS = Bits & 0x3f;
   1026 
   1027   // N=1 encodes a 64-bit replication and is invalid for the 32-bit
   1028   // instructions.
   1029   if (RegWidth == 32 && N != 0) return false;
   1030 
   1031   int Width = 0;
   1032   if (N == 1)
   1033     Width = 64;
   1034   else if ((ImmS & 0x20) == 0)
   1035     Width = 32;
   1036   else if ((ImmS & 0x10) == 0)
   1037     Width = 16;
   1038   else if ((ImmS & 0x08) == 0)
   1039     Width = 8;
   1040   else if ((ImmS & 0x04) == 0)
   1041     Width = 4;
   1042   else if ((ImmS & 0x02) == 0)
   1043     Width = 2;
   1044   else {
   1045     // ImmS  is 0b11111x: UNALLOCATED
   1046     return false;
   1047   }
   1048 
   1049   int Num1s = (ImmS & (Width - 1)) + 1;
   1050 
   1051   // All encodings which would map to -1 (signed) are RESERVED.
   1052   if (Num1s == Width) return false;
   1053 
   1054   int Rotation = (ImmR & (Width - 1));
   1055   uint64_t Mask = (1ULL << Num1s) - 1;
   1056   uint64_t WidthMask = Width == 64 ? -1 : (1ULL << Width) - 1;
   1057   if (Rotation != 0 && Rotation != 64)
   1058     Mask = (Mask >> Rotation)
   1059       | ((Mask << (Width - Rotation)) & WidthMask);
   1060 
   1061   Imm = Mask;
   1062   for (unsigned i = 1; i < RegWidth / Width; ++i) {
   1063     Mask <<= Width;
   1064     Imm |= Mask;
   1065   }
   1066 
   1067   return true;
   1068 }
   1069 
   1070 bool A64Imms::isMOVZImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
   1071   // If high bits are set then a 32-bit MOVZ can't possibly work.
   1072   if (RegWidth == 32 && (Value & ~0xffffffffULL))
   1073     return false;
   1074 
   1075   for (int i = 0; i < RegWidth; i += 16) {
   1076     // If the value is 0 when we mask out all the bits that could be set with
   1077     // the current LSL value then it's representable.
   1078     if ((Value & ~(0xffffULL << i)) == 0) {
   1079       Shift = i / 16;
   1080       UImm16 = (Value >> i) & 0xffff;
   1081       return true;
   1082     }
   1083   }
   1084   return false;
   1085 }
   1086 
   1087 bool A64Imms::isMOVNImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
   1088   // MOVN is defined to set its register to NOT(LSL(imm16, shift)).
   1089 
   1090   // We have to be a little careful about a 32-bit register: 0xffff_1234 *is*
   1091   // representable, but ~0xffff_1234 == 0xffff_ffff_0000_edcb which is not
   1092   // a valid input for isMOVZImm.
   1093   if (RegWidth == 32 && (Value & ~0xffffffffULL))
   1094     return false;
   1095 
   1096   uint64_t MOVZEquivalent = RegWidth == 32 ? ~Value & 0xffffffff : ~Value;
   1097 
   1098   return isMOVZImm(RegWidth, MOVZEquivalent, UImm16, Shift);
   1099 }
   1100 
   1101 bool A64Imms::isOnlyMOVNImm(int RegWidth, uint64_t Value,
   1102                             int &UImm16, int &Shift) {
   1103   if (isMOVZImm(RegWidth, Value, UImm16, Shift))
   1104     return false;
   1105 
   1106   return isMOVNImm(RegWidth, Value, UImm16, Shift);
   1107 }
   1108 
   1109 // decodeNeonModShiftImm - Decode a Neon OpCmode value into the
   1110 // the shift amount and the shift type (shift zeros or ones in) and
   1111 // returns whether the OpCmode value implies a shift operation.
   1112 bool A64Imms::decodeNeonModShiftImm(unsigned OpCmode, unsigned &ShiftImm,
   1113                                     unsigned &ShiftOnesIn) {
   1114   ShiftImm = 0;
   1115   ShiftOnesIn = false;
   1116   bool HasShift = true;
   1117 
   1118   if (OpCmode == 0xe) {
   1119     // movi byte
   1120     HasShift = false;
   1121   } else if (OpCmode == 0x1e) {
   1122     // movi 64-bit bytemask
   1123     HasShift = false;
   1124   } else if ((OpCmode & 0xc) == 0x8) {
   1125     // shift zeros, per halfword
   1126     ShiftImm = ((OpCmode & 0x2) >> 1);
   1127   } else if ((OpCmode & 0x8) == 0) {
   1128     // shift zeros, per word
   1129     ShiftImm = ((OpCmode & 0x6) >> 1);
   1130   } else if ((OpCmode & 0xe) == 0xc) {
   1131     // shift ones, per word
   1132     ShiftOnesIn = true;
   1133     ShiftImm = (OpCmode & 0x1);
   1134   } else {
   1135     // per byte, per bytemask
   1136     llvm_unreachable("Unsupported Neon modified immediate");
   1137   }
   1138 
   1139   return HasShift;
   1140 }
   1141 
   1142 // decodeNeonModImm - Decode a NEON modified immediate and OpCmode values
   1143 // into the element value and the element size in bits.
   1144 uint64_t A64Imms::decodeNeonModImm(unsigned Val, unsigned OpCmode,
   1145                                    unsigned &EltBits) {
   1146   uint64_t DecodedVal = Val;
   1147   EltBits = 0;
   1148 
   1149   if (OpCmode == 0xe) {
   1150     // movi byte
   1151     EltBits = 8;
   1152   } else if (OpCmode == 0x1e) {
   1153     // movi 64-bit bytemask
   1154     DecodedVal = 0;
   1155     for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
   1156       if ((Val >> ByteNum) & 1)
   1157         DecodedVal |= (uint64_t)0xff << (8 * ByteNum);
   1158     }
   1159     EltBits = 64;
   1160   } else if ((OpCmode & 0xc) == 0x8) {
   1161     // shift zeros, per halfword
   1162     EltBits = 16;
   1163   } else if ((OpCmode & 0x8) == 0) {
   1164     // shift zeros, per word
   1165     EltBits = 32;
   1166   } else if ((OpCmode & 0xe) == 0xc) {
   1167     // shift ones, per word
   1168     EltBits = 32;
   1169   } else {
   1170     llvm_unreachable("Unsupported Neon modified immediate");
   1171   }
   1172   return DecodedVal;
   1173 }
   1174