1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Correlated Value Propagation pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "correlated-value-propagation" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/LazyValueInfo.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 using namespace llvm; 28 29 STATISTIC(NumPhis, "Number of phis propagated"); 30 STATISTIC(NumSelects, "Number of selects propagated"); 31 STATISTIC(NumMemAccess, "Number of memory access targets propagated"); 32 STATISTIC(NumCmps, "Number of comparisons propagated"); 33 STATISTIC(NumDeadCases, "Number of switch cases removed"); 34 35 namespace { 36 class CorrelatedValuePropagation : public FunctionPass { 37 LazyValueInfo *LVI; 38 39 bool processSelect(SelectInst *SI); 40 bool processPHI(PHINode *P); 41 bool processMemAccess(Instruction *I); 42 bool processCmp(CmpInst *C); 43 bool processSwitch(SwitchInst *SI); 44 45 public: 46 static char ID; 47 CorrelatedValuePropagation(): FunctionPass(ID) { 48 initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); 49 } 50 51 bool runOnFunction(Function &F); 52 53 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 54 AU.addRequired<LazyValueInfo>(); 55 } 56 }; 57 } 58 59 char CorrelatedValuePropagation::ID = 0; 60 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", 61 "Value Propagation", false, false) 62 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 63 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", 64 "Value Propagation", false, false) 65 66 // Public interface to the Value Propagation pass 67 Pass *llvm::createCorrelatedValuePropagationPass() { 68 return new CorrelatedValuePropagation(); 69 } 70 71 bool CorrelatedValuePropagation::processSelect(SelectInst *S) { 72 if (S->getType()->isVectorTy()) return false; 73 if (isa<Constant>(S->getOperand(0))) return false; 74 75 Constant *C = LVI->getConstant(S->getOperand(0), S->getParent()); 76 if (!C) return false; 77 78 ConstantInt *CI = dyn_cast<ConstantInt>(C); 79 if (!CI) return false; 80 81 Value *ReplaceWith = S->getOperand(1); 82 Value *Other = S->getOperand(2); 83 if (!CI->isOne()) std::swap(ReplaceWith, Other); 84 if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); 85 86 S->replaceAllUsesWith(ReplaceWith); 87 S->eraseFromParent(); 88 89 ++NumSelects; 90 91 return true; 92 } 93 94 bool CorrelatedValuePropagation::processPHI(PHINode *P) { 95 bool Changed = false; 96 97 BasicBlock *BB = P->getParent(); 98 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { 99 Value *Incoming = P->getIncomingValue(i); 100 if (isa<Constant>(Incoming)) continue; 101 102 Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB); 103 104 // Look if the incoming value is a select with a constant but LVI tells us 105 // that the incoming value can never be that constant. In that case replace 106 // the incoming value with the other value of the select. This often allows 107 // us to remove the select later. 108 if (!V) { 109 SelectInst *SI = dyn_cast<SelectInst>(Incoming); 110 if (!SI) continue; 111 112 Constant *C = dyn_cast<Constant>(SI->getFalseValue()); 113 if (!C) continue; 114 115 if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, 116 P->getIncomingBlock(i), BB) != 117 LazyValueInfo::False) 118 continue; 119 120 DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); 121 V = SI->getTrueValue(); 122 } 123 124 P->setIncomingValue(i, V); 125 Changed = true; 126 } 127 128 if (Value *V = SimplifyInstruction(P)) { 129 P->replaceAllUsesWith(V); 130 P->eraseFromParent(); 131 Changed = true; 132 } 133 134 if (Changed) 135 ++NumPhis; 136 137 return Changed; 138 } 139 140 bool CorrelatedValuePropagation::processMemAccess(Instruction *I) { 141 Value *Pointer = 0; 142 if (LoadInst *L = dyn_cast<LoadInst>(I)) 143 Pointer = L->getPointerOperand(); 144 else 145 Pointer = cast<StoreInst>(I)->getPointerOperand(); 146 147 if (isa<Constant>(Pointer)) return false; 148 149 Constant *C = LVI->getConstant(Pointer, I->getParent()); 150 if (!C) return false; 151 152 ++NumMemAccess; 153 I->replaceUsesOfWith(Pointer, C); 154 return true; 155 } 156 157 /// processCmp - If the value of this comparison could be determined locally, 158 /// constant propagation would already have figured it out. Instead, walk 159 /// the predecessors and statically evaluate the comparison based on information 160 /// available on that edge. If a given static evaluation is true on ALL 161 /// incoming edges, then it's true universally and we can simplify the compare. 162 bool CorrelatedValuePropagation::processCmp(CmpInst *C) { 163 Value *Op0 = C->getOperand(0); 164 if (isa<Instruction>(Op0) && 165 cast<Instruction>(Op0)->getParent() == C->getParent()) 166 return false; 167 168 Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); 169 if (!Op1) return false; 170 171 pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent()); 172 if (PI == PE) return false; 173 174 LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(), 175 C->getOperand(0), Op1, *PI, C->getParent()); 176 if (Result == LazyValueInfo::Unknown) return false; 177 178 ++PI; 179 while (PI != PE) { 180 LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(), 181 C->getOperand(0), Op1, *PI, C->getParent()); 182 if (Res != Result) return false; 183 ++PI; 184 } 185 186 ++NumCmps; 187 188 if (Result == LazyValueInfo::True) 189 C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); 190 else 191 C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); 192 193 C->eraseFromParent(); 194 195 return true; 196 } 197 198 /// processSwitch - Simplify a switch instruction by removing cases which can 199 /// never fire. If the uselessness of a case could be determined locally then 200 /// constant propagation would already have figured it out. Instead, walk the 201 /// predecessors and statically evaluate cases based on information available 202 /// on that edge. Cases that cannot fire no matter what the incoming edge can 203 /// safely be removed. If a case fires on every incoming edge then the entire 204 /// switch can be removed and replaced with a branch to the case destination. 205 bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) { 206 Value *Cond = SI->getCondition(); 207 BasicBlock *BB = SI->getParent(); 208 209 // If the condition was defined in same block as the switch then LazyValueInfo 210 // currently won't say anything useful about it, though in theory it could. 211 if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) 212 return false; 213 214 // If the switch is unreachable then trying to improve it is a waste of time. 215 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 216 if (PB == PE) return false; 217 218 // Analyse each switch case in turn. This is done in reverse order so that 219 // removing a case doesn't cause trouble for the iteration. 220 bool Changed = false; 221 for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE; 222 ) { 223 ConstantInt *Case = CI.getCaseValue(); 224 225 // Check to see if the switch condition is equal to/not equal to the case 226 // value on every incoming edge, equal/not equal being the same each time. 227 LazyValueInfo::Tristate State = LazyValueInfo::Unknown; 228 for (pred_iterator PI = PB; PI != PE; ++PI) { 229 // Is the switch condition equal to the case value? 230 LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, 231 Cond, Case, *PI, BB); 232 // Give up on this case if nothing is known. 233 if (Value == LazyValueInfo::Unknown) { 234 State = LazyValueInfo::Unknown; 235 break; 236 } 237 238 // If this was the first edge to be visited, record that all other edges 239 // need to give the same result. 240 if (PI == PB) { 241 State = Value; 242 continue; 243 } 244 245 // If this case is known to fire for some edges and known not to fire for 246 // others then there is nothing we can do - give up. 247 if (Value != State) { 248 State = LazyValueInfo::Unknown; 249 break; 250 } 251 } 252 253 if (State == LazyValueInfo::False) { 254 // This case never fires - remove it. 255 CI.getCaseSuccessor()->removePredecessor(BB); 256 SI->removeCase(CI); // Does not invalidate the iterator. 257 258 // The condition can be modified by removePredecessor's PHI simplification 259 // logic. 260 Cond = SI->getCondition(); 261 262 ++NumDeadCases; 263 Changed = true; 264 } else if (State == LazyValueInfo::True) { 265 // This case always fires. Arrange for the switch to be turned into an 266 // unconditional branch by replacing the switch condition with the case 267 // value. 268 SI->setCondition(Case); 269 NumDeadCases += SI->getNumCases(); 270 Changed = true; 271 break; 272 } 273 } 274 275 if (Changed) 276 // If the switch has been simplified to the point where it can be replaced 277 // by a branch then do so now. 278 ConstantFoldTerminator(BB); 279 280 return Changed; 281 } 282 283 bool CorrelatedValuePropagation::runOnFunction(Function &F) { 284 LVI = &getAnalysis<LazyValueInfo>(); 285 286 bool FnChanged = false; 287 288 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 289 bool BBChanged = false; 290 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) { 291 Instruction *II = BI++; 292 switch (II->getOpcode()) { 293 case Instruction::Select: 294 BBChanged |= processSelect(cast<SelectInst>(II)); 295 break; 296 case Instruction::PHI: 297 BBChanged |= processPHI(cast<PHINode>(II)); 298 break; 299 case Instruction::ICmp: 300 case Instruction::FCmp: 301 BBChanged |= processCmp(cast<CmpInst>(II)); 302 break; 303 case Instruction::Load: 304 case Instruction::Store: 305 BBChanged |= processMemAccess(II); 306 break; 307 } 308 } 309 310 Instruction *Term = FI->getTerminator(); 311 switch (Term->getOpcode()) { 312 case Instruction::Switch: 313 BBChanged |= processSwitch(cast<SwitchInst>(Term)); 314 break; 315 } 316 317 FnChanged |= BBChanged; 318 } 319 320 return FnChanged; 321 } 322