Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 #include "ir_reader.h"
     25 #include "glsl_parser_extras.h"
     26 #include "glsl_types.h"
     27 #include "s_expression.h"
     28 
     29 const static bool debug = false;
     30 
     31 class ir_reader {
     32 public:
     33    ir_reader(_mesa_glsl_parse_state *);
     34 
     35    void read(exec_list *instructions, const char *src, bool scan_for_protos);
     36 
     37 private:
     38    void *mem_ctx;
     39    _mesa_glsl_parse_state *state;
     40 
     41    void ir_read_error(s_expression *, const char *fmt, ...);
     42 
     43    const glsl_type *read_type(s_expression *);
     44 
     45    void scan_for_prototypes(exec_list *, s_expression *);
     46    ir_function *read_function(s_expression *, bool skip_body);
     47    void read_function_sig(ir_function *, s_expression *, bool skip_body);
     48 
     49    void read_instructions(exec_list *, s_expression *, ir_loop *);
     50    ir_instruction *read_instruction(s_expression *, ir_loop *);
     51    ir_variable *read_declaration(s_expression *);
     52    ir_if *read_if(s_expression *, ir_loop *);
     53    ir_loop *read_loop(s_expression *);
     54    ir_call *read_call(s_expression *);
     55    ir_return *read_return(s_expression *);
     56    ir_rvalue *read_rvalue(s_expression *);
     57    ir_assignment *read_assignment(s_expression *);
     58    ir_expression *read_expression(s_expression *);
     59    ir_swizzle *read_swizzle(s_expression *);
     60    ir_constant *read_constant(s_expression *);
     61    ir_texture *read_texture(s_expression *);
     62 
     63    ir_dereference *read_dereference(s_expression *);
     64    ir_dereference_variable *read_var_ref(s_expression *);
     65 };
     66 
     67 ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
     68 {
     69    this->mem_ctx = state;
     70 }
     71 
     72 void
     73 _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
     74 		   const char *src, bool scan_for_protos)
     75 {
     76    ir_reader r(state);
     77    r.read(instructions, src, scan_for_protos);
     78 }
     79 
     80 void
     81 ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
     82 {
     83    void *sx_mem_ctx = ralloc_context(NULL);
     84    s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
     85    if (expr == NULL) {
     86       ir_read_error(NULL, "couldn't parse S-Expression.");
     87       return;
     88    }
     89 
     90    if (scan_for_protos) {
     91       scan_for_prototypes(instructions, expr);
     92       if (state->error)
     93 	 return;
     94    }
     95 
     96    read_instructions(instructions, expr, NULL);
     97    ralloc_free(sx_mem_ctx);
     98 
     99    if (debug)
    100       validate_ir_tree(instructions);
    101 }
    102 
    103 void
    104 ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
    105 {
    106    va_list ap;
    107 
    108    state->error = true;
    109 
    110    if (state->current_function != NULL)
    111       ralloc_asprintf_append(&state->info_log, "In function %s:\n",
    112 			     state->current_function->function_name());
    113    ralloc_strcat(&state->info_log, "error: ");
    114 
    115    va_start(ap, fmt);
    116    ralloc_vasprintf_append(&state->info_log, fmt, ap);
    117    va_end(ap);
    118    ralloc_strcat(&state->info_log, "\n");
    119 
    120    if (expr != NULL) {
    121       ralloc_strcat(&state->info_log, "...in this context:\n   ");
    122       expr->print();
    123       ralloc_strcat(&state->info_log, "\n\n");
    124    }
    125 }
    126 
    127 const glsl_type *
    128 ir_reader::read_type(s_expression *expr)
    129 {
    130    s_expression *s_base_type;
    131    s_int *s_size;
    132 
    133    s_pattern pat[] = { "array", s_base_type, s_size };
    134    if (MATCH(expr, pat)) {
    135       const glsl_type *base_type = read_type(s_base_type);
    136       if (base_type == NULL) {
    137 	 ir_read_error(NULL, "when reading base type of array type");
    138 	 return NULL;
    139       }
    140 
    141       return glsl_type::get_array_instance(base_type, s_size->value());
    142    }
    143 
    144    s_symbol *type_sym = SX_AS_SYMBOL(expr);
    145    if (type_sym == NULL) {
    146       ir_read_error(expr, "expected <type>");
    147       return NULL;
    148    }
    149 
    150    const glsl_type *type = state->symbols->get_type(type_sym->value());
    151    if (type == NULL)
    152       ir_read_error(expr, "invalid type: %s", type_sym->value());
    153 
    154    return type;
    155 }
    156 
    157 
    158 void
    159 ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
    160 {
    161    s_list *list = SX_AS_LIST(expr);
    162    if (list == NULL) {
    163       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
    164       return;
    165    }
    166 
    167    foreach_iter(exec_list_iterator, it, list->subexpressions) {
    168       s_list *sub = SX_AS_LIST(it.get());
    169       if (sub == NULL)
    170 	 continue; // not a (function ...); ignore it.
    171 
    172       s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
    173       if (tag == NULL || strcmp(tag->value(), "function") != 0)
    174 	 continue; // not a (function ...); ignore it.
    175 
    176       ir_function *f = read_function(sub, true);
    177       if (f == NULL)
    178 	 return;
    179       instructions->push_tail(f);
    180    }
    181 }
    182 
    183 ir_function *
    184 ir_reader::read_function(s_expression *expr, bool skip_body)
    185 {
    186    bool added = false;
    187    s_symbol *name;
    188 
    189    s_pattern pat[] = { "function", name };
    190    if (!PARTIAL_MATCH(expr, pat)) {
    191       ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
    192       return NULL;
    193    }
    194 
    195    ir_function *f = state->symbols->get_function(name->value());
    196    if (f == NULL) {
    197       f = new(mem_ctx) ir_function(name->value());
    198       added = state->symbols->add_function(f);
    199       assert(added);
    200    }
    201 
    202    exec_list_iterator it = ((s_list *) expr)->subexpressions.iterator();
    203    it.next(); // skip "function" tag
    204    it.next(); // skip function name
    205    for (/* nothing */; it.has_next(); it.next()) {
    206       s_expression *s_sig = (s_expression *) it.get();
    207       read_function_sig(f, s_sig, skip_body);
    208    }
    209    return added ? f : NULL;
    210 }
    211 
    212 void
    213 ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
    214 {
    215    s_expression *type_expr;
    216    s_list *paramlist;
    217    s_list *body_list;
    218 
    219    s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
    220    if (!MATCH(expr, pat)) {
    221       ir_read_error(expr, "Expected (signature <type> (parameters ...) "
    222 			  "(<instruction> ...))");
    223       return;
    224    }
    225 
    226    const glsl_type *return_type = read_type(type_expr);
    227    if (return_type == NULL)
    228       return;
    229 
    230    s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
    231    if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
    232       ir_read_error(paramlist, "Expected (parameters ...)");
    233       return;
    234    }
    235 
    236    // Read the parameters list into a temporary place.
    237    exec_list hir_parameters;
    238    state->symbols->push_scope();
    239 
    240    exec_list_iterator it = paramlist->subexpressions.iterator();
    241    for (it.next() /* skip "parameters" */; it.has_next(); it.next()) {
    242       ir_variable *var = read_declaration((s_expression *) it.get());
    243       if (var == NULL)
    244 	 return;
    245 
    246       hir_parameters.push_tail(var);
    247    }
    248 
    249    ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
    250    if (sig == NULL && skip_body) {
    251       /* If scanning for prototypes, generate a new signature. */
    252       sig = new(mem_ctx) ir_function_signature(return_type);
    253       sig->is_builtin = true;
    254       f->add_signature(sig);
    255    } else if (sig != NULL) {
    256       const char *badvar = sig->qualifiers_match(&hir_parameters);
    257       if (badvar != NULL) {
    258 	 ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
    259 		       "don't match prototype", f->name, badvar);
    260 	 return;
    261       }
    262 
    263       if (sig->return_type != return_type) {
    264 	 ir_read_error(expr, "function `%s' return type doesn't "
    265 		       "match prototype", f->name);
    266 	 return;
    267       }
    268    } else {
    269       /* No prototype for this body exists - skip it. */
    270       state->symbols->pop_scope();
    271       return;
    272    }
    273    assert(sig != NULL);
    274 
    275    sig->replace_parameters(&hir_parameters);
    276 
    277    if (!skip_body && !body_list->subexpressions.is_empty()) {
    278       if (sig->is_defined) {
    279 	 ir_read_error(expr, "function %s redefined", f->name);
    280 	 return;
    281       }
    282       state->current_function = sig;
    283       read_instructions(&sig->body, body_list, NULL);
    284       state->current_function = NULL;
    285       sig->is_defined = true;
    286    }
    287 
    288    state->symbols->pop_scope();
    289 }
    290 
    291 void
    292 ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
    293 			     ir_loop *loop_ctx)
    294 {
    295    // Read in a list of instructions
    296    s_list *list = SX_AS_LIST(expr);
    297    if (list == NULL) {
    298       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
    299       return;
    300    }
    301 
    302    foreach_iter(exec_list_iterator, it, list->subexpressions) {
    303       s_expression *sub = (s_expression*) it.get();
    304       ir_instruction *ir = read_instruction(sub, loop_ctx);
    305       if (ir != NULL) {
    306 	 /* Global variable declarations should be moved to the top, before
    307 	  * any functions that might use them.  Functions are added to the
    308 	  * instruction stream when scanning for prototypes, so without this
    309 	  * hack, they always appear before variable declarations.
    310 	  */
    311 	 if (state->current_function == NULL && ir->as_variable() != NULL)
    312 	    instructions->push_head(ir);
    313 	 else
    314 	    instructions->push_tail(ir);
    315       }
    316    }
    317 }
    318 
    319 
    320 ir_instruction *
    321 ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
    322 {
    323    s_symbol *symbol = SX_AS_SYMBOL(expr);
    324    if (symbol != NULL) {
    325       if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
    326 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
    327       if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
    328 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
    329    }
    330 
    331    s_list *list = SX_AS_LIST(expr);
    332    if (list == NULL || list->subexpressions.is_empty()) {
    333       ir_read_error(expr, "Invalid instruction.\n");
    334       return NULL;
    335    }
    336 
    337    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
    338    if (tag == NULL) {
    339       ir_read_error(expr, "expected instruction tag");
    340       return NULL;
    341    }
    342 
    343    ir_instruction *inst = NULL;
    344    if (strcmp(tag->value(), "declare") == 0) {
    345       inst = read_declaration(list);
    346    } else if (strcmp(tag->value(), "assign") == 0) {
    347       inst = read_assignment(list);
    348    } else if (strcmp(tag->value(), "if") == 0) {
    349       inst = read_if(list, loop_ctx);
    350    } else if (strcmp(tag->value(), "loop") == 0) {
    351       inst = read_loop(list);
    352    } else if (strcmp(tag->value(), "call") == 0) {
    353       inst = read_call(list);
    354    } else if (strcmp(tag->value(), "return") == 0) {
    355       inst = read_return(list);
    356    } else if (strcmp(tag->value(), "function") == 0) {
    357       inst = read_function(list, false);
    358    } else {
    359       inst = read_rvalue(list);
    360       if (inst == NULL)
    361 	 ir_read_error(NULL, "when reading instruction");
    362    }
    363    return inst;
    364 }
    365 
    366 ir_variable *
    367 ir_reader::read_declaration(s_expression *expr)
    368 {
    369    s_list *s_quals;
    370    s_expression *s_type;
    371    s_symbol *s_name;
    372 
    373    s_pattern pat[] = { "declare", s_quals, s_type, s_name };
    374    if (!MATCH(expr, pat)) {
    375       ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
    376       return NULL;
    377    }
    378 
    379    const glsl_type *type = read_type(s_type);
    380    if (type == NULL)
    381       return NULL;
    382 
    383    ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
    384 					       ir_var_auto);
    385 
    386    foreach_iter(exec_list_iterator, it, s_quals->subexpressions) {
    387       s_symbol *qualifier = SX_AS_SYMBOL(it.get());
    388       if (qualifier == NULL) {
    389 	 ir_read_error(expr, "qualifier list must contain only symbols");
    390 	 return NULL;
    391       }
    392 
    393       // FINISHME: Check for duplicate/conflicting qualifiers.
    394       if (strcmp(qualifier->value(), "centroid") == 0) {
    395 	 var->centroid = 1;
    396       } else if (strcmp(qualifier->value(), "invariant") == 0) {
    397 	 var->invariant = 1;
    398       } else if (strcmp(qualifier->value(), "uniform") == 0) {
    399 	 var->mode = ir_var_uniform;
    400       } else if (strcmp(qualifier->value(), "auto") == 0) {
    401 	 var->mode = ir_var_auto;
    402       } else if (strcmp(qualifier->value(), "in") == 0) {
    403 	 var->mode = ir_var_in;
    404       } else if (strcmp(qualifier->value(), "const_in") == 0) {
    405 	 var->mode = ir_var_const_in;
    406       } else if (strcmp(qualifier->value(), "out") == 0) {
    407 	 var->mode = ir_var_out;
    408       } else if (strcmp(qualifier->value(), "inout") == 0) {
    409 	 var->mode = ir_var_inout;
    410       } else if (strcmp(qualifier->value(), "temporary") == 0) {
    411 	 var->mode = ir_var_temporary;
    412       } else if (strcmp(qualifier->value(), "smooth") == 0) {
    413 	 var->interpolation = INTERP_QUALIFIER_SMOOTH;
    414       } else if (strcmp(qualifier->value(), "flat") == 0) {
    415 	 var->interpolation = INTERP_QUALIFIER_FLAT;
    416       } else if (strcmp(qualifier->value(), "noperspective") == 0) {
    417 	 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
    418       } else {
    419 	 ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
    420 	 return NULL;
    421       }
    422    }
    423 
    424    // Add the variable to the symbol table
    425    state->symbols->add_variable(var);
    426 
    427    return var;
    428 }
    429 
    430 
    431 ir_if *
    432 ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
    433 {
    434    s_expression *s_cond;
    435    s_expression *s_then;
    436    s_expression *s_else;
    437 
    438    s_pattern pat[] = { "if", s_cond, s_then, s_else };
    439    if (!MATCH(expr, pat)) {
    440       ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
    441       return NULL;
    442    }
    443 
    444    ir_rvalue *condition = read_rvalue(s_cond);
    445    if (condition == NULL) {
    446       ir_read_error(NULL, "when reading condition of (if ...)");
    447       return NULL;
    448    }
    449 
    450    ir_if *iff = new(mem_ctx) ir_if(condition);
    451 
    452    read_instructions(&iff->then_instructions, s_then, loop_ctx);
    453    read_instructions(&iff->else_instructions, s_else, loop_ctx);
    454    if (state->error) {
    455       delete iff;
    456       iff = NULL;
    457    }
    458    return iff;
    459 }
    460 
    461 
    462 ir_loop *
    463 ir_reader::read_loop(s_expression *expr)
    464 {
    465    s_expression *s_counter, *s_from, *s_to, *s_inc, *s_body;
    466 
    467    s_pattern pat[] = { "loop", s_counter, s_from, s_to, s_inc, s_body };
    468    if (!MATCH(expr, pat)) {
    469       ir_read_error(expr, "expected (loop <counter> <from> <to> "
    470 			  "<increment> <body>)");
    471       return NULL;
    472    }
    473 
    474    // FINISHME: actually read the count/from/to fields.
    475 
    476    ir_loop *loop = new(mem_ctx) ir_loop;
    477    read_instructions(&loop->body_instructions, s_body, loop);
    478    if (state->error) {
    479       delete loop;
    480       loop = NULL;
    481    }
    482    return loop;
    483 }
    484 
    485 
    486 ir_return *
    487 ir_reader::read_return(s_expression *expr)
    488 {
    489    s_expression *s_retval;
    490 
    491    s_pattern return_value_pat[] = { "return", s_retval};
    492    s_pattern return_void_pat[] = { "return" };
    493    if (MATCH(expr, return_value_pat)) {
    494       ir_rvalue *retval = read_rvalue(s_retval);
    495       if (retval == NULL) {
    496          ir_read_error(NULL, "when reading return value");
    497          return NULL;
    498       }
    499       return new(mem_ctx) ir_return(retval);
    500    } else if (MATCH(expr, return_void_pat)) {
    501       return new(mem_ctx) ir_return;
    502    } else {
    503       ir_read_error(expr, "expected (return <rvalue>) or (return)");
    504       return NULL;
    505    }
    506 }
    507 
    508 
    509 ir_rvalue *
    510 ir_reader::read_rvalue(s_expression *expr)
    511 {
    512    s_list *list = SX_AS_LIST(expr);
    513    if (list == NULL || list->subexpressions.is_empty())
    514       return NULL;
    515 
    516    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
    517    if (tag == NULL) {
    518       ir_read_error(expr, "expected rvalue tag");
    519       return NULL;
    520    }
    521 
    522    ir_rvalue *rvalue = read_dereference(list);
    523    if (rvalue != NULL || state->error)
    524       return rvalue;
    525    else if (strcmp(tag->value(), "swiz") == 0) {
    526       rvalue = read_swizzle(list);
    527    } else if (strcmp(tag->value(), "expression") == 0) {
    528       rvalue = read_expression(list);
    529    } else if (strcmp(tag->value(), "constant") == 0) {
    530       rvalue = read_constant(list);
    531    } else {
    532       rvalue = read_texture(list);
    533       if (rvalue == NULL && !state->error)
    534 	 ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
    535    }
    536 
    537    return rvalue;
    538 }
    539 
    540 ir_assignment *
    541 ir_reader::read_assignment(s_expression *expr)
    542 {
    543    s_expression *cond_expr = NULL;
    544    s_expression *lhs_expr, *rhs_expr;
    545    s_list       *mask_list;
    546 
    547    s_pattern pat4[] = { "assign",            mask_list, lhs_expr, rhs_expr };
    548    s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
    549    if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
    550       ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
    551 			  "<lhs> <rhs>)");
    552       return NULL;
    553    }
    554 
    555    ir_rvalue *condition = NULL;
    556    if (cond_expr != NULL) {
    557       condition = read_rvalue(cond_expr);
    558       if (condition == NULL) {
    559 	 ir_read_error(NULL, "when reading condition of assignment");
    560 	 return NULL;
    561       }
    562    }
    563 
    564    unsigned mask = 0;
    565 
    566    s_symbol *mask_symbol;
    567    s_pattern mask_pat[] = { mask_symbol };
    568    if (MATCH(mask_list, mask_pat)) {
    569       const char *mask_str = mask_symbol->value();
    570       unsigned mask_length = strlen(mask_str);
    571       if (mask_length > 4) {
    572 	 ir_read_error(expr, "invalid write mask: %s", mask_str);
    573 	 return NULL;
    574       }
    575 
    576       const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
    577 
    578       for (unsigned i = 0; i < mask_length; i++) {
    579 	 if (mask_str[i] < 'w' || mask_str[i] > 'z') {
    580 	    ir_read_error(expr, "write mask contains invalid character: %c",
    581 			  mask_str[i]);
    582 	    return NULL;
    583 	 }
    584 	 mask |= 1 << idx_map[mask_str[i] - 'w'];
    585       }
    586    } else if (!mask_list->subexpressions.is_empty()) {
    587       ir_read_error(mask_list, "expected () or (<write mask>)");
    588       return NULL;
    589    }
    590 
    591    ir_dereference *lhs = read_dereference(lhs_expr);
    592    if (lhs == NULL) {
    593       ir_read_error(NULL, "when reading left-hand side of assignment");
    594       return NULL;
    595    }
    596 
    597    ir_rvalue *rhs = read_rvalue(rhs_expr);
    598    if (rhs == NULL) {
    599       ir_read_error(NULL, "when reading right-hand side of assignment");
    600       return NULL;
    601    }
    602 
    603    if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
    604       ir_read_error(expr, "non-zero write mask required.");
    605       return NULL;
    606    }
    607 
    608    return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
    609 }
    610 
    611 ir_call *
    612 ir_reader::read_call(s_expression *expr)
    613 {
    614    s_symbol *name;
    615    s_list *params;
    616    s_list *s_return = NULL;
    617 
    618    ir_dereference_variable *return_deref = NULL;
    619 
    620    s_pattern void_pat[] = { "call", name, params };
    621    s_pattern non_void_pat[] = { "call", name, s_return, params };
    622    if (MATCH(expr, non_void_pat)) {
    623       return_deref = read_var_ref(s_return);
    624       if (return_deref == NULL) {
    625 	 ir_read_error(s_return, "when reading a call's return storage");
    626 	 return NULL;
    627       }
    628    } else if (!MATCH(expr, void_pat)) {
    629       ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
    630       return NULL;
    631    }
    632 
    633    exec_list parameters;
    634 
    635    foreach_iter(exec_list_iterator, it, params->subexpressions) {
    636       s_expression *expr = (s_expression*) it.get();
    637       ir_rvalue *param = read_rvalue(expr);
    638       if (param == NULL) {
    639 	 ir_read_error(expr, "when reading parameter to function call");
    640 	 return NULL;
    641       }
    642       parameters.push_tail(param);
    643    }
    644 
    645    ir_function *f = state->symbols->get_function(name->value());
    646    if (f == NULL) {
    647       ir_read_error(expr, "found call to undefined function %s",
    648 		    name->value());
    649       return NULL;
    650    }
    651 
    652    ir_function_signature *callee = f->matching_signature(&parameters);
    653    if (callee == NULL) {
    654       ir_read_error(expr, "couldn't find matching signature for function "
    655                     "%s", name->value());
    656       return NULL;
    657    }
    658 
    659    if (callee->return_type == glsl_type::void_type && return_deref) {
    660       ir_read_error(expr, "call has return value storage but void type");
    661       return NULL;
    662    } else if (callee->return_type != glsl_type::void_type && !return_deref) {
    663       ir_read_error(expr, "call has non-void type but no return value storage");
    664       return NULL;
    665    }
    666 
    667    return new(mem_ctx) ir_call(callee, return_deref, &parameters);
    668 }
    669 
    670 ir_expression *
    671 ir_reader::read_expression(s_expression *expr)
    672 {
    673    s_expression *s_type;
    674    s_symbol *s_op;
    675    s_expression *s_arg1;
    676 
    677    s_pattern pat[] = { "expression", s_type, s_op, s_arg1 };
    678    if (!PARTIAL_MATCH(expr, pat)) {
    679       ir_read_error(expr, "expected (expression <type> <operator> "
    680 			  "<operand> [<operand>])");
    681       return NULL;
    682    }
    683    s_expression *s_arg2 = (s_expression *) s_arg1->next; // may be tail sentinel
    684 
    685    const glsl_type *type = read_type(s_type);
    686    if (type == NULL)
    687       return NULL;
    688 
    689    /* Read the operator */
    690    ir_expression_operation op = ir_expression::get_operator(s_op->value());
    691    if (op == (ir_expression_operation) -1) {
    692       ir_read_error(expr, "invalid operator: %s", s_op->value());
    693       return NULL;
    694    }
    695 
    696    unsigned num_operands = ir_expression::get_num_operands(op);
    697    if (num_operands == 1 && !s_arg1->next->is_tail_sentinel()) {
    698       ir_read_error(expr, "expected (expression <type> %s <operand>)",
    699 		    s_op->value());
    700       return NULL;
    701    }
    702 
    703    ir_rvalue *arg1 = read_rvalue(s_arg1);
    704    ir_rvalue *arg2 = NULL;
    705    if (arg1 == NULL) {
    706       ir_read_error(NULL, "when reading first operand of %s", s_op->value());
    707       return NULL;
    708    }
    709 
    710    if (num_operands == 2) {
    711       if (s_arg2->is_tail_sentinel() || !s_arg2->next->is_tail_sentinel()) {
    712 	 ir_read_error(expr, "expected (expression <type> %s <operand> "
    713 			     "<operand>)", s_op->value());
    714 	 return NULL;
    715       }
    716       arg2 = read_rvalue(s_arg2);
    717       if (arg2 == NULL) {
    718 	 ir_read_error(NULL, "when reading second operand of %s",
    719 		       s_op->value());
    720 	 return NULL;
    721       }
    722    }
    723 
    724    return new(mem_ctx) ir_expression(op, type, arg1, arg2);
    725 }
    726 
    727 ir_swizzle *
    728 ir_reader::read_swizzle(s_expression *expr)
    729 {
    730    s_symbol *swiz;
    731    s_expression *sub;
    732 
    733    s_pattern pat[] = { "swiz", swiz, sub };
    734    if (!MATCH(expr, pat)) {
    735       ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
    736       return NULL;
    737    }
    738 
    739    if (strlen(swiz->value()) > 4) {
    740       ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
    741       return NULL;
    742    }
    743 
    744    ir_rvalue *rvalue = read_rvalue(sub);
    745    if (rvalue == NULL)
    746       return NULL;
    747 
    748    ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
    749 				       rvalue->type->vector_elements);
    750    if (ir == NULL)
    751       ir_read_error(expr, "invalid swizzle");
    752 
    753    return ir;
    754 }
    755 
    756 ir_constant *
    757 ir_reader::read_constant(s_expression *expr)
    758 {
    759    s_expression *type_expr;
    760    s_list *values;
    761 
    762    s_pattern pat[] = { "constant", type_expr, values };
    763    if (!MATCH(expr, pat)) {
    764       ir_read_error(expr, "expected (constant <type> (...))");
    765       return NULL;
    766    }
    767 
    768    const glsl_type *type = read_type(type_expr);
    769    if (type == NULL)
    770       return NULL;
    771 
    772    if (values == NULL) {
    773       ir_read_error(expr, "expected (constant <type> (...))");
    774       return NULL;
    775    }
    776 
    777    if (type->is_array()) {
    778       unsigned elements_supplied = 0;
    779       exec_list elements;
    780       foreach_iter(exec_list_iterator, it, values->subexpressions) {
    781 	 s_expression *elt = (s_expression *) it.get();
    782 	 ir_constant *ir_elt = read_constant(elt);
    783 	 if (ir_elt == NULL)
    784 	    return NULL;
    785 	 elements.push_tail(ir_elt);
    786 	 elements_supplied++;
    787       }
    788 
    789       if (elements_supplied != type->length) {
    790 	 ir_read_error(values, "expected exactly %u array elements, "
    791 		       "given %u", type->length, elements_supplied);
    792 	 return NULL;
    793       }
    794       return new(mem_ctx) ir_constant(type, &elements);
    795    }
    796 
    797    ir_constant_data data = { { 0 } };
    798 
    799    // Read in list of values (at most 16).
    800    unsigned k = 0;
    801    foreach_iter(exec_list_iterator, it, values->subexpressions) {
    802       if (k >= 16) {
    803 	 ir_read_error(values, "expected at most 16 numbers");
    804 	 return NULL;
    805       }
    806 
    807       s_expression *expr = (s_expression*) it.get();
    808 
    809       if (type->base_type == GLSL_TYPE_FLOAT) {
    810 	 s_number *value = SX_AS_NUMBER(expr);
    811 	 if (value == NULL) {
    812 	    ir_read_error(values, "expected numbers");
    813 	    return NULL;
    814 	 }
    815 	 data.f[k] = value->fvalue();
    816       } else {
    817 	 s_int *value = SX_AS_INT(expr);
    818 	 if (value == NULL) {
    819 	    ir_read_error(values, "expected integers");
    820 	    return NULL;
    821 	 }
    822 
    823 	 switch (type->base_type) {
    824 	 case GLSL_TYPE_UINT: {
    825 	    data.u[k] = value->value();
    826 	    break;
    827 	 }
    828 	 case GLSL_TYPE_INT: {
    829 	    data.i[k] = value->value();
    830 	    break;
    831 	 }
    832 	 case GLSL_TYPE_BOOL: {
    833 	    data.b[k] = value->value();
    834 	    break;
    835 	 }
    836 	 default:
    837 	    ir_read_error(values, "unsupported constant type");
    838 	    return NULL;
    839 	 }
    840       }
    841       ++k;
    842    }
    843    if (k != type->components()) {
    844       ir_read_error(values, "expected %u constant values, found %u",
    845 		    type->components(), k);
    846       return NULL;
    847    }
    848 
    849    return new(mem_ctx) ir_constant(type, &data);
    850 }
    851 
    852 ir_dereference_variable *
    853 ir_reader::read_var_ref(s_expression *expr)
    854 {
    855    s_symbol *s_var;
    856    s_pattern var_pat[] = { "var_ref", s_var };
    857 
    858    if (MATCH(expr, var_pat)) {
    859       ir_variable *var = state->symbols->get_variable(s_var->value());
    860       if (var == NULL) {
    861 	 ir_read_error(expr, "undeclared variable: %s", s_var->value());
    862 	 return NULL;
    863       }
    864       return new(mem_ctx) ir_dereference_variable(var);
    865    }
    866    return NULL;
    867 }
    868 
    869 ir_dereference *
    870 ir_reader::read_dereference(s_expression *expr)
    871 {
    872    s_expression *s_subject;
    873    s_expression *s_index;
    874    s_symbol *s_field;
    875 
    876    s_pattern array_pat[] = { "array_ref", s_subject, s_index };
    877    s_pattern record_pat[] = { "record_ref", s_subject, s_field };
    878 
    879    ir_dereference_variable *var_ref = read_var_ref(expr);
    880    if (var_ref != NULL) {
    881       return var_ref;
    882    } else if (MATCH(expr, array_pat)) {
    883       ir_rvalue *subject = read_rvalue(s_subject);
    884       if (subject == NULL) {
    885 	 ir_read_error(NULL, "when reading the subject of an array_ref");
    886 	 return NULL;
    887       }
    888 
    889       ir_rvalue *idx = read_rvalue(s_index);
    890       if (subject == NULL) {
    891 	 ir_read_error(NULL, "when reading the index of an array_ref");
    892 	 return NULL;
    893       }
    894       return new(mem_ctx) ir_dereference_array(subject, idx);
    895    } else if (MATCH(expr, record_pat)) {
    896       ir_rvalue *subject = read_rvalue(s_subject);
    897       if (subject == NULL) {
    898 	 ir_read_error(NULL, "when reading the subject of a record_ref");
    899 	 return NULL;
    900       }
    901       return new(mem_ctx) ir_dereference_record(subject, s_field->value());
    902    }
    903    return NULL;
    904 }
    905 
    906 ir_texture *
    907 ir_reader::read_texture(s_expression *expr)
    908 {
    909    s_symbol *tag = NULL;
    910    s_expression *s_type = NULL;
    911    s_expression *s_sampler = NULL;
    912    s_expression *s_coord = NULL;
    913    s_expression *s_offset = NULL;
    914    s_expression *s_proj = NULL;
    915    s_list *s_shadow = NULL;
    916    s_expression *s_lod = NULL;
    917 
    918    ir_texture_opcode op = ir_tex; /* silence warning */
    919 
    920    s_pattern tex_pattern[] =
    921       { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
    922    s_pattern txf_pattern[] =
    923       { "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
    924    s_pattern txs_pattern[] =
    925       { "txs", s_type, s_sampler, s_lod };
    926    s_pattern other_pattern[] =
    927       { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
    928 
    929    if (MATCH(expr, tex_pattern)) {
    930       op = ir_tex;
    931    } else if (MATCH(expr, txf_pattern)) {
    932       op = ir_txf;
    933    } else if (MATCH(expr, txs_pattern)) {
    934       op = ir_txs;
    935    } else if (MATCH(expr, other_pattern)) {
    936       op = ir_texture::get_opcode(tag->value());
    937       if (op == -1)
    938 	 return NULL;
    939    } else {
    940       ir_read_error(NULL, "unexpected texture pattern");
    941       return NULL;
    942    }
    943 
    944    ir_texture *tex = new(mem_ctx) ir_texture(op);
    945 
    946    // Read return type
    947    const glsl_type *type = read_type(s_type);
    948    if (type == NULL) {
    949       ir_read_error(NULL, "when reading type in (%s ...)",
    950 		    tex->opcode_string());
    951       return NULL;
    952    }
    953 
    954    // Read sampler (must be a deref)
    955    ir_dereference *sampler = read_dereference(s_sampler);
    956    if (sampler == NULL) {
    957       ir_read_error(NULL, "when reading sampler in (%s ...)",
    958 		    tex->opcode_string());
    959       return NULL;
    960    }
    961    tex->set_sampler(sampler, type);
    962 
    963    if (op != ir_txs) {
    964       // Read coordinate (any rvalue)
    965       tex->coordinate = read_rvalue(s_coord);
    966       if (tex->coordinate == NULL) {
    967 	 ir_read_error(NULL, "when reading coordinate in (%s ...)",
    968 		       tex->opcode_string());
    969 	 return NULL;
    970       }
    971 
    972       // Read texel offset - either 0 or an rvalue.
    973       s_int *si_offset = SX_AS_INT(s_offset);
    974       if (si_offset == NULL || si_offset->value() != 0) {
    975 	 tex->offset = read_rvalue(s_offset);
    976 	 if (tex->offset == NULL) {
    977 	    ir_read_error(s_offset, "expected 0 or an expression");
    978 	    return NULL;
    979 	 }
    980       }
    981    }
    982 
    983    if (op != ir_txf && op != ir_txs) {
    984       s_int *proj_as_int = SX_AS_INT(s_proj);
    985       if (proj_as_int && proj_as_int->value() == 1) {
    986 	 tex->projector = NULL;
    987       } else {
    988 	 tex->projector = read_rvalue(s_proj);
    989 	 if (tex->projector == NULL) {
    990 	    ir_read_error(NULL, "when reading projective divide in (%s ..)",
    991 	                  tex->opcode_string());
    992 	    return NULL;
    993 	 }
    994       }
    995 
    996       if (s_shadow->subexpressions.is_empty()) {
    997 	 tex->shadow_comparitor = NULL;
    998       } else {
    999 	 tex->shadow_comparitor = read_rvalue(s_shadow);
   1000 	 if (tex->shadow_comparitor == NULL) {
   1001 	    ir_read_error(NULL, "when reading shadow comparitor in (%s ..)",
   1002 			  tex->opcode_string());
   1003 	    return NULL;
   1004 	 }
   1005       }
   1006    }
   1007 
   1008    switch (op) {
   1009    case ir_txb:
   1010       tex->lod_info.bias = read_rvalue(s_lod);
   1011       if (tex->lod_info.bias == NULL) {
   1012 	 ir_read_error(NULL, "when reading LOD bias in (txb ...)");
   1013 	 return NULL;
   1014       }
   1015       break;
   1016    case ir_txl:
   1017    case ir_txf:
   1018    case ir_txs:
   1019       tex->lod_info.lod = read_rvalue(s_lod);
   1020       if (tex->lod_info.lod == NULL) {
   1021 	 ir_read_error(NULL, "when reading LOD in (%s ...)",
   1022 		       tex->opcode_string());
   1023 	 return NULL;
   1024       }
   1025       break;
   1026    case ir_txd: {
   1027       s_expression *s_dx, *s_dy;
   1028       s_pattern dxdy_pat[] = { s_dx, s_dy };
   1029       if (!MATCH(s_lod, dxdy_pat)) {
   1030 	 ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
   1031 	 return NULL;
   1032       }
   1033       tex->lod_info.grad.dPdx = read_rvalue(s_dx);
   1034       if (tex->lod_info.grad.dPdx == NULL) {
   1035 	 ir_read_error(NULL, "when reading dPdx in (txd ...)");
   1036 	 return NULL;
   1037       }
   1038       tex->lod_info.grad.dPdy = read_rvalue(s_dy);
   1039       if (tex->lod_info.grad.dPdy == NULL) {
   1040 	 ir_read_error(NULL, "when reading dPdy in (txd ...)");
   1041 	 return NULL;
   1042       }
   1043       break;
   1044    }
   1045    default:
   1046       // tex doesn't have any extra parameters.
   1047       break;
   1048    };
   1049    return tex;
   1050 }
   1051