1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "AudioResampler" 18 //#define LOG_NDEBUG 0 19 20 #include <stdint.h> 21 #include <stdlib.h> 22 #include <sys/types.h> 23 #include <cutils/log.h> 24 #include <cutils/properties.h> 25 #include "AudioResampler.h" 26 #include "AudioResamplerSinc.h" 27 #include "AudioResamplerCubic.h" 28 29 #ifdef __arm__ 30 #include <machine/cpu-features.h> 31 #endif 32 33 namespace android { 34 35 #ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option 36 #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1 37 #endif // __ARM_HAVE_HALFWORD_MULTIPLY 38 // ---------------------------------------------------------------------------- 39 40 class AudioResamplerOrder1 : public AudioResampler { 41 public: 42 AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) : 43 AudioResampler(bitDepth, inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) { 44 } 45 virtual void resample(int32_t* out, size_t outFrameCount, 46 AudioBufferProvider* provider); 47 private: 48 // number of bits used in interpolation multiply - 15 bits avoids overflow 49 static const int kNumInterpBits = 15; 50 51 // bits to shift the phase fraction down to avoid overflow 52 static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits; 53 54 void init() {} 55 void resampleMono16(int32_t* out, size_t outFrameCount, 56 AudioBufferProvider* provider); 57 void resampleStereo16(int32_t* out, size_t outFrameCount, 58 AudioBufferProvider* provider); 59 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 60 void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, 61 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, 62 uint32_t &phaseFraction, uint32_t phaseIncrement); 63 void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, 64 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, 65 uint32_t &phaseFraction, uint32_t phaseIncrement); 66 #endif // ASM_ARM_RESAMP1 67 68 static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) { 69 return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits); 70 } 71 static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) { 72 *frac += inc; 73 *index += (size_t)(*frac >> kNumPhaseBits); 74 *frac &= kPhaseMask; 75 } 76 int mX0L; 77 int mX0R; 78 }; 79 80 bool AudioResampler::qualityIsSupported(src_quality quality) 81 { 82 switch (quality) { 83 case DEFAULT_QUALITY: 84 case LOW_QUALITY: 85 case MED_QUALITY: 86 case HIGH_QUALITY: 87 case VERY_HIGH_QUALITY: 88 return true; 89 default: 90 return false; 91 } 92 } 93 94 // ---------------------------------------------------------------------------- 95 96 static pthread_once_t once_control = PTHREAD_ONCE_INIT; 97 static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY; 98 99 void AudioResampler::init_routine() 100 { 101 char value[PROPERTY_VALUE_MAX]; 102 if (property_get("af.resampler.quality", value, NULL) > 0) { 103 char *endptr; 104 unsigned long l = strtoul(value, &endptr, 0); 105 if (*endptr == '\0') { 106 defaultQuality = (src_quality) l; 107 ALOGD("forcing AudioResampler quality to %d", defaultQuality); 108 if (defaultQuality < DEFAULT_QUALITY || defaultQuality > VERY_HIGH_QUALITY) { 109 defaultQuality = DEFAULT_QUALITY; 110 } 111 } 112 } 113 } 114 115 uint32_t AudioResampler::qualityMHz(src_quality quality) 116 { 117 switch (quality) { 118 default: 119 case DEFAULT_QUALITY: 120 case LOW_QUALITY: 121 return 3; 122 case MED_QUALITY: 123 return 6; 124 case HIGH_QUALITY: 125 return 20; 126 case VERY_HIGH_QUALITY: 127 return 34; 128 } 129 } 130 131 static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable 132 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 133 static uint32_t currentMHz = 0; 134 135 AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount, 136 int32_t sampleRate, src_quality quality) { 137 138 bool atFinalQuality; 139 if (quality == DEFAULT_QUALITY) { 140 // read the resampler default quality property the first time it is needed 141 int ok = pthread_once(&once_control, init_routine); 142 if (ok != 0) { 143 ALOGE("%s pthread_once failed: %d", __func__, ok); 144 } 145 quality = defaultQuality; 146 atFinalQuality = false; 147 } else { 148 atFinalQuality = true; 149 } 150 151 // naive implementation of CPU load throttling doesn't account for whether resampler is active 152 pthread_mutex_lock(&mutex); 153 for (;;) { 154 uint32_t deltaMHz = qualityMHz(quality); 155 uint32_t newMHz = currentMHz + deltaMHz; 156 if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) { 157 ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d", 158 currentMHz, newMHz, deltaMHz, quality); 159 currentMHz = newMHz; 160 break; 161 } 162 // not enough CPU available for proposed quality level, so try next lowest level 163 switch (quality) { 164 default: 165 case DEFAULT_QUALITY: 166 case LOW_QUALITY: 167 atFinalQuality = true; 168 break; 169 case MED_QUALITY: 170 quality = LOW_QUALITY; 171 break; 172 case HIGH_QUALITY: 173 quality = MED_QUALITY; 174 break; 175 case VERY_HIGH_QUALITY: 176 quality = HIGH_QUALITY; 177 break; 178 } 179 } 180 pthread_mutex_unlock(&mutex); 181 182 AudioResampler* resampler; 183 184 switch (quality) { 185 default: 186 case DEFAULT_QUALITY: 187 case LOW_QUALITY: 188 ALOGV("Create linear Resampler"); 189 resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate); 190 break; 191 case MED_QUALITY: 192 ALOGV("Create cubic Resampler"); 193 resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate); 194 break; 195 case HIGH_QUALITY: 196 ALOGV("Create HIGH_QUALITY sinc Resampler"); 197 resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate); 198 break; 199 case VERY_HIGH_QUALITY: 200 ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality); 201 resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate, quality); 202 break; 203 } 204 205 // initialize resampler 206 resampler->init(); 207 return resampler; 208 } 209 210 AudioResampler::AudioResampler(int bitDepth, int inChannelCount, 211 int32_t sampleRate, src_quality quality) : 212 mBitDepth(bitDepth), mChannelCount(inChannelCount), 213 mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0), 214 mPhaseFraction(0), mLocalTimeFreq(0), 215 mPTS(AudioBufferProvider::kInvalidPTS), mQuality(quality) { 216 // sanity check on format 217 if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) { 218 ALOGE("Unsupported sample format, %d bits, %d channels", bitDepth, 219 inChannelCount); 220 // ALOG_ASSERT(0); 221 } 222 if (sampleRate <= 0) { 223 ALOGE("Unsupported sample rate %d Hz", sampleRate); 224 } 225 226 // initialize common members 227 mVolume[0] = mVolume[1] = 0; 228 mBuffer.frameCount = 0; 229 230 } 231 232 AudioResampler::~AudioResampler() { 233 pthread_mutex_lock(&mutex); 234 src_quality quality = getQuality(); 235 uint32_t deltaMHz = qualityMHz(quality); 236 int32_t newMHz = currentMHz - deltaMHz; 237 ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d", 238 currentMHz, newMHz, deltaMHz, quality); 239 LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz); 240 currentMHz = newMHz; 241 pthread_mutex_unlock(&mutex); 242 } 243 244 void AudioResampler::setSampleRate(int32_t inSampleRate) { 245 mInSampleRate = inSampleRate; 246 mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate); 247 } 248 249 void AudioResampler::setVolume(int16_t left, int16_t right) { 250 // TODO: Implement anti-zipper filter 251 mVolume[0] = left; 252 mVolume[1] = right; 253 } 254 255 void AudioResampler::setLocalTimeFreq(uint64_t freq) { 256 mLocalTimeFreq = freq; 257 } 258 259 void AudioResampler::setPTS(int64_t pts) { 260 mPTS = pts; 261 } 262 263 int64_t AudioResampler::calculateOutputPTS(int outputFrameIndex) { 264 265 if (mPTS == AudioBufferProvider::kInvalidPTS) { 266 return AudioBufferProvider::kInvalidPTS; 267 } else { 268 return mPTS + ((outputFrameIndex * mLocalTimeFreq) / mSampleRate); 269 } 270 } 271 272 void AudioResampler::reset() { 273 mInputIndex = 0; 274 mPhaseFraction = 0; 275 mBuffer.frameCount = 0; 276 } 277 278 // ---------------------------------------------------------------------------- 279 280 void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount, 281 AudioBufferProvider* provider) { 282 283 // should never happen, but we overflow if it does 284 // ALOG_ASSERT(outFrameCount < 32767); 285 286 // select the appropriate resampler 287 switch (mChannelCount) { 288 case 1: 289 resampleMono16(out, outFrameCount, provider); 290 break; 291 case 2: 292 resampleStereo16(out, outFrameCount, provider); 293 break; 294 } 295 } 296 297 void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount, 298 AudioBufferProvider* provider) { 299 300 int32_t vl = mVolume[0]; 301 int32_t vr = mVolume[1]; 302 303 size_t inputIndex = mInputIndex; 304 uint32_t phaseFraction = mPhaseFraction; 305 uint32_t phaseIncrement = mPhaseIncrement; 306 size_t outputIndex = 0; 307 size_t outputSampleCount = outFrameCount * 2; 308 size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate; 309 310 // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", 311 // outFrameCount, inputIndex, phaseFraction, phaseIncrement); 312 313 while (outputIndex < outputSampleCount) { 314 315 // buffer is empty, fetch a new one 316 while (mBuffer.frameCount == 0) { 317 mBuffer.frameCount = inFrameCount; 318 provider->getNextBuffer(&mBuffer, 319 calculateOutputPTS(outputIndex / 2)); 320 if (mBuffer.raw == NULL) { 321 goto resampleStereo16_exit; 322 } 323 324 // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); 325 if (mBuffer.frameCount > inputIndex) break; 326 327 inputIndex -= mBuffer.frameCount; 328 mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; 329 mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; 330 provider->releaseBuffer(&mBuffer); 331 // mBuffer.frameCount == 0 now so we reload a new buffer 332 } 333 334 int16_t *in = mBuffer.i16; 335 336 // handle boundary case 337 while (inputIndex == 0) { 338 // ALOGE("boundary case"); 339 out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction); 340 out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction); 341 Advance(&inputIndex, &phaseFraction, phaseIncrement); 342 if (outputIndex == outputSampleCount) 343 break; 344 } 345 346 // process input samples 347 // ALOGE("general case"); 348 349 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 350 if (inputIndex + 2 < mBuffer.frameCount) { 351 int32_t* maxOutPt; 352 int32_t maxInIdx; 353 354 maxOutPt = out + (outputSampleCount - 2); // 2 because 2 frames per loop 355 maxInIdx = mBuffer.frameCount - 2; 356 AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, 357 phaseFraction, phaseIncrement); 358 } 359 #endif // ASM_ARM_RESAMP1 360 361 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { 362 out[outputIndex++] += vl * Interp(in[inputIndex*2-2], 363 in[inputIndex*2], phaseFraction); 364 out[outputIndex++] += vr * Interp(in[inputIndex*2-1], 365 in[inputIndex*2+1], phaseFraction); 366 Advance(&inputIndex, &phaseFraction, phaseIncrement); 367 } 368 369 // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); 370 371 // if done with buffer, save samples 372 if (inputIndex >= mBuffer.frameCount) { 373 inputIndex -= mBuffer.frameCount; 374 375 // ALOGE("buffer done, new input index %d", inputIndex); 376 377 mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; 378 mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; 379 provider->releaseBuffer(&mBuffer); 380 381 // verify that the releaseBuffer resets the buffer frameCount 382 // ALOG_ASSERT(mBuffer.frameCount == 0); 383 } 384 } 385 386 // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); 387 388 resampleStereo16_exit: 389 // save state 390 mInputIndex = inputIndex; 391 mPhaseFraction = phaseFraction; 392 } 393 394 void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount, 395 AudioBufferProvider* provider) { 396 397 int32_t vl = mVolume[0]; 398 int32_t vr = mVolume[1]; 399 400 size_t inputIndex = mInputIndex; 401 uint32_t phaseFraction = mPhaseFraction; 402 uint32_t phaseIncrement = mPhaseIncrement; 403 size_t outputIndex = 0; 404 size_t outputSampleCount = outFrameCount * 2; 405 size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate; 406 407 // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", 408 // outFrameCount, inputIndex, phaseFraction, phaseIncrement); 409 while (outputIndex < outputSampleCount) { 410 // buffer is empty, fetch a new one 411 while (mBuffer.frameCount == 0) { 412 mBuffer.frameCount = inFrameCount; 413 provider->getNextBuffer(&mBuffer, 414 calculateOutputPTS(outputIndex / 2)); 415 if (mBuffer.raw == NULL) { 416 mInputIndex = inputIndex; 417 mPhaseFraction = phaseFraction; 418 goto resampleMono16_exit; 419 } 420 // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); 421 if (mBuffer.frameCount > inputIndex) break; 422 423 inputIndex -= mBuffer.frameCount; 424 mX0L = mBuffer.i16[mBuffer.frameCount-1]; 425 provider->releaseBuffer(&mBuffer); 426 // mBuffer.frameCount == 0 now so we reload a new buffer 427 } 428 int16_t *in = mBuffer.i16; 429 430 // handle boundary case 431 while (inputIndex == 0) { 432 // ALOGE("boundary case"); 433 int32_t sample = Interp(mX0L, in[0], phaseFraction); 434 out[outputIndex++] += vl * sample; 435 out[outputIndex++] += vr * sample; 436 Advance(&inputIndex, &phaseFraction, phaseIncrement); 437 if (outputIndex == outputSampleCount) 438 break; 439 } 440 441 // process input samples 442 // ALOGE("general case"); 443 444 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 445 if (inputIndex + 2 < mBuffer.frameCount) { 446 int32_t* maxOutPt; 447 int32_t maxInIdx; 448 449 maxOutPt = out + (outputSampleCount - 2); 450 maxInIdx = (int32_t)mBuffer.frameCount - 2; 451 AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, 452 phaseFraction, phaseIncrement); 453 } 454 #endif // ASM_ARM_RESAMP1 455 456 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { 457 int32_t sample = Interp(in[inputIndex-1], in[inputIndex], 458 phaseFraction); 459 out[outputIndex++] += vl * sample; 460 out[outputIndex++] += vr * sample; 461 Advance(&inputIndex, &phaseFraction, phaseIncrement); 462 } 463 464 465 // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); 466 467 // if done with buffer, save samples 468 if (inputIndex >= mBuffer.frameCount) { 469 inputIndex -= mBuffer.frameCount; 470 471 // ALOGE("buffer done, new input index %d", inputIndex); 472 473 mX0L = mBuffer.i16[mBuffer.frameCount-1]; 474 provider->releaseBuffer(&mBuffer); 475 476 // verify that the releaseBuffer resets the buffer frameCount 477 // ALOG_ASSERT(mBuffer.frameCount == 0); 478 } 479 } 480 481 // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); 482 483 resampleMono16_exit: 484 // save state 485 mInputIndex = inputIndex; 486 mPhaseFraction = phaseFraction; 487 } 488 489 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 490 491 /******************************************************************* 492 * 493 * AsmMono16Loop 494 * asm optimized monotonic loop version; one loop is 2 frames 495 * Input: 496 * in : pointer on input samples 497 * maxOutPt : pointer on first not filled 498 * maxInIdx : index on first not used 499 * outputIndex : pointer on current output index 500 * out : pointer on output buffer 501 * inputIndex : pointer on current input index 502 * vl, vr : left and right gain 503 * phaseFraction : pointer on current phase fraction 504 * phaseIncrement 505 * Ouput: 506 * outputIndex : 507 * out : updated buffer 508 * inputIndex : index of next to use 509 * phaseFraction : phase fraction for next interpolation 510 * 511 *******************************************************************/ 512 __attribute__((noinline)) 513 void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, 514 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, 515 uint32_t &phaseFraction, uint32_t phaseIncrement) 516 { 517 #define MO_PARAM5 "36" // offset of parameter 5 (outputIndex) 518 519 asm( 520 "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n" 521 // get parameters 522 " ldr r6, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction 523 " ldr r6, [r6]\n" // phaseFraction 524 " ldr r7, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex 525 " ldr r7, [r7]\n" // inputIndex 526 " ldr r8, [sp, #" MO_PARAM5 " + 4]\n" // out 527 " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex 528 " ldr r0, [r0]\n" // outputIndex 529 " add r8, r0, asl #2\n" // curOut 530 " ldr r9, [sp, #" MO_PARAM5 " + 24]\n" // phaseIncrement 531 " ldr r10, [sp, #" MO_PARAM5 " + 12]\n" // vl 532 " ldr r11, [sp, #" MO_PARAM5 " + 16]\n" // vr 533 534 // r0 pin, x0, Samp 535 536 // r1 in 537 // r2 maxOutPt 538 // r3 maxInIdx 539 540 // r4 x1, i1, i3, Out1 541 // r5 out0 542 543 // r6 frac 544 // r7 inputIndex 545 // r8 curOut 546 547 // r9 inc 548 // r10 vl 549 // r11 vr 550 551 // r12 552 // r13 sp 553 // r14 554 555 // the following loop works on 2 frames 556 557 "1:\n" 558 " cmp r8, r2\n" // curOut - maxCurOut 559 " bcs 2f\n" 560 561 #define MO_ONE_FRAME \ 562 " add r0, r1, r7, asl #1\n" /* in + inputIndex */\ 563 " ldrsh r4, [r0]\n" /* in[inputIndex] */\ 564 " ldr r5, [r8]\n" /* out[outputIndex] */\ 565 " ldrsh r0, [r0, #-2]\n" /* in[inputIndex-1] */\ 566 " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ 567 " sub r4, r4, r0\n" /* in[inputIndex] - in[inputIndex-1] */\ 568 " mov r4, r4, lsl #2\n" /* <<2 */\ 569 " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ 570 " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ 571 " add r0, r0, r4\n" /* x0 - (..) */\ 572 " mla r5, r0, r10, r5\n" /* vl*interp + out[] */\ 573 " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ 574 " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ 575 " mla r4, r0, r11, r4\n" /* vr*interp + out[] */\ 576 " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */\ 577 " str r4, [r8], #4\n" /* out[outputIndex++] = ... */ 578 579 MO_ONE_FRAME // frame 1 580 MO_ONE_FRAME // frame 2 581 582 " cmp r7, r3\n" // inputIndex - maxInIdx 583 " bcc 1b\n" 584 "2:\n" 585 586 " bic r6, r6, #0xC0000000\n" // phaseFraction & ... 587 // save modified values 588 " ldr r0, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction 589 " str r6, [r0]\n" // phaseFraction 590 " ldr r0, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex 591 " str r7, [r0]\n" // inputIndex 592 " ldr r0, [sp, #" MO_PARAM5 " + 4]\n" // out 593 " sub r8, r0\n" // curOut - out 594 " asr r8, #2\n" // new outputIndex 595 " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex 596 " str r8, [r0]\n" // save outputIndex 597 598 " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n" 599 ); 600 } 601 602 /******************************************************************* 603 * 604 * AsmStereo16Loop 605 * asm optimized stereo loop version; one loop is 2 frames 606 * Input: 607 * in : pointer on input samples 608 * maxOutPt : pointer on first not filled 609 * maxInIdx : index on first not used 610 * outputIndex : pointer on current output index 611 * out : pointer on output buffer 612 * inputIndex : pointer on current input index 613 * vl, vr : left and right gain 614 * phaseFraction : pointer on current phase fraction 615 * phaseIncrement 616 * Ouput: 617 * outputIndex : 618 * out : updated buffer 619 * inputIndex : index of next to use 620 * phaseFraction : phase fraction for next interpolation 621 * 622 *******************************************************************/ 623 __attribute__((noinline)) 624 void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, 625 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, 626 uint32_t &phaseFraction, uint32_t phaseIncrement) 627 { 628 #define ST_PARAM5 "40" // offset of parameter 5 (outputIndex) 629 asm( 630 "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n" 631 // get parameters 632 " ldr r6, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction 633 " ldr r6, [r6]\n" // phaseFraction 634 " ldr r7, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex 635 " ldr r7, [r7]\n" // inputIndex 636 " ldr r8, [sp, #" ST_PARAM5 " + 4]\n" // out 637 " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex 638 " ldr r0, [r0]\n" // outputIndex 639 " add r8, r0, asl #2\n" // curOut 640 " ldr r9, [sp, #" ST_PARAM5 " + 24]\n" // phaseIncrement 641 " ldr r10, [sp, #" ST_PARAM5 " + 12]\n" // vl 642 " ldr r11, [sp, #" ST_PARAM5 " + 16]\n" // vr 643 644 // r0 pin, x0, Samp 645 646 // r1 in 647 // r2 maxOutPt 648 // r3 maxInIdx 649 650 // r4 x1, i1, i3, out1 651 // r5 out0 652 653 // r6 frac 654 // r7 inputIndex 655 // r8 curOut 656 657 // r9 inc 658 // r10 vl 659 // r11 vr 660 661 // r12 temporary 662 // r13 sp 663 // r14 664 665 "3:\n" 666 " cmp r8, r2\n" // curOut - maxCurOut 667 " bcs 4f\n" 668 669 #define ST_ONE_FRAME \ 670 " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ 671 \ 672 " add r0, r1, r7, asl #2\n" /* in + 2*inputIndex */\ 673 \ 674 " ldrsh r4, [r0]\n" /* in[2*inputIndex] */\ 675 " ldr r5, [r8]\n" /* out[outputIndex] */\ 676 " ldrsh r12, [r0, #-4]\n" /* in[2*inputIndex-2] */\ 677 " sub r4, r4, r12\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ 678 " mov r4, r4, lsl #2\n" /* <<2 */\ 679 " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ 680 " add r12, r12, r4\n" /* x0 - (..) */\ 681 " mla r5, r12, r10, r5\n" /* vl*interp + out[] */\ 682 " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ 683 " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ 684 \ 685 " ldrsh r12, [r0, #+2]\n" /* in[2*inputIndex+1] */\ 686 " ldrsh r0, [r0, #-2]\n" /* in[2*inputIndex-1] */\ 687 " sub r12, r12, r0\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ 688 " mov r12, r12, lsl #2\n" /* <<2 */\ 689 " smulwt r12, r12, r6\n" /* (x1-x0)*.. */\ 690 " add r12, r0, r12\n" /* x0 - (..) */\ 691 " mla r4, r12, r11, r4\n" /* vr*interp + out[] */\ 692 " str r4, [r8], #4\n" /* out[outputIndex++] = ... */\ 693 \ 694 " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ 695 " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */ 696 697 ST_ONE_FRAME // frame 1 698 ST_ONE_FRAME // frame 1 699 700 " cmp r7, r3\n" // inputIndex - maxInIdx 701 " bcc 3b\n" 702 "4:\n" 703 704 " bic r6, r6, #0xC0000000\n" // phaseFraction & ... 705 // save modified values 706 " ldr r0, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction 707 " str r6, [r0]\n" // phaseFraction 708 " ldr r0, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex 709 " str r7, [r0]\n" // inputIndex 710 " ldr r0, [sp, #" ST_PARAM5 " + 4]\n" // out 711 " sub r8, r0\n" // curOut - out 712 " asr r8, #2\n" // new outputIndex 713 " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex 714 " str r8, [r0]\n" // save outputIndex 715 716 " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n" 717 ); 718 } 719 720 #endif // ASM_ARM_RESAMP1 721 722 723 // ---------------------------------------------------------------------------- 724 725 } // namespace android 726