Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/Local.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/CFG.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/MDBuilder.h"
     36 #include "llvm/IR/Metadata.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/IR/NoFolder.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/IR/PatternMatch.h"
     41 #include "llvm/IR/Type.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include <algorithm>
     47 #include <map>
     48 #include <set>
     49 using namespace llvm;
     50 using namespace PatternMatch;
     51 
     52 #define DEBUG_TYPE "simplifycfg"
     53 
     54 static cl::opt<unsigned>
     55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     56    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     57 
     58 static cl::opt<bool>
     59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     60        cl::desc("Duplicate return instructions into unconditional branches"));
     61 
     62 static cl::opt<bool>
     63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     64        cl::desc("Sink common instructions down to the end block"));
     65 
     66 static cl::opt<bool> HoistCondStores(
     67     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
     68     cl::desc("Hoist conditional stores if an unconditional store precedes"));
     69 
     70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
     71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
     72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
     73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
     74 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     75 
     76 namespace {
     77   /// ValueEqualityComparisonCase - Represents a case of a switch.
     78   struct ValueEqualityComparisonCase {
     79     ConstantInt *Value;
     80     BasicBlock *Dest;
     81 
     82     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
     83       : Value(Value), Dest(Dest) {}
     84 
     85     bool operator<(ValueEqualityComparisonCase RHS) const {
     86       // Comparing pointers is ok as we only rely on the order for uniquing.
     87       return Value < RHS.Value;
     88     }
     89 
     90     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
     91   };
     92 
     93 class SimplifyCFGOpt {
     94   const TargetTransformInfo &TTI;
     95   const DataLayout *const DL;
     96   Value *isValueEqualityComparison(TerminatorInst *TI);
     97   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     98                                std::vector<ValueEqualityComparisonCase> &Cases);
     99   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    100                                                      BasicBlock *Pred,
    101                                                      IRBuilder<> &Builder);
    102   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    103                                            IRBuilder<> &Builder);
    104 
    105   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    106   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    107   bool SimplifyUnreachable(UnreachableInst *UI);
    108   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    109   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    110   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
    111   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
    112 
    113 public:
    114   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
    115       : TTI(TTI), DL(DL) {}
    116   bool run(BasicBlock *BB);
    117 };
    118 }
    119 
    120 /// SafeToMergeTerminators - Return true if it is safe to merge these two
    121 /// terminator instructions together.
    122 ///
    123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    124   if (SI1 == SI2) return false;  // Can't merge with self!
    125 
    126   // It is not safe to merge these two switch instructions if they have a common
    127   // successor, and if that successor has a PHI node, and if *that* PHI node has
    128   // conflicting incoming values from the two switch blocks.
    129   BasicBlock *SI1BB = SI1->getParent();
    130   BasicBlock *SI2BB = SI2->getParent();
    131   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    132 
    133   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    134     if (SI1Succs.count(*I))
    135       for (BasicBlock::iterator BBI = (*I)->begin();
    136            isa<PHINode>(BBI); ++BBI) {
    137         PHINode *PN = cast<PHINode>(BBI);
    138         if (PN->getIncomingValueForBlock(SI1BB) !=
    139             PN->getIncomingValueForBlock(SI2BB))
    140           return false;
    141       }
    142 
    143   return true;
    144 }
    145 
    146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
    147 /// to merge these two terminator instructions together, where SI1 is an
    148 /// unconditional branch. PhiNodes will store all PHI nodes in common
    149 /// successors.
    150 ///
    151 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
    152                                           BranchInst *SI2,
    153                                           Instruction *Cond,
    154                                           SmallVectorImpl<PHINode*> &PhiNodes) {
    155   if (SI1 == SI2) return false;  // Can't merge with self!
    156   assert(SI1->isUnconditional() && SI2->isConditional());
    157 
    158   // We fold the unconditional branch if we can easily update all PHI nodes in
    159   // common successors:
    160   // 1> We have a constant incoming value for the conditional branch;
    161   // 2> We have "Cond" as the incoming value for the unconditional branch;
    162   // 3> SI2->getCondition() and Cond have same operands.
    163   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    164   if (!Ci2) return false;
    165   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    166         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    167       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    168         Cond->getOperand(1) == Ci2->getOperand(0)))
    169     return false;
    170 
    171   BasicBlock *SI1BB = SI1->getParent();
    172   BasicBlock *SI2BB = SI2->getParent();
    173   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    174   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    175     if (SI1Succs.count(*I))
    176       for (BasicBlock::iterator BBI = (*I)->begin();
    177            isa<PHINode>(BBI); ++BBI) {
    178         PHINode *PN = cast<PHINode>(BBI);
    179         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    180             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    181           return false;
    182         PhiNodes.push_back(PN);
    183       }
    184   return true;
    185 }
    186 
    187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    188 /// now be entries in it from the 'NewPred' block.  The values that will be
    189 /// flowing into the PHI nodes will be the same as those coming in from
    190 /// ExistPred, an existing predecessor of Succ.
    191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    192                                   BasicBlock *ExistPred) {
    193   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    194 
    195   PHINode *PN;
    196   for (BasicBlock::iterator I = Succ->begin();
    197        (PN = dyn_cast<PHINode>(I)); ++I)
    198     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    199 }
    200 
    201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
    202 /// given instruction, which is assumed to be safe to speculate. 1 means
    203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
    204 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
    205   assert(isSafeToSpeculativelyExecute(I, DL) &&
    206          "Instruction is not safe to speculatively execute!");
    207   switch (Operator::getOpcode(I)) {
    208   default:
    209     // In doubt, be conservative.
    210     return UINT_MAX;
    211   case Instruction::GetElementPtr:
    212     // GEPs are cheap if all indices are constant.
    213     if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    214       return UINT_MAX;
    215     return 1;
    216   case Instruction::ExtractValue:
    217   case Instruction::Load:
    218   case Instruction::Add:
    219   case Instruction::Sub:
    220   case Instruction::And:
    221   case Instruction::Or:
    222   case Instruction::Xor:
    223   case Instruction::Shl:
    224   case Instruction::LShr:
    225   case Instruction::AShr:
    226   case Instruction::ICmp:
    227   case Instruction::Trunc:
    228   case Instruction::ZExt:
    229   case Instruction::SExt:
    230   case Instruction::BitCast:
    231   case Instruction::ExtractElement:
    232   case Instruction::InsertElement:
    233     return 1; // These are all cheap.
    234 
    235   case Instruction::Call:
    236   case Instruction::Select:
    237     return 2;
    238   }
    239 }
    240 
    241 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    242 /// accepted above, return true if the specified value dominates the block.  We
    243 /// don't handle the true generality of domination here, just a special case
    244 /// which works well enough for us.
    245 ///
    246 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    247 /// see if V (which must be an instruction) and its recursive operands
    248 /// that do not dominate BB have a combined cost lower than CostRemaining and
    249 /// are non-trapping.  If both are true, the instruction is inserted into the
    250 /// set and true is returned.
    251 ///
    252 /// The cost for most non-trapping instructions is defined as 1 except for
    253 /// Select whose cost is 2.
    254 ///
    255 /// After this function returns, CostRemaining is decreased by the cost of
    256 /// V plus its non-dominating operands.  If that cost is greater than
    257 /// CostRemaining, false is returned and CostRemaining is undefined.
    258 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    259                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    260                                 unsigned &CostRemaining,
    261                                 const DataLayout *DL) {
    262   Instruction *I = dyn_cast<Instruction>(V);
    263   if (!I) {
    264     // Non-instructions all dominate instructions, but not all constantexprs
    265     // can be executed unconditionally.
    266     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    267       if (C->canTrap())
    268         return false;
    269     return true;
    270   }
    271   BasicBlock *PBB = I->getParent();
    272 
    273   // We don't want to allow weird loops that might have the "if condition" in
    274   // the bottom of this block.
    275   if (PBB == BB) return false;
    276 
    277   // If this instruction is defined in a block that contains an unconditional
    278   // branch to BB, then it must be in the 'conditional' part of the "if
    279   // statement".  If not, it definitely dominates the region.
    280   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    281   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    282     return true;
    283 
    284   // If we aren't allowing aggressive promotion anymore, then don't consider
    285   // instructions in the 'if region'.
    286   if (!AggressiveInsts) return false;
    287 
    288   // If we have seen this instruction before, don't count it again.
    289   if (AggressiveInsts->count(I)) return true;
    290 
    291   // Okay, it looks like the instruction IS in the "condition".  Check to
    292   // see if it's a cheap instruction to unconditionally compute, and if it
    293   // only uses stuff defined outside of the condition.  If so, hoist it out.
    294   if (!isSafeToSpeculativelyExecute(I, DL))
    295     return false;
    296 
    297   unsigned Cost = ComputeSpeculationCost(I, DL);
    298 
    299   if (Cost > CostRemaining)
    300     return false;
    301 
    302   CostRemaining -= Cost;
    303 
    304   // Okay, we can only really hoist these out if their operands do
    305   // not take us over the cost threshold.
    306   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    307     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
    308       return false;
    309   // Okay, it's safe to do this!  Remember this instruction.
    310   AggressiveInsts->insert(I);
    311   return true;
    312 }
    313 
    314 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    315 /// and PointerNullValue. Return NULL if value is not a constant int.
    316 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
    317   // Normal constant int.
    318   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    319   if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
    320     return CI;
    321 
    322   // This is some kind of pointer constant. Turn it into a pointer-sized
    323   // ConstantInt if possible.
    324   IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
    325 
    326   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    327   if (isa<ConstantPointerNull>(V))
    328     return ConstantInt::get(PtrTy, 0);
    329 
    330   // IntToPtr const int.
    331   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    332     if (CE->getOpcode() == Instruction::IntToPtr)
    333       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    334         // The constant is very likely to have the right type already.
    335         if (CI->getType() == PtrTy)
    336           return CI;
    337         else
    338           return cast<ConstantInt>
    339             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    340       }
    341   return nullptr;
    342 }
    343 
    344 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    345 /// collection of icmp eq/ne instructions that compare a value against a
    346 /// constant, return the value being compared, and stick the constant into the
    347 /// Values vector.
    348 static Value *
    349 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    350                        const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
    351   Instruction *I = dyn_cast<Instruction>(V);
    352   if (!I) return nullptr;
    353 
    354   // If this is an icmp against a constant, handle this as one of the cases.
    355   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    356     if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
    357       Value *RHSVal;
    358       ConstantInt *RHSC;
    359 
    360       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    361         // (x & ~2^x) == y --> x == y || x == y|2^x
    362         // This undoes a transformation done by instcombine to fuse 2 compares.
    363         if (match(ICI->getOperand(0),
    364                   m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    365           APInt Not = ~RHSC->getValue();
    366           if (Not.isPowerOf2()) {
    367             Vals.push_back(C);
    368             Vals.push_back(
    369                 ConstantInt::get(C->getContext(), C->getValue() | Not));
    370             UsedICmps++;
    371             return RHSVal;
    372           }
    373         }
    374 
    375         UsedICmps++;
    376         Vals.push_back(C);
    377         return I->getOperand(0);
    378       }
    379 
    380       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    381       // the set.
    382       ConstantRange Span =
    383         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    384 
    385       // Shift the range if the compare is fed by an add. This is the range
    386       // compare idiom as emitted by instcombine.
    387       bool hasAdd =
    388           match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
    389       if (hasAdd)
    390         Span = Span.subtract(RHSC->getValue());
    391 
    392       // If this is an and/!= check then we want to optimize "x ugt 2" into
    393       // x != 0 && x != 1.
    394       if (!isEQ)
    395         Span = Span.inverse();
    396 
    397       // If there are a ton of values, we don't want to make a ginormous switch.
    398       if (Span.getSetSize().ugt(8) || Span.isEmptySet())
    399         return nullptr;
    400 
    401       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    402         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    403       UsedICmps++;
    404       return hasAdd ? RHSVal : I->getOperand(0);
    405     }
    406     return nullptr;
    407   }
    408 
    409   // Otherwise, we can only handle an | or &, depending on isEQ.
    410   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    411     return nullptr;
    412 
    413   unsigned NumValsBeforeLHS = Vals.size();
    414   unsigned UsedICmpsBeforeLHS = UsedICmps;
    415   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
    416                                           isEQ, UsedICmps)) {
    417     unsigned NumVals = Vals.size();
    418     unsigned UsedICmpsBeforeRHS = UsedICmps;
    419     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
    420                                             isEQ, UsedICmps)) {
    421       if (LHS == RHS)
    422         return LHS;
    423       Vals.resize(NumVals);
    424       UsedICmps = UsedICmpsBeforeRHS;
    425     }
    426 
    427     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    428     // set it and return success.
    429     if (Extra == nullptr || Extra == I->getOperand(1)) {
    430       Extra = I->getOperand(1);
    431       return LHS;
    432     }
    433 
    434     Vals.resize(NumValsBeforeLHS);
    435     UsedICmps = UsedICmpsBeforeLHS;
    436     return nullptr;
    437   }
    438 
    439   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    440   // use LHS as Extra.
    441   if (Extra == nullptr || Extra == I->getOperand(0)) {
    442     Value *OldExtra = Extra;
    443     Extra = I->getOperand(0);
    444     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
    445                                             isEQ, UsedICmps))
    446       return RHS;
    447     assert(Vals.size() == NumValsBeforeLHS);
    448     Extra = OldExtra;
    449   }
    450 
    451   return nullptr;
    452 }
    453 
    454 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    455   Instruction *Cond = nullptr;
    456   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    457     Cond = dyn_cast<Instruction>(SI->getCondition());
    458   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    459     if (BI->isConditional())
    460       Cond = dyn_cast<Instruction>(BI->getCondition());
    461   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    462     Cond = dyn_cast<Instruction>(IBI->getAddress());
    463   }
    464 
    465   TI->eraseFromParent();
    466   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    467 }
    468 
    469 /// isValueEqualityComparison - Return true if the specified terminator checks
    470 /// to see if a value is equal to constant integer value.
    471 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    472   Value *CV = nullptr;
    473   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    474     // Do not permit merging of large switch instructions into their
    475     // predecessors unless there is only one predecessor.
    476     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    477                                              pred_end(SI->getParent())) <= 128)
    478       CV = SI->getCondition();
    479   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    480     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    481       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    482         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
    483           CV = ICI->getOperand(0);
    484 
    485   // Unwrap any lossless ptrtoint cast.
    486   if (DL && CV) {
    487     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
    488       Value *Ptr = PTII->getPointerOperand();
    489       if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
    490         CV = Ptr;
    491     }
    492   }
    493   return CV;
    494 }
    495 
    496 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    497 /// decode all of the 'cases' that it represents and return the 'default' block.
    498 BasicBlock *SimplifyCFGOpt::
    499 GetValueEqualityComparisonCases(TerminatorInst *TI,
    500                                 std::vector<ValueEqualityComparisonCase>
    501                                                                        &Cases) {
    502   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    503     Cases.reserve(SI->getNumCases());
    504     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    505       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
    506                                                   i.getCaseSuccessor()));
    507     return SI->getDefaultDest();
    508   }
    509 
    510   BranchInst *BI = cast<BranchInst>(TI);
    511   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    512   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    513   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
    514                                                              DL),
    515                                               Succ));
    516   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    517 }
    518 
    519 
    520 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    521 /// in the list that match the specified block.
    522 static void EliminateBlockCases(BasicBlock *BB,
    523                               std::vector<ValueEqualityComparisonCase> &Cases) {
    524   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    525 }
    526 
    527 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    528 /// well.
    529 static bool
    530 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    531               std::vector<ValueEqualityComparisonCase > &C2) {
    532   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    533 
    534   // Make V1 be smaller than V2.
    535   if (V1->size() > V2->size())
    536     std::swap(V1, V2);
    537 
    538   if (V1->size() == 0) return false;
    539   if (V1->size() == 1) {
    540     // Just scan V2.
    541     ConstantInt *TheVal = (*V1)[0].Value;
    542     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    543       if (TheVal == (*V2)[i].Value)
    544         return true;
    545   }
    546 
    547   // Otherwise, just sort both lists and compare element by element.
    548   array_pod_sort(V1->begin(), V1->end());
    549   array_pod_sort(V2->begin(), V2->end());
    550   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    551   while (i1 != e1 && i2 != e2) {
    552     if ((*V1)[i1].Value == (*V2)[i2].Value)
    553       return true;
    554     if ((*V1)[i1].Value < (*V2)[i2].Value)
    555       ++i1;
    556     else
    557       ++i2;
    558   }
    559   return false;
    560 }
    561 
    562 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    563 /// terminator instruction and its block is known to only have a single
    564 /// predecessor block, check to see if that predecessor is also a value
    565 /// comparison with the same value, and if that comparison determines the
    566 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    567 /// form of jump threading.
    568 bool SimplifyCFGOpt::
    569 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    570                                               BasicBlock *Pred,
    571                                               IRBuilder<> &Builder) {
    572   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    573   if (!PredVal) return false;  // Not a value comparison in predecessor.
    574 
    575   Value *ThisVal = isValueEqualityComparison(TI);
    576   assert(ThisVal && "This isn't a value comparison!!");
    577   if (ThisVal != PredVal) return false;  // Different predicates.
    578 
    579   // TODO: Preserve branch weight metadata, similarly to how
    580   // FoldValueComparisonIntoPredecessors preserves it.
    581 
    582   // Find out information about when control will move from Pred to TI's block.
    583   std::vector<ValueEqualityComparisonCase> PredCases;
    584   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    585                                                         PredCases);
    586   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    587 
    588   // Find information about how control leaves this block.
    589   std::vector<ValueEqualityComparisonCase> ThisCases;
    590   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    591   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    592 
    593   // If TI's block is the default block from Pred's comparison, potentially
    594   // simplify TI based on this knowledge.
    595   if (PredDef == TI->getParent()) {
    596     // If we are here, we know that the value is none of those cases listed in
    597     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    598     // can simplify TI.
    599     if (!ValuesOverlap(PredCases, ThisCases))
    600       return false;
    601 
    602     if (isa<BranchInst>(TI)) {
    603       // Okay, one of the successors of this condbr is dead.  Convert it to a
    604       // uncond br.
    605       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    606       // Insert the new branch.
    607       Instruction *NI = Builder.CreateBr(ThisDef);
    608       (void) NI;
    609 
    610       // Remove PHI node entries for the dead edge.
    611       ThisCases[0].Dest->removePredecessor(TI->getParent());
    612 
    613       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    614            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    615 
    616       EraseTerminatorInstAndDCECond(TI);
    617       return true;
    618     }
    619 
    620     SwitchInst *SI = cast<SwitchInst>(TI);
    621     // Okay, TI has cases that are statically dead, prune them away.
    622     SmallPtrSet<Constant*, 16> DeadCases;
    623     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    624       DeadCases.insert(PredCases[i].Value);
    625 
    626     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    627                  << "Through successor TI: " << *TI);
    628 
    629     // Collect branch weights into a vector.
    630     SmallVector<uint32_t, 8> Weights;
    631     MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    632     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    633     if (HasWeight)
    634       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    635            ++MD_i) {
    636         ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
    637         assert(CI);
    638         Weights.push_back(CI->getValue().getZExtValue());
    639       }
    640     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    641       --i;
    642       if (DeadCases.count(i.getCaseValue())) {
    643         if (HasWeight) {
    644           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
    645           Weights.pop_back();
    646         }
    647         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    648         SI->removeCase(i);
    649       }
    650     }
    651     if (HasWeight && Weights.size() >= 2)
    652       SI->setMetadata(LLVMContext::MD_prof,
    653                       MDBuilder(SI->getParent()->getContext()).
    654                       createBranchWeights(Weights));
    655 
    656     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    657     return true;
    658   }
    659 
    660   // Otherwise, TI's block must correspond to some matched value.  Find out
    661   // which value (or set of values) this is.
    662   ConstantInt *TIV = nullptr;
    663   BasicBlock *TIBB = TI->getParent();
    664   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    665     if (PredCases[i].Dest == TIBB) {
    666       if (TIV)
    667         return false;  // Cannot handle multiple values coming to this block.
    668       TIV = PredCases[i].Value;
    669     }
    670   assert(TIV && "No edge from pred to succ?");
    671 
    672   // Okay, we found the one constant that our value can be if we get into TI's
    673   // BB.  Find out which successor will unconditionally be branched to.
    674   BasicBlock *TheRealDest = nullptr;
    675   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    676     if (ThisCases[i].Value == TIV) {
    677       TheRealDest = ThisCases[i].Dest;
    678       break;
    679     }
    680 
    681   // If not handled by any explicit cases, it is handled by the default case.
    682   if (!TheRealDest) TheRealDest = ThisDef;
    683 
    684   // Remove PHI node entries for dead edges.
    685   BasicBlock *CheckEdge = TheRealDest;
    686   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    687     if (*SI != CheckEdge)
    688       (*SI)->removePredecessor(TIBB);
    689     else
    690       CheckEdge = nullptr;
    691 
    692   // Insert the new branch.
    693   Instruction *NI = Builder.CreateBr(TheRealDest);
    694   (void) NI;
    695 
    696   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    697             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    698 
    699   EraseTerminatorInstAndDCECond(TI);
    700   return true;
    701 }
    702 
    703 namespace {
    704   /// ConstantIntOrdering - This class implements a stable ordering of constant
    705   /// integers that does not depend on their address.  This is important for
    706   /// applications that sort ConstantInt's to ensure uniqueness.
    707   struct ConstantIntOrdering {
    708     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    709       return LHS->getValue().ult(RHS->getValue());
    710     }
    711   };
    712 }
    713 
    714 static int ConstantIntSortPredicate(ConstantInt *const *P1,
    715                                     ConstantInt *const *P2) {
    716   const ConstantInt *LHS = *P1;
    717   const ConstantInt *RHS = *P2;
    718   if (LHS->getValue().ult(RHS->getValue()))
    719     return 1;
    720   if (LHS->getValue() == RHS->getValue())
    721     return 0;
    722   return -1;
    723 }
    724 
    725 static inline bool HasBranchWeights(const Instruction* I) {
    726   MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
    727   if (ProfMD && ProfMD->getOperand(0))
    728     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    729       return MDS->getString().equals("branch_weights");
    730 
    731   return false;
    732 }
    733 
    734 /// Get Weights of a given TerminatorInst, the default weight is at the front
    735 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    736 /// metadata.
    737 static void GetBranchWeights(TerminatorInst *TI,
    738                              SmallVectorImpl<uint64_t> &Weights) {
    739   MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
    740   assert(MD);
    741   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    742     ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
    743     Weights.push_back(CI->getValue().getZExtValue());
    744   }
    745 
    746   // If TI is a conditional eq, the default case is the false case,
    747   // and the corresponding branch-weight data is at index 2. We swap the
    748   // default weight to be the first entry.
    749   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
    750     assert(Weights.size() == 2);
    751     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    752     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    753       std::swap(Weights.front(), Weights.back());
    754   }
    755 }
    756 
    757 /// Keep halving the weights until all can fit in uint32_t.
    758 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    759   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
    760   if (Max > UINT_MAX) {
    761     unsigned Offset = 32 - countLeadingZeros(Max);
    762     for (uint64_t &I : Weights)
    763       I >>= Offset;
    764   }
    765 }
    766 
    767 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    768 /// equality comparison instruction (either a switch or a branch on "X == c").
    769 /// See if any of the predecessors of the terminator block are value comparisons
    770 /// on the same value.  If so, and if safe to do so, fold them together.
    771 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    772                                                          IRBuilder<> &Builder) {
    773   BasicBlock *BB = TI->getParent();
    774   Value *CV = isValueEqualityComparison(TI);  // CondVal
    775   assert(CV && "Not a comparison?");
    776   bool Changed = false;
    777 
    778   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    779   while (!Preds.empty()) {
    780     BasicBlock *Pred = Preds.pop_back_val();
    781 
    782     // See if the predecessor is a comparison with the same value.
    783     TerminatorInst *PTI = Pred->getTerminator();
    784     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    785 
    786     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    787       // Figure out which 'cases' to copy from SI to PSI.
    788       std::vector<ValueEqualityComparisonCase> BBCases;
    789       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    790 
    791       std::vector<ValueEqualityComparisonCase> PredCases;
    792       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    793 
    794       // Based on whether the default edge from PTI goes to BB or not, fill in
    795       // PredCases and PredDefault with the new switch cases we would like to
    796       // build.
    797       SmallVector<BasicBlock*, 8> NewSuccessors;
    798 
    799       // Update the branch weight metadata along the way
    800       SmallVector<uint64_t, 8> Weights;
    801       bool PredHasWeights = HasBranchWeights(PTI);
    802       bool SuccHasWeights = HasBranchWeights(TI);
    803 
    804       if (PredHasWeights) {
    805         GetBranchWeights(PTI, Weights);
    806         // branch-weight metadata is inconsistent here.
    807         if (Weights.size() != 1 + PredCases.size())
    808           PredHasWeights = SuccHasWeights = false;
    809       } else if (SuccHasWeights)
    810         // If there are no predecessor weights but there are successor weights,
    811         // populate Weights with 1, which will later be scaled to the sum of
    812         // successor's weights
    813         Weights.assign(1 + PredCases.size(), 1);
    814 
    815       SmallVector<uint64_t, 8> SuccWeights;
    816       if (SuccHasWeights) {
    817         GetBranchWeights(TI, SuccWeights);
    818         // branch-weight metadata is inconsistent here.
    819         if (SuccWeights.size() != 1 + BBCases.size())
    820           PredHasWeights = SuccHasWeights = false;
    821       } else if (PredHasWeights)
    822         SuccWeights.assign(1 + BBCases.size(), 1);
    823 
    824       if (PredDefault == BB) {
    825         // If this is the default destination from PTI, only the edges in TI
    826         // that don't occur in PTI, or that branch to BB will be activated.
    827         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    828         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    829           if (PredCases[i].Dest != BB)
    830             PTIHandled.insert(PredCases[i].Value);
    831           else {
    832             // The default destination is BB, we don't need explicit targets.
    833             std::swap(PredCases[i], PredCases.back());
    834 
    835             if (PredHasWeights || SuccHasWeights) {
    836               // Increase weight for the default case.
    837               Weights[0] += Weights[i+1];
    838               std::swap(Weights[i+1], Weights.back());
    839               Weights.pop_back();
    840             }
    841 
    842             PredCases.pop_back();
    843             --i; --e;
    844           }
    845 
    846         // Reconstruct the new switch statement we will be building.
    847         if (PredDefault != BBDefault) {
    848           PredDefault->removePredecessor(Pred);
    849           PredDefault = BBDefault;
    850           NewSuccessors.push_back(BBDefault);
    851         }
    852 
    853         unsigned CasesFromPred = Weights.size();
    854         uint64_t ValidTotalSuccWeight = 0;
    855         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    856           if (!PTIHandled.count(BBCases[i].Value) &&
    857               BBCases[i].Dest != BBDefault) {
    858             PredCases.push_back(BBCases[i]);
    859             NewSuccessors.push_back(BBCases[i].Dest);
    860             if (SuccHasWeights || PredHasWeights) {
    861               // The default weight is at index 0, so weight for the ith case
    862               // should be at index i+1. Scale the cases from successor by
    863               // PredDefaultWeight (Weights[0]).
    864               Weights.push_back(Weights[0] * SuccWeights[i+1]);
    865               ValidTotalSuccWeight += SuccWeights[i+1];
    866             }
    867           }
    868 
    869         if (SuccHasWeights || PredHasWeights) {
    870           ValidTotalSuccWeight += SuccWeights[0];
    871           // Scale the cases from predecessor by ValidTotalSuccWeight.
    872           for (unsigned i = 1; i < CasesFromPred; ++i)
    873             Weights[i] *= ValidTotalSuccWeight;
    874           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
    875           Weights[0] *= SuccWeights[0];
    876         }
    877       } else {
    878         // If this is not the default destination from PSI, only the edges
    879         // in SI that occur in PSI with a destination of BB will be
    880         // activated.
    881         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    882         std::map<ConstantInt*, uint64_t> WeightsForHandled;
    883         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    884           if (PredCases[i].Dest == BB) {
    885             PTIHandled.insert(PredCases[i].Value);
    886 
    887             if (PredHasWeights || SuccHasWeights) {
    888               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
    889               std::swap(Weights[i+1], Weights.back());
    890               Weights.pop_back();
    891             }
    892 
    893             std::swap(PredCases[i], PredCases.back());
    894             PredCases.pop_back();
    895             --i; --e;
    896           }
    897 
    898         // Okay, now we know which constants were sent to BB from the
    899         // predecessor.  Figure out where they will all go now.
    900         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    901           if (PTIHandled.count(BBCases[i].Value)) {
    902             // If this is one we are capable of getting...
    903             if (PredHasWeights || SuccHasWeights)
    904               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
    905             PredCases.push_back(BBCases[i]);
    906             NewSuccessors.push_back(BBCases[i].Dest);
    907             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
    908           }
    909 
    910         // If there are any constants vectored to BB that TI doesn't handle,
    911         // they must go to the default destination of TI.
    912         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    913                                     PTIHandled.begin(),
    914                E = PTIHandled.end(); I != E; ++I) {
    915           if (PredHasWeights || SuccHasWeights)
    916             Weights.push_back(WeightsForHandled[*I]);
    917           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
    918           NewSuccessors.push_back(BBDefault);
    919         }
    920       }
    921 
    922       // Okay, at this point, we know which new successor Pred will get.  Make
    923       // sure we update the number of entries in the PHI nodes for these
    924       // successors.
    925       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    926         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    927 
    928       Builder.SetInsertPoint(PTI);
    929       // Convert pointer to int before we switch.
    930       if (CV->getType()->isPointerTy()) {
    931         assert(DL && "Cannot switch on pointer without DataLayout");
    932         CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
    933                                     "magicptr");
    934       }
    935 
    936       // Now that the successors are updated, create the new Switch instruction.
    937       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    938                                                PredCases.size());
    939       NewSI->setDebugLoc(PTI->getDebugLoc());
    940       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    941         NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
    942 
    943       if (PredHasWeights || SuccHasWeights) {
    944         // Halve the weights if any of them cannot fit in an uint32_t
    945         FitWeights(Weights);
    946 
    947         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
    948 
    949         NewSI->setMetadata(LLVMContext::MD_prof,
    950                            MDBuilder(BB->getContext()).
    951                            createBranchWeights(MDWeights));
    952       }
    953 
    954       EraseTerminatorInstAndDCECond(PTI);
    955 
    956       // Okay, last check.  If BB is still a successor of PSI, then we must
    957       // have an infinite loop case.  If so, add an infinitely looping block
    958       // to handle the case to preserve the behavior of the code.
    959       BasicBlock *InfLoopBlock = nullptr;
    960       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
    961         if (NewSI->getSuccessor(i) == BB) {
    962           if (!InfLoopBlock) {
    963             // Insert it at the end of the function, because it's either code,
    964             // or it won't matter if it's hot. :)
    965             InfLoopBlock = BasicBlock::Create(BB->getContext(),
    966                                               "infloop", BB->getParent());
    967             BranchInst::Create(InfLoopBlock, InfLoopBlock);
    968           }
    969           NewSI->setSuccessor(i, InfLoopBlock);
    970         }
    971 
    972       Changed = true;
    973     }
    974   }
    975   return Changed;
    976 }
    977 
    978 // isSafeToHoistInvoke - If we would need to insert a select that uses the
    979 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
    980 // would need to do this), we can't hoist the invoke, as there is nowhere
    981 // to put the select in this case.
    982 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
    983                                 Instruction *I1, Instruction *I2) {
    984   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    985     PHINode *PN;
    986     for (BasicBlock::iterator BBI = SI->begin();
    987          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    988       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    989       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    990       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
    991         return false;
    992       }
    993     }
    994   }
    995   return true;
    996 }
    997 
    998 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
    999 /// BB2, hoist any common code in the two blocks up into the branch block.  The
   1000 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
   1001 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
   1002   // This does very trivial matching, with limited scanning, to find identical
   1003   // instructions in the two blocks.  In particular, we don't want to get into
   1004   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1005   // such, we currently just scan for obviously identical instructions in an
   1006   // identical order.
   1007   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
   1008   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
   1009 
   1010   BasicBlock::iterator BB1_Itr = BB1->begin();
   1011   BasicBlock::iterator BB2_Itr = BB2->begin();
   1012 
   1013   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
   1014   // Skip debug info if it is not identical.
   1015   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1016   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1017   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1018     while (isa<DbgInfoIntrinsic>(I1))
   1019       I1 = BB1_Itr++;
   1020     while (isa<DbgInfoIntrinsic>(I2))
   1021       I2 = BB2_Itr++;
   1022   }
   1023   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1024       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1025     return false;
   1026 
   1027   BasicBlock *BIParent = BI->getParent();
   1028 
   1029   bool Changed = false;
   1030   do {
   1031     // If we are hoisting the terminator instruction, don't move one (making a
   1032     // broken BB), instead clone it, and remove BI.
   1033     if (isa<TerminatorInst>(I1))
   1034       goto HoistTerminator;
   1035 
   1036     // For a normal instruction, we just move one to right before the branch,
   1037     // then replace all uses of the other with the first.  Finally, we remove
   1038     // the now redundant second instruction.
   1039     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
   1040     if (!I2->use_empty())
   1041       I2->replaceAllUsesWith(I1);
   1042     I1->intersectOptionalDataWith(I2);
   1043     I2->eraseFromParent();
   1044     Changed = true;
   1045 
   1046     I1 = BB1_Itr++;
   1047     I2 = BB2_Itr++;
   1048     // Skip debug info if it is not identical.
   1049     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1050     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1051     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1052       while (isa<DbgInfoIntrinsic>(I1))
   1053         I1 = BB1_Itr++;
   1054       while (isa<DbgInfoIntrinsic>(I2))
   1055         I2 = BB2_Itr++;
   1056     }
   1057   } while (I1->isIdenticalToWhenDefined(I2));
   1058 
   1059   return true;
   1060 
   1061 HoistTerminator:
   1062   // It may not be possible to hoist an invoke.
   1063   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1064     return Changed;
   1065 
   1066   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1067     PHINode *PN;
   1068     for (BasicBlock::iterator BBI = SI->begin();
   1069          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1070       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1071       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1072       if (BB1V == BB2V)
   1073         continue;
   1074 
   1075       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
   1076         return Changed;
   1077       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
   1078         return Changed;
   1079     }
   1080   }
   1081 
   1082   // Okay, it is safe to hoist the terminator.
   1083   Instruction *NT = I1->clone();
   1084   BIParent->getInstList().insert(BI, NT);
   1085   if (!NT->getType()->isVoidTy()) {
   1086     I1->replaceAllUsesWith(NT);
   1087     I2->replaceAllUsesWith(NT);
   1088     NT->takeName(I1);
   1089   }
   1090 
   1091   IRBuilder<true, NoFolder> Builder(NT);
   1092   // Hoisting one of the terminators from our successor is a great thing.
   1093   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1094   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1095   // nodes, so we insert select instruction to compute the final result.
   1096   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
   1097   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1098     PHINode *PN;
   1099     for (BasicBlock::iterator BBI = SI->begin();
   1100          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1101       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1102       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1103       if (BB1V == BB2V) continue;
   1104 
   1105       // These values do not agree.  Insert a select instruction before NT
   1106       // that determines the right value.
   1107       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1108       if (!SI)
   1109         SI = cast<SelectInst>
   1110           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1111                                 BB1V->getName()+"."+BB2V->getName()));
   1112 
   1113       // Make the PHI node use the select for all incoming values for BB1/BB2
   1114       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1115         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1116           PN->setIncomingValue(i, SI);
   1117     }
   1118   }
   1119 
   1120   // Update any PHI nodes in our new successors.
   1121   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
   1122     AddPredecessorToBlock(*SI, BIParent, BB1);
   1123 
   1124   EraseTerminatorInstAndDCECond(BI);
   1125   return true;
   1126 }
   1127 
   1128 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
   1129 /// check whether BBEnd has only two predecessors and the other predecessor
   1130 /// ends with an unconditional branch. If it is true, sink any common code
   1131 /// in the two predecessors to BBEnd.
   1132 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1133   assert(BI1->isUnconditional());
   1134   BasicBlock *BB1 = BI1->getParent();
   1135   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1136 
   1137   // Check that BBEnd has two predecessors and the other predecessor ends with
   1138   // an unconditional branch.
   1139   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1140   BasicBlock *Pred0 = *PI++;
   1141   if (PI == PE) // Only one predecessor.
   1142     return false;
   1143   BasicBlock *Pred1 = *PI++;
   1144   if (PI != PE) // More than two predecessors.
   1145     return false;
   1146   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1147   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1148   if (!BI2 || !BI2->isUnconditional())
   1149     return false;
   1150 
   1151   // Gather the PHI nodes in BBEnd.
   1152   std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
   1153   Instruction *FirstNonPhiInBBEnd = nullptr;
   1154   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
   1155        I != E; ++I) {
   1156     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1157       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1158       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1159       MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
   1160     } else {
   1161       FirstNonPhiInBBEnd = &*I;
   1162       break;
   1163     }
   1164   }
   1165   if (!FirstNonPhiInBBEnd)
   1166     return false;
   1167 
   1168 
   1169   // This does very trivial matching, with limited scanning, to find identical
   1170   // instructions in the two blocks.  We scan backward for obviously identical
   1171   // instructions in an identical order.
   1172   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1173       RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
   1174       RE2 = BB2->getInstList().rend();
   1175   // Skip debug info.
   1176   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1177   if (RI1 == RE1)
   1178     return false;
   1179   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1180   if (RI2 == RE2)
   1181     return false;
   1182   // Skip the unconditional branches.
   1183   ++RI1;
   1184   ++RI2;
   1185 
   1186   bool Changed = false;
   1187   while (RI1 != RE1 && RI2 != RE2) {
   1188     // Skip debug info.
   1189     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1190     if (RI1 == RE1)
   1191       return Changed;
   1192     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1193     if (RI2 == RE2)
   1194       return Changed;
   1195 
   1196     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1197     // I1 and I2 should have a single use in the same PHI node, and they
   1198     // perform the same operation.
   1199     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1200     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
   1201         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
   1202         isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
   1203         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1204         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1205         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1206         !I1->hasOneUse() || !I2->hasOneUse() ||
   1207         MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
   1208         MapValueFromBB1ToBB2[I1].first != I2)
   1209       return Changed;
   1210 
   1211     // Check whether we should swap the operands of ICmpInst.
   1212     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1213     bool SwapOpnds = false;
   1214     if (ICmp1 && ICmp2 &&
   1215         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1216         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1217         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1218          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1219       ICmp2->swapOperands();
   1220       SwapOpnds = true;
   1221     }
   1222     if (!I1->isSameOperationAs(I2)) {
   1223       if (SwapOpnds)
   1224         ICmp2->swapOperands();
   1225       return Changed;
   1226     }
   1227 
   1228     // The operands should be either the same or they need to be generated
   1229     // with a PHI node after sinking. We only handle the case where there is
   1230     // a single pair of different operands.
   1231     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
   1232     unsigned Op1Idx = 0;
   1233     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1234       if (I1->getOperand(I) == I2->getOperand(I))
   1235         continue;
   1236       // Early exit if we have more-than one pair of different operands or
   1237       // the different operand is already in MapValueFromBB1ToBB2.
   1238       // Early exit if we need a PHI node to replace a constant.
   1239       if (DifferentOp1 ||
   1240           MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
   1241           MapValueFromBB1ToBB2.end() ||
   1242           isa<Constant>(I1->getOperand(I)) ||
   1243           isa<Constant>(I2->getOperand(I))) {
   1244         // If we can't sink the instructions, undo the swapping.
   1245         if (SwapOpnds)
   1246           ICmp2->swapOperands();
   1247         return Changed;
   1248       }
   1249       DifferentOp1 = I1->getOperand(I);
   1250       Op1Idx = I;
   1251       DifferentOp2 = I2->getOperand(I);
   1252     }
   1253 
   1254     // We insert the pair of different operands to MapValueFromBB1ToBB2 and
   1255     // remove (I1, I2) from MapValueFromBB1ToBB2.
   1256     if (DifferentOp1) {
   1257       PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
   1258                                        DifferentOp1->getName() + ".sink",
   1259                                        BBEnd->begin());
   1260       MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
   1261       // I1 should use NewPN instead of DifferentOp1.
   1262       I1->setOperand(Op1Idx, NewPN);
   1263       NewPN->addIncoming(DifferentOp1, BB1);
   1264       NewPN->addIncoming(DifferentOp2, BB2);
   1265       DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1266     }
   1267     PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
   1268     MapValueFromBB1ToBB2.erase(I1);
   1269 
   1270     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
   1271     DEBUG(dbgs() << "                         " << *I2 << "\n";);
   1272     // We need to update RE1 and RE2 if we are going to sink the first
   1273     // instruction in the basic block down.
   1274     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
   1275     // Sink the instruction.
   1276     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
   1277     if (!OldPN->use_empty())
   1278       OldPN->replaceAllUsesWith(I1);
   1279     OldPN->eraseFromParent();
   1280 
   1281     if (!I2->use_empty())
   1282       I2->replaceAllUsesWith(I1);
   1283     I1->intersectOptionalDataWith(I2);
   1284     I2->eraseFromParent();
   1285 
   1286     if (UpdateRE1)
   1287       RE1 = BB1->getInstList().rend();
   1288     if (UpdateRE2)
   1289       RE2 = BB2->getInstList().rend();
   1290     FirstNonPhiInBBEnd = I1;
   1291     NumSinkCommons++;
   1292     Changed = true;
   1293   }
   1294   return Changed;
   1295 }
   1296 
   1297 /// \brief Determine if we can hoist sink a sole store instruction out of a
   1298 /// conditional block.
   1299 ///
   1300 /// We are looking for code like the following:
   1301 ///   BrBB:
   1302 ///     store i32 %add, i32* %arrayidx2
   1303 ///     ... // No other stores or function calls (we could be calling a memory
   1304 ///     ... // function).
   1305 ///     %cmp = icmp ult %x, %y
   1306 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1307 ///   ThenBB:
   1308 ///     store i32 %add5, i32* %arrayidx2
   1309 ///     br label EndBB
   1310 ///   EndBB:
   1311 ///     ...
   1312 ///   We are going to transform this into:
   1313 ///   BrBB:
   1314 ///     store i32 %add, i32* %arrayidx2
   1315 ///     ... //
   1316 ///     %cmp = icmp ult %x, %y
   1317 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1318 ///     store i32 %add.add5, i32* %arrayidx2
   1319 ///     ...
   1320 ///
   1321 /// \return The pointer to the value of the previous store if the store can be
   1322 ///         hoisted into the predecessor block. 0 otherwise.
   1323 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1324                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1325   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1326   if (!StoreToHoist)
   1327     return nullptr;
   1328 
   1329   // Volatile or atomic.
   1330   if (!StoreToHoist->isSimple())
   1331     return nullptr;
   1332 
   1333   Value *StorePtr = StoreToHoist->getPointerOperand();
   1334 
   1335   // Look for a store to the same pointer in BrBB.
   1336   unsigned MaxNumInstToLookAt = 10;
   1337   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
   1338        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
   1339     Instruction *CurI = &*RI;
   1340 
   1341     // Could be calling an instruction that effects memory like free().
   1342     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1343       return nullptr;
   1344 
   1345     StoreInst *SI = dyn_cast<StoreInst>(CurI);
   1346     // Found the previous store make sure it stores to the same location.
   1347     if (SI && SI->getPointerOperand() == StorePtr)
   1348       // Found the previous store, return its value operand.
   1349       return SI->getValueOperand();
   1350     else if (SI)
   1351       return nullptr; // Unknown store.
   1352   }
   1353 
   1354   return nullptr;
   1355 }
   1356 
   1357 /// \brief Speculate a conditional basic block flattening the CFG.
   1358 ///
   1359 /// Note that this is a very risky transform currently. Speculating
   1360 /// instructions like this is most often not desirable. Instead, there is an MI
   1361 /// pass which can do it with full awareness of the resource constraints.
   1362 /// However, some cases are "obvious" and we should do directly. An example of
   1363 /// this is speculating a single, reasonably cheap instruction.
   1364 ///
   1365 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1366 /// it makes very common but simplistic optimizations such as are common in
   1367 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1368 /// modeling their effects with easier to reason about SSA value graphs.
   1369 ///
   1370 ///
   1371 /// An illustration of this transform is turning this IR:
   1372 /// \code
   1373 ///   BB:
   1374 ///     %cmp = icmp ult %x, %y
   1375 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1376 ///   ThenBB:
   1377 ///     %sub = sub %x, %y
   1378 ///     br label BB2
   1379 ///   EndBB:
   1380 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1381 ///     ...
   1382 /// \endcode
   1383 ///
   1384 /// Into this IR:
   1385 /// \code
   1386 ///   BB:
   1387 ///     %cmp = icmp ult %x, %y
   1388 ///     %sub = sub %x, %y
   1389 ///     %cond = select i1 %cmp, 0, %sub
   1390 ///     ...
   1391 /// \endcode
   1392 ///
   1393 /// \returns true if the conditional block is removed.
   1394 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
   1395                                    const DataLayout *DL) {
   1396   // Be conservative for now. FP select instruction can often be expensive.
   1397   Value *BrCond = BI->getCondition();
   1398   if (isa<FCmpInst>(BrCond))
   1399     return false;
   1400 
   1401   BasicBlock *BB = BI->getParent();
   1402   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1403 
   1404   // If ThenBB is actually on the false edge of the conditional branch, remember
   1405   // to swap the select operands later.
   1406   bool Invert = false;
   1407   if (ThenBB != BI->getSuccessor(0)) {
   1408     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1409     Invert = true;
   1410   }
   1411   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1412 
   1413   // Keep a count of how many times instructions are used within CondBB when
   1414   // they are candidates for sinking into CondBB. Specifically:
   1415   // - They are defined in BB, and
   1416   // - They have no side effects, and
   1417   // - All of their uses are in CondBB.
   1418   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1419 
   1420   unsigned SpeculationCost = 0;
   1421   Value *SpeculatedStoreValue = nullptr;
   1422   StoreInst *SpeculatedStore = nullptr;
   1423   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1424                             BBE = std::prev(ThenBB->end());
   1425        BBI != BBE; ++BBI) {
   1426     Instruction *I = BBI;
   1427     // Skip debug info.
   1428     if (isa<DbgInfoIntrinsic>(I))
   1429       continue;
   1430 
   1431     // Only speculatively execution a single instruction (not counting the
   1432     // terminator) for now.
   1433     ++SpeculationCost;
   1434     if (SpeculationCost > 1)
   1435       return false;
   1436 
   1437     // Don't hoist the instruction if it's unsafe or expensive.
   1438     if (!isSafeToSpeculativelyExecute(I, DL) &&
   1439         !(HoistCondStores &&
   1440           (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
   1441                                                          EndBB))))
   1442       return false;
   1443     if (!SpeculatedStoreValue &&
   1444         ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
   1445       return false;
   1446 
   1447     // Store the store speculation candidate.
   1448     if (SpeculatedStoreValue)
   1449       SpeculatedStore = cast<StoreInst>(I);
   1450 
   1451     // Do not hoist the instruction if any of its operands are defined but not
   1452     // used in BB. The transformation will prevent the operand from
   1453     // being sunk into the use block.
   1454     for (User::op_iterator i = I->op_begin(), e = I->op_end();
   1455          i != e; ++i) {
   1456       Instruction *OpI = dyn_cast<Instruction>(*i);
   1457       if (!OpI || OpI->getParent() != BB ||
   1458           OpI->mayHaveSideEffects())
   1459         continue; // Not a candidate for sinking.
   1460 
   1461       ++SinkCandidateUseCounts[OpI];
   1462     }
   1463   }
   1464 
   1465   // Consider any sink candidates which are only used in CondBB as costs for
   1466   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1467   // and so iteration order isn't significant.
   1468   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
   1469            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
   1470        I != E; ++I)
   1471     if (I->first->getNumUses() == I->second) {
   1472       ++SpeculationCost;
   1473       if (SpeculationCost > 1)
   1474         return false;
   1475     }
   1476 
   1477   // Check that the PHI nodes can be converted to selects.
   1478   bool HaveRewritablePHIs = false;
   1479   for (BasicBlock::iterator I = EndBB->begin();
   1480        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1481     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1482     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1483 
   1484     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   1485     // Skip PHIs which are trivial.
   1486     if (ThenV == OrigV)
   1487       continue;
   1488 
   1489     HaveRewritablePHIs = true;
   1490     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   1491     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   1492     if (!OrigCE && !ThenCE)
   1493       continue; // Known safe and cheap.
   1494 
   1495     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
   1496         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
   1497       return false;
   1498     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
   1499     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
   1500     if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
   1501       return false;
   1502 
   1503     // Account for the cost of an unfolded ConstantExpr which could end up
   1504     // getting expanded into Instructions.
   1505     // FIXME: This doesn't account for how many operations are combined in the
   1506     // constant expression.
   1507     ++SpeculationCost;
   1508     if (SpeculationCost > 1)
   1509       return false;
   1510   }
   1511 
   1512   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1513   // as well.
   1514   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   1515     return false;
   1516 
   1517   // If we get here, we can hoist the instruction and if-convert.
   1518   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1519 
   1520   // Insert a select of the value of the speculated store.
   1521   if (SpeculatedStoreValue) {
   1522     IRBuilder<true, NoFolder> Builder(BI);
   1523     Value *TrueV = SpeculatedStore->getValueOperand();
   1524     Value *FalseV = SpeculatedStoreValue;
   1525     if (Invert)
   1526       std::swap(TrueV, FalseV);
   1527     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
   1528                                     "." + FalseV->getName());
   1529     SpeculatedStore->setOperand(0, S);
   1530   }
   1531 
   1532   // Hoist the instructions.
   1533   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
   1534                            std::prev(ThenBB->end()));
   1535 
   1536   // Insert selects and rewrite the PHI operands.
   1537   IRBuilder<true, NoFolder> Builder(BI);
   1538   for (BasicBlock::iterator I = EndBB->begin();
   1539        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1540     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1541     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1542     Value *OrigV = PN->getIncomingValue(OrigI);
   1543     Value *ThenV = PN->getIncomingValue(ThenI);
   1544 
   1545     // Skip PHIs which are trivial.
   1546     if (OrigV == ThenV)
   1547       continue;
   1548 
   1549     // Create a select whose true value is the speculatively executed value and
   1550     // false value is the preexisting value. Swap them if the branch
   1551     // destinations were inverted.
   1552     Value *TrueV = ThenV, *FalseV = OrigV;
   1553     if (Invert)
   1554       std::swap(TrueV, FalseV);
   1555     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
   1556                                     TrueV->getName() + "." + FalseV->getName());
   1557     PN->setIncomingValue(OrigI, V);
   1558     PN->setIncomingValue(ThenI, V);
   1559   }
   1560 
   1561   ++NumSpeculations;
   1562   return true;
   1563 }
   1564 
   1565 /// \returns True if this block contains a CallInst with the NoDuplicate
   1566 /// attribute.
   1567 static bool HasNoDuplicateCall(const BasicBlock *BB) {
   1568   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1569     const CallInst *CI = dyn_cast<CallInst>(I);
   1570     if (!CI)
   1571       continue;
   1572     if (CI->cannotDuplicate())
   1573       return true;
   1574   }
   1575   return false;
   1576 }
   1577 
   1578 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1579 /// across this block.
   1580 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1581   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1582   unsigned Size = 0;
   1583 
   1584   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1585     if (isa<DbgInfoIntrinsic>(BBI))
   1586       continue;
   1587     if (Size > 10) return false;  // Don't clone large BB's.
   1588     ++Size;
   1589 
   1590     // We can only support instructions that do not define values that are
   1591     // live outside of the current basic block.
   1592     for (User *U : BBI->users()) {
   1593       Instruction *UI = cast<Instruction>(U);
   1594       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
   1595     }
   1596 
   1597     // Looks ok, continue checking.
   1598   }
   1599 
   1600   return true;
   1601 }
   1602 
   1603 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1604 /// that is defined in the same block as the branch and if any PHI entries are
   1605 /// constants, thread edges corresponding to that entry to be branches to their
   1606 /// ultimate destination.
   1607 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
   1608   BasicBlock *BB = BI->getParent();
   1609   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1610   // NOTE: we currently cannot transform this case if the PHI node is used
   1611   // outside of the block.
   1612   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1613     return false;
   1614 
   1615   // Degenerate case of a single entry PHI.
   1616   if (PN->getNumIncomingValues() == 1) {
   1617     FoldSingleEntryPHINodes(PN->getParent());
   1618     return true;
   1619   }
   1620 
   1621   // Now we know that this block has multiple preds and two succs.
   1622   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1623 
   1624   if (HasNoDuplicateCall(BB)) return false;
   1625 
   1626   // Okay, this is a simple enough basic block.  See if any phi values are
   1627   // constants.
   1628   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1629     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1630     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
   1631 
   1632     // Okay, we now know that all edges from PredBB should be revectored to
   1633     // branch to RealDest.
   1634     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1635     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1636 
   1637     if (RealDest == BB) continue;  // Skip self loops.
   1638     // Skip if the predecessor's terminator is an indirect branch.
   1639     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1640 
   1641     // The dest block might have PHI nodes, other predecessors and other
   1642     // difficult cases.  Instead of being smart about this, just insert a new
   1643     // block that jumps to the destination block, effectively splitting
   1644     // the edge we are about to create.
   1645     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1646                                             RealDest->getName()+".critedge",
   1647                                             RealDest->getParent(), RealDest);
   1648     BranchInst::Create(RealDest, EdgeBB);
   1649 
   1650     // Update PHI nodes.
   1651     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1652 
   1653     // BB may have instructions that are being threaded over.  Clone these
   1654     // instructions into EdgeBB.  We know that there will be no uses of the
   1655     // cloned instructions outside of EdgeBB.
   1656     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1657     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1658     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1659       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1660         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1661         continue;
   1662       }
   1663       // Clone the instruction.
   1664       Instruction *N = BBI->clone();
   1665       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1666 
   1667       // Update operands due to translation.
   1668       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1669            i != e; ++i) {
   1670         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1671         if (PI != TranslateMap.end())
   1672           *i = PI->second;
   1673       }
   1674 
   1675       // Check for trivial simplification.
   1676       if (Value *V = SimplifyInstruction(N, DL)) {
   1677         TranslateMap[BBI] = V;
   1678         delete N;   // Instruction folded away, don't need actual inst
   1679       } else {
   1680         // Insert the new instruction into its new home.
   1681         EdgeBB->getInstList().insert(InsertPt, N);
   1682         if (!BBI->use_empty())
   1683           TranslateMap[BBI] = N;
   1684       }
   1685     }
   1686 
   1687     // Loop over all of the edges from PredBB to BB, changing them to branch
   1688     // to EdgeBB instead.
   1689     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1690     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1691       if (PredBBTI->getSuccessor(i) == BB) {
   1692         BB->removePredecessor(PredBB);
   1693         PredBBTI->setSuccessor(i, EdgeBB);
   1694       }
   1695 
   1696     // Recurse, simplifying any other constants.
   1697     return FoldCondBranchOnPHI(BI, DL) | true;
   1698   }
   1699 
   1700   return false;
   1701 }
   1702 
   1703 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1704 /// PHI node, see if we can eliminate it.
   1705 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
   1706   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1707   // statement", which has a very simple dominance structure.  Basically, we
   1708   // are trying to find the condition that is being branched on, which
   1709   // subsequently causes this merge to happen.  We really want control
   1710   // dependence information for this check, but simplifycfg can't keep it up
   1711   // to date, and this catches most of the cases we care about anyway.
   1712   BasicBlock *BB = PN->getParent();
   1713   BasicBlock *IfTrue, *IfFalse;
   1714   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1715   if (!IfCond ||
   1716       // Don't bother if the branch will be constant folded trivially.
   1717       isa<ConstantInt>(IfCond))
   1718     return false;
   1719 
   1720   // Okay, we found that we can merge this two-entry phi node into a select.
   1721   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1722   // At some point this becomes non-profitable (particularly if the target
   1723   // doesn't support cmov's).  Only do this transformation if there are two or
   1724   // fewer PHI nodes in this block.
   1725   unsigned NumPhis = 0;
   1726   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1727     if (NumPhis > 2)
   1728       return false;
   1729 
   1730   // Loop over the PHI's seeing if we can promote them all to select
   1731   // instructions.  While we are at it, keep track of the instructions
   1732   // that need to be moved to the dominating block.
   1733   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1734   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1735            MaxCostVal1 = PHINodeFoldingThreshold;
   1736 
   1737   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1738     PHINode *PN = cast<PHINode>(II++);
   1739     if (Value *V = SimplifyInstruction(PN, DL)) {
   1740       PN->replaceAllUsesWith(V);
   1741       PN->eraseFromParent();
   1742       continue;
   1743     }
   1744 
   1745     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1746                              MaxCostVal0, DL) ||
   1747         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1748                              MaxCostVal1, DL))
   1749       return false;
   1750   }
   1751 
   1752   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1753   // we ran out of PHIs then we simplified them all.
   1754   PN = dyn_cast<PHINode>(BB->begin());
   1755   if (!PN) return true;
   1756 
   1757   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1758   // often be turned into switches and other things.
   1759   if (PN->getType()->isIntegerTy(1) &&
   1760       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1761        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1762        isa<BinaryOperator>(IfCond)))
   1763     return false;
   1764 
   1765   // If we all PHI nodes are promotable, check to make sure that all
   1766   // instructions in the predecessor blocks can be promoted as well.  If
   1767   // not, we won't be able to get rid of the control flow, so it's not
   1768   // worth promoting to select instructions.
   1769   BasicBlock *DomBlock = nullptr;
   1770   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1771   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1772   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1773     IfBlock1 = nullptr;
   1774   } else {
   1775     DomBlock = *pred_begin(IfBlock1);
   1776     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1777       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1778         // This is not an aggressive instruction that we can promote.
   1779         // Because of this, we won't be able to get rid of the control
   1780         // flow, so the xform is not worth it.
   1781         return false;
   1782       }
   1783   }
   1784 
   1785   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1786     IfBlock2 = nullptr;
   1787   } else {
   1788     DomBlock = *pred_begin(IfBlock2);
   1789     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1790       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1791         // This is not an aggressive instruction that we can promote.
   1792         // Because of this, we won't be able to get rid of the control
   1793         // flow, so the xform is not worth it.
   1794         return false;
   1795       }
   1796   }
   1797 
   1798   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1799                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1800 
   1801   // If we can still promote the PHI nodes after this gauntlet of tests,
   1802   // do all of the PHI's now.
   1803   Instruction *InsertPt = DomBlock->getTerminator();
   1804   IRBuilder<true, NoFolder> Builder(InsertPt);
   1805 
   1806   // Move all 'aggressive' instructions, which are defined in the
   1807   // conditional parts of the if's up to the dominating block.
   1808   if (IfBlock1)
   1809     DomBlock->getInstList().splice(InsertPt,
   1810                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1811                                    IfBlock1->getTerminator());
   1812   if (IfBlock2)
   1813     DomBlock->getInstList().splice(InsertPt,
   1814                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1815                                    IfBlock2->getTerminator());
   1816 
   1817   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1818     // Change the PHI node into a select instruction.
   1819     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1820     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1821 
   1822     SelectInst *NV =
   1823       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1824     PN->replaceAllUsesWith(NV);
   1825     NV->takeName(PN);
   1826     PN->eraseFromParent();
   1827   }
   1828 
   1829   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1830   // has been flattened.  Change DomBlock to jump directly to our new block to
   1831   // avoid other simplifycfg's kicking in on the diamond.
   1832   TerminatorInst *OldTI = DomBlock->getTerminator();
   1833   Builder.SetInsertPoint(OldTI);
   1834   Builder.CreateBr(BB);
   1835   OldTI->eraseFromParent();
   1836   return true;
   1837 }
   1838 
   1839 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1840 /// to two returning blocks, try to merge them together into one return,
   1841 /// introducing a select if the return values disagree.
   1842 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1843                                            IRBuilder<> &Builder) {
   1844   assert(BI->isConditional() && "Must be a conditional branch");
   1845   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1846   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1847   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1848   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1849 
   1850   // Check to ensure both blocks are empty (just a return) or optionally empty
   1851   // with PHI nodes.  If there are other instructions, merging would cause extra
   1852   // computation on one path or the other.
   1853   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1854     return false;
   1855   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1856     return false;
   1857 
   1858   Builder.SetInsertPoint(BI);
   1859   // Okay, we found a branch that is going to two return nodes.  If
   1860   // there is no return value for this function, just change the
   1861   // branch into a return.
   1862   if (FalseRet->getNumOperands() == 0) {
   1863     TrueSucc->removePredecessor(BI->getParent());
   1864     FalseSucc->removePredecessor(BI->getParent());
   1865     Builder.CreateRetVoid();
   1866     EraseTerminatorInstAndDCECond(BI);
   1867     return true;
   1868   }
   1869 
   1870   // Otherwise, figure out what the true and false return values are
   1871   // so we can insert a new select instruction.
   1872   Value *TrueValue = TrueRet->getReturnValue();
   1873   Value *FalseValue = FalseRet->getReturnValue();
   1874 
   1875   // Unwrap any PHI nodes in the return blocks.
   1876   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1877     if (TVPN->getParent() == TrueSucc)
   1878       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1879   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1880     if (FVPN->getParent() == FalseSucc)
   1881       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1882 
   1883   // In order for this transformation to be safe, we must be able to
   1884   // unconditionally execute both operands to the return.  This is
   1885   // normally the case, but we could have a potentially-trapping
   1886   // constant expression that prevents this transformation from being
   1887   // safe.
   1888   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1889     if (TCV->canTrap())
   1890       return false;
   1891   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1892     if (FCV->canTrap())
   1893       return false;
   1894 
   1895   // Okay, we collected all the mapped values and checked them for sanity, and
   1896   // defined to really do this transformation.  First, update the CFG.
   1897   TrueSucc->removePredecessor(BI->getParent());
   1898   FalseSucc->removePredecessor(BI->getParent());
   1899 
   1900   // Insert select instructions where needed.
   1901   Value *BrCond = BI->getCondition();
   1902   if (TrueValue) {
   1903     // Insert a select if the results differ.
   1904     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1905     } else if (isa<UndefValue>(TrueValue)) {
   1906       TrueValue = FalseValue;
   1907     } else {
   1908       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1909                                        FalseValue, "retval");
   1910     }
   1911   }
   1912 
   1913   Value *RI = !TrueValue ?
   1914     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1915 
   1916   (void) RI;
   1917 
   1918   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1919                << "\n  " << *BI << "NewRet = " << *RI
   1920                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1921 
   1922   EraseTerminatorInstAndDCECond(BI);
   1923 
   1924   return true;
   1925 }
   1926 
   1927 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
   1928 /// probabilities of the branch taking each edge. Fills in the two APInt
   1929 /// parameters and return true, or returns false if no or invalid metadata was
   1930 /// found.
   1931 static bool ExtractBranchMetadata(BranchInst *BI,
   1932                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
   1933   assert(BI->isConditional() &&
   1934          "Looking for probabilities on unconditional branch?");
   1935   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   1936   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   1937   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
   1938   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
   1939   if (!CITrue || !CIFalse) return false;
   1940   ProbTrue = CITrue->getValue().getZExtValue();
   1941   ProbFalse = CIFalse->getValue().getZExtValue();
   1942   return true;
   1943 }
   1944 
   1945 /// checkCSEInPredecessor - Return true if the given instruction is available
   1946 /// in its predecessor block. If yes, the instruction will be removed.
   1947 ///
   1948 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   1949   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   1950     return false;
   1951   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
   1952     Instruction *PBI = &*I;
   1953     // Check whether Inst and PBI generate the same value.
   1954     if (Inst->isIdenticalTo(PBI)) {
   1955       Inst->replaceAllUsesWith(PBI);
   1956       Inst->eraseFromParent();
   1957       return true;
   1958     }
   1959   }
   1960   return false;
   1961 }
   1962 
   1963 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1964 /// predecessor branches to us and one of our successors, fold the block into
   1965 /// the predecessor and use logical operations to pick the right destination.
   1966 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
   1967   BasicBlock *BB = BI->getParent();
   1968 
   1969   Instruction *Cond = nullptr;
   1970   if (BI->isConditional())
   1971     Cond = dyn_cast<Instruction>(BI->getCondition());
   1972   else {
   1973     // For unconditional branch, check for a simple CFG pattern, where
   1974     // BB has a single predecessor and BB's successor is also its predecessor's
   1975     // successor. If such pattern exisits, check for CSE between BB and its
   1976     // predecessor.
   1977     if (BasicBlock *PB = BB->getSinglePredecessor())
   1978       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   1979         if (PBI->isConditional() &&
   1980             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   1981              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   1982           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
   1983                I != E; ) {
   1984             Instruction *Curr = I++;
   1985             if (isa<CmpInst>(Curr)) {
   1986               Cond = Curr;
   1987               break;
   1988             }
   1989             // Quit if we can't remove this instruction.
   1990             if (!checkCSEInPredecessor(Curr, PB))
   1991               return false;
   1992           }
   1993         }
   1994 
   1995     if (!Cond)
   1996       return false;
   1997   }
   1998 
   1999   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   2000       Cond->getParent() != BB || !Cond->hasOneUse())
   2001   return false;
   2002 
   2003   // Only allow this if the condition is a simple instruction that can be
   2004   // executed unconditionally.  It must be in the same block as the branch, and
   2005   // must be at the front of the block.
   2006   BasicBlock::iterator FrontIt = BB->front();
   2007 
   2008   // Ignore dbg intrinsics.
   2009   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   2010 
   2011   // Allow a single instruction to be hoisted in addition to the compare
   2012   // that feeds the branch.  We later ensure that any values that _it_ uses
   2013   // were also live in the predecessor, so that we don't unnecessarily create
   2014   // register pressure or inhibit out-of-order execution.
   2015   Instruction *BonusInst = nullptr;
   2016   if (&*FrontIt != Cond &&
   2017       FrontIt->hasOneUse() && FrontIt->user_back() == Cond &&
   2018       isSafeToSpeculativelyExecute(FrontIt, DL)) {
   2019     BonusInst = &*FrontIt;
   2020     ++FrontIt;
   2021 
   2022     // Ignore dbg intrinsics.
   2023     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   2024   }
   2025 
   2026   // Only a single bonus inst is allowed.
   2027   if (&*FrontIt != Cond)
   2028     return false;
   2029 
   2030   // Make sure the instruction after the condition is the cond branch.
   2031   BasicBlock::iterator CondIt = Cond; ++CondIt;
   2032 
   2033   // Ignore dbg intrinsics.
   2034   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   2035 
   2036   if (&*CondIt != BI)
   2037     return false;
   2038 
   2039   // Cond is known to be a compare or binary operator.  Check to make sure that
   2040   // neither operand is a potentially-trapping constant expression.
   2041   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2042     if (CE->canTrap())
   2043       return false;
   2044   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2045     if (CE->canTrap())
   2046       return false;
   2047 
   2048   // Finally, don't infinitely unroll conditional loops.
   2049   BasicBlock *TrueDest  = BI->getSuccessor(0);
   2050   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
   2051   if (TrueDest == BB || FalseDest == BB)
   2052     return false;
   2053 
   2054   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2055     BasicBlock *PredBlock = *PI;
   2056     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2057 
   2058     // Check that we have two conditional branches.  If there is a PHI node in
   2059     // the common successor, verify that the same value flows in from both
   2060     // blocks.
   2061     SmallVector<PHINode*, 4> PHIs;
   2062     if (!PBI || PBI->isUnconditional() ||
   2063         (BI->isConditional() &&
   2064          !SafeToMergeTerminators(BI, PBI)) ||
   2065         (!BI->isConditional() &&
   2066          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2067       continue;
   2068 
   2069     // Determine if the two branches share a common destination.
   2070     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2071     bool InvertPredCond = false;
   2072 
   2073     if (BI->isConditional()) {
   2074       if (PBI->getSuccessor(0) == TrueDest)
   2075         Opc = Instruction::Or;
   2076       else if (PBI->getSuccessor(1) == FalseDest)
   2077         Opc = Instruction::And;
   2078       else if (PBI->getSuccessor(0) == FalseDest)
   2079         Opc = Instruction::And, InvertPredCond = true;
   2080       else if (PBI->getSuccessor(1) == TrueDest)
   2081         Opc = Instruction::Or, InvertPredCond = true;
   2082       else
   2083         continue;
   2084     } else {
   2085       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2086         continue;
   2087     }
   2088 
   2089     // Ensure that any values used in the bonus instruction are also used
   2090     // by the terminator of the predecessor.  This means that those values
   2091     // must already have been resolved, so we won't be inhibiting the
   2092     // out-of-order core by speculating them earlier. We also allow
   2093     // instructions that are used by the terminator's condition because it
   2094     // exposes more merging opportunities.
   2095     bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
   2096                          BonusInst->user_back() == Cond);
   2097 
   2098     if (BonusInst && !UsedByBranch) {
   2099       // Collect the values used by the bonus inst
   2100       SmallPtrSet<Value*, 4> UsedValues;
   2101       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   2102            OE = BonusInst->op_end(); OI != OE; ++OI) {
   2103         Value *V = *OI;
   2104         if (!isa<Constant>(V) && !isa<Argument>(V))
   2105           UsedValues.insert(V);
   2106       }
   2107 
   2108       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   2109       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   2110 
   2111       // Walk up to four levels back up the use-def chain of the predecessor's
   2112       // terminator to see if all those values were used.  The choice of four
   2113       // levels is arbitrary, to provide a compile-time-cost bound.
   2114       while (!Worklist.empty()) {
   2115         std::pair<Value*, unsigned> Pair = Worklist.back();
   2116         Worklist.pop_back();
   2117 
   2118         if (Pair.second >= 4) continue;
   2119         UsedValues.erase(Pair.first);
   2120         if (UsedValues.empty()) break;
   2121 
   2122         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   2123           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   2124                OI != OE; ++OI)
   2125             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   2126         }
   2127       }
   2128 
   2129       if (!UsedValues.empty()) return false;
   2130     }
   2131 
   2132     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2133     IRBuilder<> Builder(PBI);
   2134 
   2135     // If we need to invert the condition in the pred block to match, do so now.
   2136     if (InvertPredCond) {
   2137       Value *NewCond = PBI->getCondition();
   2138 
   2139       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2140         CmpInst *CI = cast<CmpInst>(NewCond);
   2141         CI->setPredicate(CI->getInversePredicate());
   2142       } else {
   2143         NewCond = Builder.CreateNot(NewCond,
   2144                                     PBI->getCondition()->getName()+".not");
   2145       }
   2146 
   2147       PBI->setCondition(NewCond);
   2148       PBI->swapSuccessors();
   2149     }
   2150 
   2151     // If we have a bonus inst, clone it into the predecessor block.
   2152     Instruction *NewBonus = nullptr;
   2153     if (BonusInst) {
   2154       NewBonus = BonusInst->clone();
   2155 
   2156       // If we moved a load, we cannot any longer claim any knowledge about
   2157       // its potential value. The previous information might have been valid
   2158       // only given the branch precondition.
   2159       // For an analogous reason, we must also drop all the metadata whose
   2160       // semantics we don't understand.
   2161       NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg);
   2162 
   2163       PredBlock->getInstList().insert(PBI, NewBonus);
   2164       NewBonus->takeName(BonusInst);
   2165       BonusInst->setName(BonusInst->getName()+".old");
   2166     }
   2167 
   2168     // Clone Cond into the predecessor basic block, and or/and the
   2169     // two conditions together.
   2170     Instruction *New = Cond->clone();
   2171     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   2172     PredBlock->getInstList().insert(PBI, New);
   2173     New->takeName(Cond);
   2174     Cond->setName(New->getName()+".old");
   2175 
   2176     if (BI->isConditional()) {
   2177       Instruction *NewCond =
   2178         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   2179                                             New, "or.cond"));
   2180       PBI->setCondition(NewCond);
   2181 
   2182       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2183       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2184                                                   PredFalseWeight);
   2185       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2186                                                   SuccFalseWeight);
   2187       SmallVector<uint64_t, 8> NewWeights;
   2188 
   2189       if (PBI->getSuccessor(0) == BB) {
   2190         if (PredHasWeights && SuccHasWeights) {
   2191           // PBI: br i1 %x, BB, FalseDest
   2192           // BI:  br i1 %y, TrueDest, FalseDest
   2193           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2194           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2195           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2196           //               TrueWeight for PBI * FalseWeight for BI.
   2197           // We assume that total weights of a BranchInst can fit into 32 bits.
   2198           // Therefore, we will not have overflow using 64-bit arithmetic.
   2199           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
   2200                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
   2201         }
   2202         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2203         PBI->setSuccessor(0, TrueDest);
   2204       }
   2205       if (PBI->getSuccessor(1) == BB) {
   2206         if (PredHasWeights && SuccHasWeights) {
   2207           // PBI: br i1 %x, TrueDest, BB
   2208           // BI:  br i1 %y, TrueDest, FalseDest
   2209           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2210           //              FalseWeight for PBI * TrueWeight for BI.
   2211           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
   2212               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
   2213           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2214           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2215         }
   2216         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2217         PBI->setSuccessor(1, FalseDest);
   2218       }
   2219       if (NewWeights.size() == 2) {
   2220         // Halve the weights if any of them cannot fit in an uint32_t
   2221         FitWeights(NewWeights);
   2222 
   2223         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
   2224         PBI->setMetadata(LLVMContext::MD_prof,
   2225                          MDBuilder(BI->getContext()).
   2226                          createBranchWeights(MDWeights));
   2227       } else
   2228         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
   2229     } else {
   2230       // Update PHI nodes in the common successors.
   2231       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2232         ConstantInt *PBI_C = cast<ConstantInt>(
   2233           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2234         assert(PBI_C->getType()->isIntegerTy(1));
   2235         Instruction *MergedCond = nullptr;
   2236         if (PBI->getSuccessor(0) == TrueDest) {
   2237           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2238           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2239           //       is false: !PBI_Cond and BI_Value
   2240           Instruction *NotCond =
   2241             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2242                                 "not.cond"));
   2243           MergedCond =
   2244             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2245                                 NotCond, New,
   2246                                 "and.cond"));
   2247           if (PBI_C->isOne())
   2248             MergedCond =
   2249               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2250                                   PBI->getCondition(), MergedCond,
   2251                                   "or.cond"));
   2252         } else {
   2253           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2254           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2255           //       is false: PBI_Cond and BI_Value
   2256           MergedCond =
   2257             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2258                                 PBI->getCondition(), New,
   2259                                 "and.cond"));
   2260           if (PBI_C->isOne()) {
   2261             Instruction *NotCond =
   2262               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2263                                   "not.cond"));
   2264             MergedCond =
   2265               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2266                                   NotCond, MergedCond,
   2267                                   "or.cond"));
   2268           }
   2269         }
   2270         // Update PHI Node.
   2271         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2272                                   MergedCond);
   2273       }
   2274       // Change PBI from Conditional to Unconditional.
   2275       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2276       EraseTerminatorInstAndDCECond(PBI);
   2277       PBI = New_PBI;
   2278     }
   2279 
   2280     // TODO: If BB is reachable from all paths through PredBlock, then we
   2281     // could replace PBI's branch probabilities with BI's.
   2282 
   2283     // Copy any debug value intrinsics into the end of PredBlock.
   2284     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   2285       if (isa<DbgInfoIntrinsic>(*I))
   2286         I->clone()->insertBefore(PBI);
   2287 
   2288     return true;
   2289   }
   2290   return false;
   2291 }
   2292 
   2293 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   2294 /// predecessor of another block, this function tries to simplify it.  We know
   2295 /// that PBI and BI are both conditional branches, and BI is in one of the
   2296 /// successor blocks of PBI - PBI branches to BI.
   2297 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   2298   assert(PBI->isConditional() && BI->isConditional());
   2299   BasicBlock *BB = BI->getParent();
   2300 
   2301   // If this block ends with a branch instruction, and if there is a
   2302   // predecessor that ends on a branch of the same condition, make
   2303   // this conditional branch redundant.
   2304   if (PBI->getCondition() == BI->getCondition() &&
   2305       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2306     // Okay, the outcome of this conditional branch is statically
   2307     // knowable.  If this block had a single pred, handle specially.
   2308     if (BB->getSinglePredecessor()) {
   2309       // Turn this into a branch on constant.
   2310       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2311       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2312                                         CondIsTrue));
   2313       return true;  // Nuke the branch on constant.
   2314     }
   2315 
   2316     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2317     // in the constant and simplify the block result.  Subsequent passes of
   2318     // simplifycfg will thread the block.
   2319     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2320       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2321       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   2322                                        std::distance(PB, PE),
   2323                                        BI->getCondition()->getName() + ".pr",
   2324                                        BB->begin());
   2325       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2326       // predecessor, compute the PHI'd conditional value for all of the preds.
   2327       // Any predecessor where the condition is not computable we keep symbolic.
   2328       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2329         BasicBlock *P = *PI;
   2330         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   2331             PBI != BI && PBI->isConditional() &&
   2332             PBI->getCondition() == BI->getCondition() &&
   2333             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2334           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2335           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2336                                               CondIsTrue), P);
   2337         } else {
   2338           NewPN->addIncoming(BI->getCondition(), P);
   2339         }
   2340       }
   2341 
   2342       BI->setCondition(NewPN);
   2343       return true;
   2344     }
   2345   }
   2346 
   2347   // If this is a conditional branch in an empty block, and if any
   2348   // predecessors are a conditional branch to one of our destinations,
   2349   // fold the conditions into logical ops and one cond br.
   2350   BasicBlock::iterator BBI = BB->begin();
   2351   // Ignore dbg intrinsics.
   2352   while (isa<DbgInfoIntrinsic>(BBI))
   2353     ++BBI;
   2354   if (&*BBI != BI)
   2355     return false;
   2356 
   2357 
   2358   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2359     if (CE->canTrap())
   2360       return false;
   2361 
   2362   int PBIOp, BIOp;
   2363   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   2364     PBIOp = BIOp = 0;
   2365   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   2366     PBIOp = 0, BIOp = 1;
   2367   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   2368     PBIOp = 1, BIOp = 0;
   2369   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   2370     PBIOp = BIOp = 1;
   2371   else
   2372     return false;
   2373 
   2374   // Check to make sure that the other destination of this branch
   2375   // isn't BB itself.  If so, this is an infinite loop that will
   2376   // keep getting unwound.
   2377   if (PBI->getSuccessor(PBIOp) == BB)
   2378     return false;
   2379 
   2380   // Do not perform this transformation if it would require
   2381   // insertion of a large number of select instructions. For targets
   2382   // without predication/cmovs, this is a big pessimization.
   2383 
   2384   // Also do not perform this transformation if any phi node in the common
   2385   // destination block can trap when reached by BB or PBB (PR17073). In that
   2386   // case, it would be unsafe to hoist the operation into a select instruction.
   2387 
   2388   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2389   unsigned NumPhis = 0;
   2390   for (BasicBlock::iterator II = CommonDest->begin();
   2391        isa<PHINode>(II); ++II, ++NumPhis) {
   2392     if (NumPhis > 2) // Disable this xform.
   2393       return false;
   2394 
   2395     PHINode *PN = cast<PHINode>(II);
   2396     Value *BIV = PN->getIncomingValueForBlock(BB);
   2397     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
   2398       if (CE->canTrap())
   2399         return false;
   2400 
   2401     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2402     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2403     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
   2404       if (CE->canTrap())
   2405         return false;
   2406   }
   2407 
   2408   // Finally, if everything is ok, fold the branches to logical ops.
   2409   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
   2410 
   2411   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2412                << "AND: " << *BI->getParent());
   2413 
   2414 
   2415   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2416   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2417   // exits.  We don't *know* that the program avoids the infinite loop
   2418   // (even though that seems likely).  If we do this xform naively, we'll end up
   2419   // recursively unpeeling the loop.  Since we know that (after the xform is
   2420   // done) that the block *is* infinite if reached, we just make it an obviously
   2421   // infinite loop with no cond branch.
   2422   if (OtherDest == BB) {
   2423     // Insert it at the end of the function, because it's either code,
   2424     // or it won't matter if it's hot. :)
   2425     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   2426                                                   "infloop", BB->getParent());
   2427     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2428     OtherDest = InfLoopBlock;
   2429   }
   2430 
   2431   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2432 
   2433   // BI may have other predecessors.  Because of this, we leave
   2434   // it alone, but modify PBI.
   2435 
   2436   // Make sure we get to CommonDest on True&True directions.
   2437   Value *PBICond = PBI->getCondition();
   2438   IRBuilder<true, NoFolder> Builder(PBI);
   2439   if (PBIOp)
   2440     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   2441 
   2442   Value *BICond = BI->getCondition();
   2443   if (BIOp)
   2444     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   2445 
   2446   // Merge the conditions.
   2447   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2448 
   2449   // Modify PBI to branch on the new condition to the new dests.
   2450   PBI->setCondition(Cond);
   2451   PBI->setSuccessor(0, CommonDest);
   2452   PBI->setSuccessor(1, OtherDest);
   2453 
   2454   // Update branch weight for PBI.
   2455   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2456   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2457                                               PredFalseWeight);
   2458   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2459                                               SuccFalseWeight);
   2460   if (PredHasWeights && SuccHasWeights) {
   2461     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2462     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
   2463     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2464     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2465     // The weight to CommonDest should be PredCommon * SuccTotal +
   2466     //                                    PredOther * SuccCommon.
   2467     // The weight to OtherDest should be PredOther * SuccOther.
   2468     SmallVector<uint64_t, 2> NewWeights;
   2469     NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
   2470                          PredOther * SuccCommon);
   2471     NewWeights.push_back(PredOther * SuccOther);
   2472     // Halve the weights if any of them cannot fit in an uint32_t
   2473     FitWeights(NewWeights);
   2474 
   2475     SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
   2476     PBI->setMetadata(LLVMContext::MD_prof,
   2477                      MDBuilder(BI->getContext()).
   2478                      createBranchWeights(MDWeights));
   2479   }
   2480 
   2481   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2482   // block that are identical to the entries for BI's block.
   2483   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2484 
   2485   // We know that the CommonDest already had an edge from PBI to
   2486   // it.  If it has PHIs though, the PHIs may have different
   2487   // entries for BB and PBI's BB.  If so, insert a select to make
   2488   // them agree.
   2489   PHINode *PN;
   2490   for (BasicBlock::iterator II = CommonDest->begin();
   2491        (PN = dyn_cast<PHINode>(II)); ++II) {
   2492     Value *BIV = PN->getIncomingValueForBlock(BB);
   2493     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2494     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2495     if (BIV != PBIV) {
   2496       // Insert a select in PBI to pick the right value.
   2497       Value *NV = cast<SelectInst>
   2498         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   2499       PN->setIncomingValue(PBBIdx, NV);
   2500     }
   2501   }
   2502 
   2503   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2504   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2505 
   2506   // This basic block is probably dead.  We know it has at least
   2507   // one fewer predecessor.
   2508   return true;
   2509 }
   2510 
   2511 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   2512 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   2513 // Takes care of updating the successors and removing the old terminator.
   2514 // Also makes sure not to introduce new successors by assuming that edges to
   2515 // non-successor TrueBBs and FalseBBs aren't reachable.
   2516 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   2517                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   2518                                        uint32_t TrueWeight,
   2519                                        uint32_t FalseWeight){
   2520   // Remove any superfluous successor edges from the CFG.
   2521   // First, figure out which successors to preserve.
   2522   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   2523   // successor.
   2524   BasicBlock *KeepEdge1 = TrueBB;
   2525   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
   2526 
   2527   // Then remove the rest.
   2528   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   2529     BasicBlock *Succ = OldTerm->getSuccessor(I);
   2530     // Make sure only to keep exactly one copy of each edge.
   2531     if (Succ == KeepEdge1)
   2532       KeepEdge1 = nullptr;
   2533     else if (Succ == KeepEdge2)
   2534       KeepEdge2 = nullptr;
   2535     else
   2536       Succ->removePredecessor(OldTerm->getParent());
   2537   }
   2538 
   2539   IRBuilder<> Builder(OldTerm);
   2540   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   2541 
   2542   // Insert an appropriate new terminator.
   2543   if (!KeepEdge1 && !KeepEdge2) {
   2544     if (TrueBB == FalseBB)
   2545       // We were only looking for one successor, and it was present.
   2546       // Create an unconditional branch to it.
   2547       Builder.CreateBr(TrueBB);
   2548     else {
   2549       // We found both of the successors we were looking for.
   2550       // Create a conditional branch sharing the condition of the select.
   2551       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   2552       if (TrueWeight != FalseWeight)
   2553         NewBI->setMetadata(LLVMContext::MD_prof,
   2554                            MDBuilder(OldTerm->getContext()).
   2555                            createBranchWeights(TrueWeight, FalseWeight));
   2556     }
   2557   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   2558     // Neither of the selected blocks were successors, so this
   2559     // terminator must be unreachable.
   2560     new UnreachableInst(OldTerm->getContext(), OldTerm);
   2561   } else {
   2562     // One of the selected values was a successor, but the other wasn't.
   2563     // Insert an unconditional branch to the one that was found;
   2564     // the edge to the one that wasn't must be unreachable.
   2565     if (!KeepEdge1)
   2566       // Only TrueBB was found.
   2567       Builder.CreateBr(TrueBB);
   2568     else
   2569       // Only FalseBB was found.
   2570       Builder.CreateBr(FalseBB);
   2571   }
   2572 
   2573   EraseTerminatorInstAndDCECond(OldTerm);
   2574   return true;
   2575 }
   2576 
   2577 // SimplifySwitchOnSelect - Replaces
   2578 //   (switch (select cond, X, Y)) on constant X, Y
   2579 // with a branch - conditional if X and Y lead to distinct BBs,
   2580 // unconditional otherwise.
   2581 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2582   // Check for constant integer values in the select.
   2583   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2584   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2585   if (!TrueVal || !FalseVal)
   2586     return false;
   2587 
   2588   // Find the relevant condition and destinations.
   2589   Value *Condition = Select->getCondition();
   2590   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2591   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2592 
   2593   // Get weight for TrueBB and FalseBB.
   2594   uint32_t TrueWeight = 0, FalseWeight = 0;
   2595   SmallVector<uint64_t, 8> Weights;
   2596   bool HasWeights = HasBranchWeights(SI);
   2597   if (HasWeights) {
   2598     GetBranchWeights(SI, Weights);
   2599     if (Weights.size() == 1 + SI->getNumCases()) {
   2600       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
   2601                                      getSuccessorIndex()];
   2602       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
   2603                                       getSuccessorIndex()];
   2604     }
   2605   }
   2606 
   2607   // Perform the actual simplification.
   2608   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
   2609                                     TrueWeight, FalseWeight);
   2610 }
   2611 
   2612 // SimplifyIndirectBrOnSelect - Replaces
   2613 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2614 //                             blockaddress(@fn, BlockB)))
   2615 // with
   2616 //   (br cond, BlockA, BlockB).
   2617 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2618   // Check that both operands of the select are block addresses.
   2619   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2620   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2621   if (!TBA || !FBA)
   2622     return false;
   2623 
   2624   // Extract the actual blocks.
   2625   BasicBlock *TrueBB = TBA->getBasicBlock();
   2626   BasicBlock *FalseBB = FBA->getBasicBlock();
   2627 
   2628   // Perform the actual simplification.
   2629   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
   2630                                     0, 0);
   2631 }
   2632 
   2633 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   2634 /// instruction (a seteq/setne with a constant) as the only instruction in a
   2635 /// block that ends with an uncond branch.  We are looking for a very specific
   2636 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   2637 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   2638 /// default value goes to an uncond block with a seteq in it, we get something
   2639 /// like:
   2640 ///
   2641 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   2642 /// DEFAULT:
   2643 ///   %tmp = icmp eq i8 %A, 92
   2644 ///   br label %end
   2645 /// end:
   2646 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   2647 ///
   2648 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   2649 /// the PHI, merging the third icmp into the switch.
   2650 static bool TryToSimplifyUncondBranchWithICmpInIt(
   2651     ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
   2652     const DataLayout *DL) {
   2653   BasicBlock *BB = ICI->getParent();
   2654 
   2655   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   2656   // complex.
   2657   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   2658 
   2659   Value *V = ICI->getOperand(0);
   2660   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   2661 
   2662   // The pattern we're looking for is where our only predecessor is a switch on
   2663   // 'V' and this block is the default case for the switch.  In this case we can
   2664   // fold the compared value into the switch to simplify things.
   2665   BasicBlock *Pred = BB->getSinglePredecessor();
   2666   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
   2667 
   2668   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   2669   if (SI->getCondition() != V)
   2670     return false;
   2671 
   2672   // If BB is reachable on a non-default case, then we simply know the value of
   2673   // V in this block.  Substitute it and constant fold the icmp instruction
   2674   // away.
   2675   if (SI->getDefaultDest() != BB) {
   2676     ConstantInt *VVal = SI->findCaseDest(BB);
   2677     assert(VVal && "Should have a unique destination value");
   2678     ICI->setOperand(0, VVal);
   2679 
   2680     if (Value *V = SimplifyInstruction(ICI, DL)) {
   2681       ICI->replaceAllUsesWith(V);
   2682       ICI->eraseFromParent();
   2683     }
   2684     // BB is now empty, so it is likely to simplify away.
   2685     return SimplifyCFG(BB, TTI, DL) | true;
   2686   }
   2687 
   2688   // Ok, the block is reachable from the default dest.  If the constant we're
   2689   // comparing exists in one of the other edges, then we can constant fold ICI
   2690   // and zap it.
   2691   if (SI->findCaseValue(Cst) != SI->case_default()) {
   2692     Value *V;
   2693     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2694       V = ConstantInt::getFalse(BB->getContext());
   2695     else
   2696       V = ConstantInt::getTrue(BB->getContext());
   2697 
   2698     ICI->replaceAllUsesWith(V);
   2699     ICI->eraseFromParent();
   2700     // BB is now empty, so it is likely to simplify away.
   2701     return SimplifyCFG(BB, TTI, DL) | true;
   2702   }
   2703 
   2704   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   2705   // the block.
   2706   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   2707   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
   2708   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
   2709       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2710     return false;
   2711 
   2712   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2713   // true in the PHI.
   2714   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2715   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2716 
   2717   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2718     std::swap(DefaultCst, NewCst);
   2719 
   2720   // Replace ICI (which is used by the PHI for the default value) with true or
   2721   // false depending on if it is EQ or NE.
   2722   ICI->replaceAllUsesWith(DefaultCst);
   2723   ICI->eraseFromParent();
   2724 
   2725   // Okay, the switch goes to this block on a default value.  Add an edge from
   2726   // the switch to the merge point on the compared value.
   2727   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2728                                          BB->getParent(), BB);
   2729   SmallVector<uint64_t, 8> Weights;
   2730   bool HasWeights = HasBranchWeights(SI);
   2731   if (HasWeights) {
   2732     GetBranchWeights(SI, Weights);
   2733     if (Weights.size() == 1 + SI->getNumCases()) {
   2734       // Split weight for default case to case for "Cst".
   2735       Weights[0] = (Weights[0]+1) >> 1;
   2736       Weights.push_back(Weights[0]);
   2737 
   2738       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   2739       SI->setMetadata(LLVMContext::MD_prof,
   2740                       MDBuilder(SI->getContext()).
   2741                       createBranchWeights(MDWeights));
   2742     }
   2743   }
   2744   SI->addCase(Cst, NewBB);
   2745 
   2746   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2747   Builder.SetInsertPoint(NewBB);
   2748   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2749   Builder.CreateBr(SuccBlock);
   2750   PHIUse->addIncoming(NewCst, NewBB);
   2751   return true;
   2752 }
   2753 
   2754 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2755 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2756 /// fold it into a switch instruction if so.
   2757 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
   2758                                       IRBuilder<> &Builder) {
   2759   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2760   if (!Cond) return false;
   2761 
   2762 
   2763   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2764   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2765   // 'setne's and'ed together, collect them.
   2766   Value *CompVal = nullptr;
   2767   std::vector<ConstantInt*> Values;
   2768   bool TrueWhenEqual = true;
   2769   Value *ExtraCase = nullptr;
   2770   unsigned UsedICmps = 0;
   2771 
   2772   if (Cond->getOpcode() == Instruction::Or) {
   2773     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
   2774                                      UsedICmps);
   2775   } else if (Cond->getOpcode() == Instruction::And) {
   2776     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
   2777                                      UsedICmps);
   2778     TrueWhenEqual = false;
   2779   }
   2780 
   2781   // If we didn't have a multiply compared value, fail.
   2782   if (!CompVal) return false;
   2783 
   2784   // Avoid turning single icmps into a switch.
   2785   if (UsedICmps <= 1)
   2786     return false;
   2787 
   2788   // There might be duplicate constants in the list, which the switch
   2789   // instruction can't handle, remove them now.
   2790   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2791   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2792 
   2793   // If Extra was used, we require at least two switch values to do the
   2794   // transformation.  A switch with one value is just an cond branch.
   2795   if (ExtraCase && Values.size() < 2) return false;
   2796 
   2797   // TODO: Preserve branch weight metadata, similarly to how
   2798   // FoldValueComparisonIntoPredecessors preserves it.
   2799 
   2800   // Figure out which block is which destination.
   2801   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2802   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2803   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2804 
   2805   BasicBlock *BB = BI->getParent();
   2806 
   2807   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2808                << " cases into SWITCH.  BB is:\n" << *BB);
   2809 
   2810   // If there are any extra values that couldn't be folded into the switch
   2811   // then we evaluate them with an explicit branch first.  Split the block
   2812   // right before the condbr to handle it.
   2813   if (ExtraCase) {
   2814     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2815     // Remove the uncond branch added to the old block.
   2816     TerminatorInst *OldTI = BB->getTerminator();
   2817     Builder.SetInsertPoint(OldTI);
   2818 
   2819     if (TrueWhenEqual)
   2820       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2821     else
   2822       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2823 
   2824     OldTI->eraseFromParent();
   2825 
   2826     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2827     // for the edge we just added.
   2828     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2829 
   2830     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2831           << "\nEXTRABB = " << *BB);
   2832     BB = NewBB;
   2833   }
   2834 
   2835   Builder.SetInsertPoint(BI);
   2836   // Convert pointer to int before we switch.
   2837   if (CompVal->getType()->isPointerTy()) {
   2838     assert(DL && "Cannot switch on pointer without DataLayout");
   2839     CompVal = Builder.CreatePtrToInt(CompVal,
   2840                                      DL->getIntPtrType(CompVal->getType()),
   2841                                      "magicptr");
   2842   }
   2843 
   2844   // Create the new switch instruction now.
   2845   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2846 
   2847   // Add all of the 'cases' to the switch instruction.
   2848   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2849     New->addCase(Values[i], EdgeBB);
   2850 
   2851   // We added edges from PI to the EdgeBB.  As such, if there were any
   2852   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2853   // the number of edges added.
   2854   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2855        isa<PHINode>(BBI); ++BBI) {
   2856     PHINode *PN = cast<PHINode>(BBI);
   2857     Value *InVal = PN->getIncomingValueForBlock(BB);
   2858     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2859       PN->addIncoming(InVal, BB);
   2860   }
   2861 
   2862   // Erase the old branch instruction.
   2863   EraseTerminatorInstAndDCECond(BI);
   2864 
   2865   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2866   return true;
   2867 }
   2868 
   2869 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2870   // If this is a trivial landing pad that just continues unwinding the caught
   2871   // exception then zap the landing pad, turning its invokes into calls.
   2872   BasicBlock *BB = RI->getParent();
   2873   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2874   if (RI->getValue() != LPInst)
   2875     // Not a landing pad, or the resume is not unwinding the exception that
   2876     // caused control to branch here.
   2877     return false;
   2878 
   2879   // Check that there are no other instructions except for debug intrinsics.
   2880   BasicBlock::iterator I = LPInst, E = RI;
   2881   while (++I != E)
   2882     if (!isa<DbgInfoIntrinsic>(I))
   2883       return false;
   2884 
   2885   // Turn all invokes that unwind here into calls and delete the basic block.
   2886   bool InvokeRequiresTableEntry = false;
   2887   bool Changed = false;
   2888   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2889     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2890 
   2891     if (II->hasFnAttr(Attribute::UWTable)) {
   2892       // Don't remove an `invoke' instruction if the ABI requires an entry into
   2893       // the table.
   2894       InvokeRequiresTableEntry = true;
   2895       continue;
   2896     }
   2897 
   2898     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2899 
   2900     // Insert a call instruction before the invoke.
   2901     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2902     Call->takeName(II);
   2903     Call->setCallingConv(II->getCallingConv());
   2904     Call->setAttributes(II->getAttributes());
   2905     Call->setDebugLoc(II->getDebugLoc());
   2906 
   2907     // Anything that used the value produced by the invoke instruction now uses
   2908     // the value produced by the call instruction.  Note that we do this even
   2909     // for void functions and calls with no uses so that the callgraph edge is
   2910     // updated.
   2911     II->replaceAllUsesWith(Call);
   2912     BB->removePredecessor(II->getParent());
   2913 
   2914     // Insert a branch to the normal destination right before the invoke.
   2915     BranchInst::Create(II->getNormalDest(), II);
   2916 
   2917     // Finally, delete the invoke instruction!
   2918     II->eraseFromParent();
   2919     Changed = true;
   2920   }
   2921 
   2922   if (!InvokeRequiresTableEntry)
   2923     // The landingpad is now unreachable.  Zap it.
   2924     BB->eraseFromParent();
   2925 
   2926   return Changed;
   2927 }
   2928 
   2929 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2930   BasicBlock *BB = RI->getParent();
   2931   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2932 
   2933   // Find predecessors that end with branches.
   2934   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2935   SmallVector<BranchInst*, 8> CondBranchPreds;
   2936   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2937     BasicBlock *P = *PI;
   2938     TerminatorInst *PTI = P->getTerminator();
   2939     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2940       if (BI->isUnconditional())
   2941         UncondBranchPreds.push_back(P);
   2942       else
   2943         CondBranchPreds.push_back(BI);
   2944     }
   2945   }
   2946 
   2947   // If we found some, do the transformation!
   2948   if (!UncondBranchPreds.empty() && DupRet) {
   2949     while (!UncondBranchPreds.empty()) {
   2950       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2951       DEBUG(dbgs() << "FOLDING: " << *BB
   2952             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2953       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2954     }
   2955 
   2956     // If we eliminated all predecessors of the block, delete the block now.
   2957     if (pred_begin(BB) == pred_end(BB))
   2958       // We know there are no successors, so just nuke the block.
   2959       BB->eraseFromParent();
   2960 
   2961     return true;
   2962   }
   2963 
   2964   // Check out all of the conditional branches going to this return
   2965   // instruction.  If any of them just select between returns, change the
   2966   // branch itself into a select/return pair.
   2967   while (!CondBranchPreds.empty()) {
   2968     BranchInst *BI = CondBranchPreds.pop_back_val();
   2969 
   2970     // Check to see if the non-BB successor is also a return block.
   2971     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2972         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2973         SimplifyCondBranchToTwoReturns(BI, Builder))
   2974       return true;
   2975   }
   2976   return false;
   2977 }
   2978 
   2979 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2980   BasicBlock *BB = UI->getParent();
   2981 
   2982   bool Changed = false;
   2983 
   2984   // If there are any instructions immediately before the unreachable that can
   2985   // be removed, do so.
   2986   while (UI != BB->begin()) {
   2987     BasicBlock::iterator BBI = UI;
   2988     --BBI;
   2989     // Do not delete instructions that can have side effects which might cause
   2990     // the unreachable to not be reachable; specifically, calls and volatile
   2991     // operations may have this effect.
   2992     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2993 
   2994     if (BBI->mayHaveSideEffects()) {
   2995       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   2996         if (SI->isVolatile())
   2997           break;
   2998       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   2999         if (LI->isVolatile())
   3000           break;
   3001       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   3002         if (RMWI->isVolatile())
   3003           break;
   3004       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   3005         if (CXI->isVolatile())
   3006           break;
   3007       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   3008                  !isa<LandingPadInst>(BBI)) {
   3009         break;
   3010       }
   3011       // Note that deleting LandingPad's here is in fact okay, although it
   3012       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   3013       // all the predecessors of this block will be the unwind edges of Invokes,
   3014       // and we can therefore guarantee this block will be erased.
   3015     }
   3016 
   3017     // Delete this instruction (any uses are guaranteed to be dead)
   3018     if (!BBI->use_empty())
   3019       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   3020     BBI->eraseFromParent();
   3021     Changed = true;
   3022   }
   3023 
   3024   // If the unreachable instruction is the first in the block, take a gander
   3025   // at all of the predecessors of this instruction, and simplify them.
   3026   if (&BB->front() != UI) return Changed;
   3027 
   3028   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   3029   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   3030     TerminatorInst *TI = Preds[i]->getTerminator();
   3031     IRBuilder<> Builder(TI);
   3032     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   3033       if (BI->isUnconditional()) {
   3034         if (BI->getSuccessor(0) == BB) {
   3035           new UnreachableInst(TI->getContext(), TI);
   3036           TI->eraseFromParent();
   3037           Changed = true;
   3038         }
   3039       } else {
   3040         if (BI->getSuccessor(0) == BB) {
   3041           Builder.CreateBr(BI->getSuccessor(1));
   3042           EraseTerminatorInstAndDCECond(BI);
   3043         } else if (BI->getSuccessor(1) == BB) {
   3044           Builder.CreateBr(BI->getSuccessor(0));
   3045           EraseTerminatorInstAndDCECond(BI);
   3046           Changed = true;
   3047         }
   3048       }
   3049     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   3050       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3051            i != e; ++i)
   3052         if (i.getCaseSuccessor() == BB) {
   3053           BB->removePredecessor(SI->getParent());
   3054           SI->removeCase(i);
   3055           --i; --e;
   3056           Changed = true;
   3057         }
   3058       // If the default value is unreachable, figure out the most popular
   3059       // destination and make it the default.
   3060       if (SI->getDefaultDest() == BB) {
   3061         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   3062         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3063              i != e; ++i) {
   3064           std::pair<unsigned, unsigned> &entry =
   3065               Popularity[i.getCaseSuccessor()];
   3066           if (entry.first == 0) {
   3067             entry.first = 1;
   3068             entry.second = i.getCaseIndex();
   3069           } else {
   3070             entry.first++;
   3071           }
   3072         }
   3073 
   3074         // Find the most popular block.
   3075         unsigned MaxPop = 0;
   3076         unsigned MaxIndex = 0;
   3077         BasicBlock *MaxBlock = nullptr;
   3078         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   3079              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   3080           if (I->second.first > MaxPop ||
   3081               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   3082             MaxPop = I->second.first;
   3083             MaxIndex = I->second.second;
   3084             MaxBlock = I->first;
   3085           }
   3086         }
   3087         if (MaxBlock) {
   3088           // Make this the new default, allowing us to delete any explicit
   3089           // edges to it.
   3090           SI->setDefaultDest(MaxBlock);
   3091           Changed = true;
   3092 
   3093           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   3094           // it.
   3095           if (isa<PHINode>(MaxBlock->begin()))
   3096             for (unsigned i = 0; i != MaxPop-1; ++i)
   3097               MaxBlock->removePredecessor(SI->getParent());
   3098 
   3099           for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3100                i != e; ++i)
   3101             if (i.getCaseSuccessor() == MaxBlock) {
   3102               SI->removeCase(i);
   3103               --i; --e;
   3104             }
   3105         }
   3106       }
   3107     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   3108       if (II->getUnwindDest() == BB) {
   3109         // Convert the invoke to a call instruction.  This would be a good
   3110         // place to note that the call does not throw though.
   3111         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   3112         II->removeFromParent();   // Take out of symbol table
   3113 
   3114         // Insert the call now...
   3115         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   3116         Builder.SetInsertPoint(BI);
   3117         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   3118                                           Args, II->getName());
   3119         CI->setCallingConv(II->getCallingConv());
   3120         CI->setAttributes(II->getAttributes());
   3121         // If the invoke produced a value, the call does now instead.
   3122         II->replaceAllUsesWith(CI);
   3123         delete II;
   3124         Changed = true;
   3125       }
   3126     }
   3127   }
   3128 
   3129   // If this block is now dead, remove it.
   3130   if (pred_begin(BB) == pred_end(BB) &&
   3131       BB != &BB->getParent()->getEntryBlock()) {
   3132     // We know there are no successors, so just nuke the block.
   3133     BB->eraseFromParent();
   3134     return true;
   3135   }
   3136 
   3137   return Changed;
   3138 }
   3139 
   3140 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   3141 /// integer range comparison into a sub, an icmp and a branch.
   3142 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3143   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3144 
   3145   // Make sure all cases point to the same destination and gather the values.
   3146   SmallVector<ConstantInt *, 16> Cases;
   3147   SwitchInst::CaseIt I = SI->case_begin();
   3148   Cases.push_back(I.getCaseValue());
   3149   SwitchInst::CaseIt PrevI = I++;
   3150   for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
   3151     if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
   3152       return false;
   3153     Cases.push_back(I.getCaseValue());
   3154   }
   3155   assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
   3156 
   3157   // Sort the case values, then check if they form a range we can transform.
   3158   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3159   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   3160     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   3161       return false;
   3162   }
   3163 
   3164   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   3165   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
   3166 
   3167   Value *Sub = SI->getCondition();
   3168   if (!Offset->isNullValue())
   3169     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   3170   Value *Cmp;
   3171   // If NumCases overflowed, then all possible values jump to the successor.
   3172   if (NumCases->isNullValue() && SI->getNumCases() != 0)
   3173     Cmp = ConstantInt::getTrue(SI->getContext());
   3174   else
   3175     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3176   BranchInst *NewBI = Builder.CreateCondBr(
   3177       Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
   3178 
   3179   // Update weight for the newly-created conditional branch.
   3180   SmallVector<uint64_t, 8> Weights;
   3181   bool HasWeights = HasBranchWeights(SI);
   3182   if (HasWeights) {
   3183     GetBranchWeights(SI, Weights);
   3184     if (Weights.size() == 1 + SI->getNumCases()) {
   3185       // Combine all weights for the cases to be the true weight of NewBI.
   3186       // We assume that the sum of all weights for a Terminator can fit into 32
   3187       // bits.
   3188       uint32_t NewTrueWeight = 0;
   3189       for (unsigned I = 1, E = Weights.size(); I != E; ++I)
   3190         NewTrueWeight += (uint32_t)Weights[I];
   3191       NewBI->setMetadata(LLVMContext::MD_prof,
   3192                          MDBuilder(SI->getContext()).
   3193                          createBranchWeights(NewTrueWeight,
   3194                                              (uint32_t)Weights[0]));
   3195     }
   3196   }
   3197 
   3198   // Prune obsolete incoming values off the successor's PHI nodes.
   3199   for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
   3200        isa<PHINode>(BBI); ++BBI) {
   3201     for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
   3202       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3203   }
   3204   SI->eraseFromParent();
   3205 
   3206   return true;
   3207 }
   3208 
   3209 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   3210 /// and use it to remove dead cases.
   3211 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   3212   Value *Cond = SI->getCondition();
   3213   unsigned Bits = Cond->getType()->getIntegerBitWidth();
   3214   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3215   computeKnownBits(Cond, KnownZero, KnownOne);
   3216 
   3217   // Gather dead cases.
   3218   SmallVector<ConstantInt*, 8> DeadCases;
   3219   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3220     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   3221         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   3222       DeadCases.push_back(I.getCaseValue());
   3223       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   3224                    << I.getCaseValue() << "' is dead.\n");
   3225     }
   3226   }
   3227 
   3228   SmallVector<uint64_t, 8> Weights;
   3229   bool HasWeight = HasBranchWeights(SI);
   3230   if (HasWeight) {
   3231     GetBranchWeights(SI, Weights);
   3232     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   3233   }
   3234 
   3235   // Remove dead cases from the switch.
   3236   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   3237     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   3238     assert(Case != SI->case_default() &&
   3239            "Case was not found. Probably mistake in DeadCases forming.");
   3240     if (HasWeight) {
   3241       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
   3242       Weights.pop_back();
   3243     }
   3244 
   3245     // Prune unused values from PHI nodes.
   3246     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   3247     SI->removeCase(Case);
   3248   }
   3249   if (HasWeight && Weights.size() >= 2) {
   3250     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3251     SI->setMetadata(LLVMContext::MD_prof,
   3252                     MDBuilder(SI->getParent()->getContext()).
   3253                     createBranchWeights(MDWeights));
   3254   }
   3255 
   3256   return !DeadCases.empty();
   3257 }
   3258 
   3259 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   3260 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   3261 /// by an unconditional branch), look at the phi node for BB in the successor
   3262 /// block and see if the incoming value is equal to CaseValue. If so, return
   3263 /// the phi node, and set PhiIndex to BB's index in the phi node.
   3264 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   3265                                               BasicBlock *BB,
   3266                                               int *PhiIndex) {
   3267   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   3268     return nullptr; // BB must be empty to be a candidate for simplification.
   3269   if (!BB->getSinglePredecessor())
   3270     return nullptr; // BB must be dominated by the switch.
   3271 
   3272   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   3273   if (!Branch || !Branch->isUnconditional())
   3274     return nullptr; // Terminator must be unconditional branch.
   3275 
   3276   BasicBlock *Succ = Branch->getSuccessor(0);
   3277 
   3278   BasicBlock::iterator I = Succ->begin();
   3279   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3280     int Idx = PHI->getBasicBlockIndex(BB);
   3281     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   3282 
   3283     Value *InValue = PHI->getIncomingValue(Idx);
   3284     if (InValue != CaseValue) continue;
   3285 
   3286     *PhiIndex = Idx;
   3287     return PHI;
   3288   }
   3289 
   3290   return nullptr;
   3291 }
   3292 
   3293 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   3294 /// instruction to a phi node dominated by the switch, if that would mean that
   3295 /// some of the destination blocks of the switch can be folded away.
   3296 /// Returns true if a change is made.
   3297 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   3298   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   3299   ForwardingNodesMap ForwardingNodes;
   3300 
   3301   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3302     ConstantInt *CaseValue = I.getCaseValue();
   3303     BasicBlock *CaseDest = I.getCaseSuccessor();
   3304 
   3305     int PhiIndex;
   3306     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   3307                                                  &PhiIndex);
   3308     if (!PHI) continue;
   3309 
   3310     ForwardingNodes[PHI].push_back(PhiIndex);
   3311   }
   3312 
   3313   bool Changed = false;
   3314 
   3315   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   3316        E = ForwardingNodes.end(); I != E; ++I) {
   3317     PHINode *Phi = I->first;
   3318     SmallVectorImpl<int> &Indexes = I->second;
   3319 
   3320     if (Indexes.size() < 2) continue;
   3321 
   3322     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   3323       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   3324     Changed = true;
   3325   }
   3326 
   3327   return Changed;
   3328 }
   3329 
   3330 /// ValidLookupTableConstant - Return true if the backend will be able to handle
   3331 /// initializing an array of constants like C.
   3332 static bool ValidLookupTableConstant(Constant *C) {
   3333   if (C->isThreadDependent())
   3334     return false;
   3335   if (C->isDLLImportDependent())
   3336     return false;
   3337 
   3338   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   3339     return CE->isGEPWithNoNotionalOverIndexing();
   3340 
   3341   return isa<ConstantFP>(C) ||
   3342       isa<ConstantInt>(C) ||
   3343       isa<ConstantPointerNull>(C) ||
   3344       isa<GlobalValue>(C) ||
   3345       isa<UndefValue>(C);
   3346 }
   3347 
   3348 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
   3349 /// its constant value in ConstantPool, returning 0 if it's not there.
   3350 static Constant *LookupConstant(Value *V,
   3351                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3352   if (Constant *C = dyn_cast<Constant>(V))
   3353     return C;
   3354   return ConstantPool.lookup(V);
   3355 }
   3356 
   3357 /// ConstantFold - Try to fold instruction I into a constant. This works for
   3358 /// simple instructions such as binary operations where both operands are
   3359 /// constant or can be replaced by constants from the ConstantPool. Returns the
   3360 /// resulting constant on success, 0 otherwise.
   3361 static Constant *
   3362 ConstantFold(Instruction *I,
   3363              const SmallDenseMap<Value *, Constant *> &ConstantPool,
   3364              const DataLayout *DL) {
   3365   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   3366     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   3367     if (!A)
   3368       return nullptr;
   3369     if (A->isAllOnesValue())
   3370       return LookupConstant(Select->getTrueValue(), ConstantPool);
   3371     if (A->isNullValue())
   3372       return LookupConstant(Select->getFalseValue(), ConstantPool);
   3373     return nullptr;
   3374   }
   3375 
   3376   SmallVector<Constant *, 4> COps;
   3377   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
   3378     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
   3379       COps.push_back(A);
   3380     else
   3381       return nullptr;
   3382   }
   3383 
   3384   if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
   3385     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
   3386                                            COps[1], DL);
   3387 
   3388   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
   3389 }
   3390 
   3391 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
   3392 /// at the common destination basic block, *CommonDest, for one of the case
   3393 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   3394 /// case), of a switch instruction SI.
   3395 static bool
   3396 GetCaseResults(SwitchInst *SI,
   3397                ConstantInt *CaseVal,
   3398                BasicBlock *CaseDest,
   3399                BasicBlock **CommonDest,
   3400                SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
   3401                const DataLayout *DL) {
   3402   // The block from which we enter the common destination.
   3403   BasicBlock *Pred = SI->getParent();
   3404 
   3405   // If CaseDest is empty except for some side-effect free instructions through
   3406   // which we can constant-propagate the CaseVal, continue to its successor.
   3407   SmallDenseMap<Value*, Constant*> ConstantPool;
   3408   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   3409   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   3410        ++I) {
   3411     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   3412       // If the terminator is a simple branch, continue to the next block.
   3413       if (T->getNumSuccessors() != 1)
   3414         return false;
   3415       Pred = CaseDest;
   3416       CaseDest = T->getSuccessor(0);
   3417     } else if (isa<DbgInfoIntrinsic>(I)) {
   3418       // Skip debug intrinsic.
   3419       continue;
   3420     } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
   3421       // Instruction is side-effect free and constant.
   3422       ConstantPool.insert(std::make_pair(I, C));
   3423     } else {
   3424       break;
   3425     }
   3426   }
   3427 
   3428   // If we did not have a CommonDest before, use the current one.
   3429   if (!*CommonDest)
   3430     *CommonDest = CaseDest;
   3431   // If the destination isn't the common one, abort.
   3432   if (CaseDest != *CommonDest)
   3433     return false;
   3434 
   3435   // Get the values for this case from phi nodes in the destination block.
   3436   BasicBlock::iterator I = (*CommonDest)->begin();
   3437   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3438     int Idx = PHI->getBasicBlockIndex(Pred);
   3439     if (Idx == -1)
   3440       continue;
   3441 
   3442     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
   3443                                         ConstantPool);
   3444     if (!ConstVal)
   3445       return false;
   3446 
   3447     // Note: If the constant comes from constant-propagating the case value
   3448     // through the CaseDest basic block, it will be safe to remove the
   3449     // instructions in that block. They cannot be used (except in the phi nodes
   3450     // we visit) outside CaseDest, because that block does not dominate its
   3451     // successor. If it did, we would not be in this phi node.
   3452 
   3453     // Be conservative about which kinds of constants we support.
   3454     if (!ValidLookupTableConstant(ConstVal))
   3455       return false;
   3456 
   3457     Res.push_back(std::make_pair(PHI, ConstVal));
   3458   }
   3459 
   3460   return Res.size() > 0;
   3461 }
   3462 
   3463 namespace {
   3464   /// SwitchLookupTable - This class represents a lookup table that can be used
   3465   /// to replace a switch.
   3466   class SwitchLookupTable {
   3467   public:
   3468     /// SwitchLookupTable - Create a lookup table to use as a switch replacement
   3469     /// with the contents of Values, using DefaultValue to fill any holes in the
   3470     /// table.
   3471     SwitchLookupTable(Module &M,
   3472                       uint64_t TableSize,
   3473                       ConstantInt *Offset,
   3474              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
   3475                       Constant *DefaultValue,
   3476                       const DataLayout *DL);
   3477 
   3478     /// BuildLookup - Build instructions with Builder to retrieve the value at
   3479     /// the position given by Index in the lookup table.
   3480     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   3481 
   3482     /// WouldFitInRegister - Return true if a table with TableSize elements of
   3483     /// type ElementType would fit in a target-legal register.
   3484     static bool WouldFitInRegister(const DataLayout *DL,
   3485                                    uint64_t TableSize,
   3486                                    const Type *ElementType);
   3487 
   3488   private:
   3489     // Depending on the contents of the table, it can be represented in
   3490     // different ways.
   3491     enum {
   3492       // For tables where each element contains the same value, we just have to
   3493       // store that single value and return it for each lookup.
   3494       SingleValueKind,
   3495 
   3496       // For small tables with integer elements, we can pack them into a bitmap
   3497       // that fits into a target-legal register. Values are retrieved by
   3498       // shift and mask operations.
   3499       BitMapKind,
   3500 
   3501       // The table is stored as an array of values. Values are retrieved by load
   3502       // instructions from the table.
   3503       ArrayKind
   3504     } Kind;
   3505 
   3506     // For SingleValueKind, this is the single value.
   3507     Constant *SingleValue;
   3508 
   3509     // For BitMapKind, this is the bitmap.
   3510     ConstantInt *BitMap;
   3511     IntegerType *BitMapElementTy;
   3512 
   3513     // For ArrayKind, this is the array.
   3514     GlobalVariable *Array;
   3515   };
   3516 }
   3517 
   3518 SwitchLookupTable::SwitchLookupTable(Module &M,
   3519                                      uint64_t TableSize,
   3520                                      ConstantInt *Offset,
   3521              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
   3522                                      Constant *DefaultValue,
   3523                                      const DataLayout *DL)
   3524     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
   3525       Array(nullptr) {
   3526   assert(Values.size() && "Can't build lookup table without values!");
   3527   assert(TableSize >= Values.size() && "Can't fit values in table!");
   3528 
   3529   // If all values in the table are equal, this is that value.
   3530   SingleValue = Values.begin()->second;
   3531 
   3532   Type *ValueType = Values.begin()->second->getType();
   3533 
   3534   // Build up the table contents.
   3535   SmallVector<Constant*, 64> TableContents(TableSize);
   3536   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   3537     ConstantInt *CaseVal = Values[I].first;
   3538     Constant *CaseRes = Values[I].second;
   3539     assert(CaseRes->getType() == ValueType);
   3540 
   3541     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
   3542                    .getLimitedValue();
   3543     TableContents[Idx] = CaseRes;
   3544 
   3545     if (CaseRes != SingleValue)
   3546       SingleValue = nullptr;
   3547   }
   3548 
   3549   // Fill in any holes in the table with the default result.
   3550   if (Values.size() < TableSize) {
   3551     assert(DefaultValue &&
   3552            "Need a default value to fill the lookup table holes.");
   3553     assert(DefaultValue->getType() == ValueType);
   3554     for (uint64_t I = 0; I < TableSize; ++I) {
   3555       if (!TableContents[I])
   3556         TableContents[I] = DefaultValue;
   3557     }
   3558 
   3559     if (DefaultValue != SingleValue)
   3560       SingleValue = nullptr;
   3561   }
   3562 
   3563   // If each element in the table contains the same value, we only need to store
   3564   // that single value.
   3565   if (SingleValue) {
   3566     Kind = SingleValueKind;
   3567     return;
   3568   }
   3569 
   3570   // If the type is integer and the table fits in a register, build a bitmap.
   3571   if (WouldFitInRegister(DL, TableSize, ValueType)) {
   3572     IntegerType *IT = cast<IntegerType>(ValueType);
   3573     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   3574     for (uint64_t I = TableSize; I > 0; --I) {
   3575       TableInt <<= IT->getBitWidth();
   3576       // Insert values into the bitmap. Undef values are set to zero.
   3577       if (!isa<UndefValue>(TableContents[I - 1])) {
   3578         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   3579         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   3580       }
   3581     }
   3582     BitMap = ConstantInt::get(M.getContext(), TableInt);
   3583     BitMapElementTy = IT;
   3584     Kind = BitMapKind;
   3585     ++NumBitMaps;
   3586     return;
   3587   }
   3588 
   3589   // Store the table in an array.
   3590   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
   3591   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   3592 
   3593   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
   3594                              GlobalVariable::PrivateLinkage,
   3595                              Initializer,
   3596                              "switch.table");
   3597   Array->setUnnamedAddr(true);
   3598   Kind = ArrayKind;
   3599 }
   3600 
   3601 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   3602   switch (Kind) {
   3603     case SingleValueKind:
   3604       return SingleValue;
   3605     case BitMapKind: {
   3606       // Type of the bitmap (e.g. i59).
   3607       IntegerType *MapTy = BitMap->getType();
   3608 
   3609       // Cast Index to the same type as the bitmap.
   3610       // Note: The Index is <= the number of elements in the table, so
   3611       // truncating it to the width of the bitmask is safe.
   3612       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   3613 
   3614       // Multiply the shift amount by the element width.
   3615       ShiftAmt = Builder.CreateMul(ShiftAmt,
   3616                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   3617                                    "switch.shiftamt");
   3618 
   3619       // Shift down.
   3620       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
   3621                                               "switch.downshift");
   3622       // Mask off.
   3623       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
   3624                                  "switch.masked");
   3625     }
   3626     case ArrayKind: {
   3627       Value *GEPIndices[] = { Builder.getInt32(0), Index };
   3628       Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
   3629                                              "switch.gep");
   3630       return Builder.CreateLoad(GEP, "switch.load");
   3631     }
   3632   }
   3633   llvm_unreachable("Unknown lookup table kind!");
   3634 }
   3635 
   3636 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
   3637                                            uint64_t TableSize,
   3638                                            const Type *ElementType) {
   3639   if (!DL)
   3640     return false;
   3641   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
   3642   if (!IT)
   3643     return false;
   3644   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   3645   // are <= 15, we could try to narrow the type.
   3646 
   3647   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   3648   if (TableSize >= UINT_MAX/IT->getBitWidth())
   3649     return false;
   3650   return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
   3651 }
   3652 
   3653 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
   3654 /// for this switch, based on the number of cases, size of the table and the
   3655 /// types of the results.
   3656 static bool ShouldBuildLookupTable(SwitchInst *SI,
   3657                                    uint64_t TableSize,
   3658                                    const TargetTransformInfo &TTI,
   3659                                    const DataLayout *DL,
   3660                             const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
   3661   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   3662     return false; // TableSize overflowed, or mul below might overflow.
   3663 
   3664   bool AllTablesFitInRegister = true;
   3665   bool HasIllegalType = false;
   3666   for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
   3667        E = ResultTypes.end(); I != E; ++I) {
   3668     Type *Ty = I->second;
   3669 
   3670     // Saturate this flag to true.
   3671     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   3672 
   3673     // Saturate this flag to false.
   3674     AllTablesFitInRegister = AllTablesFitInRegister &&
   3675       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
   3676 
   3677     // If both flags saturate, we're done. NOTE: This *only* works with
   3678     // saturating flags, and all flags have to saturate first due to the
   3679     // non-deterministic behavior of iterating over a dense map.
   3680     if (HasIllegalType && !AllTablesFitInRegister)
   3681       break;
   3682   }
   3683 
   3684   // If each table would fit in a register, we should build it anyway.
   3685   if (AllTablesFitInRegister)
   3686     return true;
   3687 
   3688   // Don't build a table that doesn't fit in-register if it has illegal types.
   3689   if (HasIllegalType)
   3690     return false;
   3691 
   3692   // The table density should be at least 40%. This is the same criterion as for
   3693   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   3694   // FIXME: Find the best cut-off.
   3695   return SI->getNumCases() * 10 >= TableSize * 4;
   3696 }
   3697 
   3698 /// SwitchToLookupTable - If the switch is only used to initialize one or more
   3699 /// phi nodes in a common successor block with different constant values,
   3700 /// replace the switch with lookup tables.
   3701 static bool SwitchToLookupTable(SwitchInst *SI,
   3702                                 IRBuilder<> &Builder,
   3703                                 const TargetTransformInfo &TTI,
   3704                                 const DataLayout* DL) {
   3705   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3706 
   3707   // Only build lookup table when we have a target that supports it.
   3708   if (!TTI.shouldBuildLookupTables())
   3709     return false;
   3710 
   3711   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   3712   // split off a dense part and build a lookup table for that.
   3713 
   3714   // FIXME: This creates arrays of GEPs to constant strings, which means each
   3715   // GEP needs a runtime relocation in PIC code. We should just build one big
   3716   // string and lookup indices into that.
   3717 
   3718   // Ignore switches with less than three cases. Lookup tables will not make them
   3719   // faster, so we don't analyze them.
   3720   if (SI->getNumCases() < 3)
   3721     return false;
   3722 
   3723   // Figure out the corresponding result for each case value and phi node in the
   3724   // common destination, as well as the the min and max case values.
   3725   assert(SI->case_begin() != SI->case_end());
   3726   SwitchInst::CaseIt CI = SI->case_begin();
   3727   ConstantInt *MinCaseVal = CI.getCaseValue();
   3728   ConstantInt *MaxCaseVal = CI.getCaseValue();
   3729 
   3730   BasicBlock *CommonDest = nullptr;
   3731   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
   3732   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
   3733   SmallDenseMap<PHINode*, Constant*> DefaultResults;
   3734   SmallDenseMap<PHINode*, Type*> ResultTypes;
   3735   SmallVector<PHINode*, 4> PHIs;
   3736 
   3737   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   3738     ConstantInt *CaseVal = CI.getCaseValue();
   3739     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   3740       MinCaseVal = CaseVal;
   3741     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   3742       MaxCaseVal = CaseVal;
   3743 
   3744     // Resulting value at phi nodes for this case value.
   3745     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
   3746     ResultsTy Results;
   3747     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   3748                         Results, DL))
   3749       return false;
   3750 
   3751     // Append the result from this case to the list for each phi.
   3752     for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
   3753       if (!ResultLists.count(I->first))
   3754         PHIs.push_back(I->first);
   3755       ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
   3756     }
   3757   }
   3758 
   3759   // Keep track of the result types.
   3760   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   3761     PHINode *PHI = PHIs[I];
   3762     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
   3763   }
   3764 
   3765   uint64_t NumResults = ResultLists[PHIs[0]].size();
   3766   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   3767   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   3768   bool TableHasHoles = (NumResults < TableSize);
   3769 
   3770   // If the table has holes, we need a constant result for the default case
   3771   // or a bitmask that fits in a register.
   3772   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   3773   bool HasDefaultResults = false;
   3774   if (TableHasHoles) {
   3775     HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
   3776                                        &CommonDest, DefaultResultsList, DL);
   3777   }
   3778   bool NeedMask = (TableHasHoles && !HasDefaultResults);
   3779   if (NeedMask) {
   3780     // As an extra penalty for the validity test we require more cases.
   3781     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
   3782       return false;
   3783     if (!(DL && DL->fitsInLegalInteger(TableSize)))
   3784       return false;
   3785   }
   3786 
   3787   for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
   3788     PHINode *PHI = DefaultResultsList[I].first;
   3789     Constant *Result = DefaultResultsList[I].second;
   3790     DefaultResults[PHI] = Result;
   3791   }
   3792 
   3793   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
   3794     return false;
   3795 
   3796   // Create the BB that does the lookups.
   3797   Module &Mod = *CommonDest->getParent()->getParent();
   3798   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
   3799                                             "switch.lookup",
   3800                                             CommonDest->getParent(),
   3801                                             CommonDest);
   3802 
   3803   // Compute the table index value.
   3804   Builder.SetInsertPoint(SI);
   3805   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   3806                                         "switch.tableidx");
   3807 
   3808   // Compute the maximum table size representable by the integer type we are
   3809   // switching upon.
   3810   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
   3811   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
   3812   assert(MaxTableSize >= TableSize &&
   3813          "It is impossible for a switch to have more entries than the max "
   3814          "representable value of its input integer type's size.");
   3815 
   3816   // If we have a fully covered lookup table, unconditionally branch to the
   3817   // lookup table BB. Otherwise, check if the condition value is within the case
   3818   // range. If it is so, branch to the new BB. Otherwise branch to SI's default
   3819   // destination.
   3820   const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
   3821   if (GeneratingCoveredLookupTable) {
   3822     Builder.CreateBr(LookupBB);
   3823     SI->getDefaultDest()->removePredecessor(SI->getParent());
   3824   } else {
   3825     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
   3826                                          MinCaseVal->getType(), TableSize));
   3827     Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   3828   }
   3829 
   3830   // Populate the BB that does the lookups.
   3831   Builder.SetInsertPoint(LookupBB);
   3832 
   3833   if (NeedMask) {
   3834     // Before doing the lookup we do the hole check.
   3835     // The LookupBB is therefore re-purposed to do the hole check
   3836     // and we create a new LookupBB.
   3837     BasicBlock *MaskBB = LookupBB;
   3838     MaskBB->setName("switch.hole_check");
   3839     LookupBB = BasicBlock::Create(Mod.getContext(),
   3840                                   "switch.lookup",
   3841                                   CommonDest->getParent(),
   3842                                   CommonDest);
   3843 
   3844     // Build bitmask; fill in a 1 bit for every case.
   3845     APInt MaskInt(TableSize, 0);
   3846     APInt One(TableSize, 1);
   3847     const ResultListTy &ResultList = ResultLists[PHIs[0]];
   3848     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
   3849       uint64_t Idx = (ResultList[I].first->getValue() -
   3850                       MinCaseVal->getValue()).getLimitedValue();
   3851       MaskInt |= One << Idx;
   3852     }
   3853     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
   3854 
   3855     // Get the TableIndex'th bit of the bitmask.
   3856     // If this bit is 0 (meaning hole) jump to the default destination,
   3857     // else continue with table lookup.
   3858     IntegerType *MapTy = TableMask->getType();
   3859     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
   3860                                                  "switch.maskindex");
   3861     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
   3862                                         "switch.shifted");
   3863     Value *LoBit = Builder.CreateTrunc(Shifted,
   3864                                        Type::getInt1Ty(Mod.getContext()),
   3865                                        "switch.lobit");
   3866     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
   3867 
   3868     Builder.SetInsertPoint(LookupBB);
   3869     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
   3870   }
   3871 
   3872   bool ReturnedEarly = false;
   3873   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   3874     PHINode *PHI = PHIs[I];
   3875 
   3876     // If using a bitmask, use any value to fill the lookup table holes.
   3877     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
   3878     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
   3879                             DV, DL);
   3880 
   3881     Value *Result = Table.BuildLookup(TableIndex, Builder);
   3882 
   3883     // If the result is used to return immediately from the function, we want to
   3884     // do that right here.
   3885     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
   3886         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
   3887       Builder.CreateRet(Result);
   3888       ReturnedEarly = true;
   3889       break;
   3890     }
   3891 
   3892     PHI->addIncoming(Result, LookupBB);
   3893   }
   3894 
   3895   if (!ReturnedEarly)
   3896     Builder.CreateBr(CommonDest);
   3897 
   3898   // Remove the switch.
   3899   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   3900     BasicBlock *Succ = SI->getSuccessor(i);
   3901 
   3902     if (Succ == SI->getDefaultDest())
   3903       continue;
   3904     Succ->removePredecessor(SI->getParent());
   3905   }
   3906   SI->eraseFromParent();
   3907 
   3908   ++NumLookupTables;
   3909   if (NeedMask)
   3910     ++NumLookupTablesHoles;
   3911   return true;
   3912 }
   3913 
   3914 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   3915   BasicBlock *BB = SI->getParent();
   3916 
   3917   if (isValueEqualityComparison(SI)) {
   3918     // If we only have one predecessor, and if it is a branch on this value,
   3919     // see if that predecessor totally determines the outcome of this switch.
   3920     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   3921       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   3922         return SimplifyCFG(BB, TTI, DL) | true;
   3923 
   3924     Value *Cond = SI->getCondition();
   3925     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   3926       if (SimplifySwitchOnSelect(SI, Select))
   3927         return SimplifyCFG(BB, TTI, DL) | true;
   3928 
   3929     // If the block only contains the switch, see if we can fold the block
   3930     // away into any preds.
   3931     BasicBlock::iterator BBI = BB->begin();
   3932     // Ignore dbg intrinsics.
   3933     while (isa<DbgInfoIntrinsic>(BBI))
   3934       ++BBI;
   3935     if (SI == &*BBI)
   3936       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   3937         return SimplifyCFG(BB, TTI, DL) | true;
   3938   }
   3939 
   3940   // Try to transform the switch into an icmp and a branch.
   3941   if (TurnSwitchRangeIntoICmp(SI, Builder))
   3942     return SimplifyCFG(BB, TTI, DL) | true;
   3943 
   3944   // Remove unreachable cases.
   3945   if (EliminateDeadSwitchCases(SI))
   3946     return SimplifyCFG(BB, TTI, DL) | true;
   3947 
   3948   if (ForwardSwitchConditionToPHI(SI))
   3949     return SimplifyCFG(BB, TTI, DL) | true;
   3950 
   3951   if (SwitchToLookupTable(SI, Builder, TTI, DL))
   3952     return SimplifyCFG(BB, TTI, DL) | true;
   3953 
   3954   return false;
   3955 }
   3956 
   3957 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   3958   BasicBlock *BB = IBI->getParent();
   3959   bool Changed = false;
   3960 
   3961   // Eliminate redundant destinations.
   3962   SmallPtrSet<Value *, 8> Succs;
   3963   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   3964     BasicBlock *Dest = IBI->getDestination(i);
   3965     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   3966       Dest->removePredecessor(BB);
   3967       IBI->removeDestination(i);
   3968       --i; --e;
   3969       Changed = true;
   3970     }
   3971   }
   3972 
   3973   if (IBI->getNumDestinations() == 0) {
   3974     // If the indirectbr has no successors, change it to unreachable.
   3975     new UnreachableInst(IBI->getContext(), IBI);
   3976     EraseTerminatorInstAndDCECond(IBI);
   3977     return true;
   3978   }
   3979 
   3980   if (IBI->getNumDestinations() == 1) {
   3981     // If the indirectbr has one successor, change it to a direct branch.
   3982     BranchInst::Create(IBI->getDestination(0), IBI);
   3983     EraseTerminatorInstAndDCECond(IBI);
   3984     return true;
   3985   }
   3986 
   3987   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   3988     if (SimplifyIndirectBrOnSelect(IBI, SI))
   3989       return SimplifyCFG(BB, TTI, DL) | true;
   3990   }
   3991   return Changed;
   3992 }
   3993 
   3994 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   3995   BasicBlock *BB = BI->getParent();
   3996 
   3997   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   3998     return true;
   3999 
   4000   // If the Terminator is the only non-phi instruction, simplify the block.
   4001   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   4002   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   4003       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   4004     return true;
   4005 
   4006   // If the only instruction in the block is a seteq/setne comparison
   4007   // against a constant, try to simplify the block.
   4008   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   4009     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   4010       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   4011         ;
   4012       if (I->isTerminator() &&
   4013           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
   4014         return true;
   4015     }
   4016 
   4017   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4018   // branches to us and our successor, fold the comparison into the
   4019   // predecessor and use logical operations to update the incoming value
   4020   // for PHI nodes in common successor.
   4021   if (FoldBranchToCommonDest(BI, DL))
   4022     return SimplifyCFG(BB, TTI, DL) | true;
   4023   return false;
   4024 }
   4025 
   4026 
   4027 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   4028   BasicBlock *BB = BI->getParent();
   4029 
   4030   // Conditional branch
   4031   if (isValueEqualityComparison(BI)) {
   4032     // If we only have one predecessor, and if it is a branch on this value,
   4033     // see if that predecessor totally determines the outcome of this
   4034     // switch.
   4035     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   4036       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   4037         return SimplifyCFG(BB, TTI, DL) | true;
   4038 
   4039     // This block must be empty, except for the setcond inst, if it exists.
   4040     // Ignore dbg intrinsics.
   4041     BasicBlock::iterator I = BB->begin();
   4042     // Ignore dbg intrinsics.
   4043     while (isa<DbgInfoIntrinsic>(I))
   4044       ++I;
   4045     if (&*I == BI) {
   4046       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   4047         return SimplifyCFG(BB, TTI, DL) | true;
   4048     } else if (&*I == cast<Instruction>(BI->getCondition())){
   4049       ++I;
   4050       // Ignore dbg intrinsics.
   4051       while (isa<DbgInfoIntrinsic>(I))
   4052         ++I;
   4053       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   4054         return SimplifyCFG(BB, TTI, DL) | true;
   4055     }
   4056   }
   4057 
   4058   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   4059   if (SimplifyBranchOnICmpChain(BI, DL, Builder))
   4060     return true;
   4061 
   4062   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4063   // branches to us and one of our successors, fold the comparison into the
   4064   // predecessor and use logical operations to pick the right destination.
   4065   if (FoldBranchToCommonDest(BI, DL))
   4066     return SimplifyCFG(BB, TTI, DL) | true;
   4067 
   4068   // We have a conditional branch to two blocks that are only reachable
   4069   // from BI.  We know that the condbr dominates the two blocks, so see if
   4070   // there is any identical code in the "then" and "else" blocks.  If so, we
   4071   // can hoist it up to the branching block.
   4072   if (BI->getSuccessor(0)->getSinglePredecessor()) {
   4073     if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4074       if (HoistThenElseCodeToIf(BI, DL))
   4075         return SimplifyCFG(BB, TTI, DL) | true;
   4076     } else {
   4077       // If Successor #1 has multiple preds, we may be able to conditionally
   4078       // execute Successor #0 if it branches to Successor #1.
   4079       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   4080       if (Succ0TI->getNumSuccessors() == 1 &&
   4081           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   4082         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
   4083           return SimplifyCFG(BB, TTI, DL) | true;
   4084     }
   4085   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4086     // If Successor #0 has multiple preds, we may be able to conditionally
   4087     // execute Successor #1 if it branches to Successor #0.
   4088     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   4089     if (Succ1TI->getNumSuccessors() == 1 &&
   4090         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   4091       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
   4092         return SimplifyCFG(BB, TTI, DL) | true;
   4093   }
   4094 
   4095   // If this is a branch on a phi node in the current block, thread control
   4096   // through this block if any PHI node entries are constants.
   4097   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   4098     if (PN->getParent() == BI->getParent())
   4099       if (FoldCondBranchOnPHI(BI, DL))
   4100         return SimplifyCFG(BB, TTI, DL) | true;
   4101 
   4102   // Scan predecessor blocks for conditional branches.
   4103   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   4104     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   4105       if (PBI != BI && PBI->isConditional())
   4106         if (SimplifyCondBranchToCondBranch(PBI, BI))
   4107           return SimplifyCFG(BB, TTI, DL) | true;
   4108 
   4109   return false;
   4110 }
   4111 
   4112 /// Check if passing a value to an instruction will cause undefined behavior.
   4113 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   4114   Constant *C = dyn_cast<Constant>(V);
   4115   if (!C)
   4116     return false;
   4117 
   4118   if (I->use_empty())
   4119     return false;
   4120 
   4121   if (C->isNullValue()) {
   4122     // Only look at the first use, avoid hurting compile time with long uselists
   4123     User *Use = *I->user_begin();
   4124 
   4125     // Now make sure that there are no instructions in between that can alter
   4126     // control flow (eg. calls)
   4127     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   4128       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   4129         return false;
   4130 
   4131     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   4132     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   4133       if (GEP->getPointerOperand() == I)
   4134         return passingValueIsAlwaysUndefined(V, GEP);
   4135 
   4136     // Look through bitcasts.
   4137     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   4138       return passingValueIsAlwaysUndefined(V, BC);
   4139 
   4140     // Load from null is undefined.
   4141     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   4142       if (!LI->isVolatile())
   4143         return LI->getPointerAddressSpace() == 0;
   4144 
   4145     // Store to null is undefined.
   4146     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   4147       if (!SI->isVolatile())
   4148         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   4149   }
   4150   return false;
   4151 }
   4152 
   4153 /// If BB has an incoming value that will always trigger undefined behavior
   4154 /// (eg. null pointer dereference), remove the branch leading here.
   4155 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   4156   for (BasicBlock::iterator i = BB->begin();
   4157        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   4158     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   4159       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   4160         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   4161         IRBuilder<> Builder(T);
   4162         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   4163           BB->removePredecessor(PHI->getIncomingBlock(i));
   4164           // Turn uncoditional branches into unreachables and remove the dead
   4165           // destination from conditional branches.
   4166           if (BI->isUnconditional())
   4167             Builder.CreateUnreachable();
   4168           else
   4169             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   4170                                                          BI->getSuccessor(0));
   4171           BI->eraseFromParent();
   4172           return true;
   4173         }
   4174         // TODO: SwitchInst.
   4175       }
   4176 
   4177   return false;
   4178 }
   4179 
   4180 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   4181   bool Changed = false;
   4182 
   4183   assert(BB && BB->getParent() && "Block not embedded in function!");
   4184   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   4185 
   4186   // Remove basic blocks that have no predecessors (except the entry block)...
   4187   // or that just have themself as a predecessor.  These are unreachable.
   4188   if ((pred_begin(BB) == pred_end(BB) &&
   4189        BB != &BB->getParent()->getEntryBlock()) ||
   4190       BB->getSinglePredecessor() == BB) {
   4191     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   4192     DeleteDeadBlock(BB);
   4193     return true;
   4194   }
   4195 
   4196   // Check to see if we can constant propagate this terminator instruction
   4197   // away...
   4198   Changed |= ConstantFoldTerminator(BB, true);
   4199 
   4200   // Check for and eliminate duplicate PHI nodes in this block.
   4201   Changed |= EliminateDuplicatePHINodes(BB);
   4202 
   4203   // Check for and remove branches that will always cause undefined behavior.
   4204   Changed |= removeUndefIntroducingPredecessor(BB);
   4205 
   4206   // Merge basic blocks into their predecessor if there is only one distinct
   4207   // pred, and if there is only one distinct successor of the predecessor, and
   4208   // if there are no PHI nodes.
   4209   //
   4210   if (MergeBlockIntoPredecessor(BB))
   4211     return true;
   4212 
   4213   IRBuilder<> Builder(BB);
   4214 
   4215   // If there is a trivial two-entry PHI node in this basic block, and we can
   4216   // eliminate it, do so now.
   4217   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   4218     if (PN->getNumIncomingValues() == 2)
   4219       Changed |= FoldTwoEntryPHINode(PN, DL);
   4220 
   4221   Builder.SetInsertPoint(BB->getTerminator());
   4222   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   4223     if (BI->isUnconditional()) {
   4224       if (SimplifyUncondBranch(BI, Builder)) return true;
   4225     } else {
   4226       if (SimplifyCondBranch(BI, Builder)) return true;
   4227     }
   4228   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   4229     if (SimplifyReturn(RI, Builder)) return true;
   4230   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   4231     if (SimplifyResume(RI, Builder)) return true;
   4232   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   4233     if (SimplifySwitch(SI, Builder)) return true;
   4234   } else if (UnreachableInst *UI =
   4235                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   4236     if (SimplifyUnreachable(UI)) return true;
   4237   } else if (IndirectBrInst *IBI =
   4238                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   4239     if (SimplifyIndirectBr(IBI)) return true;
   4240   }
   4241 
   4242   return Changed;
   4243 }
   4244 
   4245 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   4246 /// example, it adjusts branches to branches to eliminate the extra hop, it
   4247 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   4248 /// of the CFG.  It returns true if a modification was made.
   4249 ///
   4250 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   4251                        const DataLayout *DL) {
   4252   return SimplifyCFGOpt(TTI, DL).run(BB);
   4253 }
   4254