Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
      6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/cpu.h"
     10 #include "src/debug.h"
     11 
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 bool CpuFeatures::SupportsCrankshaft() { return true; }
     18 
     19 
     20 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
     21   UNIMPLEMENTED();
     22 }
     23 
     24 
     25 void RelocInfo::set_target_address(Address target,
     26                                    WriteBarrierMode write_barrier_mode,
     27                                    ICacheFlushMode icache_flush_mode) {
     28   ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
     29   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
     30   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
     31       IsCodeTarget(rmode_)) {
     32     Object* target_code = Code::GetCodeFromTargetAddress(target);
     33     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
     34         host(), this, HeapObject::cast(target_code));
     35   }
     36 }
     37 
     38 
     39 inline unsigned CPURegister::code() const {
     40   ASSERT(IsValid());
     41   return reg_code;
     42 }
     43 
     44 
     45 inline CPURegister::RegisterType CPURegister::type() const {
     46   ASSERT(IsValidOrNone());
     47   return reg_type;
     48 }
     49 
     50 
     51 inline RegList CPURegister::Bit() const {
     52   ASSERT(reg_code < (sizeof(RegList) * kBitsPerByte));
     53   return IsValid() ? 1UL << reg_code : 0;
     54 }
     55 
     56 
     57 inline unsigned CPURegister::SizeInBits() const {
     58   ASSERT(IsValid());
     59   return reg_size;
     60 }
     61 
     62 
     63 inline int CPURegister::SizeInBytes() const {
     64   ASSERT(IsValid());
     65   ASSERT(SizeInBits() % 8 == 0);
     66   return reg_size / 8;
     67 }
     68 
     69 
     70 inline bool CPURegister::Is32Bits() const {
     71   ASSERT(IsValid());
     72   return reg_size == 32;
     73 }
     74 
     75 
     76 inline bool CPURegister::Is64Bits() const {
     77   ASSERT(IsValid());
     78   return reg_size == 64;
     79 }
     80 
     81 
     82 inline bool CPURegister::IsValid() const {
     83   if (IsValidRegister() || IsValidFPRegister()) {
     84     ASSERT(!IsNone());
     85     return true;
     86   } else {
     87     ASSERT(IsNone());
     88     return false;
     89   }
     90 }
     91 
     92 
     93 inline bool CPURegister::IsValidRegister() const {
     94   return IsRegister() &&
     95          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
     96          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
     97 }
     98 
     99 
    100 inline bool CPURegister::IsValidFPRegister() const {
    101   return IsFPRegister() &&
    102          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
    103          (reg_code < kNumberOfFPRegisters);
    104 }
    105 
    106 
    107 inline bool CPURegister::IsNone() const {
    108   // kNoRegister types should always have size 0 and code 0.
    109   ASSERT((reg_type != kNoRegister) || (reg_code == 0));
    110   ASSERT((reg_type != kNoRegister) || (reg_size == 0));
    111 
    112   return reg_type == kNoRegister;
    113 }
    114 
    115 
    116 inline bool CPURegister::Is(const CPURegister& other) const {
    117   ASSERT(IsValidOrNone() && other.IsValidOrNone());
    118   return Aliases(other) && (reg_size == other.reg_size);
    119 }
    120 
    121 
    122 inline bool CPURegister::Aliases(const CPURegister& other) const {
    123   ASSERT(IsValidOrNone() && other.IsValidOrNone());
    124   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
    125 }
    126 
    127 
    128 inline bool CPURegister::IsRegister() const {
    129   return reg_type == kRegister;
    130 }
    131 
    132 
    133 inline bool CPURegister::IsFPRegister() const {
    134   return reg_type == kFPRegister;
    135 }
    136 
    137 
    138 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
    139   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
    140 }
    141 
    142 
    143 inline bool CPURegister::IsValidOrNone() const {
    144   return IsValid() || IsNone();
    145 }
    146 
    147 
    148 inline bool CPURegister::IsZero() const {
    149   ASSERT(IsValid());
    150   return IsRegister() && (reg_code == kZeroRegCode);
    151 }
    152 
    153 
    154 inline bool CPURegister::IsSP() const {
    155   ASSERT(IsValid());
    156   return IsRegister() && (reg_code == kSPRegInternalCode);
    157 }
    158 
    159 
    160 inline void CPURegList::Combine(const CPURegList& other) {
    161   ASSERT(IsValid());
    162   ASSERT(other.type() == type_);
    163   ASSERT(other.RegisterSizeInBits() == size_);
    164   list_ |= other.list();
    165 }
    166 
    167 
    168 inline void CPURegList::Remove(const CPURegList& other) {
    169   ASSERT(IsValid());
    170   if (other.type() == type_) {
    171     list_ &= ~other.list();
    172   }
    173 }
    174 
    175 
    176 inline void CPURegList::Combine(const CPURegister& other) {
    177   ASSERT(other.type() == type_);
    178   ASSERT(other.SizeInBits() == size_);
    179   Combine(other.code());
    180 }
    181 
    182 
    183 inline void CPURegList::Remove(const CPURegister& other1,
    184                                const CPURegister& other2,
    185                                const CPURegister& other3,
    186                                const CPURegister& other4) {
    187   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
    188   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
    189   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
    190   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
    191 }
    192 
    193 
    194 inline void CPURegList::Combine(int code) {
    195   ASSERT(IsValid());
    196   ASSERT(CPURegister::Create(code, size_, type_).IsValid());
    197   list_ |= (1UL << code);
    198 }
    199 
    200 
    201 inline void CPURegList::Remove(int code) {
    202   ASSERT(IsValid());
    203   ASSERT(CPURegister::Create(code, size_, type_).IsValid());
    204   list_ &= ~(1UL << code);
    205 }
    206 
    207 
    208 inline Register Register::XRegFromCode(unsigned code) {
    209   if (code == kSPRegInternalCode) {
    210     return csp;
    211   } else {
    212     ASSERT(code < kNumberOfRegisters);
    213     return Register::Create(code, kXRegSizeInBits);
    214   }
    215 }
    216 
    217 
    218 inline Register Register::WRegFromCode(unsigned code) {
    219   if (code == kSPRegInternalCode) {
    220     return wcsp;
    221   } else {
    222     ASSERT(code < kNumberOfRegisters);
    223     return Register::Create(code, kWRegSizeInBits);
    224   }
    225 }
    226 
    227 
    228 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
    229   ASSERT(code < kNumberOfFPRegisters);
    230   return FPRegister::Create(code, kSRegSizeInBits);
    231 }
    232 
    233 
    234 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
    235   ASSERT(code < kNumberOfFPRegisters);
    236   return FPRegister::Create(code, kDRegSizeInBits);
    237 }
    238 
    239 
    240 inline Register CPURegister::W() const {
    241   ASSERT(IsValidRegister());
    242   return Register::WRegFromCode(reg_code);
    243 }
    244 
    245 
    246 inline Register CPURegister::X() const {
    247   ASSERT(IsValidRegister());
    248   return Register::XRegFromCode(reg_code);
    249 }
    250 
    251 
    252 inline FPRegister CPURegister::S() const {
    253   ASSERT(IsValidFPRegister());
    254   return FPRegister::SRegFromCode(reg_code);
    255 }
    256 
    257 
    258 inline FPRegister CPURegister::D() const {
    259   ASSERT(IsValidFPRegister());
    260   return FPRegister::DRegFromCode(reg_code);
    261 }
    262 
    263 
    264 // Immediate.
    265 // Default initializer is for int types
    266 template<typename T>
    267 struct ImmediateInitializer {
    268   static const bool kIsIntType = true;
    269   static inline RelocInfo::Mode rmode_for(T) {
    270     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
    271   }
    272   static inline int64_t immediate_for(T t) {
    273     STATIC_ASSERT(sizeof(T) <= 8);
    274     return t;
    275   }
    276 };
    277 
    278 
    279 template<>
    280 struct ImmediateInitializer<Smi*> {
    281   static const bool kIsIntType = false;
    282   static inline RelocInfo::Mode rmode_for(Smi* t) {
    283     return RelocInfo::NONE64;
    284   }
    285   static inline int64_t immediate_for(Smi* t) {;
    286     return reinterpret_cast<int64_t>(t);
    287   }
    288 };
    289 
    290 
    291 template<>
    292 struct ImmediateInitializer<ExternalReference> {
    293   static const bool kIsIntType = false;
    294   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    295     return RelocInfo::EXTERNAL_REFERENCE;
    296   }
    297   static inline int64_t immediate_for(ExternalReference t) {;
    298     return reinterpret_cast<int64_t>(t.address());
    299   }
    300 };
    301 
    302 
    303 template<typename T>
    304 Immediate::Immediate(Handle<T> value) {
    305   InitializeHandle(value);
    306 }
    307 
    308 
    309 template<typename T>
    310 Immediate::Immediate(T t)
    311     : value_(ImmediateInitializer<T>::immediate_for(t)),
    312       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
    313 
    314 
    315 template<typename T>
    316 Immediate::Immediate(T t, RelocInfo::Mode rmode)
    317     : value_(ImmediateInitializer<T>::immediate_for(t)),
    318       rmode_(rmode) {
    319   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
    320 }
    321 
    322 
    323 // Operand.
    324 template<typename T>
    325 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
    326 
    327 
    328 template<typename T>
    329 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
    330 
    331 
    332 template<typename T>
    333 Operand::Operand(T t, RelocInfo::Mode rmode)
    334     : immediate_(t, rmode),
    335       reg_(NoReg) {}
    336 
    337 
    338 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    339     : immediate_(0),
    340       reg_(reg),
    341       shift_(shift),
    342       extend_(NO_EXTEND),
    343       shift_amount_(shift_amount) {
    344   ASSERT(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
    345   ASSERT(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
    346   ASSERT(!reg.IsSP());
    347 }
    348 
    349 
    350 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    351     : immediate_(0),
    352       reg_(reg),
    353       shift_(NO_SHIFT),
    354       extend_(extend),
    355       shift_amount_(shift_amount) {
    356   ASSERT(reg.IsValid());
    357   ASSERT(shift_amount <= 4);
    358   ASSERT(!reg.IsSP());
    359 
    360   // Extend modes SXTX and UXTX require a 64-bit register.
    361   ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
    362 }
    363 
    364 
    365 bool Operand::IsImmediate() const {
    366   return reg_.Is(NoReg);
    367 }
    368 
    369 
    370 bool Operand::IsShiftedRegister() const {
    371   return reg_.IsValid() && (shift_ != NO_SHIFT);
    372 }
    373 
    374 
    375 bool Operand::IsExtendedRegister() const {
    376   return reg_.IsValid() && (extend_ != NO_EXTEND);
    377 }
    378 
    379 
    380 bool Operand::IsZero() const {
    381   if (IsImmediate()) {
    382     return ImmediateValue() == 0;
    383   } else {
    384     return reg().IsZero();
    385   }
    386 }
    387 
    388 
    389 Operand Operand::ToExtendedRegister() const {
    390   ASSERT(IsShiftedRegister());
    391   ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
    392   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
    393 }
    394 
    395 
    396 Immediate Operand::immediate() const {
    397   ASSERT(IsImmediate());
    398   return immediate_;
    399 }
    400 
    401 
    402 int64_t Operand::ImmediateValue() const {
    403   ASSERT(IsImmediate());
    404   return immediate_.value();
    405 }
    406 
    407 
    408 Register Operand::reg() const {
    409   ASSERT(IsShiftedRegister() || IsExtendedRegister());
    410   return reg_;
    411 }
    412 
    413 
    414 Shift Operand::shift() const {
    415   ASSERT(IsShiftedRegister());
    416   return shift_;
    417 }
    418 
    419 
    420 Extend Operand::extend() const {
    421   ASSERT(IsExtendedRegister());
    422   return extend_;
    423 }
    424 
    425 
    426 unsigned Operand::shift_amount() const {
    427   ASSERT(IsShiftedRegister() || IsExtendedRegister());
    428   return shift_amount_;
    429 }
    430 
    431 
    432 Operand Operand::UntagSmi(Register smi) {
    433   ASSERT(smi.Is64Bits());
    434   return Operand(smi, ASR, kSmiShift);
    435 }
    436 
    437 
    438 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
    439   ASSERT(smi.Is64Bits());
    440   ASSERT((scale >= 0) && (scale <= (64 - kSmiValueSize)));
    441   if (scale > kSmiShift) {
    442     return Operand(smi, LSL, scale - kSmiShift);
    443   } else if (scale < kSmiShift) {
    444     return Operand(smi, ASR, kSmiShift - scale);
    445   }
    446   return Operand(smi);
    447 }
    448 
    449 
    450 MemOperand::MemOperand()
    451   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
    452     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    453 }
    454 
    455 
    456 MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode)
    457   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
    458     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    459   ASSERT(base.Is64Bits() && !base.IsZero());
    460 }
    461 
    462 
    463 MemOperand::MemOperand(Register base,
    464                        Register regoffset,
    465                        Extend extend,
    466                        unsigned shift_amount)
    467   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    468     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
    469   ASSERT(base.Is64Bits() && !base.IsZero());
    470   ASSERT(!regoffset.IsSP());
    471   ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
    472 
    473   // SXTX extend mode requires a 64-bit offset register.
    474   ASSERT(regoffset.Is64Bits() || (extend != SXTX));
    475 }
    476 
    477 
    478 MemOperand::MemOperand(Register base,
    479                        Register regoffset,
    480                        Shift shift,
    481                        unsigned shift_amount)
    482   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    483     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
    484   ASSERT(base.Is64Bits() && !base.IsZero());
    485   ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
    486   ASSERT(shift == LSL);
    487 }
    488 
    489 
    490 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    491   : base_(base), addrmode_(addrmode) {
    492   ASSERT(base.Is64Bits() && !base.IsZero());
    493 
    494   if (offset.IsImmediate()) {
    495     offset_ = offset.ImmediateValue();
    496 
    497     regoffset_ = NoReg;
    498   } else if (offset.IsShiftedRegister()) {
    499     ASSERT(addrmode == Offset);
    500 
    501     regoffset_ = offset.reg();
    502     shift_= offset.shift();
    503     shift_amount_ = offset.shift_amount();
    504 
    505     extend_ = NO_EXTEND;
    506     offset_ = 0;
    507 
    508     // These assertions match those in the shifted-register constructor.
    509     ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
    510     ASSERT(shift_ == LSL);
    511   } else {
    512     ASSERT(offset.IsExtendedRegister());
    513     ASSERT(addrmode == Offset);
    514 
    515     regoffset_ = offset.reg();
    516     extend_ = offset.extend();
    517     shift_amount_ = offset.shift_amount();
    518 
    519     shift_= NO_SHIFT;
    520     offset_ = 0;
    521 
    522     // These assertions match those in the extended-register constructor.
    523     ASSERT(!regoffset_.IsSP());
    524     ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    525     ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
    526   }
    527 }
    528 
    529 bool MemOperand::IsImmediateOffset() const {
    530   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
    531 }
    532 
    533 
    534 bool MemOperand::IsRegisterOffset() const {
    535   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
    536 }
    537 
    538 
    539 bool MemOperand::IsPreIndex() const {
    540   return addrmode_ == PreIndex;
    541 }
    542 
    543 
    544 bool MemOperand::IsPostIndex() const {
    545   return addrmode_ == PostIndex;
    546 }
    547 
    548 Operand MemOperand::OffsetAsOperand() const {
    549   if (IsImmediateOffset()) {
    550     return offset();
    551   } else {
    552     ASSERT(IsRegisterOffset());
    553     if (extend() == NO_EXTEND) {
    554       return Operand(regoffset(), shift(), shift_amount());
    555     } else {
    556       return Operand(regoffset(), extend(), shift_amount());
    557     }
    558   }
    559 }
    560 
    561 
    562 void Assembler::Unreachable() {
    563 #ifdef USE_SIMULATOR
    564   debug("UNREACHABLE", __LINE__, BREAK);
    565 #else
    566   // Crash by branching to 0. lr now points near the fault.
    567   Emit(BLR | Rn(xzr));
    568 #endif
    569 }
    570 
    571 
    572 Address Assembler::target_pointer_address_at(Address pc) {
    573   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    574   ASSERT(instr->IsLdrLiteralX());
    575   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
    576 }
    577 
    578 
    579 // Read/Modify the code target address in the branch/call instruction at pc.
    580 Address Assembler::target_address_at(Address pc,
    581                                      ConstantPoolArray* constant_pool) {
    582   return Memory::Address_at(target_pointer_address_at(pc));
    583 }
    584 
    585 
    586 Address Assembler::target_address_at(Address pc, Code* code) {
    587   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    588   return target_address_at(pc, constant_pool);
    589 }
    590 
    591 
    592 Address Assembler::target_address_from_return_address(Address pc) {
    593   // Returns the address of the call target from the return address that will
    594   // be returned to after a call.
    595   // Call sequence on ARM64 is:
    596   //  ldr ip0, #... @ load from literal pool
    597   //  blr ip0
    598   Address candidate = pc - 2 * kInstructionSize;
    599   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
    600   USE(instr);
    601   ASSERT(instr->IsLdrLiteralX());
    602   return candidate;
    603 }
    604 
    605 
    606 Address Assembler::return_address_from_call_start(Address pc) {
    607   // The call, generated by MacroAssembler::Call, is one of two possible
    608   // sequences:
    609   //
    610   // Without relocation:
    611   //  movz  temp, #(target & 0x000000000000ffff)
    612   //  movk  temp, #(target & 0x00000000ffff0000)
    613   //  movk  temp, #(target & 0x0000ffff00000000)
    614   //  blr   temp
    615   //
    616   // With relocation:
    617   //  ldr   temp, =target
    618   //  blr   temp
    619   //
    620   // The return address is immediately after the blr instruction in both cases,
    621   // so it can be found by adding the call size to the address at the start of
    622   // the call sequence.
    623   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
    624   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
    625 
    626   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    627   if (instr->IsMovz()) {
    628     // Verify the instruction sequence.
    629     ASSERT(instr->following(1)->IsMovk());
    630     ASSERT(instr->following(2)->IsMovk());
    631     ASSERT(instr->following(3)->IsBranchAndLinkToRegister());
    632     return pc + Assembler::kCallSizeWithoutRelocation;
    633   } else {
    634     // Verify the instruction sequence.
    635     ASSERT(instr->IsLdrLiteralX());
    636     ASSERT(instr->following(1)->IsBranchAndLinkToRegister());
    637     return pc + Assembler::kCallSizeWithRelocation;
    638   }
    639 }
    640 
    641 
    642 void Assembler::deserialization_set_special_target_at(
    643     Address constant_pool_entry, Code* code, Address target) {
    644   Memory::Address_at(constant_pool_entry) = target;
    645 }
    646 
    647 
    648 void Assembler::set_target_address_at(Address pc,
    649                                       ConstantPoolArray* constant_pool,
    650                                       Address target,
    651                                       ICacheFlushMode icache_flush_mode) {
    652   Memory::Address_at(target_pointer_address_at(pc)) = target;
    653   // Intuitively, we would think it is necessary to always flush the
    654   // instruction cache after patching a target address in the code as follows:
    655   //   CPU::FlushICache(pc, sizeof(target));
    656   // However, on ARM, an instruction is actually patched in the case of
    657   // embedded constants of the form:
    658   // ldr   ip, [pc, #...]
    659   // since the instruction accessing this address in the constant pool remains
    660   // unchanged, a flush is not required.
    661 }
    662 
    663 
    664 void Assembler::set_target_address_at(Address pc,
    665                                       Code* code,
    666                                       Address target,
    667                                       ICacheFlushMode icache_flush_mode) {
    668   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    669   set_target_address_at(pc, constant_pool, target, icache_flush_mode);
    670 }
    671 
    672 
    673 int RelocInfo::target_address_size() {
    674   return kPointerSize;
    675 }
    676 
    677 
    678 Address RelocInfo::target_address() {
    679   ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    680   return Assembler::target_address_at(pc_, host_);
    681 }
    682 
    683 
    684 Address RelocInfo::target_address_address() {
    685   ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    686                               || rmode_ == EMBEDDED_OBJECT
    687                               || rmode_ == EXTERNAL_REFERENCE);
    688   return Assembler::target_pointer_address_at(pc_);
    689 }
    690 
    691 
    692 Address RelocInfo::constant_pool_entry_address() {
    693   ASSERT(IsInConstantPool());
    694   return Assembler::target_pointer_address_at(pc_);
    695 }
    696 
    697 
    698 Object* RelocInfo::target_object() {
    699   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    700   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    701 }
    702 
    703 
    704 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    705   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    706   return Handle<Object>(reinterpret_cast<Object**>(
    707       Assembler::target_address_at(pc_, host_)));
    708 }
    709 
    710 
    711 void RelocInfo::set_target_object(Object* target,
    712                                   WriteBarrierMode write_barrier_mode,
    713                                   ICacheFlushMode icache_flush_mode) {
    714   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    715   ASSERT(!target->IsConsString());
    716   Assembler::set_target_address_at(pc_, host_,
    717                                    reinterpret_cast<Address>(target),
    718                                    icache_flush_mode);
    719   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    720       host() != NULL &&
    721       target->IsHeapObject()) {
    722     host()->GetHeap()->incremental_marking()->RecordWrite(
    723         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
    724   }
    725 }
    726 
    727 
    728 Address RelocInfo::target_reference() {
    729   ASSERT(rmode_ == EXTERNAL_REFERENCE);
    730   return Assembler::target_address_at(pc_, host_);
    731 }
    732 
    733 
    734 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    735   ASSERT(IsRuntimeEntry(rmode_));
    736   return target_address();
    737 }
    738 
    739 
    740 void RelocInfo::set_target_runtime_entry(Address target,
    741                                          WriteBarrierMode write_barrier_mode,
    742                                          ICacheFlushMode icache_flush_mode) {
    743   ASSERT(IsRuntimeEntry(rmode_));
    744   if (target_address() != target) {
    745     set_target_address(target, write_barrier_mode, icache_flush_mode);
    746   }
    747 }
    748 
    749 
    750 Handle<Cell> RelocInfo::target_cell_handle() {
    751   UNIMPLEMENTED();
    752   Cell *null_cell = NULL;
    753   return Handle<Cell>(null_cell);
    754 }
    755 
    756 
    757 Cell* RelocInfo::target_cell() {
    758   ASSERT(rmode_ == RelocInfo::CELL);
    759   return Cell::FromValueAddress(Memory::Address_at(pc_));
    760 }
    761 
    762 
    763 void RelocInfo::set_target_cell(Cell* cell,
    764                                 WriteBarrierMode write_barrier_mode,
    765                                 ICacheFlushMode icache_flush_mode) {
    766   UNIMPLEMENTED();
    767 }
    768 
    769 
    770 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
    771 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
    772 
    773 
    774 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    775   UNREACHABLE();  // This should never be reached on ARM64.
    776   return Handle<Object>();
    777 }
    778 
    779 
    780 Code* RelocInfo::code_age_stub() {
    781   ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    782   // Read the stub entry point from the code age sequence.
    783   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    784   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
    785 }
    786 
    787 
    788 void RelocInfo::set_code_age_stub(Code* stub,
    789                                   ICacheFlushMode icache_flush_mode) {
    790   ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    791   ASSERT(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
    792   // Overwrite the stub entry point in the code age sequence. This is loaded as
    793   // a literal so there is no need to call FlushICache here.
    794   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    795   Memory::Address_at(stub_entry_address) = stub->instruction_start();
    796 }
    797 
    798 
    799 Address RelocInfo::call_address() {
    800   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    801          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    802   // For the above sequences the Relocinfo points to the load literal loading
    803   // the call address.
    804   return Assembler::target_address_at(pc_, host_);
    805 }
    806 
    807 
    808 void RelocInfo::set_call_address(Address target) {
    809   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    810          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    811   Assembler::set_target_address_at(pc_, host_, target);
    812   if (host() != NULL) {
    813     Object* target_code = Code::GetCodeFromTargetAddress(target);
    814     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    815         host(), this, HeapObject::cast(target_code));
    816   }
    817 }
    818 
    819 
    820 void RelocInfo::WipeOut() {
    821   ASSERT(IsEmbeddedObject(rmode_) ||
    822          IsCodeTarget(rmode_) ||
    823          IsRuntimeEntry(rmode_) ||
    824          IsExternalReference(rmode_));
    825   Assembler::set_target_address_at(pc_, host_, NULL);
    826 }
    827 
    828 
    829 bool RelocInfo::IsPatchedReturnSequence() {
    830   // The sequence must be:
    831   //   ldr ip0, [pc, #offset]
    832   //   blr ip0
    833   // See arm64/debug-arm64.cc BreakLocationIterator::SetDebugBreakAtReturn().
    834   Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
    835   Instruction* i2 = i1->following();
    836   return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) &&
    837          i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code());
    838 }
    839 
    840 
    841 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
    842   Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
    843   return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
    844 }
    845 
    846 
    847 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    848   RelocInfo::Mode mode = rmode();
    849   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    850     visitor->VisitEmbeddedPointer(this);
    851   } else if (RelocInfo::IsCodeTarget(mode)) {
    852     visitor->VisitCodeTarget(this);
    853   } else if (mode == RelocInfo::CELL) {
    854     visitor->VisitCell(this);
    855   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    856     visitor->VisitExternalReference(this);
    857   } else if (((RelocInfo::IsJSReturn(mode) &&
    858               IsPatchedReturnSequence()) ||
    859              (RelocInfo::IsDebugBreakSlot(mode) &&
    860               IsPatchedDebugBreakSlotSequence())) &&
    861              isolate->debug()->has_break_points()) {
    862     visitor->VisitDebugTarget(this);
    863   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    864     visitor->VisitRuntimeEntry(this);
    865   }
    866 }
    867 
    868 
    869 template<typename StaticVisitor>
    870 void RelocInfo::Visit(Heap* heap) {
    871   RelocInfo::Mode mode = rmode();
    872   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    873     StaticVisitor::VisitEmbeddedPointer(heap, this);
    874   } else if (RelocInfo::IsCodeTarget(mode)) {
    875     StaticVisitor::VisitCodeTarget(heap, this);
    876   } else if (mode == RelocInfo::CELL) {
    877     StaticVisitor::VisitCell(heap, this);
    878   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    879     StaticVisitor::VisitExternalReference(this);
    880   } else if (heap->isolate()->debug()->has_break_points() &&
    881              ((RelocInfo::IsJSReturn(mode) &&
    882               IsPatchedReturnSequence()) ||
    883              (RelocInfo::IsDebugBreakSlot(mode) &&
    884               IsPatchedDebugBreakSlotSequence()))) {
    885     StaticVisitor::VisitDebugTarget(heap, this);
    886   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    887     StaticVisitor::VisitRuntimeEntry(this);
    888   }
    889 }
    890 
    891 
    892 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
    893   ASSERT(rt.IsValid());
    894   if (rt.IsRegister()) {
    895     return rt.Is64Bits() ? LDR_x : LDR_w;
    896   } else {
    897     ASSERT(rt.IsFPRegister());
    898     return rt.Is64Bits() ? LDR_d : LDR_s;
    899   }
    900 }
    901 
    902 
    903 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
    904                                          const CPURegister& rt2) {
    905   ASSERT(AreSameSizeAndType(rt, rt2));
    906   USE(rt2);
    907   if (rt.IsRegister()) {
    908     return rt.Is64Bits() ? LDP_x : LDP_w;
    909   } else {
    910     ASSERT(rt.IsFPRegister());
    911     return rt.Is64Bits() ? LDP_d : LDP_s;
    912   }
    913 }
    914 
    915 
    916 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
    917   ASSERT(rt.IsValid());
    918   if (rt.IsRegister()) {
    919     return rt.Is64Bits() ? STR_x : STR_w;
    920   } else {
    921     ASSERT(rt.IsFPRegister());
    922     return rt.Is64Bits() ? STR_d : STR_s;
    923   }
    924 }
    925 
    926 
    927 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
    928                                           const CPURegister& rt2) {
    929   ASSERT(AreSameSizeAndType(rt, rt2));
    930   USE(rt2);
    931   if (rt.IsRegister()) {
    932     return rt.Is64Bits() ? STP_x : STP_w;
    933   } else {
    934     ASSERT(rt.IsFPRegister());
    935     return rt.Is64Bits() ? STP_d : STP_s;
    936   }
    937 }
    938 
    939 
    940 LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
    941     const CPURegister& rt, const CPURegister& rt2) {
    942   ASSERT(AreSameSizeAndType(rt, rt2));
    943   USE(rt2);
    944   if (rt.IsRegister()) {
    945     return rt.Is64Bits() ? LDNP_x : LDNP_w;
    946   } else {
    947     ASSERT(rt.IsFPRegister());
    948     return rt.Is64Bits() ? LDNP_d : LDNP_s;
    949   }
    950 }
    951 
    952 
    953 LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
    954     const CPURegister& rt, const CPURegister& rt2) {
    955   ASSERT(AreSameSizeAndType(rt, rt2));
    956   USE(rt2);
    957   if (rt.IsRegister()) {
    958     return rt.Is64Bits() ? STNP_x : STNP_w;
    959   } else {
    960     ASSERT(rt.IsFPRegister());
    961     return rt.Is64Bits() ? STNP_d : STNP_s;
    962   }
    963 }
    964 
    965 
    966 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
    967   if (rt.IsRegister()) {
    968     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
    969   } else {
    970     ASSERT(rt.IsFPRegister());
    971     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
    972   }
    973 }
    974 
    975 
    976 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
    977   ASSERT(kStartOfLabelLinkChain == 0);
    978   int offset = LinkAndGetByteOffsetTo(label);
    979   ASSERT(IsAligned(offset, kInstructionSize));
    980   return offset >> kInstructionSizeLog2;
    981 }
    982 
    983 
    984 Instr Assembler::Flags(FlagsUpdate S) {
    985   if (S == SetFlags) {
    986     return 1 << FlagsUpdate_offset;
    987   } else if (S == LeaveFlags) {
    988     return 0 << FlagsUpdate_offset;
    989   }
    990   UNREACHABLE();
    991   return 0;
    992 }
    993 
    994 
    995 Instr Assembler::Cond(Condition cond) {
    996   return cond << Condition_offset;
    997 }
    998 
    999 
   1000 Instr Assembler::ImmPCRelAddress(int imm21) {
   1001   CHECK(is_int21(imm21));
   1002   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
   1003   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
   1004   Instr immlo = imm << ImmPCRelLo_offset;
   1005   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
   1006 }
   1007 
   1008 
   1009 Instr Assembler::ImmUncondBranch(int imm26) {
   1010   CHECK(is_int26(imm26));
   1011   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   1012 }
   1013 
   1014 
   1015 Instr Assembler::ImmCondBranch(int imm19) {
   1016   CHECK(is_int19(imm19));
   1017   return truncate_to_int19(imm19) << ImmCondBranch_offset;
   1018 }
   1019 
   1020 
   1021 Instr Assembler::ImmCmpBranch(int imm19) {
   1022   CHECK(is_int19(imm19));
   1023   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   1024 }
   1025 
   1026 
   1027 Instr Assembler::ImmTestBranch(int imm14) {
   1028   CHECK(is_int14(imm14));
   1029   return truncate_to_int14(imm14) << ImmTestBranch_offset;
   1030 }
   1031 
   1032 
   1033 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
   1034   ASSERT(is_uint6(bit_pos));
   1035   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   1036   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   1037   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   1038   b5 &= ImmTestBranchBit5_mask;
   1039   b40 &= ImmTestBranchBit40_mask;
   1040   return b5 | b40;
   1041 }
   1042 
   1043 
   1044 Instr Assembler::SF(Register rd) {
   1045     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   1046 }
   1047 
   1048 
   1049 Instr Assembler::ImmAddSub(int64_t imm) {
   1050   ASSERT(IsImmAddSub(imm));
   1051   if (is_uint12(imm)) {  // No shift required.
   1052     return imm << ImmAddSub_offset;
   1053   } else {
   1054     return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   1055   }
   1056 }
   1057 
   1058 
   1059 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
   1060   ASSERT(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
   1061          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
   1062   USE(reg_size);
   1063   return imms << ImmS_offset;
   1064 }
   1065 
   1066 
   1067 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
   1068   ASSERT(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1069          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1070   USE(reg_size);
   1071   ASSERT(is_uint6(immr));
   1072   return immr << ImmR_offset;
   1073 }
   1074 
   1075 
   1076 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
   1077   ASSERT((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1078   ASSERT(is_uint6(imms));
   1079   ASSERT((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
   1080   USE(reg_size);
   1081   return imms << ImmSetBits_offset;
   1082 }
   1083 
   1084 
   1085 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
   1086   ASSERT((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1087   ASSERT(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1088          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1089   USE(reg_size);
   1090   return immr << ImmRotate_offset;
   1091 }
   1092 
   1093 
   1094 Instr Assembler::ImmLLiteral(int imm19) {
   1095   CHECK(is_int19(imm19));
   1096   return truncate_to_int19(imm19) << ImmLLiteral_offset;
   1097 }
   1098 
   1099 
   1100 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
   1101   ASSERT((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1102   ASSERT((reg_size == kXRegSizeInBits) || (bitn == 0));
   1103   USE(reg_size);
   1104   return bitn << BitN_offset;
   1105 }
   1106 
   1107 
   1108 Instr Assembler::ShiftDP(Shift shift) {
   1109   ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   1110   return shift << ShiftDP_offset;
   1111 }
   1112 
   1113 
   1114 Instr Assembler::ImmDPShift(unsigned amount) {
   1115   ASSERT(is_uint6(amount));
   1116   return amount << ImmDPShift_offset;
   1117 }
   1118 
   1119 
   1120 Instr Assembler::ExtendMode(Extend extend) {
   1121   return extend << ExtendMode_offset;
   1122 }
   1123 
   1124 
   1125 Instr Assembler::ImmExtendShift(unsigned left_shift) {
   1126   ASSERT(left_shift <= 4);
   1127   return left_shift << ImmExtendShift_offset;
   1128 }
   1129 
   1130 
   1131 Instr Assembler::ImmCondCmp(unsigned imm) {
   1132   ASSERT(is_uint5(imm));
   1133   return imm << ImmCondCmp_offset;
   1134 }
   1135 
   1136 
   1137 Instr Assembler::Nzcv(StatusFlags nzcv) {
   1138   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   1139 }
   1140 
   1141 
   1142 Instr Assembler::ImmLSUnsigned(int imm12) {
   1143   ASSERT(is_uint12(imm12));
   1144   return imm12 << ImmLSUnsigned_offset;
   1145 }
   1146 
   1147 
   1148 Instr Assembler::ImmLS(int imm9) {
   1149   ASSERT(is_int9(imm9));
   1150   return truncate_to_int9(imm9) << ImmLS_offset;
   1151 }
   1152 
   1153 
   1154 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
   1155   ASSERT(((imm7 >> size) << size) == imm7);
   1156   int scaled_imm7 = imm7 >> size;
   1157   ASSERT(is_int7(scaled_imm7));
   1158   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   1159 }
   1160 
   1161 
   1162 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
   1163   ASSERT(is_uint1(shift_amount));
   1164   return shift_amount << ImmShiftLS_offset;
   1165 }
   1166 
   1167 
   1168 Instr Assembler::ImmException(int imm16) {
   1169   ASSERT(is_uint16(imm16));
   1170   return imm16 << ImmException_offset;
   1171 }
   1172 
   1173 
   1174 Instr Assembler::ImmSystemRegister(int imm15) {
   1175   ASSERT(is_uint15(imm15));
   1176   return imm15 << ImmSystemRegister_offset;
   1177 }
   1178 
   1179 
   1180 Instr Assembler::ImmHint(int imm7) {
   1181   ASSERT(is_uint7(imm7));
   1182   return imm7 << ImmHint_offset;
   1183 }
   1184 
   1185 
   1186 Instr Assembler::ImmBarrierDomain(int imm2) {
   1187   ASSERT(is_uint2(imm2));
   1188   return imm2 << ImmBarrierDomain_offset;
   1189 }
   1190 
   1191 
   1192 Instr Assembler::ImmBarrierType(int imm2) {
   1193   ASSERT(is_uint2(imm2));
   1194   return imm2 << ImmBarrierType_offset;
   1195 }
   1196 
   1197 
   1198 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
   1199   ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
   1200   return static_cast<LSDataSize>(op >> SizeLS_offset);
   1201 }
   1202 
   1203 
   1204 Instr Assembler::ImmMoveWide(uint64_t imm) {
   1205   ASSERT(is_uint16(imm));
   1206   return imm << ImmMoveWide_offset;
   1207 }
   1208 
   1209 
   1210 Instr Assembler::ShiftMoveWide(int64_t shift) {
   1211   ASSERT(is_uint2(shift));
   1212   return shift << ShiftMoveWide_offset;
   1213 }
   1214 
   1215 
   1216 Instr Assembler::FPType(FPRegister fd) {
   1217   return fd.Is64Bits() ? FP64 : FP32;
   1218 }
   1219 
   1220 
   1221 Instr Assembler::FPScale(unsigned scale) {
   1222   ASSERT(is_uint6(scale));
   1223   return scale << FPScale_offset;
   1224 }
   1225 
   1226 
   1227 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
   1228   return reg.Is64Bits() ? xzr : wzr;
   1229 }
   1230 
   1231 
   1232 inline void Assembler::CheckBufferSpace() {
   1233   ASSERT(pc_ < (buffer_ + buffer_size_));
   1234   if (buffer_space() < kGap) {
   1235     GrowBuffer();
   1236   }
   1237 }
   1238 
   1239 
   1240 inline void Assembler::CheckBuffer() {
   1241   CheckBufferSpace();
   1242   if (pc_offset() >= next_veneer_pool_check_) {
   1243     CheckVeneerPool(false, true);
   1244   }
   1245   if (pc_offset() >= next_constant_pool_check_) {
   1246     CheckConstPool(false, true);
   1247   }
   1248 }
   1249 
   1250 
   1251 TypeFeedbackId Assembler::RecordedAstId() {
   1252   ASSERT(!recorded_ast_id_.IsNone());
   1253   return recorded_ast_id_;
   1254 }
   1255 
   1256 
   1257 void Assembler::ClearRecordedAstId() {
   1258   recorded_ast_id_ = TypeFeedbackId::None();
   1259 }
   1260 
   1261 
   1262 } }  // namespace v8::internal
   1263 
   1264 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
   1265