Home | History | Annotate | Download | only in InstCombine
      1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // InstructionCombining - Combine instructions to form fewer, simple
     11 // instructions.  This pass does not modify the CFG.  This pass is where
     12 // algebraic simplification happens.
     13 //
     14 // This pass combines things like:
     15 //    %Y = add i32 %X, 1
     16 //    %Z = add i32 %Y, 1
     17 // into:
     18 //    %Z = add i32 %X, 2
     19 //
     20 // This is a simple worklist driven algorithm.
     21 //
     22 // This pass guarantees that the following canonicalizations are performed on
     23 // the program:
     24 //    1. If a binary operator has a constant operand, it is moved to the RHS
     25 //    2. Bitwise operators with constant operands are always grouped so that
     26 //       shifts are performed first, then or's, then and's, then xor's.
     27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
     28 //    4. All cmp instructions on boolean values are replaced with logical ops
     29 //    5. add X, X is represented as (X*2) => (X << 1)
     30 //    6. Multiplies with a power-of-two constant argument are transformed into
     31 //       shifts.
     32 //   ... etc.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "InstCombine.h"
     38 #include "llvm-c/Initialization.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/Statistic.h"
     41 #include "llvm/ADT/StringSwitch.h"
     42 #include "llvm/Analysis/ConstantFolding.h"
     43 #include "llvm/Analysis/InstructionSimplify.h"
     44 #include "llvm/Analysis/MemoryBuiltins.h"
     45 #include "llvm/Analysis/ValueTracking.h"
     46 #include "llvm/IR/CFG.h"
     47 #include "llvm/IR/DataLayout.h"
     48 #include "llvm/IR/GetElementPtrTypeIterator.h"
     49 #include "llvm/IR/IntrinsicInst.h"
     50 #include "llvm/IR/PatternMatch.h"
     51 #include "llvm/IR/ValueHandle.h"
     52 #include "llvm/Support/CommandLine.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Target/TargetLibraryInfo.h"
     55 #include "llvm/Transforms/Utils/Local.h"
     56 #include <algorithm>
     57 #include <climits>
     58 using namespace llvm;
     59 using namespace llvm::PatternMatch;
     60 
     61 #define DEBUG_TYPE "instcombine"
     62 
     63 STATISTIC(NumCombined , "Number of insts combined");
     64 STATISTIC(NumConstProp, "Number of constant folds");
     65 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
     66 STATISTIC(NumSunkInst , "Number of instructions sunk");
     67 STATISTIC(NumExpand,    "Number of expansions");
     68 STATISTIC(NumFactor   , "Number of factorizations");
     69 STATISTIC(NumReassoc  , "Number of reassociations");
     70 
     71 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
     72                                    cl::init(false),
     73                                    cl::desc("Enable unsafe double to float "
     74                                             "shrinking for math lib calls"));
     75 
     76 // Initialization Routines
     77 void llvm::initializeInstCombine(PassRegistry &Registry) {
     78   initializeInstCombinerPass(Registry);
     79 }
     80 
     81 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
     82   initializeInstCombine(*unwrap(R));
     83 }
     84 
     85 char InstCombiner::ID = 0;
     86 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
     87                 "Combine redundant instructions", false, false)
     88 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     89 INITIALIZE_PASS_END(InstCombiner, "instcombine",
     90                 "Combine redundant instructions", false, false)
     91 
     92 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
     93   AU.setPreservesCFG();
     94   AU.addRequired<TargetLibraryInfo>();
     95 }
     96 
     97 
     98 Value *InstCombiner::EmitGEPOffset(User *GEP) {
     99   return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
    100 }
    101 
    102 /// ShouldChangeType - Return true if it is desirable to convert a computation
    103 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
    104 /// type for example, or from a smaller to a larger illegal type.
    105 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
    106   assert(From->isIntegerTy() && To->isIntegerTy());
    107 
    108   // If we don't have DL, we don't know if the source/dest are legal.
    109   if (!DL) return false;
    110 
    111   unsigned FromWidth = From->getPrimitiveSizeInBits();
    112   unsigned ToWidth = To->getPrimitiveSizeInBits();
    113   bool FromLegal = DL->isLegalInteger(FromWidth);
    114   bool ToLegal = DL->isLegalInteger(ToWidth);
    115 
    116   // If this is a legal integer from type, and the result would be an illegal
    117   // type, don't do the transformation.
    118   if (FromLegal && !ToLegal)
    119     return false;
    120 
    121   // Otherwise, if both are illegal, do not increase the size of the result. We
    122   // do allow things like i160 -> i64, but not i64 -> i160.
    123   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    124     return false;
    125 
    126   return true;
    127 }
    128 
    129 // Return true, if No Signed Wrap should be maintained for I.
    130 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
    131 // where both B and C should be ConstantInts, results in a constant that does
    132 // not overflow. This function only handles the Add and Sub opcodes. For
    133 // all other opcodes, the function conservatively returns false.
    134 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
    135   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
    136   if (!OBO || !OBO->hasNoSignedWrap()) {
    137     return false;
    138   }
    139 
    140   // We reason about Add and Sub Only.
    141   Instruction::BinaryOps Opcode = I.getOpcode();
    142   if (Opcode != Instruction::Add &&
    143       Opcode != Instruction::Sub) {
    144     return false;
    145   }
    146 
    147   ConstantInt *CB = dyn_cast<ConstantInt>(B);
    148   ConstantInt *CC = dyn_cast<ConstantInt>(C);
    149 
    150   if (!CB || !CC) {
    151     return false;
    152   }
    153 
    154   const APInt &BVal = CB->getValue();
    155   const APInt &CVal = CC->getValue();
    156   bool Overflow = false;
    157 
    158   if (Opcode == Instruction::Add) {
    159     BVal.sadd_ov(CVal, Overflow);
    160   } else {
    161     BVal.ssub_ov(CVal, Overflow);
    162   }
    163 
    164   return !Overflow;
    165 }
    166 
    167 /// Conservatively clears subclassOptionalData after a reassociation or
    168 /// commutation. We preserve fast-math flags when applicable as they can be
    169 /// preserved.
    170 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
    171   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
    172   if (!FPMO) {
    173     I.clearSubclassOptionalData();
    174     return;
    175   }
    176 
    177   FastMathFlags FMF = I.getFastMathFlags();
    178   I.clearSubclassOptionalData();
    179   I.setFastMathFlags(FMF);
    180 }
    181 
    182 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    183 /// operators which are associative or commutative:
    184 //
    185 //  Commutative operators:
    186 //
    187 //  1. Order operands such that they are listed from right (least complex) to
    188 //     left (most complex).  This puts constants before unary operators before
    189 //     binary operators.
    190 //
    191 //  Associative operators:
    192 //
    193 //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    194 //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    195 //
    196 //  Associative and commutative operators:
    197 //
    198 //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    199 //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    200 //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    201 //     if C1 and C2 are constants.
    202 //
    203 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
    204   Instruction::BinaryOps Opcode = I.getOpcode();
    205   bool Changed = false;
    206 
    207   do {
    208     // Order operands such that they are listed from right (least complex) to
    209     // left (most complex).  This puts constants before unary operators before
    210     // binary operators.
    211     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
    212         getComplexity(I.getOperand(1)))
    213       Changed = !I.swapOperands();
    214 
    215     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    216     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
    217 
    218     if (I.isAssociative()) {
    219       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    220       if (Op0 && Op0->getOpcode() == Opcode) {
    221         Value *A = Op0->getOperand(0);
    222         Value *B = Op0->getOperand(1);
    223         Value *C = I.getOperand(1);
    224 
    225         // Does "B op C" simplify?
    226         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
    227           // It simplifies to V.  Form "A op V".
    228           I.setOperand(0, A);
    229           I.setOperand(1, V);
    230           // Conservatively clear the optional flags, since they may not be
    231           // preserved by the reassociation.
    232           if (MaintainNoSignedWrap(I, B, C) &&
    233               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
    234             // Note: this is only valid because SimplifyBinOp doesn't look at
    235             // the operands to Op0.
    236             I.clearSubclassOptionalData();
    237             I.setHasNoSignedWrap(true);
    238           } else {
    239             ClearSubclassDataAfterReassociation(I);
    240           }
    241 
    242           Changed = true;
    243           ++NumReassoc;
    244           continue;
    245         }
    246       }
    247 
    248       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    249       if (Op1 && Op1->getOpcode() == Opcode) {
    250         Value *A = I.getOperand(0);
    251         Value *B = Op1->getOperand(0);
    252         Value *C = Op1->getOperand(1);
    253 
    254         // Does "A op B" simplify?
    255         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
    256           // It simplifies to V.  Form "V op C".
    257           I.setOperand(0, V);
    258           I.setOperand(1, C);
    259           // Conservatively clear the optional flags, since they may not be
    260           // preserved by the reassociation.
    261           ClearSubclassDataAfterReassociation(I);
    262           Changed = true;
    263           ++NumReassoc;
    264           continue;
    265         }
    266       }
    267     }
    268 
    269     if (I.isAssociative() && I.isCommutative()) {
    270       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    271       if (Op0 && Op0->getOpcode() == Opcode) {
    272         Value *A = Op0->getOperand(0);
    273         Value *B = Op0->getOperand(1);
    274         Value *C = I.getOperand(1);
    275 
    276         // Does "C op A" simplify?
    277         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    278           // It simplifies to V.  Form "V op B".
    279           I.setOperand(0, V);
    280           I.setOperand(1, B);
    281           // Conservatively clear the optional flags, since they may not be
    282           // preserved by the reassociation.
    283           ClearSubclassDataAfterReassociation(I);
    284           Changed = true;
    285           ++NumReassoc;
    286           continue;
    287         }
    288       }
    289 
    290       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    291       if (Op1 && Op1->getOpcode() == Opcode) {
    292         Value *A = I.getOperand(0);
    293         Value *B = Op1->getOperand(0);
    294         Value *C = Op1->getOperand(1);
    295 
    296         // Does "C op A" simplify?
    297         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    298           // It simplifies to V.  Form "B op V".
    299           I.setOperand(0, B);
    300           I.setOperand(1, V);
    301           // Conservatively clear the optional flags, since they may not be
    302           // preserved by the reassociation.
    303           ClearSubclassDataAfterReassociation(I);
    304           Changed = true;
    305           ++NumReassoc;
    306           continue;
    307         }
    308       }
    309 
    310       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    311       // if C1 and C2 are constants.
    312       if (Op0 && Op1 &&
    313           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
    314           isa<Constant>(Op0->getOperand(1)) &&
    315           isa<Constant>(Op1->getOperand(1)) &&
    316           Op0->hasOneUse() && Op1->hasOneUse()) {
    317         Value *A = Op0->getOperand(0);
    318         Constant *C1 = cast<Constant>(Op0->getOperand(1));
    319         Value *B = Op1->getOperand(0);
    320         Constant *C2 = cast<Constant>(Op1->getOperand(1));
    321 
    322         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
    323         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
    324         if (isa<FPMathOperator>(New)) {
    325           FastMathFlags Flags = I.getFastMathFlags();
    326           Flags &= Op0->getFastMathFlags();
    327           Flags &= Op1->getFastMathFlags();
    328           New->setFastMathFlags(Flags);
    329         }
    330         InsertNewInstWith(New, I);
    331         New->takeName(Op1);
    332         I.setOperand(0, New);
    333         I.setOperand(1, Folded);
    334         // Conservatively clear the optional flags, since they may not be
    335         // preserved by the reassociation.
    336         ClearSubclassDataAfterReassociation(I);
    337 
    338         Changed = true;
    339         continue;
    340       }
    341     }
    342 
    343     // No further simplifications.
    344     return Changed;
    345   } while (1);
    346 }
    347 
    348 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
    349 /// "(X LOp Y) ROp (X LOp Z)".
    350 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
    351                                      Instruction::BinaryOps ROp) {
    352   switch (LOp) {
    353   default:
    354     return false;
    355 
    356   case Instruction::And:
    357     // And distributes over Or and Xor.
    358     switch (ROp) {
    359     default:
    360       return false;
    361     case Instruction::Or:
    362     case Instruction::Xor:
    363       return true;
    364     }
    365 
    366   case Instruction::Mul:
    367     // Multiplication distributes over addition and subtraction.
    368     switch (ROp) {
    369     default:
    370       return false;
    371     case Instruction::Add:
    372     case Instruction::Sub:
    373       return true;
    374     }
    375 
    376   case Instruction::Or:
    377     // Or distributes over And.
    378     switch (ROp) {
    379     default:
    380       return false;
    381     case Instruction::And:
    382       return true;
    383     }
    384   }
    385 }
    386 
    387 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
    388 /// "(X ROp Z) LOp (Y ROp Z)".
    389 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
    390                                      Instruction::BinaryOps ROp) {
    391   if (Instruction::isCommutative(ROp))
    392     return LeftDistributesOverRight(ROp, LOp);
    393   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
    394   // but this requires knowing that the addition does not overflow and other
    395   // such subtleties.
    396   return false;
    397 }
    398 
    399 /// This function returns identity value for given opcode, which can be used to
    400 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
    401 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
    402   if (isa<Constant>(V))
    403     return nullptr;
    404 
    405   if (OpCode == Instruction::Mul)
    406     return ConstantInt::get(V->getType(), 1);
    407 
    408   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
    409 
    410   return nullptr;
    411 }
    412 
    413 /// This function factors binary ops which can be combined using distributive
    414 /// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4).
    415 static Instruction::BinaryOps
    416 getBinOpsForFactorization(BinaryOperator *Op, Value *&LHS, Value *&RHS) {
    417   if (!Op)
    418     return Instruction::BinaryOpsEnd;
    419 
    420   if (Op->getOpcode() == Instruction::Shl) {
    421     if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
    422       // The multiplier is really 1 << CST.
    423       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
    424       LHS = Op->getOperand(0);
    425       return Instruction::Mul;
    426     }
    427   }
    428 
    429   // TODO: We can add other conversions e.g. shr => div etc.
    430 
    431   LHS = Op->getOperand(0);
    432   RHS = Op->getOperand(1);
    433   return Op->getOpcode();
    434 }
    435 
    436 /// This tries to simplify binary operations by factorizing out common terms
    437 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
    438 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
    439                                const DataLayout *DL, BinaryOperator &I,
    440                                Instruction::BinaryOps InnerOpcode, Value *A,
    441                                Value *B, Value *C, Value *D) {
    442 
    443   // If any of A, B, C, D are null, we can not factor I, return early.
    444   // Checking A and C should be enough.
    445   if (!A || !C || !B || !D)
    446     return nullptr;
    447 
    448   Value *SimplifiedInst = nullptr;
    449   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    450   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
    451 
    452   // Does "X op' Y" always equal "Y op' X"?
    453   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
    454 
    455   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    456   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    457     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    458     // commutative case, "(A op' B) op (C op' A)"?
    459     if (A == C || (InnerCommutative && A == D)) {
    460       if (A != C)
    461         std::swap(C, D);
    462       // Consider forming "A op' (B op D)".
    463       // If "B op D" simplifies then it can be formed with no cost.
    464       Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
    465       // If "B op D" doesn't simplify then only go on if both of the existing
    466       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    467       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    468         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
    469       if (V) {
    470         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
    471       }
    472     }
    473 
    474   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    475   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    476     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    477     // commutative case, "(A op' B) op (B op' D)"?
    478     if (B == D || (InnerCommutative && B == C)) {
    479       if (B != D)
    480         std::swap(C, D);
    481       // Consider forming "(A op C) op' B".
    482       // If "A op C" simplifies then it can be formed with no cost.
    483       Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
    484 
    485       // If "A op C" doesn't simplify then only go on if both of the existing
    486       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    487       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    488         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
    489       if (V) {
    490         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
    491       }
    492     }
    493 
    494   if (SimplifiedInst) {
    495     ++NumFactor;
    496     SimplifiedInst->takeName(&I);
    497 
    498     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
    499     // TODO: Check for NUW.
    500     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
    501       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
    502         bool HasNSW = false;
    503         if (isa<OverflowingBinaryOperator>(&I))
    504           HasNSW = I.hasNoSignedWrap();
    505 
    506         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    507           if (isa<OverflowingBinaryOperator>(Op0))
    508             HasNSW &= Op0->hasNoSignedWrap();
    509 
    510         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    511           if (isa<OverflowingBinaryOperator>(Op1))
    512             HasNSW &= Op1->hasNoSignedWrap();
    513         BO->setHasNoSignedWrap(HasNSW);
    514       }
    515     }
    516   }
    517   return SimplifiedInst;
    518 }
    519 
    520 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    521 /// which some other binary operation distributes over either by factorizing
    522 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    523 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    524 /// a win).  Returns the simplified value, or null if it didn't simplify.
    525 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
    526   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    527   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    528   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    529 
    530   // Factorization.
    531   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
    532   Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B);
    533   Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D);
    534 
    535   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    536   // a common term.
    537   if (LHSOpcode == RHSOpcode) {
    538     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
    539       return V;
    540   }
    541 
    542   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
    543   // term.
    544   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
    545                                   getIdentityValue(LHSOpcode, RHS)))
    546     return V;
    547 
    548   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
    549   // term.
    550   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
    551                                   getIdentityValue(RHSOpcode, LHS), C, D))
    552     return V;
    553 
    554   // Expansion.
    555   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
    556   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    557     // The instruction has the form "(A op' B) op C".  See if expanding it out
    558     // to "(A op C) op' (B op C)" results in simplifications.
    559     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    560     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    561 
    562     // Do "A op C" and "B op C" both simplify?
    563     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
    564       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
    565         // They do! Return "L op' R".
    566         ++NumExpand;
    567         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    568         if ((L == A && R == B) ||
    569             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
    570           return Op0;
    571         // Otherwise return "L op' R" if it simplifies.
    572         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    573           return V;
    574         // Otherwise, create a new instruction.
    575         C = Builder->CreateBinOp(InnerOpcode, L, R);
    576         C->takeName(&I);
    577         return C;
    578       }
    579   }
    580 
    581   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    582     // The instruction has the form "A op (B op' C)".  See if expanding it out
    583     // to "(A op B) op' (A op C)" results in simplifications.
    584     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    585     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
    586 
    587     // Do "A op B" and "A op C" both simplify?
    588     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
    589       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
    590         // They do! Return "L op' R".
    591         ++NumExpand;
    592         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    593         if ((L == B && R == C) ||
    594             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
    595           return Op1;
    596         // Otherwise return "L op' R" if it simplifies.
    597         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    598           return V;
    599         // Otherwise, create a new instruction.
    600         A = Builder->CreateBinOp(InnerOpcode, L, R);
    601         A->takeName(&I);
    602         return A;
    603       }
    604   }
    605 
    606   return nullptr;
    607 }
    608 
    609 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
    610 // if the LHS is a constant zero (which is the 'negate' form).
    611 //
    612 Value *InstCombiner::dyn_castNegVal(Value *V) const {
    613   if (BinaryOperator::isNeg(V))
    614     return BinaryOperator::getNegArgument(V);
    615 
    616   // Constants can be considered to be negated values if they can be folded.
    617   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    618     return ConstantExpr::getNeg(C);
    619 
    620   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    621     if (C->getType()->getElementType()->isIntegerTy())
    622       return ConstantExpr::getNeg(C);
    623 
    624   return nullptr;
    625 }
    626 
    627 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
    628 // instruction if the LHS is a constant negative zero (which is the 'negate'
    629 // form).
    630 //
    631 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
    632   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
    633     return BinaryOperator::getFNegArgument(V);
    634 
    635   // Constants can be considered to be negated values if they can be folded.
    636   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    637     return ConstantExpr::getFNeg(C);
    638 
    639   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    640     if (C->getType()->getElementType()->isFloatingPointTy())
    641       return ConstantExpr::getFNeg(C);
    642 
    643   return nullptr;
    644 }
    645 
    646 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
    647                                              InstCombiner *IC) {
    648   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    649     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
    650   }
    651 
    652   // Figure out if the constant is the left or the right argument.
    653   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
    654   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
    655 
    656   if (Constant *SOC = dyn_cast<Constant>(SO)) {
    657     if (ConstIsRHS)
    658       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    659     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
    660   }
    661 
    662   Value *Op0 = SO, *Op1 = ConstOperand;
    663   if (!ConstIsRHS)
    664     std::swap(Op0, Op1);
    665 
    666   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
    667     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
    668                                     SO->getName()+".op");
    669     Instruction *FPInst = dyn_cast<Instruction>(RI);
    670     if (FPInst && isa<FPMathOperator>(FPInst))
    671       FPInst->copyFastMathFlags(BO);
    672     return RI;
    673   }
    674   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    675     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    676                                    SO->getName()+".cmp");
    677   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    678     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    679                                    SO->getName()+".cmp");
    680   llvm_unreachable("Unknown binary instruction type!");
    681 }
    682 
    683 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
    684 // constant as the other operand, try to fold the binary operator into the
    685 // select arguments.  This also works for Cast instructions, which obviously do
    686 // not have a second operand.
    687 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
    688   // Don't modify shared select instructions
    689   if (!SI->hasOneUse()) return nullptr;
    690   Value *TV = SI->getOperand(1);
    691   Value *FV = SI->getOperand(2);
    692 
    693   if (isa<Constant>(TV) || isa<Constant>(FV)) {
    694     // Bool selects with constant operands can be folded to logical ops.
    695     if (SI->getType()->isIntegerTy(1)) return nullptr;
    696 
    697     // If it's a bitcast involving vectors, make sure it has the same number of
    698     // elements on both sides.
    699     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
    700       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    701       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
    702 
    703       // Verify that either both or neither are vectors.
    704       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
    705       // If vectors, verify that they have the same number of elements.
    706       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
    707         return nullptr;
    708     }
    709 
    710     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    711     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
    712 
    713     return SelectInst::Create(SI->getCondition(),
    714                               SelectTrueVal, SelectFalseVal);
    715   }
    716   return nullptr;
    717 }
    718 
    719 
    720 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
    721 /// has a PHI node as operand #0, see if we can fold the instruction into the
    722 /// PHI (which is only possible if all operands to the PHI are constants).
    723 ///
    724 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
    725   PHINode *PN = cast<PHINode>(I.getOperand(0));
    726   unsigned NumPHIValues = PN->getNumIncomingValues();
    727   if (NumPHIValues == 0)
    728     return nullptr;
    729 
    730   // We normally only transform phis with a single use.  However, if a PHI has
    731   // multiple uses and they are all the same operation, we can fold *all* of the
    732   // uses into the PHI.
    733   if (!PN->hasOneUse()) {
    734     // Walk the use list for the instruction, comparing them to I.
    735     for (User *U : PN->users()) {
    736       Instruction *UI = cast<Instruction>(U);
    737       if (UI != &I && !I.isIdenticalTo(UI))
    738         return nullptr;
    739     }
    740     // Otherwise, we can replace *all* users with the new PHI we form.
    741   }
    742 
    743   // Check to see if all of the operands of the PHI are simple constants
    744   // (constantint/constantfp/undef).  If there is one non-constant value,
    745   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
    746   // bail out.  We don't do arbitrary constant expressions here because moving
    747   // their computation can be expensive without a cost model.
    748   BasicBlock *NonConstBB = nullptr;
    749   for (unsigned i = 0; i != NumPHIValues; ++i) {
    750     Value *InVal = PN->getIncomingValue(i);
    751     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
    752       continue;
    753 
    754     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
    755     if (NonConstBB) return nullptr;  // More than one non-const value.
    756 
    757     NonConstBB = PN->getIncomingBlock(i);
    758 
    759     // If the InVal is an invoke at the end of the pred block, then we can't
    760     // insert a computation after it without breaking the edge.
    761     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
    762       if (II->getParent() == NonConstBB)
    763         return nullptr;
    764 
    765     // If the incoming non-constant value is in I's block, we will remove one
    766     // instruction, but insert another equivalent one, leading to infinite
    767     // instcombine.
    768     if (NonConstBB == I.getParent())
    769       return nullptr;
    770   }
    771 
    772   // If there is exactly one non-constant value, we can insert a copy of the
    773   // operation in that block.  However, if this is a critical edge, we would be
    774   // inserting the computation one some other paths (e.g. inside a loop).  Only
    775   // do this if the pred block is unconditionally branching into the phi block.
    776   if (NonConstBB != nullptr) {
    777     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    778     if (!BI || !BI->isUnconditional()) return nullptr;
    779   }
    780 
    781   // Okay, we can do the transformation: create the new PHI node.
    782   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
    783   InsertNewInstBefore(NewPN, *PN);
    784   NewPN->takeName(PN);
    785 
    786   // If we are going to have to insert a new computation, do so right before the
    787   // predecessors terminator.
    788   if (NonConstBB)
    789     Builder->SetInsertPoint(NonConstBB->getTerminator());
    790 
    791   // Next, add all of the operands to the PHI.
    792   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    793     // We only currently try to fold the condition of a select when it is a phi,
    794     // not the true/false values.
    795     Value *TrueV = SI->getTrueValue();
    796     Value *FalseV = SI->getFalseValue();
    797     BasicBlock *PhiTransBB = PN->getParent();
    798     for (unsigned i = 0; i != NumPHIValues; ++i) {
    799       BasicBlock *ThisBB = PN->getIncomingBlock(i);
    800       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
    801       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
    802       Value *InV = nullptr;
    803       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
    804       // even if currently isNullValue gives false.
    805       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
    806       if (InC && !isa<ConstantExpr>(InC))
    807         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
    808       else
    809         InV = Builder->CreateSelect(PN->getIncomingValue(i),
    810                                     TrueVInPred, FalseVInPred, "phitmp");
    811       NewPN->addIncoming(InV, ThisBB);
    812     }
    813   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    814     Constant *C = cast<Constant>(I.getOperand(1));
    815     for (unsigned i = 0; i != NumPHIValues; ++i) {
    816       Value *InV = nullptr;
    817       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    818         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
    819       else if (isa<ICmpInst>(CI))
    820         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
    821                                   C, "phitmp");
    822       else
    823         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
    824                                   C, "phitmp");
    825       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    826     }
    827   } else if (I.getNumOperands() == 2) {
    828     Constant *C = cast<Constant>(I.getOperand(1));
    829     for (unsigned i = 0; i != NumPHIValues; ++i) {
    830       Value *InV = nullptr;
    831       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    832         InV = ConstantExpr::get(I.getOpcode(), InC, C);
    833       else
    834         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
    835                                    PN->getIncomingValue(i), C, "phitmp");
    836       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    837     }
    838   } else {
    839     CastInst *CI = cast<CastInst>(&I);
    840     Type *RetTy = CI->getType();
    841     for (unsigned i = 0; i != NumPHIValues; ++i) {
    842       Value *InV;
    843       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    844         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
    845       else
    846         InV = Builder->CreateCast(CI->getOpcode(),
    847                                 PN->getIncomingValue(i), I.getType(), "phitmp");
    848       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    849     }
    850   }
    851 
    852   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    853     Instruction *User = cast<Instruction>(*UI++);
    854     if (User == &I) continue;
    855     ReplaceInstUsesWith(*User, NewPN);
    856     EraseInstFromFunction(*User);
    857   }
    858   return ReplaceInstUsesWith(I, NewPN);
    859 }
    860 
    861 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
    862 /// whether or not there is a sequence of GEP indices into the pointed type that
    863 /// will land us at the specified offset.  If so, fill them into NewIndices and
    864 /// return the resultant element type, otherwise return null.
    865 Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
    866                                         SmallVectorImpl<Value*> &NewIndices) {
    867   assert(PtrTy->isPtrOrPtrVectorTy());
    868 
    869   if (!DL)
    870     return nullptr;
    871 
    872   Type *Ty = PtrTy->getPointerElementType();
    873   if (!Ty->isSized())
    874     return nullptr;
    875 
    876   // Start with the index over the outer type.  Note that the type size
    877   // might be zero (even if the offset isn't zero) if the indexed type
    878   // is something like [0 x {int, int}]
    879   Type *IntPtrTy = DL->getIntPtrType(PtrTy);
    880   int64_t FirstIdx = 0;
    881   if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
    882     FirstIdx = Offset/TySize;
    883     Offset -= FirstIdx*TySize;
    884 
    885     // Handle hosts where % returns negative instead of values [0..TySize).
    886     if (Offset < 0) {
    887       --FirstIdx;
    888       Offset += TySize;
    889       assert(Offset >= 0);
    890     }
    891     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
    892   }
    893 
    894   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    895 
    896   // Index into the types.  If we fail, set OrigBase to null.
    897   while (Offset) {
    898     // Indexing into tail padding between struct/array elements.
    899     if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
    900       return nullptr;
    901 
    902     if (StructType *STy = dyn_cast<StructType>(Ty)) {
    903       const StructLayout *SL = DL->getStructLayout(STy);
    904       assert(Offset < (int64_t)SL->getSizeInBytes() &&
    905              "Offset must stay within the indexed type");
    906 
    907       unsigned Elt = SL->getElementContainingOffset(Offset);
    908       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    909                                             Elt));
    910 
    911       Offset -= SL->getElementOffset(Elt);
    912       Ty = STy->getElementType(Elt);
    913     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    914       uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
    915       assert(EltSize && "Cannot index into a zero-sized array");
    916       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
    917       Offset %= EltSize;
    918       Ty = AT->getElementType();
    919     } else {
    920       // Otherwise, we can't index into the middle of this atomic type, bail.
    921       return nullptr;
    922     }
    923   }
    924 
    925   return Ty;
    926 }
    927 
    928 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
    929   // If this GEP has only 0 indices, it is the same pointer as
    930   // Src. If Src is not a trivial GEP too, don't combine
    931   // the indices.
    932   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
    933       !Src.hasOneUse())
    934     return false;
    935   return true;
    936 }
    937 
    938 /// Descale - Return a value X such that Val = X * Scale, or null if none.  If
    939 /// the multiplication is known not to overflow then NoSignedWrap is set.
    940 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
    941   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
    942   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
    943          Scale.getBitWidth() && "Scale not compatible with value!");
    944 
    945   // If Val is zero or Scale is one then Val = Val * Scale.
    946   if (match(Val, m_Zero()) || Scale == 1) {
    947     NoSignedWrap = true;
    948     return Val;
    949   }
    950 
    951   // If Scale is zero then it does not divide Val.
    952   if (Scale.isMinValue())
    953     return nullptr;
    954 
    955   // Look through chains of multiplications, searching for a constant that is
    956   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
    957   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
    958   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
    959   // down from Val:
    960   //
    961   //     Val = M1 * X          ||   Analysis starts here and works down
    962   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
    963   //      M2 =  Z * 4          \/   than one use
    964   //
    965   // Then to modify a term at the bottom:
    966   //
    967   //     Val = M1 * X
    968   //      M1 =  Z * Y          ||   Replaced M2 with Z
    969   //
    970   // Then to work back up correcting nsw flags.
    971 
    972   // Op - the term we are currently analyzing.  Starts at Val then drills down.
    973   // Replaced with its descaled value before exiting from the drill down loop.
    974   Value *Op = Val;
    975 
    976   // Parent - initially null, but after drilling down notes where Op came from.
    977   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
    978   // 0'th operand of Val.
    979   std::pair<Instruction*, unsigned> Parent;
    980 
    981   // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
    982   // levels that doesn't overflow.
    983   bool RequireNoSignedWrap = false;
    984 
    985   // logScale - log base 2 of the scale.  Negative if not a power of 2.
    986   int32_t logScale = Scale.exactLogBase2();
    987 
    988   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
    989 
    990     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    991       // If Op is a constant divisible by Scale then descale to the quotient.
    992       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
    993       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
    994       if (!Remainder.isMinValue())
    995         // Not divisible by Scale.
    996         return nullptr;
    997       // Replace with the quotient in the parent.
    998       Op = ConstantInt::get(CI->getType(), Quotient);
    999       NoSignedWrap = true;
   1000       break;
   1001     }
   1002 
   1003     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
   1004 
   1005       if (BO->getOpcode() == Instruction::Mul) {
   1006         // Multiplication.
   1007         NoSignedWrap = BO->hasNoSignedWrap();
   1008         if (RequireNoSignedWrap && !NoSignedWrap)
   1009           return nullptr;
   1010 
   1011         // There are three cases for multiplication: multiplication by exactly
   1012         // the scale, multiplication by a constant different to the scale, and
   1013         // multiplication by something else.
   1014         Value *LHS = BO->getOperand(0);
   1015         Value *RHS = BO->getOperand(1);
   1016 
   1017         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1018           // Multiplication by a constant.
   1019           if (CI->getValue() == Scale) {
   1020             // Multiplication by exactly the scale, replace the multiplication
   1021             // by its left-hand side in the parent.
   1022             Op = LHS;
   1023             break;
   1024           }
   1025 
   1026           // Otherwise drill down into the constant.
   1027           if (!Op->hasOneUse())
   1028             return nullptr;
   1029 
   1030           Parent = std::make_pair(BO, 1);
   1031           continue;
   1032         }
   1033 
   1034         // Multiplication by something else. Drill down into the left-hand side
   1035         // since that's where the reassociate pass puts the good stuff.
   1036         if (!Op->hasOneUse())
   1037           return nullptr;
   1038 
   1039         Parent = std::make_pair(BO, 0);
   1040         continue;
   1041       }
   1042 
   1043       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
   1044           isa<ConstantInt>(BO->getOperand(1))) {
   1045         // Multiplication by a power of 2.
   1046         NoSignedWrap = BO->hasNoSignedWrap();
   1047         if (RequireNoSignedWrap && !NoSignedWrap)
   1048           return nullptr;
   1049 
   1050         Value *LHS = BO->getOperand(0);
   1051         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
   1052           getLimitedValue(Scale.getBitWidth());
   1053         // Op = LHS << Amt.
   1054 
   1055         if (Amt == logScale) {
   1056           // Multiplication by exactly the scale, replace the multiplication
   1057           // by its left-hand side in the parent.
   1058           Op = LHS;
   1059           break;
   1060         }
   1061         if (Amt < logScale || !Op->hasOneUse())
   1062           return nullptr;
   1063 
   1064         // Multiplication by more than the scale.  Reduce the multiplying amount
   1065         // by the scale in the parent.
   1066         Parent = std::make_pair(BO, 1);
   1067         Op = ConstantInt::get(BO->getType(), Amt - logScale);
   1068         break;
   1069       }
   1070     }
   1071 
   1072     if (!Op->hasOneUse())
   1073       return nullptr;
   1074 
   1075     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
   1076       if (Cast->getOpcode() == Instruction::SExt) {
   1077         // Op is sign-extended from a smaller type, descale in the smaller type.
   1078         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1079         APInt SmallScale = Scale.trunc(SmallSize);
   1080         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
   1081         // descale Op as (sext Y) * Scale.  In order to have
   1082         //   sext (Y * SmallScale) = (sext Y) * Scale
   1083         // some conditions need to hold however: SmallScale must sign-extend to
   1084         // Scale and the multiplication Y * SmallScale should not overflow.
   1085         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
   1086           // SmallScale does not sign-extend to Scale.
   1087           return nullptr;
   1088         assert(SmallScale.exactLogBase2() == logScale);
   1089         // Require that Y * SmallScale must not overflow.
   1090         RequireNoSignedWrap = true;
   1091 
   1092         // Drill down through the cast.
   1093         Parent = std::make_pair(Cast, 0);
   1094         Scale = SmallScale;
   1095         continue;
   1096       }
   1097 
   1098       if (Cast->getOpcode() == Instruction::Trunc) {
   1099         // Op is truncated from a larger type, descale in the larger type.
   1100         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
   1101         //   trunc (Y * sext Scale) = (trunc Y) * Scale
   1102         // always holds.  However (trunc Y) * Scale may overflow even if
   1103         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
   1104         // from this point up in the expression (see later).
   1105         if (RequireNoSignedWrap)
   1106           return nullptr;
   1107 
   1108         // Drill down through the cast.
   1109         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1110         Parent = std::make_pair(Cast, 0);
   1111         Scale = Scale.sext(LargeSize);
   1112         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
   1113           logScale = -1;
   1114         assert(Scale.exactLogBase2() == logScale);
   1115         continue;
   1116       }
   1117     }
   1118 
   1119     // Unsupported expression, bail out.
   1120     return nullptr;
   1121   }
   1122 
   1123   // If Op is zero then Val = Op * Scale.
   1124   if (match(Op, m_Zero())) {
   1125     NoSignedWrap = true;
   1126     return Op;
   1127   }
   1128 
   1129   // We know that we can successfully descale, so from here on we can safely
   1130   // modify the IR.  Op holds the descaled version of the deepest term in the
   1131   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
   1132   // not to overflow.
   1133 
   1134   if (!Parent.first)
   1135     // The expression only had one term.
   1136     return Op;
   1137 
   1138   // Rewrite the parent using the descaled version of its operand.
   1139   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
   1140   assert(Op != Parent.first->getOperand(Parent.second) &&
   1141          "Descaling was a no-op?");
   1142   Parent.first->setOperand(Parent.second, Op);
   1143   Worklist.Add(Parent.first);
   1144 
   1145   // Now work back up the expression correcting nsw flags.  The logic is based
   1146   // on the following observation: if X * Y is known not to overflow as a signed
   1147   // multiplication, and Y is replaced by a value Z with smaller absolute value,
   1148   // then X * Z will not overflow as a signed multiplication either.  As we work
   1149   // our way up, having NoSignedWrap 'true' means that the descaled value at the
   1150   // current level has strictly smaller absolute value than the original.
   1151   Instruction *Ancestor = Parent.first;
   1152   do {
   1153     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
   1154       // If the multiplication wasn't nsw then we can't say anything about the
   1155       // value of the descaled multiplication, and we have to clear nsw flags
   1156       // from this point on up.
   1157       bool OpNoSignedWrap = BO->hasNoSignedWrap();
   1158       NoSignedWrap &= OpNoSignedWrap;
   1159       if (NoSignedWrap != OpNoSignedWrap) {
   1160         BO->setHasNoSignedWrap(NoSignedWrap);
   1161         Worklist.Add(Ancestor);
   1162       }
   1163     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
   1164       // The fact that the descaled input to the trunc has smaller absolute
   1165       // value than the original input doesn't tell us anything useful about
   1166       // the absolute values of the truncations.
   1167       NoSignedWrap = false;
   1168     }
   1169     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
   1170            "Failed to keep proper track of nsw flags while drilling down?");
   1171 
   1172     if (Ancestor == Val)
   1173       // Got to the top, all done!
   1174       return Val;
   1175 
   1176     // Move up one level in the expression.
   1177     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
   1178     Ancestor = Ancestor->user_back();
   1179   } while (1);
   1180 }
   1181 
   1182 /// \brief Creates node of binary operation with the same attributes as the
   1183 /// specified one but with other operands.
   1184 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
   1185                                  InstCombiner::BuilderTy *B) {
   1186   Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
   1187   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
   1188     if (isa<OverflowingBinaryOperator>(NewBO)) {
   1189       NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
   1190       NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
   1191     }
   1192     if (isa<PossiblyExactOperator>(NewBO))
   1193       NewBO->setIsExact(Inst.isExact());
   1194   }
   1195   return BORes;
   1196 }
   1197 
   1198 /// \brief Makes transformation of binary operation specific for vector types.
   1199 /// \param Inst Binary operator to transform.
   1200 /// \return Pointer to node that must replace the original binary operator, or
   1201 ///         null pointer if no transformation was made.
   1202 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
   1203   if (!Inst.getType()->isVectorTy()) return nullptr;
   1204 
   1205   // It may not be safe to reorder shuffles and things like div, urem, etc.
   1206   // because we may trap when executing those ops on unknown vector elements.
   1207   // See PR20059.
   1208   if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
   1209 
   1210   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
   1211   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
   1212   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
   1213   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
   1214 
   1215   // If both arguments of binary operation are shuffles, which use the same
   1216   // mask and shuffle within a single vector, it is worthwhile to move the
   1217   // shuffle after binary operation:
   1218   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
   1219   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
   1220     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
   1221     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
   1222     if (isa<UndefValue>(LShuf->getOperand(1)) &&
   1223         isa<UndefValue>(RShuf->getOperand(1)) &&
   1224         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
   1225         LShuf->getMask() == RShuf->getMask()) {
   1226       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
   1227           RShuf->getOperand(0), Builder);
   1228       Value *Res = Builder->CreateShuffleVector(NewBO,
   1229           UndefValue::get(NewBO->getType()), LShuf->getMask());
   1230       return Res;
   1231     }
   1232   }
   1233 
   1234   // If one argument is a shuffle within one vector, the other is a constant,
   1235   // try moving the shuffle after the binary operation.
   1236   ShuffleVectorInst *Shuffle = nullptr;
   1237   Constant *C1 = nullptr;
   1238   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
   1239   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
   1240   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
   1241   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
   1242   if (Shuffle && C1 &&
   1243       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
   1244       isa<UndefValue>(Shuffle->getOperand(1)) &&
   1245       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
   1246     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
   1247     // Find constant C2 that has property:
   1248     //   shuffle(C2, ShMask) = C1
   1249     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
   1250     // reorder is not possible.
   1251     SmallVector<Constant*, 16> C2M(VWidth,
   1252                                UndefValue::get(C1->getType()->getScalarType()));
   1253     bool MayChange = true;
   1254     for (unsigned I = 0; I < VWidth; ++I) {
   1255       if (ShMask[I] >= 0) {
   1256         assert(ShMask[I] < (int)VWidth);
   1257         if (!isa<UndefValue>(C2M[ShMask[I]])) {
   1258           MayChange = false;
   1259           break;
   1260         }
   1261         C2M[ShMask[I]] = C1->getAggregateElement(I);
   1262       }
   1263     }
   1264     if (MayChange) {
   1265       Constant *C2 = ConstantVector::get(C2M);
   1266       Value *NewLHS, *NewRHS;
   1267       if (isa<Constant>(LHS)) {
   1268         NewLHS = C2;
   1269         NewRHS = Shuffle->getOperand(0);
   1270       } else {
   1271         NewLHS = Shuffle->getOperand(0);
   1272         NewRHS = C2;
   1273       }
   1274       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
   1275       Value *Res = Builder->CreateShuffleVector(NewBO,
   1276           UndefValue::get(Inst.getType()), Shuffle->getMask());
   1277       return Res;
   1278     }
   1279   }
   1280 
   1281   return nullptr;
   1282 }
   1283 
   1284 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1285   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
   1286 
   1287   if (Value *V = SimplifyGEPInst(Ops, DL))
   1288     return ReplaceInstUsesWith(GEP, V);
   1289 
   1290   Value *PtrOp = GEP.getOperand(0);
   1291 
   1292   // Eliminate unneeded casts for indices, and replace indices which displace
   1293   // by multiples of a zero size type with zero.
   1294   if (DL) {
   1295     bool MadeChange = false;
   1296     Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
   1297 
   1298     gep_type_iterator GTI = gep_type_begin(GEP);
   1299     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
   1300          I != E; ++I, ++GTI) {
   1301       // Skip indices into struct types.
   1302       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
   1303       if (!SeqTy) continue;
   1304 
   1305       // If the element type has zero size then any index over it is equivalent
   1306       // to an index of zero, so replace it with zero if it is not zero already.
   1307       if (SeqTy->getElementType()->isSized() &&
   1308           DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
   1309         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
   1310           *I = Constant::getNullValue(IntPtrTy);
   1311           MadeChange = true;
   1312         }
   1313 
   1314       Type *IndexTy = (*I)->getType();
   1315       if (IndexTy != IntPtrTy) {
   1316         // If we are using a wider index than needed for this platform, shrink
   1317         // it to what we need.  If narrower, sign-extend it to what we need.
   1318         // This explicit cast can make subsequent optimizations more obvious.
   1319         *I = Builder->CreateIntCast(*I, IntPtrTy, true);
   1320         MadeChange = true;
   1321       }
   1322     }
   1323     if (MadeChange) return &GEP;
   1324   }
   1325 
   1326   // Check to see if the inputs to the PHI node are getelementptr instructions.
   1327   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
   1328     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
   1329     if (!Op1)
   1330       return nullptr;
   1331 
   1332     signed DI = -1;
   1333 
   1334     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
   1335       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
   1336       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
   1337         return nullptr;
   1338 
   1339       // Keep track of the type as we walk the GEP.
   1340       Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
   1341 
   1342       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
   1343         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
   1344           return nullptr;
   1345 
   1346         if (Op1->getOperand(J) != Op2->getOperand(J)) {
   1347           if (DI == -1) {
   1348             // We have not seen any differences yet in the GEPs feeding the
   1349             // PHI yet, so we record this one if it is allowed to be a
   1350             // variable.
   1351 
   1352             // The first two arguments can vary for any GEP, the rest have to be
   1353             // static for struct slots
   1354             if (J > 1 && CurTy->isStructTy())
   1355               return nullptr;
   1356 
   1357             DI = J;
   1358           } else {
   1359             // The GEP is different by more than one input. While this could be
   1360             // extended to support GEPs that vary by more than one variable it
   1361             // doesn't make sense since it greatly increases the complexity and
   1362             // would result in an R+R+R addressing mode which no backend
   1363             // directly supports and would need to be broken into several
   1364             // simpler instructions anyway.
   1365             return nullptr;
   1366           }
   1367         }
   1368 
   1369         // Sink down a layer of the type for the next iteration.
   1370         if (J > 0) {
   1371           if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
   1372             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
   1373           } else {
   1374             CurTy = nullptr;
   1375           }
   1376         }
   1377       }
   1378     }
   1379 
   1380     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
   1381 
   1382     if (DI == -1) {
   1383       // All the GEPs feeding the PHI are identical. Clone one down into our
   1384       // BB so that it can be merged with the current GEP.
   1385       GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
   1386                                             NewGEP);
   1387     } else {
   1388       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
   1389       // into the current block so it can be merged, and create a new PHI to
   1390       // set that index.
   1391       Instruction *InsertPt = Builder->GetInsertPoint();
   1392       Builder->SetInsertPoint(PN);
   1393       PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
   1394                                           PN->getNumOperands());
   1395       Builder->SetInsertPoint(InsertPt);
   1396 
   1397       for (auto &I : PN->operands())
   1398         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
   1399                            PN->getIncomingBlock(I));
   1400 
   1401       NewGEP->setOperand(DI, NewPN);
   1402       GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
   1403                                             NewGEP);
   1404       NewGEP->setOperand(DI, NewPN);
   1405     }
   1406 
   1407     GEP.setOperand(0, NewGEP);
   1408     PtrOp = NewGEP;
   1409   }
   1410 
   1411   // Combine Indices - If the source pointer to this getelementptr instruction
   1412   // is a getelementptr instruction, combine the indices of the two
   1413   // getelementptr instructions into a single instruction.
   1414   //
   1415   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
   1416     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
   1417       return nullptr;
   1418 
   1419     // Note that if our source is a gep chain itself then we wait for that
   1420     // chain to be resolved before we perform this transformation.  This
   1421     // avoids us creating a TON of code in some cases.
   1422     if (GEPOperator *SrcGEP =
   1423           dyn_cast<GEPOperator>(Src->getOperand(0)))
   1424       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
   1425         return nullptr;   // Wait until our source is folded to completion.
   1426 
   1427     SmallVector<Value*, 8> Indices;
   1428 
   1429     // Find out whether the last index in the source GEP is a sequential idx.
   1430     bool EndsWithSequential = false;
   1431     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
   1432          I != E; ++I)
   1433       EndsWithSequential = !(*I)->isStructTy();
   1434 
   1435     // Can we combine the two pointer arithmetics offsets?
   1436     if (EndsWithSequential) {
   1437       // Replace: gep (gep %P, long B), long A, ...
   1438       // With:    T = long A+B; gep %P, T, ...
   1439       //
   1440       Value *Sum;
   1441       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
   1442       Value *GO1 = GEP.getOperand(1);
   1443       if (SO1 == Constant::getNullValue(SO1->getType())) {
   1444         Sum = GO1;
   1445       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
   1446         Sum = SO1;
   1447       } else {
   1448         // If they aren't the same type, then the input hasn't been processed
   1449         // by the loop above yet (which canonicalizes sequential index types to
   1450         // intptr_t).  Just avoid transforming this until the input has been
   1451         // normalized.
   1452         if (SO1->getType() != GO1->getType())
   1453           return nullptr;
   1454         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
   1455       }
   1456 
   1457       // Update the GEP in place if possible.
   1458       if (Src->getNumOperands() == 2) {
   1459         GEP.setOperand(0, Src->getOperand(0));
   1460         GEP.setOperand(1, Sum);
   1461         return &GEP;
   1462       }
   1463       Indices.append(Src->op_begin()+1, Src->op_end()-1);
   1464       Indices.push_back(Sum);
   1465       Indices.append(GEP.op_begin()+2, GEP.op_end());
   1466     } else if (isa<Constant>(*GEP.idx_begin()) &&
   1467                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
   1468                Src->getNumOperands() != 1) {
   1469       // Otherwise we can do the fold if the first index of the GEP is a zero
   1470       Indices.append(Src->op_begin()+1, Src->op_end());
   1471       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
   1472     }
   1473 
   1474     if (!Indices.empty())
   1475       return (GEP.isInBounds() && Src->isInBounds()) ?
   1476         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
   1477                                           GEP.getName()) :
   1478         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
   1479   }
   1480 
   1481   // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
   1482   // The GEP pattern is emitted by the SCEV expander for certain kinds of
   1483   // pointer arithmetic.
   1484   if (DL && GEP.getNumIndices() == 1 &&
   1485       match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
   1486     unsigned AS = GEP.getPointerAddressSpace();
   1487     if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
   1488         GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
   1489         DL->getPointerSizeInBits(AS)) {
   1490       Operator *Index = cast<Operator>(GEP.getOperand(1));
   1491       Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
   1492       Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
   1493       return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
   1494     }
   1495   }
   1496 
   1497   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
   1498   Value *StrippedPtr = PtrOp->stripPointerCasts();
   1499   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
   1500 
   1501   // We do not handle pointer-vector geps here.
   1502   if (!StrippedPtrTy)
   1503     return nullptr;
   1504 
   1505   if (StrippedPtr != PtrOp) {
   1506     bool HasZeroPointerIndex = false;
   1507     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
   1508       HasZeroPointerIndex = C->isZero();
   1509 
   1510     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
   1511     // into     : GEP [10 x i8]* X, i32 0, ...
   1512     //
   1513     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
   1514     //           into     : GEP i8* X, ...
   1515     //
   1516     // This occurs when the program declares an array extern like "int X[];"
   1517     if (HasZeroPointerIndex) {
   1518       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
   1519       if (ArrayType *CATy =
   1520           dyn_cast<ArrayType>(CPTy->getElementType())) {
   1521         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
   1522         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
   1523           // -> GEP i8* X, ...
   1524           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
   1525           GetElementPtrInst *Res =
   1526             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
   1527           Res->setIsInBounds(GEP.isInBounds());
   1528           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
   1529             return Res;
   1530           // Insert Res, and create an addrspacecast.
   1531           // e.g.,
   1532           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
   1533           // ->
   1534           // %0 = GEP i8 addrspace(1)* X, ...
   1535           // addrspacecast i8 addrspace(1)* %0 to i8*
   1536           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
   1537         }
   1538 
   1539         if (ArrayType *XATy =
   1540               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
   1541           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
   1542           if (CATy->getElementType() == XATy->getElementType()) {
   1543             // -> GEP [10 x i8]* X, i32 0, ...
   1544             // At this point, we know that the cast source type is a pointer
   1545             // to an array of the same type as the destination pointer
   1546             // array.  Because the array type is never stepped over (there
   1547             // is a leading zero) we can fold the cast into this GEP.
   1548             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
   1549               GEP.setOperand(0, StrippedPtr);
   1550               return &GEP;
   1551             }
   1552             // Cannot replace the base pointer directly because StrippedPtr's
   1553             // address space is different. Instead, create a new GEP followed by
   1554             // an addrspacecast.
   1555             // e.g.,
   1556             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
   1557             //   i32 0, ...
   1558             // ->
   1559             // %0 = GEP [10 x i8] addrspace(1)* X, ...
   1560             // addrspacecast i8 addrspace(1)* %0 to i8*
   1561             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
   1562             Value *NewGEP = GEP.isInBounds() ?
   1563               Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
   1564               Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
   1565             return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1566           }
   1567         }
   1568       }
   1569     } else if (GEP.getNumOperands() == 2) {
   1570       // Transform things like:
   1571       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
   1572       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
   1573       Type *SrcElTy = StrippedPtrTy->getElementType();
   1574       Type *ResElTy = PtrOp->getType()->getPointerElementType();
   1575       if (DL && SrcElTy->isArrayTy() &&
   1576           DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
   1577           DL->getTypeAllocSize(ResElTy)) {
   1578         Type *IdxType = DL->getIntPtrType(GEP.getType());
   1579         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
   1580         Value *NewGEP = GEP.isInBounds() ?
   1581           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
   1582           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
   1583 
   1584         // V and GEP are both pointer types --> BitCast
   1585         if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
   1586           return new BitCastInst(NewGEP, GEP.getType());
   1587         return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1588       }
   1589 
   1590       // Transform things like:
   1591       // %V = mul i64 %N, 4
   1592       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
   1593       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
   1594       if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
   1595         // Check that changing the type amounts to dividing the index by a scale
   1596         // factor.
   1597         uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
   1598         uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
   1599         if (ResSize && SrcSize % ResSize == 0) {
   1600           Value *Idx = GEP.getOperand(1);
   1601           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1602           uint64_t Scale = SrcSize / ResSize;
   1603 
   1604           // Earlier transforms ensure that the index has type IntPtrType, which
   1605           // considerably simplifies the logic by eliminating implicit casts.
   1606           assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
   1607                  "Index not cast to pointer width?");
   1608 
   1609           bool NSW;
   1610           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1611             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1612             // If the multiplication NewIdx * Scale may overflow then the new
   1613             // GEP may not be "inbounds".
   1614             Value *NewGEP = GEP.isInBounds() && NSW ?
   1615               Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
   1616               Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
   1617 
   1618             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1619             if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
   1620               return new BitCastInst(NewGEP, GEP.getType());
   1621             return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1622           }
   1623         }
   1624       }
   1625 
   1626       // Similarly, transform things like:
   1627       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
   1628       //   (where tmp = 8*tmp2) into:
   1629       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
   1630       if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
   1631           SrcElTy->isArrayTy()) {
   1632         // Check that changing to the array element type amounts to dividing the
   1633         // index by a scale factor.
   1634         uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
   1635         uint64_t ArrayEltSize
   1636           = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
   1637         if (ResSize && ArrayEltSize % ResSize == 0) {
   1638           Value *Idx = GEP.getOperand(1);
   1639           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1640           uint64_t Scale = ArrayEltSize / ResSize;
   1641 
   1642           // Earlier transforms ensure that the index has type IntPtrType, which
   1643           // considerably simplifies the logic by eliminating implicit casts.
   1644           assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
   1645                  "Index not cast to pointer width?");
   1646 
   1647           bool NSW;
   1648           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1649             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1650             // If the multiplication NewIdx * Scale may overflow then the new
   1651             // GEP may not be "inbounds".
   1652             Value *Off[2] = {
   1653               Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
   1654               NewIdx
   1655             };
   1656 
   1657             Value *NewGEP = GEP.isInBounds() && NSW ?
   1658               Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
   1659               Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
   1660             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1661             if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
   1662               return new BitCastInst(NewGEP, GEP.getType());
   1663             return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1664           }
   1665         }
   1666       }
   1667     }
   1668   }
   1669 
   1670   if (!DL)
   1671     return nullptr;
   1672 
   1673   /// See if we can simplify:
   1674   ///   X = bitcast A* to B*
   1675   ///   Y = gep X, <...constant indices...>
   1676   /// into a gep of the original struct.  This is important for SROA and alias
   1677   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
   1678   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
   1679     Value *Operand = BCI->getOperand(0);
   1680     PointerType *OpType = cast<PointerType>(Operand->getType());
   1681     unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
   1682     APInt Offset(OffsetBits, 0);
   1683     if (!isa<BitCastInst>(Operand) &&
   1684         GEP.accumulateConstantOffset(*DL, Offset) &&
   1685         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
   1686 
   1687       // If this GEP instruction doesn't move the pointer, just replace the GEP
   1688       // with a bitcast of the real input to the dest type.
   1689       if (!Offset) {
   1690         // If the bitcast is of an allocation, and the allocation will be
   1691         // converted to match the type of the cast, don't touch this.
   1692         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
   1693           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
   1694           if (Instruction *I = visitBitCast(*BCI)) {
   1695             if (I != BCI) {
   1696               I->takeName(BCI);
   1697               BCI->getParent()->getInstList().insert(BCI, I);
   1698               ReplaceInstUsesWith(*BCI, I);
   1699             }
   1700             return &GEP;
   1701           }
   1702         }
   1703         return new BitCastInst(Operand, GEP.getType());
   1704       }
   1705 
   1706       // Otherwise, if the offset is non-zero, we need to find out if there is a
   1707       // field at Offset in 'A's type.  If so, we can pull the cast through the
   1708       // GEP.
   1709       SmallVector<Value*, 8> NewIndices;
   1710       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
   1711         Value *NGEP = GEP.isInBounds() ?
   1712           Builder->CreateInBoundsGEP(Operand, NewIndices) :
   1713           Builder->CreateGEP(Operand, NewIndices);
   1714 
   1715         if (NGEP->getType() == GEP.getType())
   1716           return ReplaceInstUsesWith(GEP, NGEP);
   1717         NGEP->takeName(&GEP);
   1718         return new BitCastInst(NGEP, GEP.getType());
   1719       }
   1720     }
   1721   }
   1722 
   1723   return nullptr;
   1724 }
   1725 
   1726 static bool
   1727 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
   1728                      const TargetLibraryInfo *TLI) {
   1729   SmallVector<Instruction*, 4> Worklist;
   1730   Worklist.push_back(AI);
   1731 
   1732   do {
   1733     Instruction *PI = Worklist.pop_back_val();
   1734     for (User *U : PI->users()) {
   1735       Instruction *I = cast<Instruction>(U);
   1736       switch (I->getOpcode()) {
   1737       default:
   1738         // Give up the moment we see something we can't handle.
   1739         return false;
   1740 
   1741       case Instruction::BitCast:
   1742       case Instruction::GetElementPtr:
   1743         Users.push_back(I);
   1744         Worklist.push_back(I);
   1745         continue;
   1746 
   1747       case Instruction::ICmp: {
   1748         ICmpInst *ICI = cast<ICmpInst>(I);
   1749         // We can fold eq/ne comparisons with null to false/true, respectively.
   1750         if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
   1751           return false;
   1752         Users.push_back(I);
   1753         continue;
   1754       }
   1755 
   1756       case Instruction::Call:
   1757         // Ignore no-op and store intrinsics.
   1758         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1759           switch (II->getIntrinsicID()) {
   1760           default:
   1761             return false;
   1762 
   1763           case Intrinsic::memmove:
   1764           case Intrinsic::memcpy:
   1765           case Intrinsic::memset: {
   1766             MemIntrinsic *MI = cast<MemIntrinsic>(II);
   1767             if (MI->isVolatile() || MI->getRawDest() != PI)
   1768               return false;
   1769           }
   1770           // fall through
   1771           case Intrinsic::dbg_declare:
   1772           case Intrinsic::dbg_value:
   1773           case Intrinsic::invariant_start:
   1774           case Intrinsic::invariant_end:
   1775           case Intrinsic::lifetime_start:
   1776           case Intrinsic::lifetime_end:
   1777           case Intrinsic::objectsize:
   1778             Users.push_back(I);
   1779             continue;
   1780           }
   1781         }
   1782 
   1783         if (isFreeCall(I, TLI)) {
   1784           Users.push_back(I);
   1785           continue;
   1786         }
   1787         return false;
   1788 
   1789       case Instruction::Store: {
   1790         StoreInst *SI = cast<StoreInst>(I);
   1791         if (SI->isVolatile() || SI->getPointerOperand() != PI)
   1792           return false;
   1793         Users.push_back(I);
   1794         continue;
   1795       }
   1796       }
   1797       llvm_unreachable("missing a return?");
   1798     }
   1799   } while (!Worklist.empty());
   1800   return true;
   1801 }
   1802 
   1803 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
   1804   // If we have a malloc call which is only used in any amount of comparisons
   1805   // to null and free calls, delete the calls and replace the comparisons with
   1806   // true or false as appropriate.
   1807   SmallVector<WeakVH, 64> Users;
   1808   if (isAllocSiteRemovable(&MI, Users, TLI)) {
   1809     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1810       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
   1811       if (!I) continue;
   1812 
   1813       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
   1814         ReplaceInstUsesWith(*C,
   1815                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
   1816                                              C->isFalseWhenEqual()));
   1817       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
   1818         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
   1819       } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1820         if (II->getIntrinsicID() == Intrinsic::objectsize) {
   1821           ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
   1822           uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
   1823           ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
   1824         }
   1825       }
   1826       EraseInstFromFunction(*I);
   1827     }
   1828 
   1829     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
   1830       // Replace invoke with a NOP intrinsic to maintain the original CFG
   1831       Module *M = II->getParent()->getParent()->getParent();
   1832       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
   1833       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
   1834                          None, "", II->getParent());
   1835     }
   1836     return EraseInstFromFunction(MI);
   1837   }
   1838   return nullptr;
   1839 }
   1840 
   1841 /// \brief Move the call to free before a NULL test.
   1842 ///
   1843 /// Check if this free is accessed after its argument has been test
   1844 /// against NULL (property 0).
   1845 /// If yes, it is legal to move this call in its predecessor block.
   1846 ///
   1847 /// The move is performed only if the block containing the call to free
   1848 /// will be removed, i.e.:
   1849 /// 1. it has only one predecessor P, and P has two successors
   1850 /// 2. it contains the call and an unconditional branch
   1851 /// 3. its successor is the same as its predecessor's successor
   1852 ///
   1853 /// The profitability is out-of concern here and this function should
   1854 /// be called only if the caller knows this transformation would be
   1855 /// profitable (e.g., for code size).
   1856 static Instruction *
   1857 tryToMoveFreeBeforeNullTest(CallInst &FI) {
   1858   Value *Op = FI.getArgOperand(0);
   1859   BasicBlock *FreeInstrBB = FI.getParent();
   1860   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
   1861 
   1862   // Validate part of constraint #1: Only one predecessor
   1863   // FIXME: We can extend the number of predecessor, but in that case, we
   1864   //        would duplicate the call to free in each predecessor and it may
   1865   //        not be profitable even for code size.
   1866   if (!PredBB)
   1867     return nullptr;
   1868 
   1869   // Validate constraint #2: Does this block contains only the call to
   1870   //                         free and an unconditional branch?
   1871   // FIXME: We could check if we can speculate everything in the
   1872   //        predecessor block
   1873   if (FreeInstrBB->size() != 2)
   1874     return nullptr;
   1875   BasicBlock *SuccBB;
   1876   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
   1877     return nullptr;
   1878 
   1879   // Validate the rest of constraint #1 by matching on the pred branch.
   1880   TerminatorInst *TI = PredBB->getTerminator();
   1881   BasicBlock *TrueBB, *FalseBB;
   1882   ICmpInst::Predicate Pred;
   1883   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
   1884     return nullptr;
   1885   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
   1886     return nullptr;
   1887 
   1888   // Validate constraint #3: Ensure the null case just falls through.
   1889   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
   1890     return nullptr;
   1891   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
   1892          "Broken CFG: missing edge from predecessor to successor");
   1893 
   1894   FI.moveBefore(TI);
   1895   return &FI;
   1896 }
   1897 
   1898 
   1899 Instruction *InstCombiner::visitFree(CallInst &FI) {
   1900   Value *Op = FI.getArgOperand(0);
   1901 
   1902   // free undef -> unreachable.
   1903   if (isa<UndefValue>(Op)) {
   1904     // Insert a new store to null because we cannot modify the CFG here.
   1905     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
   1906                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
   1907     return EraseInstFromFunction(FI);
   1908   }
   1909 
   1910   // If we have 'free null' delete the instruction.  This can happen in stl code
   1911   // when lots of inlining happens.
   1912   if (isa<ConstantPointerNull>(Op))
   1913     return EraseInstFromFunction(FI);
   1914 
   1915   // If we optimize for code size, try to move the call to free before the null
   1916   // test so that simplify cfg can remove the empty block and dead code
   1917   // elimination the branch. I.e., helps to turn something like:
   1918   // if (foo) free(foo);
   1919   // into
   1920   // free(foo);
   1921   if (MinimizeSize)
   1922     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
   1923       return I;
   1924 
   1925   return nullptr;
   1926 }
   1927 
   1928 
   1929 
   1930 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
   1931   // Change br (not X), label True, label False to: br X, label False, True
   1932   Value *X = nullptr;
   1933   BasicBlock *TrueDest;
   1934   BasicBlock *FalseDest;
   1935   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
   1936       !isa<Constant>(X)) {
   1937     // Swap Destinations and condition...
   1938     BI.setCondition(X);
   1939     BI.swapSuccessors();
   1940     return &BI;
   1941   }
   1942 
   1943   // Canonicalize fcmp_one -> fcmp_oeq
   1944   FCmpInst::Predicate FPred; Value *Y;
   1945   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
   1946                              TrueDest, FalseDest)) &&
   1947       BI.getCondition()->hasOneUse())
   1948     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
   1949         FPred == FCmpInst::FCMP_OGE) {
   1950       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
   1951       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
   1952 
   1953       // Swap Destinations and condition.
   1954       BI.swapSuccessors();
   1955       Worklist.Add(Cond);
   1956       return &BI;
   1957     }
   1958 
   1959   // Canonicalize icmp_ne -> icmp_eq
   1960   ICmpInst::Predicate IPred;
   1961   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
   1962                       TrueDest, FalseDest)) &&
   1963       BI.getCondition()->hasOneUse())
   1964     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
   1965         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
   1966         IPred == ICmpInst::ICMP_SGE) {
   1967       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
   1968       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
   1969       // Swap Destinations and condition.
   1970       BI.swapSuccessors();
   1971       Worklist.Add(Cond);
   1972       return &BI;
   1973     }
   1974 
   1975   return nullptr;
   1976 }
   1977 
   1978 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
   1979   Value *Cond = SI.getCondition();
   1980   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
   1981     if (I->getOpcode() == Instruction::Add)
   1982       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1983         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
   1984         // Skip the first item since that's the default case.
   1985         for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
   1986              i != e; ++i) {
   1987           ConstantInt* CaseVal = i.getCaseValue();
   1988           Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
   1989                                                       AddRHS);
   1990           assert(isa<ConstantInt>(NewCaseVal) &&
   1991                  "Result of expression should be constant");
   1992           i.setValue(cast<ConstantInt>(NewCaseVal));
   1993         }
   1994         SI.setCondition(I->getOperand(0));
   1995         Worklist.Add(I);
   1996         return &SI;
   1997       }
   1998   }
   1999   return nullptr;
   2000 }
   2001 
   2002 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
   2003   Value *Agg = EV.getAggregateOperand();
   2004 
   2005   if (!EV.hasIndices())
   2006     return ReplaceInstUsesWith(EV, Agg);
   2007 
   2008   if (Constant *C = dyn_cast<Constant>(Agg)) {
   2009     if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
   2010       if (EV.getNumIndices() == 0)
   2011         return ReplaceInstUsesWith(EV, C2);
   2012       // Extract the remaining indices out of the constant indexed by the
   2013       // first index
   2014       return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
   2015     }
   2016     return nullptr; // Can't handle other constants
   2017   }
   2018 
   2019   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
   2020     // We're extracting from an insertvalue instruction, compare the indices
   2021     const unsigned *exti, *exte, *insi, *inse;
   2022     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
   2023          exte = EV.idx_end(), inse = IV->idx_end();
   2024          exti != exte && insi != inse;
   2025          ++exti, ++insi) {
   2026       if (*insi != *exti)
   2027         // The insert and extract both reference distinctly different elements.
   2028         // This means the extract is not influenced by the insert, and we can
   2029         // replace the aggregate operand of the extract with the aggregate
   2030         // operand of the insert. i.e., replace
   2031         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2032         // %E = extractvalue { i32, { i32 } } %I, 0
   2033         // with
   2034         // %E = extractvalue { i32, { i32 } } %A, 0
   2035         return ExtractValueInst::Create(IV->getAggregateOperand(),
   2036                                         EV.getIndices());
   2037     }
   2038     if (exti == exte && insi == inse)
   2039       // Both iterators are at the end: Index lists are identical. Replace
   2040       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2041       // %C = extractvalue { i32, { i32 } } %B, 1, 0
   2042       // with "i32 42"
   2043       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
   2044     if (exti == exte) {
   2045       // The extract list is a prefix of the insert list. i.e. replace
   2046       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2047       // %E = extractvalue { i32, { i32 } } %I, 1
   2048       // with
   2049       // %X = extractvalue { i32, { i32 } } %A, 1
   2050       // %E = insertvalue { i32 } %X, i32 42, 0
   2051       // by switching the order of the insert and extract (though the
   2052       // insertvalue should be left in, since it may have other uses).
   2053       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
   2054                                                  EV.getIndices());
   2055       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
   2056                                      makeArrayRef(insi, inse));
   2057     }
   2058     if (insi == inse)
   2059       // The insert list is a prefix of the extract list
   2060       // We can simply remove the common indices from the extract and make it
   2061       // operate on the inserted value instead of the insertvalue result.
   2062       // i.e., replace
   2063       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2064       // %E = extractvalue { i32, { i32 } } %I, 1, 0
   2065       // with
   2066       // %E extractvalue { i32 } { i32 42 }, 0
   2067       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
   2068                                       makeArrayRef(exti, exte));
   2069   }
   2070   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
   2071     // We're extracting from an intrinsic, see if we're the only user, which
   2072     // allows us to simplify multiple result intrinsics to simpler things that
   2073     // just get one value.
   2074     if (II->hasOneUse()) {
   2075       // Check if we're grabbing the overflow bit or the result of a 'with
   2076       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
   2077       // and replace it with a traditional binary instruction.
   2078       switch (II->getIntrinsicID()) {
   2079       case Intrinsic::uadd_with_overflow:
   2080       case Intrinsic::sadd_with_overflow:
   2081         if (*EV.idx_begin() == 0) {  // Normal result.
   2082           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2083           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2084           EraseInstFromFunction(*II);
   2085           return BinaryOperator::CreateAdd(LHS, RHS);
   2086         }
   2087 
   2088         // If the normal result of the add is dead, and the RHS is a constant,
   2089         // we can transform this into a range comparison.
   2090         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
   2091         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
   2092           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
   2093             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
   2094                                 ConstantExpr::getNot(CI));
   2095         break;
   2096       case Intrinsic::usub_with_overflow:
   2097       case Intrinsic::ssub_with_overflow:
   2098         if (*EV.idx_begin() == 0) {  // Normal result.
   2099           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2100           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2101           EraseInstFromFunction(*II);
   2102           return BinaryOperator::CreateSub(LHS, RHS);
   2103         }
   2104         break;
   2105       case Intrinsic::umul_with_overflow:
   2106       case Intrinsic::smul_with_overflow:
   2107         if (*EV.idx_begin() == 0) {  // Normal result.
   2108           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2109           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2110           EraseInstFromFunction(*II);
   2111           return BinaryOperator::CreateMul(LHS, RHS);
   2112         }
   2113         break;
   2114       default:
   2115         break;
   2116       }
   2117     }
   2118   }
   2119   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
   2120     // If the (non-volatile) load only has one use, we can rewrite this to a
   2121     // load from a GEP. This reduces the size of the load.
   2122     // FIXME: If a load is used only by extractvalue instructions then this
   2123     //        could be done regardless of having multiple uses.
   2124     if (L->isSimple() && L->hasOneUse()) {
   2125       // extractvalue has integer indices, getelementptr has Value*s. Convert.
   2126       SmallVector<Value*, 4> Indices;
   2127       // Prefix an i32 0 since we need the first element.
   2128       Indices.push_back(Builder->getInt32(0));
   2129       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
   2130             I != E; ++I)
   2131         Indices.push_back(Builder->getInt32(*I));
   2132 
   2133       // We need to insert these at the location of the old load, not at that of
   2134       // the extractvalue.
   2135       Builder->SetInsertPoint(L->getParent(), L);
   2136       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
   2137       // Returning the load directly will cause the main loop to insert it in
   2138       // the wrong spot, so use ReplaceInstUsesWith().
   2139       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
   2140     }
   2141   // We could simplify extracts from other values. Note that nested extracts may
   2142   // already be simplified implicitly by the above: extract (extract (insert) )
   2143   // will be translated into extract ( insert ( extract ) ) first and then just
   2144   // the value inserted, if appropriate. Similarly for extracts from single-use
   2145   // loads: extract (extract (load)) will be translated to extract (load (gep))
   2146   // and if again single-use then via load (gep (gep)) to load (gep).
   2147   // However, double extracts from e.g. function arguments or return values
   2148   // aren't handled yet.
   2149   return nullptr;
   2150 }
   2151 
   2152 enum Personality_Type {
   2153   Unknown_Personality,
   2154   GNU_Ada_Personality,
   2155   GNU_CXX_Personality,
   2156   GNU_ObjC_Personality
   2157 };
   2158 
   2159 /// RecognizePersonality - See if the given exception handling personality
   2160 /// function is one that we understand.  If so, return a description of it;
   2161 /// otherwise return Unknown_Personality.
   2162 static Personality_Type RecognizePersonality(Value *Pers) {
   2163   Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
   2164   if (!F)
   2165     return Unknown_Personality;
   2166   return StringSwitch<Personality_Type>(F->getName())
   2167     .Case("__gnat_eh_personality", GNU_Ada_Personality)
   2168     .Case("__gxx_personality_v0",  GNU_CXX_Personality)
   2169     .Case("__objc_personality_v0", GNU_ObjC_Personality)
   2170     .Default(Unknown_Personality);
   2171 }
   2172 
   2173 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
   2174 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
   2175   switch (Personality) {
   2176   case Unknown_Personality:
   2177     return false;
   2178   case GNU_Ada_Personality:
   2179     // While __gnat_all_others_value will match any Ada exception, it doesn't
   2180     // match foreign exceptions (or didn't, before gcc-4.7).
   2181     return false;
   2182   case GNU_CXX_Personality:
   2183   case GNU_ObjC_Personality:
   2184     return TypeInfo->isNullValue();
   2185   }
   2186   llvm_unreachable("Unknown personality!");
   2187 }
   2188 
   2189 static bool shorter_filter(const Value *LHS, const Value *RHS) {
   2190   return
   2191     cast<ArrayType>(LHS->getType())->getNumElements()
   2192   <
   2193     cast<ArrayType>(RHS->getType())->getNumElements();
   2194 }
   2195 
   2196 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
   2197   // The logic here should be correct for any real-world personality function.
   2198   // However if that turns out not to be true, the offending logic can always
   2199   // be conditioned on the personality function, like the catch-all logic is.
   2200   Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
   2201 
   2202   // Simplify the list of clauses, eg by removing repeated catch clauses
   2203   // (these are often created by inlining).
   2204   bool MakeNewInstruction = false; // If true, recreate using the following:
   2205   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
   2206   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
   2207 
   2208   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
   2209   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
   2210     bool isLastClause = i + 1 == e;
   2211     if (LI.isCatch(i)) {
   2212       // A catch clause.
   2213       Constant *CatchClause = LI.getClause(i);
   2214       Constant *TypeInfo = CatchClause->stripPointerCasts();
   2215 
   2216       // If we already saw this clause, there is no point in having a second
   2217       // copy of it.
   2218       if (AlreadyCaught.insert(TypeInfo)) {
   2219         // This catch clause was not already seen.
   2220         NewClauses.push_back(CatchClause);
   2221       } else {
   2222         // Repeated catch clause - drop the redundant copy.
   2223         MakeNewInstruction = true;
   2224       }
   2225 
   2226       // If this is a catch-all then there is no point in keeping any following
   2227       // clauses or marking the landingpad as having a cleanup.
   2228       if (isCatchAll(Personality, TypeInfo)) {
   2229         if (!isLastClause)
   2230           MakeNewInstruction = true;
   2231         CleanupFlag = false;
   2232         break;
   2233       }
   2234     } else {
   2235       // A filter clause.  If any of the filter elements were already caught
   2236       // then they can be dropped from the filter.  It is tempting to try to
   2237       // exploit the filter further by saying that any typeinfo that does not
   2238       // occur in the filter can't be caught later (and thus can be dropped).
   2239       // However this would be wrong, since typeinfos can match without being
   2240       // equal (for example if one represents a C++ class, and the other some
   2241       // class derived from it).
   2242       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
   2243       Constant *FilterClause = LI.getClause(i);
   2244       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
   2245       unsigned NumTypeInfos = FilterType->getNumElements();
   2246 
   2247       // An empty filter catches everything, so there is no point in keeping any
   2248       // following clauses or marking the landingpad as having a cleanup.  By
   2249       // dealing with this case here the following code is made a bit simpler.
   2250       if (!NumTypeInfos) {
   2251         NewClauses.push_back(FilterClause);
   2252         if (!isLastClause)
   2253           MakeNewInstruction = true;
   2254         CleanupFlag = false;
   2255         break;
   2256       }
   2257 
   2258       bool MakeNewFilter = false; // If true, make a new filter.
   2259       SmallVector<Constant *, 16> NewFilterElts; // New elements.
   2260       if (isa<ConstantAggregateZero>(FilterClause)) {
   2261         // Not an empty filter - it contains at least one null typeinfo.
   2262         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
   2263         Constant *TypeInfo =
   2264           Constant::getNullValue(FilterType->getElementType());
   2265         // If this typeinfo is a catch-all then the filter can never match.
   2266         if (isCatchAll(Personality, TypeInfo)) {
   2267           // Throw the filter away.
   2268           MakeNewInstruction = true;
   2269           continue;
   2270         }
   2271 
   2272         // There is no point in having multiple copies of this typeinfo, so
   2273         // discard all but the first copy if there is more than one.
   2274         NewFilterElts.push_back(TypeInfo);
   2275         if (NumTypeInfos > 1)
   2276           MakeNewFilter = true;
   2277       } else {
   2278         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
   2279         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
   2280         NewFilterElts.reserve(NumTypeInfos);
   2281 
   2282         // Remove any filter elements that were already caught or that already
   2283         // occurred in the filter.  While there, see if any of the elements are
   2284         // catch-alls.  If so, the filter can be discarded.
   2285         bool SawCatchAll = false;
   2286         for (unsigned j = 0; j != NumTypeInfos; ++j) {
   2287           Constant *Elt = Filter->getOperand(j);
   2288           Constant *TypeInfo = Elt->stripPointerCasts();
   2289           if (isCatchAll(Personality, TypeInfo)) {
   2290             // This element is a catch-all.  Bail out, noting this fact.
   2291             SawCatchAll = true;
   2292             break;
   2293           }
   2294           if (AlreadyCaught.count(TypeInfo))
   2295             // Already caught by an earlier clause, so having it in the filter
   2296             // is pointless.
   2297             continue;
   2298           // There is no point in having multiple copies of the same typeinfo in
   2299           // a filter, so only add it if we didn't already.
   2300           if (SeenInFilter.insert(TypeInfo))
   2301             NewFilterElts.push_back(cast<Constant>(Elt));
   2302         }
   2303         // A filter containing a catch-all cannot match anything by definition.
   2304         if (SawCatchAll) {
   2305           // Throw the filter away.
   2306           MakeNewInstruction = true;
   2307           continue;
   2308         }
   2309 
   2310         // If we dropped something from the filter, make a new one.
   2311         if (NewFilterElts.size() < NumTypeInfos)
   2312           MakeNewFilter = true;
   2313       }
   2314       if (MakeNewFilter) {
   2315         FilterType = ArrayType::get(FilterType->getElementType(),
   2316                                     NewFilterElts.size());
   2317         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
   2318         MakeNewInstruction = true;
   2319       }
   2320 
   2321       NewClauses.push_back(FilterClause);
   2322 
   2323       // If the new filter is empty then it will catch everything so there is
   2324       // no point in keeping any following clauses or marking the landingpad
   2325       // as having a cleanup.  The case of the original filter being empty was
   2326       // already handled above.
   2327       if (MakeNewFilter && !NewFilterElts.size()) {
   2328         assert(MakeNewInstruction && "New filter but not a new instruction!");
   2329         CleanupFlag = false;
   2330         break;
   2331       }
   2332     }
   2333   }
   2334 
   2335   // If several filters occur in a row then reorder them so that the shortest
   2336   // filters come first (those with the smallest number of elements).  This is
   2337   // advantageous because shorter filters are more likely to match, speeding up
   2338   // unwinding, but mostly because it increases the effectiveness of the other
   2339   // filter optimizations below.
   2340   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
   2341     unsigned j;
   2342     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
   2343     for (j = i; j != e; ++j)
   2344       if (!isa<ArrayType>(NewClauses[j]->getType()))
   2345         break;
   2346 
   2347     // Check whether the filters are already sorted by length.  We need to know
   2348     // if sorting them is actually going to do anything so that we only make a
   2349     // new landingpad instruction if it does.
   2350     for (unsigned k = i; k + 1 < j; ++k)
   2351       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
   2352         // Not sorted, so sort the filters now.  Doing an unstable sort would be
   2353         // correct too but reordering filters pointlessly might confuse users.
   2354         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
   2355                          shorter_filter);
   2356         MakeNewInstruction = true;
   2357         break;
   2358       }
   2359 
   2360     // Look for the next batch of filters.
   2361     i = j + 1;
   2362   }
   2363 
   2364   // If typeinfos matched if and only if equal, then the elements of a filter L
   2365   // that occurs later than a filter F could be replaced by the intersection of
   2366   // the elements of F and L.  In reality two typeinfos can match without being
   2367   // equal (for example if one represents a C++ class, and the other some class
   2368   // derived from it) so it would be wrong to perform this transform in general.
   2369   // However the transform is correct and useful if F is a subset of L.  In that
   2370   // case L can be replaced by F, and thus removed altogether since repeating a
   2371   // filter is pointless.  So here we look at all pairs of filters F and L where
   2372   // L follows F in the list of clauses, and remove L if every element of F is
   2373   // an element of L.  This can occur when inlining C++ functions with exception
   2374   // specifications.
   2375   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
   2376     // Examine each filter in turn.
   2377     Value *Filter = NewClauses[i];
   2378     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
   2379     if (!FTy)
   2380       // Not a filter - skip it.
   2381       continue;
   2382     unsigned FElts = FTy->getNumElements();
   2383     // Examine each filter following this one.  Doing this backwards means that
   2384     // we don't have to worry about filters disappearing under us when removed.
   2385     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
   2386       Value *LFilter = NewClauses[j];
   2387       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
   2388       if (!LTy)
   2389         // Not a filter - skip it.
   2390         continue;
   2391       // If Filter is a subset of LFilter, i.e. every element of Filter is also
   2392       // an element of LFilter, then discard LFilter.
   2393       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
   2394       // If Filter is empty then it is a subset of LFilter.
   2395       if (!FElts) {
   2396         // Discard LFilter.
   2397         NewClauses.erase(J);
   2398         MakeNewInstruction = true;
   2399         // Move on to the next filter.
   2400         continue;
   2401       }
   2402       unsigned LElts = LTy->getNumElements();
   2403       // If Filter is longer than LFilter then it cannot be a subset of it.
   2404       if (FElts > LElts)
   2405         // Move on to the next filter.
   2406         continue;
   2407       // At this point we know that LFilter has at least one element.
   2408       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
   2409         // Filter is a subset of LFilter iff Filter contains only zeros (as we
   2410         // already know that Filter is not longer than LFilter).
   2411         if (isa<ConstantAggregateZero>(Filter)) {
   2412           assert(FElts <= LElts && "Should have handled this case earlier!");
   2413           // Discard LFilter.
   2414           NewClauses.erase(J);
   2415           MakeNewInstruction = true;
   2416         }
   2417         // Move on to the next filter.
   2418         continue;
   2419       }
   2420       ConstantArray *LArray = cast<ConstantArray>(LFilter);
   2421       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
   2422         // Since Filter is non-empty and contains only zeros, it is a subset of
   2423         // LFilter iff LFilter contains a zero.
   2424         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
   2425         for (unsigned l = 0; l != LElts; ++l)
   2426           if (LArray->getOperand(l)->isNullValue()) {
   2427             // LFilter contains a zero - discard it.
   2428             NewClauses.erase(J);
   2429             MakeNewInstruction = true;
   2430             break;
   2431           }
   2432         // Move on to the next filter.
   2433         continue;
   2434       }
   2435       // At this point we know that both filters are ConstantArrays.  Loop over
   2436       // operands to see whether every element of Filter is also an element of
   2437       // LFilter.  Since filters tend to be short this is probably faster than
   2438       // using a method that scales nicely.
   2439       ConstantArray *FArray = cast<ConstantArray>(Filter);
   2440       bool AllFound = true;
   2441       for (unsigned f = 0; f != FElts; ++f) {
   2442         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
   2443         AllFound = false;
   2444         for (unsigned l = 0; l != LElts; ++l) {
   2445           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
   2446           if (LTypeInfo == FTypeInfo) {
   2447             AllFound = true;
   2448             break;
   2449           }
   2450         }
   2451         if (!AllFound)
   2452           break;
   2453       }
   2454       if (AllFound) {
   2455         // Discard LFilter.
   2456         NewClauses.erase(J);
   2457         MakeNewInstruction = true;
   2458       }
   2459       // Move on to the next filter.
   2460     }
   2461   }
   2462 
   2463   // If we changed any of the clauses, replace the old landingpad instruction
   2464   // with a new one.
   2465   if (MakeNewInstruction) {
   2466     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
   2467                                                  LI.getPersonalityFn(),
   2468                                                  NewClauses.size());
   2469     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
   2470       NLI->addClause(NewClauses[i]);
   2471     // A landing pad with no clauses must have the cleanup flag set.  It is
   2472     // theoretically possible, though highly unlikely, that we eliminated all
   2473     // clauses.  If so, force the cleanup flag to true.
   2474     if (NewClauses.empty())
   2475       CleanupFlag = true;
   2476     NLI->setCleanup(CleanupFlag);
   2477     return NLI;
   2478   }
   2479 
   2480   // Even if none of the clauses changed, we may nonetheless have understood
   2481   // that the cleanup flag is pointless.  Clear it if so.
   2482   if (LI.isCleanup() != CleanupFlag) {
   2483     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
   2484     LI.setCleanup(CleanupFlag);
   2485     return &LI;
   2486   }
   2487 
   2488   return nullptr;
   2489 }
   2490 
   2491 
   2492 
   2493 
   2494 /// TryToSinkInstruction - Try to move the specified instruction from its
   2495 /// current block into the beginning of DestBlock, which can only happen if it's
   2496 /// safe to move the instruction past all of the instructions between it and the
   2497 /// end of its block.
   2498 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
   2499   assert(I->hasOneUse() && "Invariants didn't hold!");
   2500 
   2501   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   2502   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
   2503       isa<TerminatorInst>(I))
   2504     return false;
   2505 
   2506   // Do not sink alloca instructions out of the entry block.
   2507   if (isa<AllocaInst>(I) && I->getParent() ==
   2508         &DestBlock->getParent()->getEntryBlock())
   2509     return false;
   2510 
   2511   // We can only sink load instructions if there is nothing between the load and
   2512   // the end of block that could change the value.
   2513   if (I->mayReadFromMemory()) {
   2514     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
   2515          Scan != E; ++Scan)
   2516       if (Scan->mayWriteToMemory())
   2517         return false;
   2518   }
   2519 
   2520   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
   2521   I->moveBefore(InsertPos);
   2522   ++NumSunkInst;
   2523   return true;
   2524 }
   2525 
   2526 
   2527 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
   2528 /// all reachable code to the worklist.
   2529 ///
   2530 /// This has a couple of tricks to make the code faster and more powerful.  In
   2531 /// particular, we constant fold and DCE instructions as we go, to avoid adding
   2532 /// them to the worklist (this significantly speeds up instcombine on code where
   2533 /// many instructions are dead or constant).  Additionally, if we find a branch
   2534 /// whose condition is a known constant, we only visit the reachable successors.
   2535 ///
   2536 static bool AddReachableCodeToWorklist(BasicBlock *BB,
   2537                                        SmallPtrSet<BasicBlock*, 64> &Visited,
   2538                                        InstCombiner &IC,
   2539                                        const DataLayout *DL,
   2540                                        const TargetLibraryInfo *TLI) {
   2541   bool MadeIRChange = false;
   2542   SmallVector<BasicBlock*, 256> Worklist;
   2543   Worklist.push_back(BB);
   2544 
   2545   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
   2546   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
   2547 
   2548   do {
   2549     BB = Worklist.pop_back_val();
   2550 
   2551     // We have now visited this block!  If we've already been here, ignore it.
   2552     if (!Visited.insert(BB)) continue;
   2553 
   2554     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
   2555       Instruction *Inst = BBI++;
   2556 
   2557       // DCE instruction if trivially dead.
   2558       if (isInstructionTriviallyDead(Inst, TLI)) {
   2559         ++NumDeadInst;
   2560         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
   2561         Inst->eraseFromParent();
   2562         continue;
   2563       }
   2564 
   2565       // ConstantProp instruction if trivially constant.
   2566       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
   2567         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
   2568           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
   2569                        << *Inst << '\n');
   2570           Inst->replaceAllUsesWith(C);
   2571           ++NumConstProp;
   2572           Inst->eraseFromParent();
   2573           continue;
   2574         }
   2575 
   2576       if (DL) {
   2577         // See if we can constant fold its operands.
   2578         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
   2579              i != e; ++i) {
   2580           ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
   2581           if (CE == nullptr) continue;
   2582 
   2583           Constant*& FoldRes = FoldedConstants[CE];
   2584           if (!FoldRes)
   2585             FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
   2586           if (!FoldRes)
   2587             FoldRes = CE;
   2588 
   2589           if (FoldRes != CE) {
   2590             *i = FoldRes;
   2591             MadeIRChange = true;
   2592           }
   2593         }
   2594       }
   2595 
   2596       InstrsForInstCombineWorklist.push_back(Inst);
   2597     }
   2598 
   2599     // Recursively visit successors.  If this is a branch or switch on a
   2600     // constant, only visit the reachable successor.
   2601     TerminatorInst *TI = BB->getTerminator();
   2602     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2603       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
   2604         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
   2605         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
   2606         Worklist.push_back(ReachableBB);
   2607         continue;
   2608       }
   2609     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2610       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
   2611         // See if this is an explicit destination.
   2612         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2613              i != e; ++i)
   2614           if (i.getCaseValue() == Cond) {
   2615             BasicBlock *ReachableBB = i.getCaseSuccessor();
   2616             Worklist.push_back(ReachableBB);
   2617             continue;
   2618           }
   2619 
   2620         // Otherwise it is the default destination.
   2621         Worklist.push_back(SI->getDefaultDest());
   2622         continue;
   2623       }
   2624     }
   2625 
   2626     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
   2627       Worklist.push_back(TI->getSuccessor(i));
   2628   } while (!Worklist.empty());
   2629 
   2630   // Once we've found all of the instructions to add to instcombine's worklist,
   2631   // add them in reverse order.  This way instcombine will visit from the top
   2632   // of the function down.  This jives well with the way that it adds all uses
   2633   // of instructions to the worklist after doing a transformation, thus avoiding
   2634   // some N^2 behavior in pathological cases.
   2635   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
   2636                               InstrsForInstCombineWorklist.size());
   2637 
   2638   return MadeIRChange;
   2639 }
   2640 
   2641 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
   2642   MadeIRChange = false;
   2643 
   2644   DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
   2645                << F.getName() << "\n");
   2646 
   2647   {
   2648     // Do a depth-first traversal of the function, populate the worklist with
   2649     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
   2650     // track of which blocks we visit.
   2651     SmallPtrSet<BasicBlock*, 64> Visited;
   2652     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
   2653                                                TLI);
   2654 
   2655     // Do a quick scan over the function.  If we find any blocks that are
   2656     // unreachable, remove any instructions inside of them.  This prevents
   2657     // the instcombine code from having to deal with some bad special cases.
   2658     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   2659       if (Visited.count(BB)) continue;
   2660 
   2661       // Delete the instructions backwards, as it has a reduced likelihood of
   2662       // having to update as many def-use and use-def chains.
   2663       Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   2664       while (EndInst != BB->begin()) {
   2665         // Delete the next to last instruction.
   2666         BasicBlock::iterator I = EndInst;
   2667         Instruction *Inst = --I;
   2668         if (!Inst->use_empty())
   2669           Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   2670         if (isa<LandingPadInst>(Inst)) {
   2671           EndInst = Inst;
   2672           continue;
   2673         }
   2674         if (!isa<DbgInfoIntrinsic>(Inst)) {
   2675           ++NumDeadInst;
   2676           MadeIRChange = true;
   2677         }
   2678         Inst->eraseFromParent();
   2679       }
   2680     }
   2681   }
   2682 
   2683   while (!Worklist.isEmpty()) {
   2684     Instruction *I = Worklist.RemoveOne();
   2685     if (I == nullptr) continue;  // skip null values.
   2686 
   2687     // Check to see if we can DCE the instruction.
   2688     if (isInstructionTriviallyDead(I, TLI)) {
   2689       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
   2690       EraseInstFromFunction(*I);
   2691       ++NumDeadInst;
   2692       MadeIRChange = true;
   2693       continue;
   2694     }
   2695 
   2696     // Instruction isn't dead, see if we can constant propagate it.
   2697     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
   2698       if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
   2699         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
   2700 
   2701         // Add operands to the worklist.
   2702         ReplaceInstUsesWith(*I, C);
   2703         ++NumConstProp;
   2704         EraseInstFromFunction(*I);
   2705         MadeIRChange = true;
   2706         continue;
   2707       }
   2708 
   2709     // See if we can trivially sink this instruction to a successor basic block.
   2710     if (I->hasOneUse()) {
   2711       BasicBlock *BB = I->getParent();
   2712       Instruction *UserInst = cast<Instruction>(*I->user_begin());
   2713       BasicBlock *UserParent;
   2714 
   2715       // Get the block the use occurs in.
   2716       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
   2717         UserParent = PN->getIncomingBlock(*I->use_begin());
   2718       else
   2719         UserParent = UserInst->getParent();
   2720 
   2721       if (UserParent != BB) {
   2722         bool UserIsSuccessor = false;
   2723         // See if the user is one of our successors.
   2724         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
   2725           if (*SI == UserParent) {
   2726             UserIsSuccessor = true;
   2727             break;
   2728           }
   2729 
   2730         // If the user is one of our immediate successors, and if that successor
   2731         // only has us as a predecessors (we'd have to split the critical edge
   2732         // otherwise), we can keep going.
   2733         if (UserIsSuccessor && UserParent->getSinglePredecessor())
   2734           // Okay, the CFG is simple enough, try to sink this instruction.
   2735           MadeIRChange |= TryToSinkInstruction(I, UserParent);
   2736       }
   2737     }
   2738 
   2739     // Now that we have an instruction, try combining it to simplify it.
   2740     Builder->SetInsertPoint(I->getParent(), I);
   2741     Builder->SetCurrentDebugLocation(I->getDebugLoc());
   2742 
   2743 #ifndef NDEBUG
   2744     std::string OrigI;
   2745 #endif
   2746     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
   2747     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
   2748 
   2749     if (Instruction *Result = visit(*I)) {
   2750       ++NumCombined;
   2751       // Should we replace the old instruction with a new one?
   2752       if (Result != I) {
   2753         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
   2754                      << "    New = " << *Result << '\n');
   2755 
   2756         if (!I->getDebugLoc().isUnknown())
   2757           Result->setDebugLoc(I->getDebugLoc());
   2758         // Everything uses the new instruction now.
   2759         I->replaceAllUsesWith(Result);
   2760 
   2761         // Move the name to the new instruction first.
   2762         Result->takeName(I);
   2763 
   2764         // Push the new instruction and any users onto the worklist.
   2765         Worklist.Add(Result);
   2766         Worklist.AddUsersToWorkList(*Result);
   2767 
   2768         // Insert the new instruction into the basic block...
   2769         BasicBlock *InstParent = I->getParent();
   2770         BasicBlock::iterator InsertPos = I;
   2771 
   2772         // If we replace a PHI with something that isn't a PHI, fix up the
   2773         // insertion point.
   2774         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
   2775           InsertPos = InstParent->getFirstInsertionPt();
   2776 
   2777         InstParent->getInstList().insert(InsertPos, Result);
   2778 
   2779         EraseInstFromFunction(*I);
   2780       } else {
   2781 #ifndef NDEBUG
   2782         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
   2783                      << "    New = " << *I << '\n');
   2784 #endif
   2785 
   2786         // If the instruction was modified, it's possible that it is now dead.
   2787         // if so, remove it.
   2788         if (isInstructionTriviallyDead(I, TLI)) {
   2789           EraseInstFromFunction(*I);
   2790         } else {
   2791           Worklist.Add(I);
   2792           Worklist.AddUsersToWorkList(*I);
   2793         }
   2794       }
   2795       MadeIRChange = true;
   2796     }
   2797   }
   2798 
   2799   Worklist.Zap();
   2800   return MadeIRChange;
   2801 }
   2802 
   2803 namespace {
   2804 class InstCombinerLibCallSimplifier : public LibCallSimplifier {
   2805   InstCombiner *IC;
   2806 public:
   2807   InstCombinerLibCallSimplifier(const DataLayout *DL,
   2808                                 const TargetLibraryInfo *TLI,
   2809                                 InstCombiner *IC)
   2810     : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
   2811     this->IC = IC;
   2812   }
   2813 
   2814   /// replaceAllUsesWith - override so that instruction replacement
   2815   /// can be defined in terms of the instruction combiner framework.
   2816   void replaceAllUsesWith(Instruction *I, Value *With) const override {
   2817     IC->ReplaceInstUsesWith(*I, With);
   2818   }
   2819 };
   2820 }
   2821 
   2822 bool InstCombiner::runOnFunction(Function &F) {
   2823   if (skipOptnoneFunction(F))
   2824     return false;
   2825 
   2826   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   2827   DL = DLP ? &DLP->getDataLayout() : nullptr;
   2828   TLI = &getAnalysis<TargetLibraryInfo>();
   2829   // Minimizing size?
   2830   MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   2831                                                 Attribute::MinSize);
   2832 
   2833   /// Builder - This is an IRBuilder that automatically inserts new
   2834   /// instructions into the worklist when they are created.
   2835   IRBuilder<true, TargetFolder, InstCombineIRInserter>
   2836     TheBuilder(F.getContext(), TargetFolder(DL),
   2837                InstCombineIRInserter(Worklist));
   2838   Builder = &TheBuilder;
   2839 
   2840   InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
   2841   Simplifier = &TheSimplifier;
   2842 
   2843   bool EverMadeChange = false;
   2844 
   2845   // Lower dbg.declare intrinsics otherwise their value may be clobbered
   2846   // by instcombiner.
   2847   EverMadeChange = LowerDbgDeclare(F);
   2848 
   2849   // Iterate while there is work to do.
   2850   unsigned Iteration = 0;
   2851   while (DoOneIteration(F, Iteration++))
   2852     EverMadeChange = true;
   2853 
   2854   Builder = nullptr;
   2855   return EverMadeChange;
   2856 }
   2857 
   2858 FunctionPass *llvm::createInstructionCombiningPass() {
   2859   return new InstCombiner();
   2860 }
   2861