Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass.  Given some numbering of
     11 // each the machine instructions (in this implemention depth-first order) an
     12 // interval [i, j) is said to be a live interval for register v if there is no
     13 // instruction with number j' > j such that v is live at j' and there is no
     14 // instruction with number i' < i such that v is live at i'. In this
     15 // implementation intervals can have holes, i.e. an interval might look like
     16 // [1,20), [50,65), [1000,1001).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
     21 #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
     22 
     23 #include "llvm/ADT/IndexedMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/CodeGen/LiveInterval.h"
     26 #include "llvm/CodeGen/MachineBasicBlock.h"
     27 #include "llvm/CodeGen/MachineFunctionPass.h"
     28 #include "llvm/CodeGen/SlotIndexes.h"
     29 #include "llvm/Support/Allocator.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include <cmath>
     32 #include <iterator>
     33 
     34 namespace llvm {
     35 
     36   class AliasAnalysis;
     37   class BitVector;
     38   class BlockFrequency;
     39   class LiveRangeCalc;
     40   class LiveVariables;
     41   class MachineDominatorTree;
     42   class MachineLoopInfo;
     43   class TargetRegisterInfo;
     44   class MachineRegisterInfo;
     45   class TargetInstrInfo;
     46   class TargetRegisterClass;
     47   class VirtRegMap;
     48   class MachineBlockFrequencyInfo;
     49 
     50   class LiveIntervals : public MachineFunctionPass {
     51     MachineFunction* MF;
     52     MachineRegisterInfo* MRI;
     53     const TargetMachine* TM;
     54     const TargetRegisterInfo* TRI;
     55     const TargetInstrInfo* TII;
     56     AliasAnalysis *AA;
     57     SlotIndexes* Indexes;
     58     MachineDominatorTree *DomTree;
     59     LiveRangeCalc *LRCalc;
     60 
     61     /// Special pool allocator for VNInfo's (LiveInterval val#).
     62     ///
     63     VNInfo::Allocator VNInfoAllocator;
     64 
     65     /// Live interval pointers for all the virtual registers.
     66     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
     67 
     68     /// RegMaskSlots - Sorted list of instructions with register mask operands.
     69     /// Always use the 'r' slot, RegMasks are normal clobbers, not early
     70     /// clobbers.
     71     SmallVector<SlotIndex, 8> RegMaskSlots;
     72 
     73     /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
     74     /// pointer to the corresponding register mask.  This pointer can be
     75     /// recomputed as:
     76     ///
     77     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
     78     ///   unsigned OpNum = findRegMaskOperand(MI);
     79     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
     80     ///
     81     /// This is kept in a separate vector partly because some standard
     82     /// libraries don't support lower_bound() with mixed objects, partly to
     83     /// improve locality when searching in RegMaskSlots.
     84     /// Also see the comment in LiveInterval::find().
     85     SmallVector<const uint32_t*, 8> RegMaskBits;
     86 
     87     /// For each basic block number, keep (begin, size) pairs indexing into the
     88     /// RegMaskSlots and RegMaskBits arrays.
     89     /// Note that basic block numbers may not be layout contiguous, that's why
     90     /// we can't just keep track of the first register mask in each basic
     91     /// block.
     92     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
     93 
     94     /// Keeps a live range set for each register unit to track fixed physreg
     95     /// interference.
     96     SmallVector<LiveRange*, 0> RegUnitRanges;
     97 
     98   public:
     99     static char ID; // Pass identification, replacement for typeid
    100     LiveIntervals();
    101     virtual ~LiveIntervals();
    102 
    103     // Calculate the spill weight to assign to a single instruction.
    104     static float getSpillWeight(bool isDef, bool isUse,
    105                                 const MachineBlockFrequencyInfo *MBFI,
    106                                 const MachineInstr *Instr);
    107 
    108     LiveInterval &getInterval(unsigned Reg) {
    109       if (hasInterval(Reg))
    110         return *VirtRegIntervals[Reg];
    111       else
    112         return createAndComputeVirtRegInterval(Reg);
    113     }
    114 
    115     const LiveInterval &getInterval(unsigned Reg) const {
    116       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
    117     }
    118 
    119     bool hasInterval(unsigned Reg) const {
    120       return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
    121     }
    122 
    123     // Interval creation.
    124     LiveInterval &createEmptyInterval(unsigned Reg) {
    125       assert(!hasInterval(Reg) && "Interval already exists!");
    126       VirtRegIntervals.grow(Reg);
    127       VirtRegIntervals[Reg] = createInterval(Reg);
    128       return *VirtRegIntervals[Reg];
    129     }
    130 
    131     LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
    132       LiveInterval &LI = createEmptyInterval(Reg);
    133       computeVirtRegInterval(LI);
    134       return LI;
    135     }
    136 
    137     // Interval removal.
    138     void removeInterval(unsigned Reg) {
    139       delete VirtRegIntervals[Reg];
    140       VirtRegIntervals[Reg] = nullptr;
    141     }
    142 
    143     /// Given a register and an instruction, adds a live segment from that
    144     /// instruction to the end of its MBB.
    145     LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
    146                                                  MachineInstr* startInst);
    147 
    148     /// shrinkToUses - After removing some uses of a register, shrink its live
    149     /// range to just the remaining uses. This method does not compute reaching
    150     /// defs for new uses, and it doesn't remove dead defs.
    151     /// Dead PHIDef values are marked as unused.
    152     /// New dead machine instructions are added to the dead vector.
    153     /// Return true if the interval may have been separated into multiple
    154     /// connected components.
    155     bool shrinkToUses(LiveInterval *li,
    156                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
    157 
    158     /// \brief Walk the values in the given interval and compute which ones
    159     /// are dead.  Dead values are not deleted, however:
    160     /// - Dead PHIDef values are marked as unused.
    161     /// - New dead machine instructions are added to the dead vector.
    162     /// - CanSeparate is set to true if the interval may have been separated
    163     ///   into multiple connected components.
    164     void computeDeadValues(LiveInterval *li,
    165                            LiveRange &LR,
    166                            bool *CanSeparate,
    167                            SmallVectorImpl<MachineInstr*> *dead);
    168 
    169     /// extendToIndices - Extend the live range of LI to reach all points in
    170     /// Indices. The points in the Indices array must be jointly dominated by
    171     /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
    172     ///
    173     /// If a SlotIndex in Indices is the end index of a basic block, LI will be
    174     /// extended to be live out of the basic block.
    175     ///
    176     /// See also LiveRangeCalc::extend().
    177     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
    178 
    179     /// pruneValue - If an LI value is live at Kill, prune its live range by
    180     /// removing any liveness reachable from Kill. Add live range end points to
    181     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
    182     /// value's live range.
    183     ///
    184     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
    185     /// SSA form after adding defs to a virtual register.
    186     void pruneValue(LiveInterval *LI, SlotIndex Kill,
    187                     SmallVectorImpl<SlotIndex> *EndPoints);
    188 
    189     SlotIndexes *getSlotIndexes() const {
    190       return Indexes;
    191     }
    192 
    193     AliasAnalysis *getAliasAnalysis() const {
    194       return AA;
    195     }
    196 
    197     /// isNotInMIMap - returns true if the specified machine instr has been
    198     /// removed or was never entered in the map.
    199     bool isNotInMIMap(const MachineInstr* Instr) const {
    200       return !Indexes->hasIndex(Instr);
    201     }
    202 
    203     /// Returns the base index of the given instruction.
    204     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
    205       return Indexes->getInstructionIndex(instr);
    206     }
    207 
    208     /// Returns the instruction associated with the given index.
    209     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
    210       return Indexes->getInstructionFromIndex(index);
    211     }
    212 
    213     /// Return the first index in the given basic block.
    214     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
    215       return Indexes->getMBBStartIdx(mbb);
    216     }
    217 
    218     /// Return the last index in the given basic block.
    219     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
    220       return Indexes->getMBBEndIdx(mbb);
    221     }
    222 
    223     bool isLiveInToMBB(const LiveRange &LR,
    224                        const MachineBasicBlock *mbb) const {
    225       return LR.liveAt(getMBBStartIdx(mbb));
    226     }
    227 
    228     bool isLiveOutOfMBB(const LiveRange &LR,
    229                         const MachineBasicBlock *mbb) const {
    230       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
    231     }
    232 
    233     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
    234       return Indexes->getMBBFromIndex(index);
    235     }
    236 
    237     void insertMBBInMaps(MachineBasicBlock *MBB) {
    238       Indexes->insertMBBInMaps(MBB);
    239       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
    240              "Blocks must be added in order.");
    241       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
    242     }
    243 
    244     SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
    245       return Indexes->insertMachineInstrInMaps(MI);
    246     }
    247 
    248     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
    249                                        MachineBasicBlock::iterator E) {
    250       for (MachineBasicBlock::iterator I = B; I != E; ++I)
    251         Indexes->insertMachineInstrInMaps(I);
    252     }
    253 
    254     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
    255       Indexes->removeMachineInstrFromMaps(MI);
    256     }
    257 
    258     void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
    259       Indexes->replaceMachineInstrInMaps(MI, NewMI);
    260     }
    261 
    262     bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
    263                         SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
    264       return Indexes->findLiveInMBBs(Start, End, MBBs);
    265     }
    266 
    267     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
    268 
    269     void getAnalysisUsage(AnalysisUsage &AU) const override;
    270     void releaseMemory() override;
    271 
    272     /// runOnMachineFunction - pass entry point
    273     bool runOnMachineFunction(MachineFunction&) override;
    274 
    275     /// print - Implement the dump method.
    276     void print(raw_ostream &O, const Module* = nullptr) const override;
    277 
    278     /// intervalIsInOneMBB - If LI is confined to a single basic block, return
    279     /// a pointer to that block.  If LI is live in to or out of any block,
    280     /// return NULL.
    281     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
    282 
    283     /// Returns true if VNI is killed by any PHI-def values in LI.
    284     /// This may conservatively return true to avoid expensive computations.
    285     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
    286 
    287     /// addKillFlags - Add kill flags to any instruction that kills a virtual
    288     /// register.
    289     void addKillFlags(const VirtRegMap*);
    290 
    291     /// handleMove - call this method to notify LiveIntervals that
    292     /// instruction 'mi' has been moved within a basic block. This will update
    293     /// the live intervals for all operands of mi. Moves between basic blocks
    294     /// are not supported.
    295     ///
    296     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    297     void handleMove(MachineInstr* MI, bool UpdateFlags = false);
    298 
    299     /// moveIntoBundle - Update intervals for operands of MI so that they
    300     /// begin/end on the SlotIndex for BundleStart.
    301     ///
    302     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    303     ///
    304     /// Requires MI and BundleStart to have SlotIndexes, and assumes
    305     /// existing liveness is accurate. BundleStart should be the first
    306     /// instruction in the Bundle.
    307     void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
    308                               bool UpdateFlags = false);
    309 
    310     /// repairIntervalsInRange - Update live intervals for instructions in a
    311     /// range of iterators. It is intended for use after target hooks that may
    312     /// insert or remove instructions, and is only efficient for a small number
    313     /// of instructions.
    314     ///
    315     /// OrigRegs is a vector of registers that were originally used by the
    316     /// instructions in the range between the two iterators.
    317     ///
    318     /// Currently, the only only changes that are supported are simple removal
    319     /// and addition of uses.
    320     void repairIntervalsInRange(MachineBasicBlock *MBB,
    321                                 MachineBasicBlock::iterator Begin,
    322                                 MachineBasicBlock::iterator End,
    323                                 ArrayRef<unsigned> OrigRegs);
    324 
    325     // Register mask functions.
    326     //
    327     // Machine instructions may use a register mask operand to indicate that a
    328     // large number of registers are clobbered by the instruction.  This is
    329     // typically used for calls.
    330     //
    331     // For compile time performance reasons, these clobbers are not recorded in
    332     // the live intervals for individual physical registers.  Instead,
    333     // LiveIntervalAnalysis maintains a sorted list of instructions with
    334     // register mask operands.
    335 
    336     /// getRegMaskSlots - Returns a sorted array of slot indices of all
    337     /// instructions with register mask operands.
    338     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
    339 
    340     /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
    341     /// instructions with register mask operands in the basic block numbered
    342     /// MBBNum.
    343     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
    344       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
    345       return getRegMaskSlots().slice(P.first, P.second);
    346     }
    347 
    348     /// getRegMaskBits() - Returns an array of register mask pointers
    349     /// corresponding to getRegMaskSlots().
    350     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
    351 
    352     /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
    353     /// to getRegMaskSlotsInBlock(MBBNum).
    354     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
    355       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
    356       return getRegMaskBits().slice(P.first, P.second);
    357     }
    358 
    359     /// checkRegMaskInterference - Test if LI is live across any register mask
    360     /// instructions, and compute a bit mask of physical registers that are not
    361     /// clobbered by any of them.
    362     ///
    363     /// Returns false if LI doesn't cross any register mask instructions. In
    364     /// that case, the bit vector is not filled in.
    365     bool checkRegMaskInterference(LiveInterval &LI,
    366                                   BitVector &UsableRegs);
    367 
    368     // Register unit functions.
    369     //
    370     // Fixed interference occurs when MachineInstrs use physregs directly
    371     // instead of virtual registers. This typically happens when passing
    372     // arguments to a function call, or when instructions require operands in
    373     // fixed registers.
    374     //
    375     // Each physreg has one or more register units, see MCRegisterInfo. We
    376     // track liveness per register unit to handle aliasing registers more
    377     // efficiently.
    378 
    379     /// getRegUnit - Return the live range for Unit.
    380     /// It will be computed if it doesn't exist.
    381     LiveRange &getRegUnit(unsigned Unit) {
    382       LiveRange *LR = RegUnitRanges[Unit];
    383       if (!LR) {
    384         // Compute missing ranges on demand.
    385         RegUnitRanges[Unit] = LR = new LiveRange();
    386         computeRegUnitRange(*LR, Unit);
    387       }
    388       return *LR;
    389     }
    390 
    391     /// getCachedRegUnit - Return the live range for Unit if it has already
    392     /// been computed, or NULL if it hasn't been computed yet.
    393     LiveRange *getCachedRegUnit(unsigned Unit) {
    394       return RegUnitRanges[Unit];
    395     }
    396 
    397     const LiveRange *getCachedRegUnit(unsigned Unit) const {
    398       return RegUnitRanges[Unit];
    399     }
    400 
    401   private:
    402     /// Compute live intervals for all virtual registers.
    403     void computeVirtRegs();
    404 
    405     /// Compute RegMaskSlots and RegMaskBits.
    406     void computeRegMasks();
    407 
    408     static LiveInterval* createInterval(unsigned Reg);
    409 
    410     void printInstrs(raw_ostream &O) const;
    411     void dumpInstrs() const;
    412 
    413     void computeLiveInRegUnits();
    414     void computeRegUnitRange(LiveRange&, unsigned Unit);
    415     void computeVirtRegInterval(LiveInterval&);
    416 
    417     class HMEditor;
    418   };
    419 } // End llvm namespace
    420 
    421 #endif
    422