1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a MachineCodeEmitter object that is used by the JIT to 11 // write machine code to memory and remember where relocatable values are. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "JIT.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/JITCodeEmitter.h" 21 #include "llvm/CodeGen/MachineCodeInfo.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRelocation.h" 27 #include "llvm/ExecutionEngine/GenericValue.h" 28 #include "llvm/ExecutionEngine/JITEventListener.h" 29 #include "llvm/ExecutionEngine/JITMemoryManager.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/IR/ValueMap.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/Disassembler.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/Memory.h" 43 #include "llvm/Support/MutexGuard.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetJITInfo.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <algorithm> 50 #ifndef NDEBUG 51 #include <iomanip> 52 #endif 53 using namespace llvm; 54 55 #define DEBUG_TYPE "jit" 56 57 STATISTIC(NumBytes, "Number of bytes of machine code compiled"); 58 STATISTIC(NumRelos, "Number of relocations applied"); 59 STATISTIC(NumRetries, "Number of retries with more memory"); 60 61 62 // A declaration may stop being a declaration once it's fully read from bitcode. 63 // This function returns true if F is fully read and is still a declaration. 64 static bool isNonGhostDeclaration(const Function *F) { 65 return F->isDeclaration() && !F->isMaterializable(); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // JIT lazy compilation code. 70 // 71 namespace { 72 class JITEmitter; 73 class JITResolverState; 74 75 template<typename ValueTy> 76 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { 77 typedef JITResolverState *ExtraData; 78 static void onRAUW(JITResolverState *, Value *Old, Value *New) { 79 llvm_unreachable("The JIT doesn't know how to handle a" 80 " RAUW on a value it has emitted."); 81 } 82 }; 83 84 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { 85 typedef JITResolverState *ExtraData; 86 static void onDelete(JITResolverState *JRS, Function *F); 87 }; 88 89 class JITResolverState { 90 public: 91 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > 92 FunctionToLazyStubMapTy; 93 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; 94 typedef ValueMap<Function *, SmallPtrSet<void*, 1>, 95 CallSiteValueMapConfig> FunctionToCallSitesMapTy; 96 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; 97 private: 98 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a 99 /// particular function so that we can reuse them if necessary. 100 FunctionToLazyStubMapTy FunctionToLazyStubMap; 101 102 /// CallSiteToFunctionMap - Keep track of the function that each lazy call 103 /// site corresponds to, and vice versa. 104 CallSiteToFunctionMapTy CallSiteToFunctionMap; 105 FunctionToCallSitesMapTy FunctionToCallSitesMap; 106 107 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a 108 /// particular GlobalVariable so that we can reuse them if necessary. 109 GlobalToIndirectSymMapTy GlobalToIndirectSymMap; 110 111 #ifndef NDEBUG 112 /// Instance of the JIT this ResolverState serves. 113 JIT *TheJIT; 114 #endif 115 116 public: 117 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), 118 FunctionToCallSitesMap(this) { 119 #ifndef NDEBUG 120 TheJIT = jit; 121 #endif 122 } 123 124 FunctionToLazyStubMapTy& getFunctionToLazyStubMap() { 125 return FunctionToLazyStubMap; 126 } 127 128 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() { 129 return GlobalToIndirectSymMap; 130 } 131 132 std::pair<void *, Function *> LookupFunctionFromCallSite( 133 void *CallSite) const { 134 // The address given to us for the stub may not be exactly right, it 135 // might be a little bit after the stub. As such, use upper_bound to 136 // find it. 137 CallSiteToFunctionMapTy::const_iterator I = 138 CallSiteToFunctionMap.upper_bound(CallSite); 139 assert(I != CallSiteToFunctionMap.begin() && 140 "This is not a known call site!"); 141 --I; 142 return *I; 143 } 144 145 void AddCallSite(void *CallSite, Function *F) { 146 bool Inserted = CallSiteToFunctionMap.insert( 147 std::make_pair(CallSite, F)).second; 148 (void)Inserted; 149 assert(Inserted && "Pair was already in CallSiteToFunctionMap"); 150 FunctionToCallSitesMap[F].insert(CallSite); 151 } 152 153 void EraseAllCallSitesForPrelocked(Function *F); 154 155 // Erases _all_ call sites regardless of their function. This is used to 156 // unregister the stub addresses from the StubToResolverMap in 157 // ~JITResolver(). 158 void EraseAllCallSitesPrelocked(); 159 }; 160 161 /// JITResolver - Keep track of, and resolve, call sites for functions that 162 /// have not yet been compiled. 163 class JITResolver { 164 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; 165 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; 166 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; 167 168 /// LazyResolverFn - The target lazy resolver function that we actually 169 /// rewrite instructions to use. 170 TargetJITInfo::LazyResolverFn LazyResolverFn; 171 172 JITResolverState state; 173 174 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap 175 /// for external functions. TODO: Of course, external functions don't need 176 /// a lazy stub. It's actually here to make it more likely that far calls 177 /// succeed, but no single stub can guarantee that. I'll remove this in a 178 /// subsequent checkin when I actually fix far calls. 179 std::map<void*, void*> ExternalFnToStubMap; 180 181 /// revGOTMap - map addresses to indexes in the GOT 182 std::map<void*, unsigned> revGOTMap; 183 unsigned nextGOTIndex; 184 185 JITEmitter &JE; 186 187 /// Instance of JIT corresponding to this Resolver. 188 JIT *TheJIT; 189 190 public: 191 explicit JITResolver(JIT &jit, JITEmitter &je) 192 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { 193 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); 194 } 195 196 ~JITResolver(); 197 198 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's 199 /// lazy-compilation stub if it has already been created. 200 void *getLazyFunctionStubIfAvailable(Function *F); 201 202 /// getLazyFunctionStub - This returns a pointer to a function's 203 /// lazy-compilation stub, creating one on demand as needed. 204 void *getLazyFunctionStub(Function *F); 205 206 /// getExternalFunctionStub - Return a stub for the function at the 207 /// specified address, created lazily on demand. 208 void *getExternalFunctionStub(void *FnAddr); 209 210 /// getGlobalValueIndirectSym - Return an indirect symbol containing the 211 /// specified GV address. 212 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); 213 214 /// getGOTIndexForAddress - Return a new or existing index in the GOT for 215 /// an address. This function only manages slots, it does not manage the 216 /// contents of the slots or the memory associated with the GOT. 217 unsigned getGOTIndexForAddr(void *addr); 218 219 /// JITCompilerFn - This function is called to resolve a stub to a compiled 220 /// address. If the LLVM Function corresponding to the stub has not yet 221 /// been compiled, this function compiles it first. 222 static void *JITCompilerFn(void *Stub); 223 }; 224 225 class StubToResolverMapTy { 226 /// Map a stub address to a specific instance of a JITResolver so that 227 /// lazily-compiled functions can find the right resolver to use. 228 /// 229 /// Guarded by Lock. 230 std::map<void*, JITResolver*> Map; 231 232 /// Guards Map from concurrent accesses. 233 mutable sys::Mutex Lock; 234 235 public: 236 /// Registers a Stub to be resolved by Resolver. 237 void RegisterStubResolver(void *Stub, JITResolver *Resolver) { 238 MutexGuard guard(Lock); 239 Map.insert(std::make_pair(Stub, Resolver)); 240 } 241 /// Unregisters the Stub when it's invalidated. 242 void UnregisterStubResolver(void *Stub) { 243 MutexGuard guard(Lock); 244 Map.erase(Stub); 245 } 246 /// Returns the JITResolver instance that owns the Stub. 247 JITResolver *getResolverFromStub(void *Stub) const { 248 MutexGuard guard(Lock); 249 // The address given to us for the stub may not be exactly right, it might 250 // be a little bit after the stub. As such, use upper_bound to find it. 251 // This is the same trick as in LookupFunctionFromCallSite from 252 // JITResolverState. 253 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); 254 assert(I != Map.begin() && "This is not a known stub!"); 255 --I; 256 return I->second; 257 } 258 /// True if any stubs refer to the given resolver. Only used in an assert(). 259 /// O(N) 260 bool ResolverHasStubs(JITResolver* Resolver) const { 261 MutexGuard guard(Lock); 262 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), 263 E = Map.end(); I != E; ++I) { 264 if (I->second == Resolver) 265 return true; 266 } 267 return false; 268 } 269 }; 270 /// This needs to be static so that a lazy call stub can access it with no 271 /// context except the address of the stub. 272 ManagedStatic<StubToResolverMapTy> StubToResolverMap; 273 274 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is 275 /// used to output functions to memory for execution. 276 class JITEmitter : public JITCodeEmitter { 277 JITMemoryManager *MemMgr; 278 279 // When outputting a function stub in the context of some other function, we 280 // save BufferBegin/BufferEnd/CurBufferPtr here. 281 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; 282 283 // When reattempting to JIT a function after running out of space, we store 284 // the estimated size of the function we're trying to JIT here, so we can 285 // ask the memory manager for at least this much space. When we 286 // successfully emit the function, we reset this back to zero. 287 uintptr_t SizeEstimate; 288 289 /// Relocations - These are the relocations that the function needs, as 290 /// emitted. 291 std::vector<MachineRelocation> Relocations; 292 293 /// MBBLocations - This vector is a mapping from MBB ID's to their address. 294 /// It is filled in by the StartMachineBasicBlock callback and queried by 295 /// the getMachineBasicBlockAddress callback. 296 std::vector<uintptr_t> MBBLocations; 297 298 /// ConstantPool - The constant pool for the current function. 299 /// 300 MachineConstantPool *ConstantPool; 301 302 /// ConstantPoolBase - A pointer to the first entry in the constant pool. 303 /// 304 void *ConstantPoolBase; 305 306 /// ConstPoolAddresses - Addresses of individual constant pool entries. 307 /// 308 SmallVector<uintptr_t, 8> ConstPoolAddresses; 309 310 /// JumpTable - The jump tables for the current function. 311 /// 312 MachineJumpTableInfo *JumpTable; 313 314 /// JumpTableBase - A pointer to the first entry in the jump table. 315 /// 316 void *JumpTableBase; 317 318 /// Resolver - This contains info about the currently resolved functions. 319 JITResolver Resolver; 320 321 /// LabelLocations - This vector is a mapping from Label ID's to their 322 /// address. 323 DenseMap<MCSymbol*, uintptr_t> LabelLocations; 324 325 /// MMI - Machine module info for exception informations 326 MachineModuleInfo* MMI; 327 328 // CurFn - The llvm function being emitted. Only valid during 329 // finishFunction(). 330 const Function *CurFn; 331 332 /// Information about emitted code, which is passed to the 333 /// JITEventListeners. This is reset in startFunction and used in 334 /// finishFunction. 335 JITEvent_EmittedFunctionDetails EmissionDetails; 336 337 struct EmittedCode { 338 void *FunctionBody; // Beginning of the function's allocation. 339 void *Code; // The address the function's code actually starts at. 340 void *ExceptionTable; 341 EmittedCode() : FunctionBody(nullptr), Code(nullptr), 342 ExceptionTable(nullptr) {} 343 }; 344 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { 345 typedef JITEmitter *ExtraData; 346 static void onDelete(JITEmitter *, const Function*); 347 static void onRAUW(JITEmitter *, const Function*, const Function*); 348 }; 349 ValueMap<const Function *, EmittedCode, 350 EmittedFunctionConfig> EmittedFunctions; 351 352 DebugLoc PrevDL; 353 354 /// Instance of the JIT 355 JIT *TheJIT; 356 357 public: 358 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) 359 : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr), 360 EmittedFunctions(this), TheJIT(&jit) { 361 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); 362 if (jit.getJITInfo().needsGOT()) { 363 MemMgr->AllocateGOT(); 364 DEBUG(dbgs() << "JIT is managing a GOT\n"); 365 } 366 367 } 368 ~JITEmitter() { 369 delete MemMgr; 370 } 371 372 JITResolver &getJITResolver() { return Resolver; } 373 374 void startFunction(MachineFunction &F) override; 375 bool finishFunction(MachineFunction &F) override; 376 377 void emitConstantPool(MachineConstantPool *MCP); 378 void initJumpTableInfo(MachineJumpTableInfo *MJTI); 379 void emitJumpTableInfo(MachineJumpTableInfo *MJTI); 380 381 void startGVStub(const GlobalValue* GV, 382 unsigned StubSize, unsigned Alignment = 1); 383 void startGVStub(void *Buffer, unsigned StubSize); 384 void finishGVStub(); 385 void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer, 386 size_t Size, unsigned Alignment) override; 387 388 /// allocateSpace - Reserves space in the current block if any, or 389 /// allocate a new one of the given size. 390 void *allocateSpace(uintptr_t Size, unsigned Alignment) override; 391 392 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 393 /// this method does not allocate memory in the current output buffer, 394 /// because a global may live longer than the current function. 395 void *allocateGlobal(uintptr_t Size, unsigned Alignment) override; 396 397 void addRelocation(const MachineRelocation &MR) override { 398 Relocations.push_back(MR); 399 } 400 401 void StartMachineBasicBlock(MachineBasicBlock *MBB) override { 402 if (MBBLocations.size() <= (unsigned)MBB->getNumber()) 403 MBBLocations.resize((MBB->getNumber()+1)*2); 404 MBBLocations[MBB->getNumber()] = getCurrentPCValue(); 405 if (MBB->hasAddressTaken()) 406 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), 407 (void*)getCurrentPCValue()); 408 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" 409 << (void*) getCurrentPCValue() << "]\n"); 410 } 411 412 uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override; 413 uintptr_t getJumpTableEntryAddress(unsigned Entry) const override; 414 415 uintptr_t 416 getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override { 417 assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 418 MBBLocations[MBB->getNumber()] && "MBB not emitted!"); 419 return MBBLocations[MBB->getNumber()]; 420 } 421 422 /// retryWithMoreMemory - Log a retry and deallocate all memory for the 423 /// given function. Increase the minimum allocation size so that we get 424 /// more memory next time. 425 void retryWithMoreMemory(MachineFunction &F); 426 427 /// deallocateMemForFunction - Deallocate all memory for the specified 428 /// function body. 429 void deallocateMemForFunction(const Function *F); 430 431 void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override; 432 433 void emitLabel(MCSymbol *Label) override { 434 LabelLocations[Label] = getCurrentPCValue(); 435 } 436 437 DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override { 438 return &LabelLocations; 439 } 440 441 uintptr_t getLabelAddress(MCSymbol *Label) const override { 442 assert(LabelLocations.count(Label) && "Label not emitted!"); 443 return LabelLocations.find(Label)->second; 444 } 445 446 void setModuleInfo(MachineModuleInfo* Info) override { 447 MMI = Info; 448 } 449 450 private: 451 void *getPointerToGlobal(GlobalValue *GV, void *Reference, 452 bool MayNeedFarStub); 453 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); 454 }; 455 } 456 457 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { 458 JRS->EraseAllCallSitesForPrelocked(F); 459 } 460 461 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { 462 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); 463 if (F2C == FunctionToCallSitesMap.end()) 464 return; 465 StubToResolverMapTy &S2RMap = *StubToResolverMap; 466 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), 467 E = F2C->second.end(); I != E; ++I) { 468 S2RMap.UnregisterStubResolver(*I); 469 bool Erased = CallSiteToFunctionMap.erase(*I); 470 (void)Erased; 471 assert(Erased && "Missing call site->function mapping"); 472 } 473 FunctionToCallSitesMap.erase(F2C); 474 } 475 476 void JITResolverState::EraseAllCallSitesPrelocked() { 477 StubToResolverMapTy &S2RMap = *StubToResolverMap; 478 for (CallSiteToFunctionMapTy::const_iterator 479 I = CallSiteToFunctionMap.begin(), 480 E = CallSiteToFunctionMap.end(); I != E; ++I) { 481 S2RMap.UnregisterStubResolver(I->first); 482 } 483 CallSiteToFunctionMap.clear(); 484 FunctionToCallSitesMap.clear(); 485 } 486 487 JITResolver::~JITResolver() { 488 // No need to lock because we're in the destructor, and state isn't shared. 489 state.EraseAllCallSitesPrelocked(); 490 assert(!StubToResolverMap->ResolverHasStubs(this) && 491 "Resolver destroyed with stubs still alive."); 492 } 493 494 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub 495 /// if it has already been created. 496 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { 497 MutexGuard locked(TheJIT->lock); 498 499 // If we already have a stub for this function, recycle it. 500 return state.getFunctionToLazyStubMap().lookup(F); 501 } 502 503 /// getFunctionStub - This returns a pointer to a function stub, creating 504 /// one on demand as needed. 505 void *JITResolver::getLazyFunctionStub(Function *F) { 506 MutexGuard locked(TheJIT->lock); 507 508 // If we already have a lazy stub for this function, recycle it. 509 void *&Stub = state.getFunctionToLazyStubMap()[F]; 510 if (Stub) return Stub; 511 512 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we 513 // must resolve the symbol now. 514 void *Actual = TheJIT->isCompilingLazily() 515 ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr; 516 517 // If this is an external declaration, attempt to resolve the address now 518 // to place in the stub. 519 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { 520 Actual = TheJIT->getPointerToFunction(F); 521 522 // If we resolved the symbol to a null address (eg. a weak external) 523 // don't emit a stub. Return a null pointer to the application. 524 if (!Actual) return nullptr; 525 } 526 527 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 528 JE.startGVStub(F, SL.Size, SL.Alignment); 529 // Codegen a new stub, calling the lazy resolver or the actual address of the 530 // external function, if it was resolved. 531 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); 532 JE.finishGVStub(); 533 534 if (Actual != (void*)(intptr_t)LazyResolverFn) { 535 // If we are getting the stub for an external function, we really want the 536 // address of the stub in the GlobalAddressMap for the JIT, not the address 537 // of the external function. 538 TheJIT->updateGlobalMapping(F, Stub); 539 } 540 541 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" 542 << F->getName() << "'\n"); 543 544 if (TheJIT->isCompilingLazily()) { 545 // Register this JITResolver as the one corresponding to this call site so 546 // JITCompilerFn will be able to find it. 547 StubToResolverMap->RegisterStubResolver(Stub, this); 548 549 // Finally, keep track of the stub-to-Function mapping so that the 550 // JITCompilerFn knows which function to compile! 551 state.AddCallSite(Stub, F); 552 } else if (!Actual) { 553 // If we are JIT'ing non-lazily but need to call a function that does not 554 // exist yet, add it to the JIT's work list so that we can fill in the 555 // stub address later. 556 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && 557 "'Actual' should have been set above."); 558 TheJIT->addPendingFunction(F); 559 } 560 561 return Stub; 562 } 563 564 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified 565 /// GV address. 566 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { 567 MutexGuard locked(TheJIT->lock); 568 569 // If we already have a stub for this global variable, recycle it. 570 void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV]; 571 if (IndirectSym) return IndirectSym; 572 573 // Otherwise, codegen a new indirect symbol. 574 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, 575 JE); 576 577 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym 578 << "] for GV '" << GV->getName() << "'\n"); 579 580 return IndirectSym; 581 } 582 583 /// getExternalFunctionStub - Return a stub for the function at the 584 /// specified address, created lazily on demand. 585 void *JITResolver::getExternalFunctionStub(void *FnAddr) { 586 // If we already have a stub for this function, recycle it. 587 void *&Stub = ExternalFnToStubMap[FnAddr]; 588 if (Stub) return Stub; 589 590 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 591 JE.startGVStub(nullptr, SL.Size, SL.Alignment); 592 Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE); 593 JE.finishGVStub(); 594 595 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub 596 << "] for external function at '" << FnAddr << "'\n"); 597 return Stub; 598 } 599 600 unsigned JITResolver::getGOTIndexForAddr(void* addr) { 601 unsigned idx = revGOTMap[addr]; 602 if (!idx) { 603 idx = ++nextGOTIndex; 604 revGOTMap[addr] = idx; 605 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" 606 << addr << "]\n"); 607 } 608 return idx; 609 } 610 611 /// JITCompilerFn - This function is called when a lazy compilation stub has 612 /// been entered. It looks up which function this stub corresponds to, compiles 613 /// it if necessary, then returns the resultant function pointer. 614 void *JITResolver::JITCompilerFn(void *Stub) { 615 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); 616 assert(JR && "Unable to find the corresponding JITResolver to the call site"); 617 618 Function* F = nullptr; 619 void* ActualPtr = nullptr; 620 621 { 622 // Only lock for getting the Function. The call getPointerToFunction made 623 // in this function might trigger function materializing, which requires 624 // JIT lock to be unlocked. 625 MutexGuard locked(JR->TheJIT->lock); 626 627 // The address given to us for the stub may not be exactly right, it might 628 // be a little bit after the stub. As such, use upper_bound to find it. 629 std::pair<void*, Function*> I = 630 JR->state.LookupFunctionFromCallSite(Stub); 631 F = I.second; 632 ActualPtr = I.first; 633 } 634 635 // If we have already code generated the function, just return the address. 636 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); 637 638 if (!Result) { 639 // Otherwise we don't have it, do lazy compilation now. 640 641 // If lazy compilation is disabled, emit a useful error message and abort. 642 if (!JR->TheJIT->isCompilingLazily()) { 643 report_fatal_error("LLVM JIT requested to do lazy compilation of" 644 " function '" 645 + F->getName() + "' when lazy compiles are disabled!"); 646 } 647 648 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() 649 << "' In stub ptr = " << Stub << " actual ptr = " 650 << ActualPtr << "\n"); 651 (void)ActualPtr; 652 653 Result = JR->TheJIT->getPointerToFunction(F); 654 } 655 656 // Reacquire the lock to update the GOT map. 657 MutexGuard locked(JR->TheJIT->lock); 658 659 // We might like to remove the call site from the CallSiteToFunction map, but 660 // we can't do that! Multiple threads could be stuck, waiting to acquire the 661 // lock above. As soon as the 1st function finishes compiling the function, 662 // the next one will be released, and needs to be able to find the function it 663 // needs to call. 664 665 // FIXME: We could rewrite all references to this stub if we knew them. 666 667 // What we will do is set the compiled function address to map to the 668 // same GOT entry as the stub so that later clients may update the GOT 669 // if they see it still using the stub address. 670 // Note: this is done so the Resolver doesn't have to manage GOT memory 671 // Do this without allocating map space if the target isn't using a GOT 672 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) 673 JR->revGOTMap[Result] = JR->revGOTMap[Stub]; 674 675 return Result; 676 } 677 678 //===----------------------------------------------------------------------===// 679 // JITEmitter code. 680 // 681 682 static GlobalObject *getSimpleAliasee(Constant *C) { 683 C = C->stripPointerCasts(); 684 return dyn_cast<GlobalObject>(C); 685 } 686 687 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, 688 bool MayNeedFarStub) { 689 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 690 return TheJIT->getOrEmitGlobalVariable(GV); 691 692 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 693 // We can only handle simple cases. 694 if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee())) 695 return TheJIT->getPointerToGlobal(GV); 696 return nullptr; 697 } 698 699 // If we have already compiled the function, return a pointer to its body. 700 Function *F = cast<Function>(V); 701 702 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); 703 if (FnStub) { 704 // Return the function stub if it's already created. We do this first so 705 // that we're returning the same address for the function as any previous 706 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be 707 // close enough to call. 708 return FnStub; 709 } 710 711 // If we know the target can handle arbitrary-distance calls, try to 712 // return a direct pointer. 713 if (!MayNeedFarStub) { 714 // If we have code, go ahead and return that. 715 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); 716 if (ResultPtr) return ResultPtr; 717 718 // If this is an external function pointer, we can force the JIT to 719 // 'compile' it, which really just adds it to the map. 720 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) 721 return TheJIT->getPointerToFunction(F); 722 } 723 724 // Otherwise, we may need a to emit a stub, and, conservatively, we always do 725 // so. Note that it's possible to return null from getLazyFunctionStub in the 726 // case of a weak extern that fails to resolve. 727 return Resolver.getLazyFunctionStub(F); 728 } 729 730 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { 731 // Make sure GV is emitted first, and create a stub containing the fully 732 // resolved address. 733 void *GVAddress = getPointerToGlobal(V, Reference, false); 734 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); 735 return StubAddr; 736 } 737 738 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { 739 if (DL.isUnknown()) return; 740 if (!BeforePrintingInsn) return; 741 742 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); 743 744 if (DL.getScope(Context) != nullptr && PrevDL != DL) { 745 JITEvent_EmittedFunctionDetails::LineStart NextLine; 746 NextLine.Address = getCurrentPCValue(); 747 NextLine.Loc = DL; 748 EmissionDetails.LineStarts.push_back(NextLine); 749 } 750 751 PrevDL = DL; 752 } 753 754 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, 755 const DataLayout *TD) { 756 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 757 if (Constants.empty()) return 0; 758 759 unsigned Size = 0; 760 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 761 MachineConstantPoolEntry CPE = Constants[i]; 762 unsigned AlignMask = CPE.getAlignment() - 1; 763 Size = (Size + AlignMask) & ~AlignMask; 764 Type *Ty = CPE.getType(); 765 Size += TD->getTypeAllocSize(Ty); 766 } 767 return Size; 768 } 769 770 void JITEmitter::startFunction(MachineFunction &F) { 771 DEBUG(dbgs() << "JIT: Starting CodeGen of Function " 772 << F.getName() << "\n"); 773 774 uintptr_t ActualSize = 0; 775 // Set the memory writable, if it's not already 776 MemMgr->setMemoryWritable(); 777 778 if (SizeEstimate > 0) { 779 // SizeEstimate will be non-zero on reallocation attempts. 780 ActualSize = SizeEstimate; 781 } 782 783 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), 784 ActualSize); 785 BufferEnd = BufferBegin+ActualSize; 786 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; 787 788 // Ensure the constant pool/jump table info is at least 4-byte aligned. 789 emitAlignment(16); 790 791 emitConstantPool(F.getConstantPool()); 792 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 793 initJumpTableInfo(MJTI); 794 795 // About to start emitting the machine code for the function. 796 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); 797 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); 798 EmittedFunctions[F.getFunction()].Code = CurBufferPtr; 799 800 MBBLocations.clear(); 801 802 EmissionDetails.MF = &F; 803 EmissionDetails.LineStarts.clear(); 804 } 805 806 bool JITEmitter::finishFunction(MachineFunction &F) { 807 if (CurBufferPtr == BufferEnd) { 808 // We must call endFunctionBody before retrying, because 809 // deallocateMemForFunction requires it. 810 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 811 retryWithMoreMemory(F); 812 return true; 813 } 814 815 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 816 emitJumpTableInfo(MJTI); 817 818 // FnStart is the start of the text, not the start of the constant pool and 819 // other per-function data. 820 uint8_t *FnStart = 821 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); 822 823 // FnEnd is the end of the function's machine code. 824 uint8_t *FnEnd = CurBufferPtr; 825 826 if (!Relocations.empty()) { 827 CurFn = F.getFunction(); 828 NumRelos += Relocations.size(); 829 830 // Resolve the relocations to concrete pointers. 831 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { 832 MachineRelocation &MR = Relocations[i]; 833 void *ResultPtr = nullptr; 834 if (!MR.letTargetResolve()) { 835 if (MR.isExternalSymbol()) { 836 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), 837 false); 838 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" 839 << ResultPtr << "]\n"); 840 841 // If the target REALLY wants a stub for this function, emit it now. 842 if (MR.mayNeedFarStub()) { 843 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); 844 } 845 } else if (MR.isGlobalValue()) { 846 ResultPtr = getPointerToGlobal(MR.getGlobalValue(), 847 BufferBegin+MR.getMachineCodeOffset(), 848 MR.mayNeedFarStub()); 849 } else if (MR.isIndirectSymbol()) { 850 ResultPtr = getPointerToGVIndirectSym( 851 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); 852 } else if (MR.isBasicBlock()) { 853 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); 854 } else if (MR.isConstantPoolIndex()) { 855 ResultPtr = 856 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); 857 } else { 858 assert(MR.isJumpTableIndex()); 859 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); 860 } 861 862 MR.setResultPointer(ResultPtr); 863 } 864 865 // if we are managing the GOT and the relocation wants an index, 866 // give it one 867 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { 868 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); 869 MR.setGOTIndex(idx); 870 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { 871 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr 872 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 873 << "\n"); 874 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; 875 } 876 } 877 } 878 879 CurFn = nullptr; 880 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], 881 Relocations.size(), MemMgr->getGOTBase()); 882 } 883 884 // Update the GOT entry for F to point to the new code. 885 if (MemMgr->isManagingGOT()) { 886 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); 887 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { 888 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin 889 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 890 << "\n"); 891 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; 892 } 893 } 894 895 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for 896 // global variables that were referenced in the relocations. 897 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 898 899 if (CurBufferPtr == BufferEnd) { 900 retryWithMoreMemory(F); 901 return true; 902 } else { 903 // Now that we've succeeded in emitting the function, reset the 904 // SizeEstimate back down to zero. 905 SizeEstimate = 0; 906 } 907 908 BufferBegin = CurBufferPtr = nullptr; 909 NumBytes += FnEnd-FnStart; 910 911 // Invalidate the icache if necessary. 912 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); 913 914 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, 915 EmissionDetails); 916 917 // Reset the previous debug location. 918 PrevDL = DebugLoc(); 919 920 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart 921 << "] Function: " << F.getName() 922 << ": " << (FnEnd-FnStart) << " bytes of text, " 923 << Relocations.size() << " relocations\n"); 924 925 Relocations.clear(); 926 ConstPoolAddresses.clear(); 927 928 // Mark code region readable and executable if it's not so already. 929 MemMgr->setMemoryExecutable(); 930 931 DEBUG({ 932 if (sys::hasDisassembler()) { 933 dbgs() << "JIT: Disassembled code:\n"; 934 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, 935 (uintptr_t)FnStart); 936 } else { 937 dbgs() << "JIT: Binary code:\n"; 938 uint8_t* q = FnStart; 939 for (int i = 0; q < FnEnd; q += 4, ++i) { 940 if (i == 4) 941 i = 0; 942 if (i == 0) 943 dbgs() << "JIT: " << (long)(q - FnStart) << ": "; 944 bool Done = false; 945 for (int j = 3; j >= 0; --j) { 946 if (q + j >= FnEnd) 947 Done = true; 948 else 949 dbgs() << (unsigned short)q[j]; 950 } 951 if (Done) 952 break; 953 dbgs() << ' '; 954 if (i == 3) 955 dbgs() << '\n'; 956 } 957 dbgs()<< '\n'; 958 } 959 }); 960 961 if (MMI) 962 MMI->EndFunction(); 963 964 return false; 965 } 966 967 void JITEmitter::retryWithMoreMemory(MachineFunction &F) { 968 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); 969 Relocations.clear(); // Clear the old relocations or we'll reapply them. 970 ConstPoolAddresses.clear(); 971 ++NumRetries; 972 deallocateMemForFunction(F.getFunction()); 973 // Try again with at least twice as much free space. 974 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); 975 976 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ 977 if (MBB->hasAddressTaken()) 978 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); 979 } 980 } 981 982 /// deallocateMemForFunction - Deallocate all memory for the specified 983 /// function body. Also drop any references the function has to stubs. 984 /// May be called while the Function is being destroyed inside ~Value(). 985 void JITEmitter::deallocateMemForFunction(const Function *F) { 986 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator 987 Emitted = EmittedFunctions.find(F); 988 if (Emitted != EmittedFunctions.end()) { 989 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); 990 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); 991 992 EmittedFunctions.erase(Emitted); 993 } 994 } 995 996 997 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { 998 if (BufferBegin) 999 return JITCodeEmitter::allocateSpace(Size, Alignment); 1000 1001 // create a new memory block if there is no active one. 1002 // care must be taken so that BufferBegin is invalidated when a 1003 // block is trimmed 1004 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); 1005 BufferEnd = BufferBegin+Size; 1006 return CurBufferPtr; 1007 } 1008 1009 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { 1010 // Delegate this call through the memory manager. 1011 return MemMgr->allocateGlobal(Size, Alignment); 1012 } 1013 1014 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { 1015 if (TheJIT->getJITInfo().hasCustomConstantPool()) 1016 return; 1017 1018 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 1019 if (Constants.empty()) return; 1020 1021 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout()); 1022 unsigned Align = MCP->getConstantPoolAlignment(); 1023 ConstantPoolBase = allocateSpace(Size, Align); 1024 ConstantPool = MCP; 1025 1026 if (!ConstantPoolBase) return; // Buffer overflow. 1027 1028 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase 1029 << "] (size: " << Size << ", alignment: " << Align << ")\n"); 1030 1031 // Initialize the memory for all of the constant pool entries. 1032 unsigned Offset = 0; 1033 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1034 MachineConstantPoolEntry CPE = Constants[i]; 1035 unsigned AlignMask = CPE.getAlignment() - 1; 1036 Offset = (Offset + AlignMask) & ~AlignMask; 1037 1038 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; 1039 ConstPoolAddresses.push_back(CAddr); 1040 if (CPE.isMachineConstantPoolEntry()) { 1041 // FIXME: add support to lower machine constant pool values into bytes! 1042 report_fatal_error("Initialize memory with machine specific constant pool" 1043 "entry has not been implemented!"); 1044 } 1045 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); 1046 DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; 1047 dbgs().write_hex(CAddr) << "]\n"); 1048 1049 Type *Ty = CPE.Val.ConstVal->getType(); 1050 Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty); 1051 } 1052 } 1053 1054 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { 1055 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1056 return; 1057 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) 1058 return; 1059 1060 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1061 if (JT.empty()) return; 1062 1063 unsigned NumEntries = 0; 1064 for (unsigned i = 0, e = JT.size(); i != e; ++i) 1065 NumEntries += JT[i].MBBs.size(); 1066 1067 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout()); 1068 1069 // Just allocate space for all the jump tables now. We will fix up the actual 1070 // MBB entries in the tables after we emit the code for each block, since then 1071 // we will know the final locations of the MBBs in memory. 1072 JumpTable = MJTI; 1073 JumpTableBase = allocateSpace(NumEntries * EntrySize, 1074 MJTI->getEntryAlignment(*TheJIT->getDataLayout())); 1075 } 1076 1077 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { 1078 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1079 return; 1080 1081 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1082 if (JT.empty() || !JumpTableBase) return; 1083 1084 1085 switch (MJTI->getEntryKind()) { 1086 case MachineJumpTableInfo::EK_Inline: 1087 return; 1088 case MachineJumpTableInfo::EK_BlockAddress: { 1089 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1090 // .word LBB123 1091 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) && 1092 "Cross JIT'ing?"); 1093 1094 // For each jump table, map each target in the jump table to the address of 1095 // an emitted MachineBasicBlock. 1096 intptr_t *SlotPtr = (intptr_t*)JumpTableBase; 1097 1098 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1099 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1100 // Store the address of the basic block for this jump table slot in the 1101 // memory we allocated for the jump table in 'initJumpTableInfo' 1102 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) 1103 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); 1104 } 1105 break; 1106 } 1107 1108 case MachineJumpTableInfo::EK_Custom32: 1109 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1110 case MachineJumpTableInfo::EK_LabelDifference32: { 1111 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?"); 1112 // For each jump table, place the offset from the beginning of the table 1113 // to the target address. 1114 int *SlotPtr = (int*)JumpTableBase; 1115 1116 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1117 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1118 // Store the offset of the basic block for this jump table slot in the 1119 // memory we allocated for the jump table in 'initJumpTableInfo' 1120 uintptr_t Base = (uintptr_t)SlotPtr; 1121 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { 1122 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); 1123 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. 1124 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); 1125 } 1126 } 1127 break; 1128 } 1129 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1130 llvm_unreachable( 1131 "JT Info emission not implemented for GPRel64BlockAddress yet."); 1132 } 1133 } 1134 1135 void JITEmitter::startGVStub(const GlobalValue* GV, 1136 unsigned StubSize, unsigned Alignment) { 1137 SavedBufferBegin = BufferBegin; 1138 SavedBufferEnd = BufferEnd; 1139 SavedCurBufferPtr = CurBufferPtr; 1140 1141 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); 1142 BufferEnd = BufferBegin+StubSize+1; 1143 } 1144 1145 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { 1146 SavedBufferBegin = BufferBegin; 1147 SavedBufferEnd = BufferEnd; 1148 SavedCurBufferPtr = CurBufferPtr; 1149 1150 BufferBegin = CurBufferPtr = (uint8_t *)Buffer; 1151 BufferEnd = BufferBegin+StubSize+1; 1152 } 1153 1154 void JITEmitter::finishGVStub() { 1155 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); 1156 NumBytes += getCurrentPCOffset(); 1157 BufferBegin = SavedBufferBegin; 1158 BufferEnd = SavedBufferEnd; 1159 CurBufferPtr = SavedCurBufferPtr; 1160 } 1161 1162 void *JITEmitter::allocIndirectGV(const GlobalValue *GV, 1163 const uint8_t *Buffer, size_t Size, 1164 unsigned Alignment) { 1165 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); 1166 memcpy(IndGV, Buffer, Size); 1167 return IndGV; 1168 } 1169 1170 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry 1171 // in the constant pool that was last emitted with the 'emitConstantPool' 1172 // method. 1173 // 1174 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { 1175 assert(ConstantNum < ConstantPool->getConstants().size() && 1176 "Invalid ConstantPoolIndex!"); 1177 return ConstPoolAddresses[ConstantNum]; 1178 } 1179 1180 // getJumpTableEntryAddress - Return the address of the JumpTable with index 1181 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' 1182 // 1183 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { 1184 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); 1185 assert(Index < JT.size() && "Invalid jump table index!"); 1186 1187 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout()); 1188 1189 unsigned Offset = 0; 1190 for (unsigned i = 0; i < Index; ++i) 1191 Offset += JT[i].MBBs.size(); 1192 1193 Offset *= EntrySize; 1194 1195 return (uintptr_t)((char *)JumpTableBase + Offset); 1196 } 1197 1198 void JITEmitter::EmittedFunctionConfig::onDelete( 1199 JITEmitter *Emitter, const Function *F) { 1200 Emitter->deallocateMemForFunction(F); 1201 } 1202 void JITEmitter::EmittedFunctionConfig::onRAUW( 1203 JITEmitter *, const Function*, const Function*) { 1204 llvm_unreachable("The JIT doesn't know how to handle a" 1205 " RAUW on a value it has emitted."); 1206 } 1207 1208 1209 //===----------------------------------------------------------------------===// 1210 // Public interface to this file 1211 //===----------------------------------------------------------------------===// 1212 1213 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, 1214 TargetMachine &tm) { 1215 return new JITEmitter(jit, JMM, tm); 1216 } 1217 1218 // getPointerToFunctionOrStub - If the specified function has been 1219 // code-gen'd, return a pointer to the function. If not, compile it, or use 1220 // a stub to implement lazy compilation if available. 1221 // 1222 void *JIT::getPointerToFunctionOrStub(Function *F) { 1223 // If we have already code generated the function, just return the address. 1224 if (void *Addr = getPointerToGlobalIfAvailable(F)) 1225 return Addr; 1226 1227 // Get a stub if the target supports it. 1228 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1229 return JE->getJITResolver().getLazyFunctionStub(F); 1230 } 1231 1232 void JIT::updateFunctionStubUnlocked(Function *F) { 1233 // Get the empty stub we generated earlier. 1234 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1235 void *Stub = JE->getJITResolver().getLazyFunctionStub(F); 1236 void *Addr = getPointerToGlobalIfAvailable(F); 1237 assert(Addr != Stub && "Function must have non-stub address to be updated."); 1238 1239 // Tell the target jit info to rewrite the stub at the specified address, 1240 // rather than creating a new one. 1241 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); 1242 JE->startGVStub(Stub, layout.Size); 1243 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); 1244 JE->finishGVStub(); 1245 } 1246 1247 /// freeMachineCodeForFunction - release machine code memory for given Function. 1248 /// 1249 void JIT::freeMachineCodeForFunction(Function *F) { 1250 // Delete translation for this from the ExecutionEngine, so it will get 1251 // retranslated next time it is used. 1252 updateGlobalMapping(F, nullptr); 1253 1254 // Free the actual memory for the function body and related stuff. 1255 static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F); 1256 } 1257