Home | History | Annotate | Download | only in JIT
      1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a MachineCodeEmitter object that is used by the JIT to
     11 // write machine code to memory and remember where relocatable values are.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "JIT.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/JITCodeEmitter.h"
     21 #include "llvm/CodeGen/MachineCodeInfo.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/CodeGen/MachineRelocation.h"
     27 #include "llvm/ExecutionEngine/GenericValue.h"
     28 #include "llvm/ExecutionEngine/JITEventListener.h"
     29 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/DataLayout.h"
     32 #include "llvm/IR/DebugInfo.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/IR/Operator.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include "llvm/IR/ValueMap.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Disassembler.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/ManagedStatic.h"
     42 #include "llvm/Support/Memory.h"
     43 #include "llvm/Support/MutexGuard.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Target/TargetInstrInfo.h"
     46 #include "llvm/Target/TargetJITInfo.h"
     47 #include "llvm/Target/TargetMachine.h"
     48 #include "llvm/Target/TargetOptions.h"
     49 #include <algorithm>
     50 #ifndef NDEBUG
     51 #include <iomanip>
     52 #endif
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "jit"
     56 
     57 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
     58 STATISTIC(NumRelos, "Number of relocations applied");
     59 STATISTIC(NumRetries, "Number of retries with more memory");
     60 
     61 
     62 // A declaration may stop being a declaration once it's fully read from bitcode.
     63 // This function returns true if F is fully read and is still a declaration.
     64 static bool isNonGhostDeclaration(const Function *F) {
     65   return F->isDeclaration() && !F->isMaterializable();
     66 }
     67 
     68 //===----------------------------------------------------------------------===//
     69 // JIT lazy compilation code.
     70 //
     71 namespace {
     72   class JITEmitter;
     73   class JITResolverState;
     74 
     75   template<typename ValueTy>
     76   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
     77     typedef JITResolverState *ExtraData;
     78     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
     79       llvm_unreachable("The JIT doesn't know how to handle a"
     80                        " RAUW on a value it has emitted.");
     81     }
     82   };
     83 
     84   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
     85     typedef JITResolverState *ExtraData;
     86     static void onDelete(JITResolverState *JRS, Function *F);
     87   };
     88 
     89   class JITResolverState {
     90   public:
     91     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
     92       FunctionToLazyStubMapTy;
     93     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
     94     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
     95                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
     96     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
     97   private:
     98     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
     99     /// particular function so that we can reuse them if necessary.
    100     FunctionToLazyStubMapTy FunctionToLazyStubMap;
    101 
    102     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    103     /// site corresponds to, and vice versa.
    104     CallSiteToFunctionMapTy CallSiteToFunctionMap;
    105     FunctionToCallSitesMapTy FunctionToCallSitesMap;
    106 
    107     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    108     /// particular GlobalVariable so that we can reuse them if necessary.
    109     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
    110 
    111 #ifndef NDEBUG
    112     /// Instance of the JIT this ResolverState serves.
    113     JIT *TheJIT;
    114 #endif
    115 
    116   public:
    117     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
    118                                  FunctionToCallSitesMap(this) {
    119 #ifndef NDEBUG
    120       TheJIT = jit;
    121 #endif
    122     }
    123 
    124     FunctionToLazyStubMapTy& getFunctionToLazyStubMap() {
    125       return FunctionToLazyStubMap;
    126     }
    127 
    128     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() {
    129       return GlobalToIndirectSymMap;
    130     }
    131 
    132     std::pair<void *, Function *> LookupFunctionFromCallSite(
    133         void *CallSite) const {
    134       // The address given to us for the stub may not be exactly right, it
    135       // might be a little bit after the stub.  As such, use upper_bound to
    136       // find it.
    137       CallSiteToFunctionMapTy::const_iterator I =
    138         CallSiteToFunctionMap.upper_bound(CallSite);
    139       assert(I != CallSiteToFunctionMap.begin() &&
    140              "This is not a known call site!");
    141       --I;
    142       return *I;
    143     }
    144 
    145     void AddCallSite(void *CallSite, Function *F) {
    146       bool Inserted = CallSiteToFunctionMap.insert(
    147           std::make_pair(CallSite, F)).second;
    148       (void)Inserted;
    149       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
    150       FunctionToCallSitesMap[F].insert(CallSite);
    151     }
    152 
    153     void EraseAllCallSitesForPrelocked(Function *F);
    154 
    155     // Erases _all_ call sites regardless of their function.  This is used to
    156     // unregister the stub addresses from the StubToResolverMap in
    157     // ~JITResolver().
    158     void EraseAllCallSitesPrelocked();
    159   };
    160 
    161   /// JITResolver - Keep track of, and resolve, call sites for functions that
    162   /// have not yet been compiled.
    163   class JITResolver {
    164     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    165     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    166     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
    167 
    168     /// LazyResolverFn - The target lazy resolver function that we actually
    169     /// rewrite instructions to use.
    170     TargetJITInfo::LazyResolverFn LazyResolverFn;
    171 
    172     JITResolverState state;
    173 
    174     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    175     /// for external functions.  TODO: Of course, external functions don't need
    176     /// a lazy stub.  It's actually here to make it more likely that far calls
    177     /// succeed, but no single stub can guarantee that.  I'll remove this in a
    178     /// subsequent checkin when I actually fix far calls.
    179     std::map<void*, void*> ExternalFnToStubMap;
    180 
    181     /// revGOTMap - map addresses to indexes in the GOT
    182     std::map<void*, unsigned> revGOTMap;
    183     unsigned nextGOTIndex;
    184 
    185     JITEmitter &JE;
    186 
    187     /// Instance of JIT corresponding to this Resolver.
    188     JIT *TheJIT;
    189 
    190   public:
    191     explicit JITResolver(JIT &jit, JITEmitter &je)
    192       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
    193       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    194     }
    195 
    196     ~JITResolver();
    197 
    198     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    199     /// lazy-compilation stub if it has already been created.
    200     void *getLazyFunctionStubIfAvailable(Function *F);
    201 
    202     /// getLazyFunctionStub - This returns a pointer to a function's
    203     /// lazy-compilation stub, creating one on demand as needed.
    204     void *getLazyFunctionStub(Function *F);
    205 
    206     /// getExternalFunctionStub - Return a stub for the function at the
    207     /// specified address, created lazily on demand.
    208     void *getExternalFunctionStub(void *FnAddr);
    209 
    210     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    211     /// specified GV address.
    212     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
    213 
    214     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    215     /// an address.  This function only manages slots, it does not manage the
    216     /// contents of the slots or the memory associated with the GOT.
    217     unsigned getGOTIndexForAddr(void *addr);
    218 
    219     /// JITCompilerFn - This function is called to resolve a stub to a compiled
    220     /// address.  If the LLVM Function corresponding to the stub has not yet
    221     /// been compiled, this function compiles it first.
    222     static void *JITCompilerFn(void *Stub);
    223   };
    224 
    225   class StubToResolverMapTy {
    226     /// Map a stub address to a specific instance of a JITResolver so that
    227     /// lazily-compiled functions can find the right resolver to use.
    228     ///
    229     /// Guarded by Lock.
    230     std::map<void*, JITResolver*> Map;
    231 
    232     /// Guards Map from concurrent accesses.
    233     mutable sys::Mutex Lock;
    234 
    235   public:
    236     /// Registers a Stub to be resolved by Resolver.
    237     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
    238       MutexGuard guard(Lock);
    239       Map.insert(std::make_pair(Stub, Resolver));
    240     }
    241     /// Unregisters the Stub when it's invalidated.
    242     void UnregisterStubResolver(void *Stub) {
    243       MutexGuard guard(Lock);
    244       Map.erase(Stub);
    245     }
    246     /// Returns the JITResolver instance that owns the Stub.
    247     JITResolver *getResolverFromStub(void *Stub) const {
    248       MutexGuard guard(Lock);
    249       // The address given to us for the stub may not be exactly right, it might
    250       // be a little bit after the stub.  As such, use upper_bound to find it.
    251       // This is the same trick as in LookupFunctionFromCallSite from
    252       // JITResolverState.
    253       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
    254       assert(I != Map.begin() && "This is not a known stub!");
    255       --I;
    256       return I->second;
    257     }
    258     /// True if any stubs refer to the given resolver. Only used in an assert().
    259     /// O(N)
    260     bool ResolverHasStubs(JITResolver* Resolver) const {
    261       MutexGuard guard(Lock);
    262       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
    263              E = Map.end(); I != E; ++I) {
    264         if (I->second == Resolver)
    265           return true;
    266       }
    267       return false;
    268     }
    269   };
    270   /// This needs to be static so that a lazy call stub can access it with no
    271   /// context except the address of the stub.
    272   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
    273 
    274   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
    275   /// used to output functions to memory for execution.
    276   class JITEmitter : public JITCodeEmitter {
    277     JITMemoryManager *MemMgr;
    278 
    279     // When outputting a function stub in the context of some other function, we
    280     // save BufferBegin/BufferEnd/CurBufferPtr here.
    281     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    282 
    283     // When reattempting to JIT a function after running out of space, we store
    284     // the estimated size of the function we're trying to JIT here, so we can
    285     // ask the memory manager for at least this much space.  When we
    286     // successfully emit the function, we reset this back to zero.
    287     uintptr_t SizeEstimate;
    288 
    289     /// Relocations - These are the relocations that the function needs, as
    290     /// emitted.
    291     std::vector<MachineRelocation> Relocations;
    292 
    293     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    294     /// It is filled in by the StartMachineBasicBlock callback and queried by
    295     /// the getMachineBasicBlockAddress callback.
    296     std::vector<uintptr_t> MBBLocations;
    297 
    298     /// ConstantPool - The constant pool for the current function.
    299     ///
    300     MachineConstantPool *ConstantPool;
    301 
    302     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    303     ///
    304     void *ConstantPoolBase;
    305 
    306     /// ConstPoolAddresses - Addresses of individual constant pool entries.
    307     ///
    308     SmallVector<uintptr_t, 8> ConstPoolAddresses;
    309 
    310     /// JumpTable - The jump tables for the current function.
    311     ///
    312     MachineJumpTableInfo *JumpTable;
    313 
    314     /// JumpTableBase - A pointer to the first entry in the jump table.
    315     ///
    316     void *JumpTableBase;
    317 
    318     /// Resolver - This contains info about the currently resolved functions.
    319     JITResolver Resolver;
    320 
    321     /// LabelLocations - This vector is a mapping from Label ID's to their
    322     /// address.
    323     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
    324 
    325     /// MMI - Machine module info for exception informations
    326     MachineModuleInfo* MMI;
    327 
    328     // CurFn - The llvm function being emitted.  Only valid during
    329     // finishFunction().
    330     const Function *CurFn;
    331 
    332     /// Information about emitted code, which is passed to the
    333     /// JITEventListeners.  This is reset in startFunction and used in
    334     /// finishFunction.
    335     JITEvent_EmittedFunctionDetails EmissionDetails;
    336 
    337     struct EmittedCode {
    338       void *FunctionBody;  // Beginning of the function's allocation.
    339       void *Code;  // The address the function's code actually starts at.
    340       void *ExceptionTable;
    341       EmittedCode() : FunctionBody(nullptr), Code(nullptr),
    342                       ExceptionTable(nullptr) {}
    343     };
    344     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
    345       typedef JITEmitter *ExtraData;
    346       static void onDelete(JITEmitter *, const Function*);
    347       static void onRAUW(JITEmitter *, const Function*, const Function*);
    348     };
    349     ValueMap<const Function *, EmittedCode,
    350              EmittedFunctionConfig> EmittedFunctions;
    351 
    352     DebugLoc PrevDL;
    353 
    354     /// Instance of the JIT
    355     JIT *TheJIT;
    356 
    357   public:
    358     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
    359       : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr),
    360         EmittedFunctions(this), TheJIT(&jit) {
    361       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
    362       if (jit.getJITInfo().needsGOT()) {
    363         MemMgr->AllocateGOT();
    364         DEBUG(dbgs() << "JIT is managing a GOT\n");
    365       }
    366 
    367     }
    368     ~JITEmitter() {
    369       delete MemMgr;
    370     }
    371 
    372     JITResolver &getJITResolver() { return Resolver; }
    373 
    374     void startFunction(MachineFunction &F) override;
    375     bool finishFunction(MachineFunction &F) override;
    376 
    377     void emitConstantPool(MachineConstantPool *MCP);
    378     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    379     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    380 
    381     void startGVStub(const GlobalValue* GV,
    382                      unsigned StubSize, unsigned Alignment = 1);
    383     void startGVStub(void *Buffer, unsigned StubSize);
    384     void finishGVStub();
    385     void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer,
    386                           size_t Size, unsigned Alignment) override;
    387 
    388     /// allocateSpace - Reserves space in the current block if any, or
    389     /// allocate a new one of the given size.
    390     void *allocateSpace(uintptr_t Size, unsigned Alignment) override;
    391 
    392     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    393     /// this method does not allocate memory in the current output buffer,
    394     /// because a global may live longer than the current function.
    395     void *allocateGlobal(uintptr_t Size, unsigned Alignment) override;
    396 
    397     void addRelocation(const MachineRelocation &MR) override {
    398       Relocations.push_back(MR);
    399     }
    400 
    401     void StartMachineBasicBlock(MachineBasicBlock *MBB) override {
    402       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
    403         MBBLocations.resize((MBB->getNumber()+1)*2);
    404       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    405       if (MBB->hasAddressTaken())
    406         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
    407                                        (void*)getCurrentPCValue());
    408       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
    409                    << (void*) getCurrentPCValue() << "]\n");
    410     }
    411 
    412     uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override;
    413     uintptr_t getJumpTableEntryAddress(unsigned Entry) const override;
    414 
    415     uintptr_t
    416     getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override {
    417       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
    418              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
    419       return MBBLocations[MBB->getNumber()];
    420     }
    421 
    422     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    423     /// given function.  Increase the minimum allocation size so that we get
    424     /// more memory next time.
    425     void retryWithMoreMemory(MachineFunction &F);
    426 
    427     /// deallocateMemForFunction - Deallocate all memory for the specified
    428     /// function body.
    429     void deallocateMemForFunction(const Function *F);
    430 
    431     void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override;
    432 
    433     void emitLabel(MCSymbol *Label) override {
    434       LabelLocations[Label] = getCurrentPCValue();
    435     }
    436 
    437     DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override {
    438       return &LabelLocations;
    439     }
    440 
    441     uintptr_t getLabelAddress(MCSymbol *Label) const override {
    442       assert(LabelLocations.count(Label) && "Label not emitted!");
    443       return LabelLocations.find(Label)->second;
    444     }
    445 
    446     void setModuleInfo(MachineModuleInfo* Info) override {
    447       MMI = Info;
    448     }
    449 
    450   private:
    451     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
    452                              bool MayNeedFarStub);
    453     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
    454   };
    455 }
    456 
    457 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
    458   JRS->EraseAllCallSitesForPrelocked(F);
    459 }
    460 
    461 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
    462   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
    463   if (F2C == FunctionToCallSitesMap.end())
    464     return;
    465   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    466   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
    467          E = F2C->second.end(); I != E; ++I) {
    468     S2RMap.UnregisterStubResolver(*I);
    469     bool Erased = CallSiteToFunctionMap.erase(*I);
    470     (void)Erased;
    471     assert(Erased && "Missing call site->function mapping");
    472   }
    473   FunctionToCallSitesMap.erase(F2C);
    474 }
    475 
    476 void JITResolverState::EraseAllCallSitesPrelocked() {
    477   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    478   for (CallSiteToFunctionMapTy::const_iterator
    479          I = CallSiteToFunctionMap.begin(),
    480          E = CallSiteToFunctionMap.end(); I != E; ++I) {
    481     S2RMap.UnregisterStubResolver(I->first);
    482   }
    483   CallSiteToFunctionMap.clear();
    484   FunctionToCallSitesMap.clear();
    485 }
    486 
    487 JITResolver::~JITResolver() {
    488   // No need to lock because we're in the destructor, and state isn't shared.
    489   state.EraseAllCallSitesPrelocked();
    490   assert(!StubToResolverMap->ResolverHasStubs(this) &&
    491          "Resolver destroyed with stubs still alive.");
    492 }
    493 
    494 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
    495 /// if it has already been created.
    496 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
    497   MutexGuard locked(TheJIT->lock);
    498 
    499   // If we already have a stub for this function, recycle it.
    500   return state.getFunctionToLazyStubMap().lookup(F);
    501 }
    502 
    503 /// getFunctionStub - This returns a pointer to a function stub, creating
    504 /// one on demand as needed.
    505 void *JITResolver::getLazyFunctionStub(Function *F) {
    506   MutexGuard locked(TheJIT->lock);
    507 
    508   // If we already have a lazy stub for this function, recycle it.
    509   void *&Stub = state.getFunctionToLazyStubMap()[F];
    510   if (Stub) return Stub;
    511 
    512   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
    513   // must resolve the symbol now.
    514   void *Actual = TheJIT->isCompilingLazily()
    515     ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr;
    516 
    517   // If this is an external declaration, attempt to resolve the address now
    518   // to place in the stub.
    519   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    520     Actual = TheJIT->getPointerToFunction(F);
    521 
    522     // If we resolved the symbol to a null address (eg. a weak external)
    523     // don't emit a stub. Return a null pointer to the application.
    524     if (!Actual) return nullptr;
    525   }
    526 
    527   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    528   JE.startGVStub(F, SL.Size, SL.Alignment);
    529   // Codegen a new stub, calling the lazy resolver or the actual address of the
    530   // external function, if it was resolved.
    531   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
    532   JE.finishGVStub();
    533 
    534   if (Actual != (void*)(intptr_t)LazyResolverFn) {
    535     // If we are getting the stub for an external function, we really want the
    536     // address of the stub in the GlobalAddressMap for the JIT, not the address
    537     // of the external function.
    538     TheJIT->updateGlobalMapping(F, Stub);
    539   }
    540 
    541   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
    542         << F->getName() << "'\n");
    543 
    544   if (TheJIT->isCompilingLazily()) {
    545     // Register this JITResolver as the one corresponding to this call site so
    546     // JITCompilerFn will be able to find it.
    547     StubToResolverMap->RegisterStubResolver(Stub, this);
    548 
    549     // Finally, keep track of the stub-to-Function mapping so that the
    550     // JITCompilerFn knows which function to compile!
    551     state.AddCallSite(Stub, F);
    552   } else if (!Actual) {
    553     // If we are JIT'ing non-lazily but need to call a function that does not
    554     // exist yet, add it to the JIT's work list so that we can fill in the
    555     // stub address later.
    556     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
    557            "'Actual' should have been set above.");
    558     TheJIT->addPendingFunction(F);
    559   }
    560 
    561   return Stub;
    562 }
    563 
    564 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
    565 /// GV address.
    566 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
    567   MutexGuard locked(TheJIT->lock);
    568 
    569   // If we already have a stub for this global variable, recycle it.
    570   void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV];
    571   if (IndirectSym) return IndirectSym;
    572 
    573   // Otherwise, codegen a new indirect symbol.
    574   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
    575                                                                 JE);
    576 
    577   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
    578         << "] for GV '" << GV->getName() << "'\n");
    579 
    580   return IndirectSym;
    581 }
    582 
    583 /// getExternalFunctionStub - Return a stub for the function at the
    584 /// specified address, created lazily on demand.
    585 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
    586   // If we already have a stub for this function, recycle it.
    587   void *&Stub = ExternalFnToStubMap[FnAddr];
    588   if (Stub) return Stub;
    589 
    590   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    591   JE.startGVStub(nullptr, SL.Size, SL.Alignment);
    592   Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE);
    593   JE.finishGVStub();
    594 
    595   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
    596                << "] for external function at '" << FnAddr << "'\n");
    597   return Stub;
    598 }
    599 
    600 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
    601   unsigned idx = revGOTMap[addr];
    602   if (!idx) {
    603     idx = ++nextGOTIndex;
    604     revGOTMap[addr] = idx;
    605     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
    606                  << addr << "]\n");
    607   }
    608   return idx;
    609 }
    610 
    611 /// JITCompilerFn - This function is called when a lazy compilation stub has
    612 /// been entered.  It looks up which function this stub corresponds to, compiles
    613 /// it if necessary, then returns the resultant function pointer.
    614 void *JITResolver::JITCompilerFn(void *Stub) {
    615   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
    616   assert(JR && "Unable to find the corresponding JITResolver to the call site");
    617 
    618   Function* F = nullptr;
    619   void* ActualPtr = nullptr;
    620 
    621   {
    622     // Only lock for getting the Function. The call getPointerToFunction made
    623     // in this function might trigger function materializing, which requires
    624     // JIT lock to be unlocked.
    625     MutexGuard locked(JR->TheJIT->lock);
    626 
    627     // The address given to us for the stub may not be exactly right, it might
    628     // be a little bit after the stub.  As such, use upper_bound to find it.
    629     std::pair<void*, Function*> I =
    630       JR->state.LookupFunctionFromCallSite(Stub);
    631     F = I.second;
    632     ActualPtr = I.first;
    633   }
    634 
    635   // If we have already code generated the function, just return the address.
    636   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
    637 
    638   if (!Result) {
    639     // Otherwise we don't have it, do lazy compilation now.
    640 
    641     // If lazy compilation is disabled, emit a useful error message and abort.
    642     if (!JR->TheJIT->isCompilingLazily()) {
    643       report_fatal_error("LLVM JIT requested to do lazy compilation of"
    644                          " function '"
    645                         + F->getName() + "' when lazy compiles are disabled!");
    646     }
    647 
    648     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
    649           << "' In stub ptr = " << Stub << " actual ptr = "
    650           << ActualPtr << "\n");
    651     (void)ActualPtr;
    652 
    653     Result = JR->TheJIT->getPointerToFunction(F);
    654   }
    655 
    656   // Reacquire the lock to update the GOT map.
    657   MutexGuard locked(JR->TheJIT->lock);
    658 
    659   // We might like to remove the call site from the CallSiteToFunction map, but
    660   // we can't do that! Multiple threads could be stuck, waiting to acquire the
    661   // lock above. As soon as the 1st function finishes compiling the function,
    662   // the next one will be released, and needs to be able to find the function it
    663   // needs to call.
    664 
    665   // FIXME: We could rewrite all references to this stub if we knew them.
    666 
    667   // What we will do is set the compiled function address to map to the
    668   // same GOT entry as the stub so that later clients may update the GOT
    669   // if they see it still using the stub address.
    670   // Note: this is done so the Resolver doesn't have to manage GOT memory
    671   // Do this without allocating map space if the target isn't using a GOT
    672   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    673     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
    674 
    675   return Result;
    676 }
    677 
    678 //===----------------------------------------------------------------------===//
    679 // JITEmitter code.
    680 //
    681 
    682 static GlobalObject *getSimpleAliasee(Constant *C) {
    683   C = C->stripPointerCasts();
    684   return dyn_cast<GlobalObject>(C);
    685 }
    686 
    687 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
    688                                      bool MayNeedFarStub) {
    689   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    690     return TheJIT->getOrEmitGlobalVariable(GV);
    691 
    692   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    693     // We can only handle simple cases.
    694     if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee()))
    695       return TheJIT->getPointerToGlobal(GV);
    696     return nullptr;
    697   }
    698 
    699   // If we have already compiled the function, return a pointer to its body.
    700   Function *F = cast<Function>(V);
    701 
    702   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
    703   if (FnStub) {
    704     // Return the function stub if it's already created.  We do this first so
    705     // that we're returning the same address for the function as any previous
    706     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    707     // close enough to call.
    708     return FnStub;
    709   }
    710 
    711   // If we know the target can handle arbitrary-distance calls, try to
    712   // return a direct pointer.
    713   if (!MayNeedFarStub) {
    714     // If we have code, go ahead and return that.
    715     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    716     if (ResultPtr) return ResultPtr;
    717 
    718     // If this is an external function pointer, we can force the JIT to
    719     // 'compile' it, which really just adds it to the map.
    720     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
    721       return TheJIT->getPointerToFunction(F);
    722   }
    723 
    724   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
    725   // so.  Note that it's possible to return null from getLazyFunctionStub in the
    726   // case of a weak extern that fails to resolve.
    727   return Resolver.getLazyFunctionStub(F);
    728 }
    729 
    730 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
    731   // Make sure GV is emitted first, and create a stub containing the fully
    732   // resolved address.
    733   void *GVAddress = getPointerToGlobal(V, Reference, false);
    734   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
    735   return StubAddr;
    736 }
    737 
    738 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
    739   if (DL.isUnknown()) return;
    740   if (!BeforePrintingInsn) return;
    741 
    742   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
    743 
    744   if (DL.getScope(Context) != nullptr && PrevDL != DL) {
    745     JITEvent_EmittedFunctionDetails::LineStart NextLine;
    746     NextLine.Address = getCurrentPCValue();
    747     NextLine.Loc = DL;
    748     EmissionDetails.LineStarts.push_back(NextLine);
    749   }
    750 
    751   PrevDL = DL;
    752 }
    753 
    754 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
    755                                            const DataLayout *TD) {
    756   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
    757   if (Constants.empty()) return 0;
    758 
    759   unsigned Size = 0;
    760   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    761     MachineConstantPoolEntry CPE = Constants[i];
    762     unsigned AlignMask = CPE.getAlignment() - 1;
    763     Size = (Size + AlignMask) & ~AlignMask;
    764     Type *Ty = CPE.getType();
    765     Size += TD->getTypeAllocSize(Ty);
    766   }
    767   return Size;
    768 }
    769 
    770 void JITEmitter::startFunction(MachineFunction &F) {
    771   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
    772         << F.getName() << "\n");
    773 
    774   uintptr_t ActualSize = 0;
    775   // Set the memory writable, if it's not already
    776   MemMgr->setMemoryWritable();
    777 
    778   if (SizeEstimate > 0) {
    779     // SizeEstimate will be non-zero on reallocation attempts.
    780     ActualSize = SizeEstimate;
    781   }
    782 
    783   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
    784                                                          ActualSize);
    785   BufferEnd = BufferBegin+ActualSize;
    786   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
    787 
    788   // Ensure the constant pool/jump table info is at least 4-byte aligned.
    789   emitAlignment(16);
    790 
    791   emitConstantPool(F.getConstantPool());
    792   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    793     initJumpTableInfo(MJTI);
    794 
    795   // About to start emitting the machine code for the function.
    796   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
    797   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
    798   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
    799 
    800   MBBLocations.clear();
    801 
    802   EmissionDetails.MF = &F;
    803   EmissionDetails.LineStarts.clear();
    804 }
    805 
    806 bool JITEmitter::finishFunction(MachineFunction &F) {
    807   if (CurBufferPtr == BufferEnd) {
    808     // We must call endFunctionBody before retrying, because
    809     // deallocateMemForFunction requires it.
    810     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    811     retryWithMoreMemory(F);
    812     return true;
    813   }
    814 
    815   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    816     emitJumpTableInfo(MJTI);
    817 
    818   // FnStart is the start of the text, not the start of the constant pool and
    819   // other per-function data.
    820   uint8_t *FnStart =
    821     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
    822 
    823   // FnEnd is the end of the function's machine code.
    824   uint8_t *FnEnd = CurBufferPtr;
    825 
    826   if (!Relocations.empty()) {
    827     CurFn = F.getFunction();
    828     NumRelos += Relocations.size();
    829 
    830     // Resolve the relocations to concrete pointers.
    831     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    832       MachineRelocation &MR = Relocations[i];
    833       void *ResultPtr = nullptr;
    834       if (!MR.letTargetResolve()) {
    835         if (MR.isExternalSymbol()) {
    836           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
    837                                                         false);
    838           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
    839                        << ResultPtr << "]\n");
    840 
    841           // If the target REALLY wants a stub for this function, emit it now.
    842           if (MR.mayNeedFarStub()) {
    843             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
    844           }
    845         } else if (MR.isGlobalValue()) {
    846           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
    847                                          BufferBegin+MR.getMachineCodeOffset(),
    848                                          MR.mayNeedFarStub());
    849         } else if (MR.isIndirectSymbol()) {
    850           ResultPtr = getPointerToGVIndirectSym(
    851               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
    852         } else if (MR.isBasicBlock()) {
    853           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
    854         } else if (MR.isConstantPoolIndex()) {
    855           ResultPtr =
    856             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
    857         } else {
    858           assert(MR.isJumpTableIndex());
    859           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
    860         }
    861 
    862         MR.setResultPointer(ResultPtr);
    863       }
    864 
    865       // if we are managing the GOT and the relocation wants an index,
    866       // give it one
    867       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
    868         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
    869         MR.setGOTIndex(idx);
    870         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
    871           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
    872                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    873                        << "\n");
    874           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
    875         }
    876       }
    877     }
    878 
    879     CurFn = nullptr;
    880     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
    881                                   Relocations.size(), MemMgr->getGOTBase());
    882   }
    883 
    884   // Update the GOT entry for F to point to the new code.
    885   if (MemMgr->isManagingGOT()) {
    886     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    887     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
    888       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
    889                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    890                    << "\n");
    891       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    892     }
    893   }
    894 
    895   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
    896   // global variables that were referenced in the relocations.
    897   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    898 
    899   if (CurBufferPtr == BufferEnd) {
    900     retryWithMoreMemory(F);
    901     return true;
    902   } else {
    903     // Now that we've succeeded in emitting the function, reset the
    904     // SizeEstimate back down to zero.
    905     SizeEstimate = 0;
    906   }
    907 
    908   BufferBegin = CurBufferPtr = nullptr;
    909   NumBytes += FnEnd-FnStart;
    910 
    911   // Invalidate the icache if necessary.
    912   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
    913 
    914   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
    915                                 EmissionDetails);
    916 
    917   // Reset the previous debug location.
    918   PrevDL = DebugLoc();
    919 
    920   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
    921         << "] Function: " << F.getName()
    922         << ": " << (FnEnd-FnStart) << " bytes of text, "
    923         << Relocations.size() << " relocations\n");
    924 
    925   Relocations.clear();
    926   ConstPoolAddresses.clear();
    927 
    928   // Mark code region readable and executable if it's not so already.
    929   MemMgr->setMemoryExecutable();
    930 
    931   DEBUG({
    932       if (sys::hasDisassembler()) {
    933         dbgs() << "JIT: Disassembled code:\n";
    934         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
    935                                          (uintptr_t)FnStart);
    936       } else {
    937         dbgs() << "JIT: Binary code:\n";
    938         uint8_t* q = FnStart;
    939         for (int i = 0; q < FnEnd; q += 4, ++i) {
    940           if (i == 4)
    941             i = 0;
    942           if (i == 0)
    943             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
    944           bool Done = false;
    945           for (int j = 3; j >= 0; --j) {
    946             if (q + j >= FnEnd)
    947               Done = true;
    948             else
    949               dbgs() << (unsigned short)q[j];
    950           }
    951           if (Done)
    952             break;
    953           dbgs() << ' ';
    954           if (i == 3)
    955             dbgs() << '\n';
    956         }
    957         dbgs()<< '\n';
    958       }
    959     });
    960 
    961   if (MMI)
    962     MMI->EndFunction();
    963 
    964   return false;
    965 }
    966 
    967 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
    968   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
    969   Relocations.clear();  // Clear the old relocations or we'll reapply them.
    970   ConstPoolAddresses.clear();
    971   ++NumRetries;
    972   deallocateMemForFunction(F.getFunction());
    973   // Try again with at least twice as much free space.
    974   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
    975 
    976   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
    977     if (MBB->hasAddressTaken())
    978       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
    979   }
    980 }
    981 
    982 /// deallocateMemForFunction - Deallocate all memory for the specified
    983 /// function body.  Also drop any references the function has to stubs.
    984 /// May be called while the Function is being destroyed inside ~Value().
    985 void JITEmitter::deallocateMemForFunction(const Function *F) {
    986   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
    987     Emitted = EmittedFunctions.find(F);
    988   if (Emitted != EmittedFunctions.end()) {
    989     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
    990     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
    991 
    992     EmittedFunctions.erase(Emitted);
    993   }
    994 }
    995 
    996 
    997 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
    998   if (BufferBegin)
    999     return JITCodeEmitter::allocateSpace(Size, Alignment);
   1000 
   1001   // create a new memory block if there is no active one.
   1002   // care must be taken so that BufferBegin is invalidated when a
   1003   // block is trimmed
   1004   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
   1005   BufferEnd = BufferBegin+Size;
   1006   return CurBufferPtr;
   1007 }
   1008 
   1009 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
   1010   // Delegate this call through the memory manager.
   1011   return MemMgr->allocateGlobal(Size, Alignment);
   1012 }
   1013 
   1014 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
   1015   if (TheJIT->getJITInfo().hasCustomConstantPool())
   1016     return;
   1017 
   1018   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
   1019   if (Constants.empty()) return;
   1020 
   1021   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
   1022   unsigned Align = MCP->getConstantPoolAlignment();
   1023   ConstantPoolBase = allocateSpace(Size, Align);
   1024   ConstantPool = MCP;
   1025 
   1026   if (!ConstantPoolBase) return;  // Buffer overflow.
   1027 
   1028   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
   1029                << "] (size: " << Size << ", alignment: " << Align << ")\n");
   1030 
   1031   // Initialize the memory for all of the constant pool entries.
   1032   unsigned Offset = 0;
   1033   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
   1034     MachineConstantPoolEntry CPE = Constants[i];
   1035     unsigned AlignMask = CPE.getAlignment() - 1;
   1036     Offset = (Offset + AlignMask) & ~AlignMask;
   1037 
   1038     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
   1039     ConstPoolAddresses.push_back(CAddr);
   1040     if (CPE.isMachineConstantPoolEntry()) {
   1041       // FIXME: add support to lower machine constant pool values into bytes!
   1042       report_fatal_error("Initialize memory with machine specific constant pool"
   1043                         "entry has not been implemented!");
   1044     }
   1045     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
   1046     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
   1047           dbgs().write_hex(CAddr) << "]\n");
   1048 
   1049     Type *Ty = CPE.Val.ConstVal->getType();
   1050     Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
   1051   }
   1052 }
   1053 
   1054 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1055   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1056     return;
   1057   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
   1058     return;
   1059 
   1060   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1061   if (JT.empty()) return;
   1062 
   1063   unsigned NumEntries = 0;
   1064   for (unsigned i = 0, e = JT.size(); i != e; ++i)
   1065     NumEntries += JT[i].MBBs.size();
   1066 
   1067   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
   1068 
   1069   // Just allocate space for all the jump tables now.  We will fix up the actual
   1070   // MBB entries in the tables after we emit the code for each block, since then
   1071   // we will know the final locations of the MBBs in memory.
   1072   JumpTable = MJTI;
   1073   JumpTableBase = allocateSpace(NumEntries * EntrySize,
   1074                              MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
   1075 }
   1076 
   1077 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1078   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1079     return;
   1080 
   1081   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1082   if (JT.empty() || !JumpTableBase) return;
   1083 
   1084 
   1085   switch (MJTI->getEntryKind()) {
   1086   case MachineJumpTableInfo::EK_Inline:
   1087     return;
   1088   case MachineJumpTableInfo::EK_BlockAddress: {
   1089     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1090     //     .word LBB123
   1091     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
   1092            "Cross JIT'ing?");
   1093 
   1094     // For each jump table, map each target in the jump table to the address of
   1095     // an emitted MachineBasicBlock.
   1096     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
   1097 
   1098     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1099       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1100       // Store the address of the basic block for this jump table slot in the
   1101       // memory we allocated for the jump table in 'initJumpTableInfo'
   1102       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
   1103         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
   1104     }
   1105     break;
   1106   }
   1107 
   1108   case MachineJumpTableInfo::EK_Custom32:
   1109   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
   1110   case MachineJumpTableInfo::EK_LabelDifference32: {
   1111     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
   1112     // For each jump table, place the offset from the beginning of the table
   1113     // to the target address.
   1114     int *SlotPtr = (int*)JumpTableBase;
   1115 
   1116     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1117       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1118       // Store the offset of the basic block for this jump table slot in the
   1119       // memory we allocated for the jump table in 'initJumpTableInfo'
   1120       uintptr_t Base = (uintptr_t)SlotPtr;
   1121       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
   1122         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
   1123         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
   1124         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
   1125       }
   1126     }
   1127     break;
   1128   }
   1129   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
   1130     llvm_unreachable(
   1131            "JT Info emission not implemented for GPRel64BlockAddress yet.");
   1132   }
   1133 }
   1134 
   1135 void JITEmitter::startGVStub(const GlobalValue* GV,
   1136                              unsigned StubSize, unsigned Alignment) {
   1137   SavedBufferBegin = BufferBegin;
   1138   SavedBufferEnd = BufferEnd;
   1139   SavedCurBufferPtr = CurBufferPtr;
   1140 
   1141   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
   1142   BufferEnd = BufferBegin+StubSize+1;
   1143 }
   1144 
   1145 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
   1146   SavedBufferBegin = BufferBegin;
   1147   SavedBufferEnd = BufferEnd;
   1148   SavedCurBufferPtr = CurBufferPtr;
   1149 
   1150   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
   1151   BufferEnd = BufferBegin+StubSize+1;
   1152 }
   1153 
   1154 void JITEmitter::finishGVStub() {
   1155   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
   1156   NumBytes += getCurrentPCOffset();
   1157   BufferBegin = SavedBufferBegin;
   1158   BufferEnd = SavedBufferEnd;
   1159   CurBufferPtr = SavedCurBufferPtr;
   1160 }
   1161 
   1162 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
   1163                                   const uint8_t *Buffer, size_t Size,
   1164                                   unsigned Alignment) {
   1165   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
   1166   memcpy(IndGV, Buffer, Size);
   1167   return IndGV;
   1168 }
   1169 
   1170 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
   1171 // in the constant pool that was last emitted with the 'emitConstantPool'
   1172 // method.
   1173 //
   1174 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
   1175   assert(ConstantNum < ConstantPool->getConstants().size() &&
   1176          "Invalid ConstantPoolIndex!");
   1177   return ConstPoolAddresses[ConstantNum];
   1178 }
   1179 
   1180 // getJumpTableEntryAddress - Return the address of the JumpTable with index
   1181 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
   1182 //
   1183 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
   1184   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
   1185   assert(Index < JT.size() && "Invalid jump table index!");
   1186 
   1187   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
   1188 
   1189   unsigned Offset = 0;
   1190   for (unsigned i = 0; i < Index; ++i)
   1191     Offset += JT[i].MBBs.size();
   1192 
   1193    Offset *= EntrySize;
   1194 
   1195   return (uintptr_t)((char *)JumpTableBase + Offset);
   1196 }
   1197 
   1198 void JITEmitter::EmittedFunctionConfig::onDelete(
   1199   JITEmitter *Emitter, const Function *F) {
   1200   Emitter->deallocateMemForFunction(F);
   1201 }
   1202 void JITEmitter::EmittedFunctionConfig::onRAUW(
   1203   JITEmitter *, const Function*, const Function*) {
   1204   llvm_unreachable("The JIT doesn't know how to handle a"
   1205                    " RAUW on a value it has emitted.");
   1206 }
   1207 
   1208 
   1209 //===----------------------------------------------------------------------===//
   1210 //  Public interface to this file
   1211 //===----------------------------------------------------------------------===//
   1212 
   1213 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
   1214                                    TargetMachine &tm) {
   1215   return new JITEmitter(jit, JMM, tm);
   1216 }
   1217 
   1218 // getPointerToFunctionOrStub - If the specified function has been
   1219 // code-gen'd, return a pointer to the function.  If not, compile it, or use
   1220 // a stub to implement lazy compilation if available.
   1221 //
   1222 void *JIT::getPointerToFunctionOrStub(Function *F) {
   1223   // If we have already code generated the function, just return the address.
   1224   if (void *Addr = getPointerToGlobalIfAvailable(F))
   1225     return Addr;
   1226 
   1227   // Get a stub if the target supports it.
   1228   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1229   return JE->getJITResolver().getLazyFunctionStub(F);
   1230 }
   1231 
   1232 void JIT::updateFunctionStubUnlocked(Function *F) {
   1233   // Get the empty stub we generated earlier.
   1234   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1235   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
   1236   void *Addr = getPointerToGlobalIfAvailable(F);
   1237   assert(Addr != Stub && "Function must have non-stub address to be updated.");
   1238 
   1239   // Tell the target jit info to rewrite the stub at the specified address,
   1240   // rather than creating a new one.
   1241   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
   1242   JE->startGVStub(Stub, layout.Size);
   1243   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
   1244   JE->finishGVStub();
   1245 }
   1246 
   1247 /// freeMachineCodeForFunction - release machine code memory for given Function.
   1248 ///
   1249 void JIT::freeMachineCodeForFunction(Function *F) {
   1250   // Delete translation for this from the ExecutionEngine, so it will get
   1251   // retranslated next time it is used.
   1252   updateGlobalMapping(F, nullptr);
   1253 
   1254   // Free the actual memory for the function body and related stuff.
   1255   static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
   1256 }
   1257