Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLoweringBase class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     23 #include "llvm/CodeGen/StackMaps.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Mangler.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetLoweringObjectFile.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Target/TargetRegisterInfo.h"
     37 #include <cctype>
     38 using namespace llvm;
     39 
     40 /// InitLibcallNames - Set default libcall names.
     41 ///
     42 static void InitLibcallNames(const char **Names, const Triple &TT) {
     43   Names[RTLIB::SHL_I16] = "__ashlhi3";
     44   Names[RTLIB::SHL_I32] = "__ashlsi3";
     45   Names[RTLIB::SHL_I64] = "__ashldi3";
     46   Names[RTLIB::SHL_I128] = "__ashlti3";
     47   Names[RTLIB::SRL_I16] = "__lshrhi3";
     48   Names[RTLIB::SRL_I32] = "__lshrsi3";
     49   Names[RTLIB::SRL_I64] = "__lshrdi3";
     50   Names[RTLIB::SRL_I128] = "__lshrti3";
     51   Names[RTLIB::SRA_I16] = "__ashrhi3";
     52   Names[RTLIB::SRA_I32] = "__ashrsi3";
     53   Names[RTLIB::SRA_I64] = "__ashrdi3";
     54   Names[RTLIB::SRA_I128] = "__ashrti3";
     55   Names[RTLIB::MUL_I8] = "__mulqi3";
     56   Names[RTLIB::MUL_I16] = "__mulhi3";
     57   Names[RTLIB::MUL_I32] = "__mulsi3";
     58   Names[RTLIB::MUL_I64] = "__muldi3";
     59   Names[RTLIB::MUL_I128] = "__multi3";
     60   Names[RTLIB::MULO_I32] = "__mulosi4";
     61   Names[RTLIB::MULO_I64] = "__mulodi4";
     62   Names[RTLIB::MULO_I128] = "__muloti4";
     63   Names[RTLIB::SDIV_I8] = "__divqi3";
     64   Names[RTLIB::SDIV_I16] = "__divhi3";
     65   Names[RTLIB::SDIV_I32] = "__divsi3";
     66   Names[RTLIB::SDIV_I64] = "__divdi3";
     67   Names[RTLIB::SDIV_I128] = "__divti3";
     68   Names[RTLIB::UDIV_I8] = "__udivqi3";
     69   Names[RTLIB::UDIV_I16] = "__udivhi3";
     70   Names[RTLIB::UDIV_I32] = "__udivsi3";
     71   Names[RTLIB::UDIV_I64] = "__udivdi3";
     72   Names[RTLIB::UDIV_I128] = "__udivti3";
     73   Names[RTLIB::SREM_I8] = "__modqi3";
     74   Names[RTLIB::SREM_I16] = "__modhi3";
     75   Names[RTLIB::SREM_I32] = "__modsi3";
     76   Names[RTLIB::SREM_I64] = "__moddi3";
     77   Names[RTLIB::SREM_I128] = "__modti3";
     78   Names[RTLIB::UREM_I8] = "__umodqi3";
     79   Names[RTLIB::UREM_I16] = "__umodhi3";
     80   Names[RTLIB::UREM_I32] = "__umodsi3";
     81   Names[RTLIB::UREM_I64] = "__umoddi3";
     82   Names[RTLIB::UREM_I128] = "__umodti3";
     83 
     84   // These are generally not available.
     85   Names[RTLIB::SDIVREM_I8] = nullptr;
     86   Names[RTLIB::SDIVREM_I16] = nullptr;
     87   Names[RTLIB::SDIVREM_I32] = nullptr;
     88   Names[RTLIB::SDIVREM_I64] = nullptr;
     89   Names[RTLIB::SDIVREM_I128] = nullptr;
     90   Names[RTLIB::UDIVREM_I8] = nullptr;
     91   Names[RTLIB::UDIVREM_I16] = nullptr;
     92   Names[RTLIB::UDIVREM_I32] = nullptr;
     93   Names[RTLIB::UDIVREM_I64] = nullptr;
     94   Names[RTLIB::UDIVREM_I128] = nullptr;
     95 
     96   Names[RTLIB::NEG_I32] = "__negsi2";
     97   Names[RTLIB::NEG_I64] = "__negdi2";
     98   Names[RTLIB::ADD_F32] = "__addsf3";
     99   Names[RTLIB::ADD_F64] = "__adddf3";
    100   Names[RTLIB::ADD_F80] = "__addxf3";
    101   Names[RTLIB::ADD_F128] = "__addtf3";
    102   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    103   Names[RTLIB::SUB_F32] = "__subsf3";
    104   Names[RTLIB::SUB_F64] = "__subdf3";
    105   Names[RTLIB::SUB_F80] = "__subxf3";
    106   Names[RTLIB::SUB_F128] = "__subtf3";
    107   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    108   Names[RTLIB::MUL_F32] = "__mulsf3";
    109   Names[RTLIB::MUL_F64] = "__muldf3";
    110   Names[RTLIB::MUL_F80] = "__mulxf3";
    111   Names[RTLIB::MUL_F128] = "__multf3";
    112   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    113   Names[RTLIB::DIV_F32] = "__divsf3";
    114   Names[RTLIB::DIV_F64] = "__divdf3";
    115   Names[RTLIB::DIV_F80] = "__divxf3";
    116   Names[RTLIB::DIV_F128] = "__divtf3";
    117   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    118   Names[RTLIB::REM_F32] = "fmodf";
    119   Names[RTLIB::REM_F64] = "fmod";
    120   Names[RTLIB::REM_F80] = "fmodl";
    121   Names[RTLIB::REM_F128] = "fmodl";
    122   Names[RTLIB::REM_PPCF128] = "fmodl";
    123   Names[RTLIB::FMA_F32] = "fmaf";
    124   Names[RTLIB::FMA_F64] = "fma";
    125   Names[RTLIB::FMA_F80] = "fmal";
    126   Names[RTLIB::FMA_F128] = "fmal";
    127   Names[RTLIB::FMA_PPCF128] = "fmal";
    128   Names[RTLIB::POWI_F32] = "__powisf2";
    129   Names[RTLIB::POWI_F64] = "__powidf2";
    130   Names[RTLIB::POWI_F80] = "__powixf2";
    131   Names[RTLIB::POWI_F128] = "__powitf2";
    132   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    133   Names[RTLIB::SQRT_F32] = "sqrtf";
    134   Names[RTLIB::SQRT_F64] = "sqrt";
    135   Names[RTLIB::SQRT_F80] = "sqrtl";
    136   Names[RTLIB::SQRT_F128] = "sqrtl";
    137   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    138   Names[RTLIB::LOG_F32] = "logf";
    139   Names[RTLIB::LOG_F64] = "log";
    140   Names[RTLIB::LOG_F80] = "logl";
    141   Names[RTLIB::LOG_F128] = "logl";
    142   Names[RTLIB::LOG_PPCF128] = "logl";
    143   Names[RTLIB::LOG2_F32] = "log2f";
    144   Names[RTLIB::LOG2_F64] = "log2";
    145   Names[RTLIB::LOG2_F80] = "log2l";
    146   Names[RTLIB::LOG2_F128] = "log2l";
    147   Names[RTLIB::LOG2_PPCF128] = "log2l";
    148   Names[RTLIB::LOG10_F32] = "log10f";
    149   Names[RTLIB::LOG10_F64] = "log10";
    150   Names[RTLIB::LOG10_F80] = "log10l";
    151   Names[RTLIB::LOG10_F128] = "log10l";
    152   Names[RTLIB::LOG10_PPCF128] = "log10l";
    153   Names[RTLIB::EXP_F32] = "expf";
    154   Names[RTLIB::EXP_F64] = "exp";
    155   Names[RTLIB::EXP_F80] = "expl";
    156   Names[RTLIB::EXP_F128] = "expl";
    157   Names[RTLIB::EXP_PPCF128] = "expl";
    158   Names[RTLIB::EXP2_F32] = "exp2f";
    159   Names[RTLIB::EXP2_F64] = "exp2";
    160   Names[RTLIB::EXP2_F80] = "exp2l";
    161   Names[RTLIB::EXP2_F128] = "exp2l";
    162   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    163   Names[RTLIB::SIN_F32] = "sinf";
    164   Names[RTLIB::SIN_F64] = "sin";
    165   Names[RTLIB::SIN_F80] = "sinl";
    166   Names[RTLIB::SIN_F128] = "sinl";
    167   Names[RTLIB::SIN_PPCF128] = "sinl";
    168   Names[RTLIB::COS_F32] = "cosf";
    169   Names[RTLIB::COS_F64] = "cos";
    170   Names[RTLIB::COS_F80] = "cosl";
    171   Names[RTLIB::COS_F128] = "cosl";
    172   Names[RTLIB::COS_PPCF128] = "cosl";
    173   Names[RTLIB::POW_F32] = "powf";
    174   Names[RTLIB::POW_F64] = "pow";
    175   Names[RTLIB::POW_F80] = "powl";
    176   Names[RTLIB::POW_F128] = "powl";
    177   Names[RTLIB::POW_PPCF128] = "powl";
    178   Names[RTLIB::CEIL_F32] = "ceilf";
    179   Names[RTLIB::CEIL_F64] = "ceil";
    180   Names[RTLIB::CEIL_F80] = "ceill";
    181   Names[RTLIB::CEIL_F128] = "ceill";
    182   Names[RTLIB::CEIL_PPCF128] = "ceill";
    183   Names[RTLIB::TRUNC_F32] = "truncf";
    184   Names[RTLIB::TRUNC_F64] = "trunc";
    185   Names[RTLIB::TRUNC_F80] = "truncl";
    186   Names[RTLIB::TRUNC_F128] = "truncl";
    187   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    188   Names[RTLIB::RINT_F32] = "rintf";
    189   Names[RTLIB::RINT_F64] = "rint";
    190   Names[RTLIB::RINT_F80] = "rintl";
    191   Names[RTLIB::RINT_F128] = "rintl";
    192   Names[RTLIB::RINT_PPCF128] = "rintl";
    193   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    194   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    195   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    196   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
    197   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    198   Names[RTLIB::ROUND_F32] = "roundf";
    199   Names[RTLIB::ROUND_F64] = "round";
    200   Names[RTLIB::ROUND_F80] = "roundl";
    201   Names[RTLIB::ROUND_F128] = "roundl";
    202   Names[RTLIB::ROUND_PPCF128] = "roundl";
    203   Names[RTLIB::FLOOR_F32] = "floorf";
    204   Names[RTLIB::FLOOR_F64] = "floor";
    205   Names[RTLIB::FLOOR_F80] = "floorl";
    206   Names[RTLIB::FLOOR_F128] = "floorl";
    207   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    208   Names[RTLIB::ROUND_F32] = "roundf";
    209   Names[RTLIB::ROUND_F64] = "round";
    210   Names[RTLIB::ROUND_F80] = "roundl";
    211   Names[RTLIB::ROUND_F128] = "roundl";
    212   Names[RTLIB::ROUND_PPCF128] = "roundl";
    213   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    214   Names[RTLIB::COPYSIGN_F64] = "copysign";
    215   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    216   Names[RTLIB::COPYSIGN_F128] = "copysignl";
    217   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    218   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
    219   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
    220   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    221   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    222   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    223   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    224   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    225   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
    226   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    227   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    228   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
    229   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    230   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    231   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    232   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    233   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    234   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    235   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    236   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    237   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    238   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    239   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    240   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    241   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    242   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    243   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
    244   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
    245   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
    246   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    247   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    248   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    249   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    250   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    251   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    252   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    253   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    254   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    255   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    256   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    257   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    258   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    259   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    260   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    261   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    262   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
    263   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
    264   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
    265   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    266   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    267   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    268   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    269   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    270   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    271   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
    272   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    273   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    274   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    275   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    276   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
    277   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    278   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    279   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    280   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    281   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
    282   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    283   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    284   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    285   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    286   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
    287   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    288   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    289   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    290   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    291   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
    292   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    293   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    294   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    295   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    296   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
    297   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    298   Names[RTLIB::OEQ_F32] = "__eqsf2";
    299   Names[RTLIB::OEQ_F64] = "__eqdf2";
    300   Names[RTLIB::OEQ_F128] = "__eqtf2";
    301   Names[RTLIB::UNE_F32] = "__nesf2";
    302   Names[RTLIB::UNE_F64] = "__nedf2";
    303   Names[RTLIB::UNE_F128] = "__netf2";
    304   Names[RTLIB::OGE_F32] = "__gesf2";
    305   Names[RTLIB::OGE_F64] = "__gedf2";
    306   Names[RTLIB::OGE_F128] = "__getf2";
    307   Names[RTLIB::OLT_F32] = "__ltsf2";
    308   Names[RTLIB::OLT_F64] = "__ltdf2";
    309   Names[RTLIB::OLT_F128] = "__lttf2";
    310   Names[RTLIB::OLE_F32] = "__lesf2";
    311   Names[RTLIB::OLE_F64] = "__ledf2";
    312   Names[RTLIB::OLE_F128] = "__letf2";
    313   Names[RTLIB::OGT_F32] = "__gtsf2";
    314   Names[RTLIB::OGT_F64] = "__gtdf2";
    315   Names[RTLIB::OGT_F128] = "__gttf2";
    316   Names[RTLIB::UO_F32] = "__unordsf2";
    317   Names[RTLIB::UO_F64] = "__unorddf2";
    318   Names[RTLIB::UO_F128] = "__unordtf2";
    319   Names[RTLIB::O_F32] = "__unordsf2";
    320   Names[RTLIB::O_F64] = "__unorddf2";
    321   Names[RTLIB::O_F128] = "__unordtf2";
    322   Names[RTLIB::MEMCPY] = "memcpy";
    323   Names[RTLIB::MEMMOVE] = "memmove";
    324   Names[RTLIB::MEMSET] = "memset";
    325   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    326   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    327   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    328   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    329   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    330   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
    331   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    332   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    333   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    334   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    335   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
    336   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    337   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    338   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    339   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    340   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
    341   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    342   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    343   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    344   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    345   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
    346   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    347   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    348   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    349   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    350   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
    351   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    352   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    353   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    354   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    355   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
    356   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    357   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    358   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    359   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    360   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
    361   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    362   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    363   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    364   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    365   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
    366   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
    367   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
    368   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
    369   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
    370   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
    371   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
    372   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
    373   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
    374   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
    375   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
    376   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
    377   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
    378   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
    379   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
    380   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
    381   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
    382   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
    383   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
    384   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
    385   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
    386 
    387   if (TT.getEnvironment() == Triple::GNU) {
    388     Names[RTLIB::SINCOS_F32] = "sincosf";
    389     Names[RTLIB::SINCOS_F64] = "sincos";
    390     Names[RTLIB::SINCOS_F80] = "sincosl";
    391     Names[RTLIB::SINCOS_F128] = "sincosl";
    392     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
    393   } else {
    394     // These are generally not available.
    395     Names[RTLIB::SINCOS_F32] = nullptr;
    396     Names[RTLIB::SINCOS_F64] = nullptr;
    397     Names[RTLIB::SINCOS_F80] = nullptr;
    398     Names[RTLIB::SINCOS_F128] = nullptr;
    399     Names[RTLIB::SINCOS_PPCF128] = nullptr;
    400   }
    401 
    402   if (TT.getOS() != Triple::OpenBSD) {
    403     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
    404   } else {
    405     // These are generally not available.
    406     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
    407   }
    408 }
    409 
    410 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    411 ///
    412 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    413   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    414     CCs[i] = CallingConv::C;
    415   }
    416 }
    417 
    418 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    419 /// UNKNOWN_LIBCALL if there is none.
    420 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    421   if (OpVT == MVT::f32) {
    422     if (RetVT == MVT::f64)
    423       return FPEXT_F32_F64;
    424     if (RetVT == MVT::f128)
    425       return FPEXT_F32_F128;
    426   } else if (OpVT == MVT::f64) {
    427     if (RetVT == MVT::f128)
    428       return FPEXT_F64_F128;
    429   }
    430 
    431   return UNKNOWN_LIBCALL;
    432 }
    433 
    434 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    435 /// UNKNOWN_LIBCALL if there is none.
    436 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    437   if (RetVT == MVT::f32) {
    438     if (OpVT == MVT::f64)
    439       return FPROUND_F64_F32;
    440     if (OpVT == MVT::f80)
    441       return FPROUND_F80_F32;
    442     if (OpVT == MVT::f128)
    443       return FPROUND_F128_F32;
    444     if (OpVT == MVT::ppcf128)
    445       return FPROUND_PPCF128_F32;
    446   } else if (RetVT == MVT::f64) {
    447     if (OpVT == MVT::f80)
    448       return FPROUND_F80_F64;
    449     if (OpVT == MVT::f128)
    450       return FPROUND_F128_F64;
    451     if (OpVT == MVT::ppcf128)
    452       return FPROUND_PPCF128_F64;
    453   }
    454 
    455   return UNKNOWN_LIBCALL;
    456 }
    457 
    458 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    459 /// UNKNOWN_LIBCALL if there is none.
    460 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    461   if (OpVT == MVT::f32) {
    462     if (RetVT == MVT::i8)
    463       return FPTOSINT_F32_I8;
    464     if (RetVT == MVT::i16)
    465       return FPTOSINT_F32_I16;
    466     if (RetVT == MVT::i32)
    467       return FPTOSINT_F32_I32;
    468     if (RetVT == MVT::i64)
    469       return FPTOSINT_F32_I64;
    470     if (RetVT == MVT::i128)
    471       return FPTOSINT_F32_I128;
    472   } else if (OpVT == MVT::f64) {
    473     if (RetVT == MVT::i8)
    474       return FPTOSINT_F64_I8;
    475     if (RetVT == MVT::i16)
    476       return FPTOSINT_F64_I16;
    477     if (RetVT == MVT::i32)
    478       return FPTOSINT_F64_I32;
    479     if (RetVT == MVT::i64)
    480       return FPTOSINT_F64_I64;
    481     if (RetVT == MVT::i128)
    482       return FPTOSINT_F64_I128;
    483   } else if (OpVT == MVT::f80) {
    484     if (RetVT == MVT::i32)
    485       return FPTOSINT_F80_I32;
    486     if (RetVT == MVT::i64)
    487       return FPTOSINT_F80_I64;
    488     if (RetVT == MVT::i128)
    489       return FPTOSINT_F80_I128;
    490   } else if (OpVT == MVT::f128) {
    491     if (RetVT == MVT::i32)
    492       return FPTOSINT_F128_I32;
    493     if (RetVT == MVT::i64)
    494       return FPTOSINT_F128_I64;
    495     if (RetVT == MVT::i128)
    496       return FPTOSINT_F128_I128;
    497   } else if (OpVT == MVT::ppcf128) {
    498     if (RetVT == MVT::i32)
    499       return FPTOSINT_PPCF128_I32;
    500     if (RetVT == MVT::i64)
    501       return FPTOSINT_PPCF128_I64;
    502     if (RetVT == MVT::i128)
    503       return FPTOSINT_PPCF128_I128;
    504   }
    505   return UNKNOWN_LIBCALL;
    506 }
    507 
    508 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    509 /// UNKNOWN_LIBCALL if there is none.
    510 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    511   if (OpVT == MVT::f32) {
    512     if (RetVT == MVT::i8)
    513       return FPTOUINT_F32_I8;
    514     if (RetVT == MVT::i16)
    515       return FPTOUINT_F32_I16;
    516     if (RetVT == MVT::i32)
    517       return FPTOUINT_F32_I32;
    518     if (RetVT == MVT::i64)
    519       return FPTOUINT_F32_I64;
    520     if (RetVT == MVT::i128)
    521       return FPTOUINT_F32_I128;
    522   } else if (OpVT == MVT::f64) {
    523     if (RetVT == MVT::i8)
    524       return FPTOUINT_F64_I8;
    525     if (RetVT == MVT::i16)
    526       return FPTOUINT_F64_I16;
    527     if (RetVT == MVT::i32)
    528       return FPTOUINT_F64_I32;
    529     if (RetVT == MVT::i64)
    530       return FPTOUINT_F64_I64;
    531     if (RetVT == MVT::i128)
    532       return FPTOUINT_F64_I128;
    533   } else if (OpVT == MVT::f80) {
    534     if (RetVT == MVT::i32)
    535       return FPTOUINT_F80_I32;
    536     if (RetVT == MVT::i64)
    537       return FPTOUINT_F80_I64;
    538     if (RetVT == MVT::i128)
    539       return FPTOUINT_F80_I128;
    540   } else if (OpVT == MVT::f128) {
    541     if (RetVT == MVT::i32)
    542       return FPTOUINT_F128_I32;
    543     if (RetVT == MVT::i64)
    544       return FPTOUINT_F128_I64;
    545     if (RetVT == MVT::i128)
    546       return FPTOUINT_F128_I128;
    547   } else if (OpVT == MVT::ppcf128) {
    548     if (RetVT == MVT::i32)
    549       return FPTOUINT_PPCF128_I32;
    550     if (RetVT == MVT::i64)
    551       return FPTOUINT_PPCF128_I64;
    552     if (RetVT == MVT::i128)
    553       return FPTOUINT_PPCF128_I128;
    554   }
    555   return UNKNOWN_LIBCALL;
    556 }
    557 
    558 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    559 /// UNKNOWN_LIBCALL if there is none.
    560 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    561   if (OpVT == MVT::i32) {
    562     if (RetVT == MVT::f32)
    563       return SINTTOFP_I32_F32;
    564     if (RetVT == MVT::f64)
    565       return SINTTOFP_I32_F64;
    566     if (RetVT == MVT::f80)
    567       return SINTTOFP_I32_F80;
    568     if (RetVT == MVT::f128)
    569       return SINTTOFP_I32_F128;
    570     if (RetVT == MVT::ppcf128)
    571       return SINTTOFP_I32_PPCF128;
    572   } else if (OpVT == MVT::i64) {
    573     if (RetVT == MVT::f32)
    574       return SINTTOFP_I64_F32;
    575     if (RetVT == MVT::f64)
    576       return SINTTOFP_I64_F64;
    577     if (RetVT == MVT::f80)
    578       return SINTTOFP_I64_F80;
    579     if (RetVT == MVT::f128)
    580       return SINTTOFP_I64_F128;
    581     if (RetVT == MVT::ppcf128)
    582       return SINTTOFP_I64_PPCF128;
    583   } else if (OpVT == MVT::i128) {
    584     if (RetVT == MVT::f32)
    585       return SINTTOFP_I128_F32;
    586     if (RetVT == MVT::f64)
    587       return SINTTOFP_I128_F64;
    588     if (RetVT == MVT::f80)
    589       return SINTTOFP_I128_F80;
    590     if (RetVT == MVT::f128)
    591       return SINTTOFP_I128_F128;
    592     if (RetVT == MVT::ppcf128)
    593       return SINTTOFP_I128_PPCF128;
    594   }
    595   return UNKNOWN_LIBCALL;
    596 }
    597 
    598 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    599 /// UNKNOWN_LIBCALL if there is none.
    600 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    601   if (OpVT == MVT::i32) {
    602     if (RetVT == MVT::f32)
    603       return UINTTOFP_I32_F32;
    604     if (RetVT == MVT::f64)
    605       return UINTTOFP_I32_F64;
    606     if (RetVT == MVT::f80)
    607       return UINTTOFP_I32_F80;
    608     if (RetVT == MVT::f128)
    609       return UINTTOFP_I32_F128;
    610     if (RetVT == MVT::ppcf128)
    611       return UINTTOFP_I32_PPCF128;
    612   } else if (OpVT == MVT::i64) {
    613     if (RetVT == MVT::f32)
    614       return UINTTOFP_I64_F32;
    615     if (RetVT == MVT::f64)
    616       return UINTTOFP_I64_F64;
    617     if (RetVT == MVT::f80)
    618       return UINTTOFP_I64_F80;
    619     if (RetVT == MVT::f128)
    620       return UINTTOFP_I64_F128;
    621     if (RetVT == MVT::ppcf128)
    622       return UINTTOFP_I64_PPCF128;
    623   } else if (OpVT == MVT::i128) {
    624     if (RetVT == MVT::f32)
    625       return UINTTOFP_I128_F32;
    626     if (RetVT == MVT::f64)
    627       return UINTTOFP_I128_F64;
    628     if (RetVT == MVT::f80)
    629       return UINTTOFP_I128_F80;
    630     if (RetVT == MVT::f128)
    631       return UINTTOFP_I128_F128;
    632     if (RetVT == MVT::ppcf128)
    633       return UINTTOFP_I128_PPCF128;
    634   }
    635   return UNKNOWN_LIBCALL;
    636 }
    637 
    638 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    639 ///
    640 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    641   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    642   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    643   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    644   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
    645   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    646   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    647   CCs[RTLIB::UNE_F128] = ISD::SETNE;
    648   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    649   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    650   CCs[RTLIB::OGE_F128] = ISD::SETGE;
    651   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    652   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    653   CCs[RTLIB::OLT_F128] = ISD::SETLT;
    654   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    655   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    656   CCs[RTLIB::OLE_F128] = ISD::SETLE;
    657   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    658   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    659   CCs[RTLIB::OGT_F128] = ISD::SETGT;
    660   CCs[RTLIB::UO_F32] = ISD::SETNE;
    661   CCs[RTLIB::UO_F64] = ISD::SETNE;
    662   CCs[RTLIB::UO_F128] = ISD::SETNE;
    663   CCs[RTLIB::O_F32] = ISD::SETEQ;
    664   CCs[RTLIB::O_F64] = ISD::SETEQ;
    665   CCs[RTLIB::O_F128] = ISD::SETEQ;
    666 }
    667 
    668 /// NOTE: The constructor takes ownership of TLOF.
    669 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
    670                                        const TargetLoweringObjectFile *tlof)
    671   : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) {
    672   initActions();
    673 
    674   // Perform these initializations only once.
    675   IsLittleEndian = DL->isLittleEndian();
    676   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
    677   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    678     = MaxStoresPerMemmoveOptSize = 4;
    679   UseUnderscoreSetJmp = false;
    680   UseUnderscoreLongJmp = false;
    681   SelectIsExpensive = false;
    682   HasMultipleConditionRegisters = false;
    683   HasExtractBitsInsn = false;
    684   IntDivIsCheap = false;
    685   Pow2DivIsCheap = false;
    686   JumpIsExpensive = false;
    687   PredictableSelectIsExpensive = false;
    688   MaskAndBranchFoldingIsLegal = false;
    689   StackPointerRegisterToSaveRestore = 0;
    690   ExceptionPointerRegister = 0;
    691   ExceptionSelectorRegister = 0;
    692   BooleanContents = UndefinedBooleanContent;
    693   BooleanFloatContents = UndefinedBooleanContent;
    694   BooleanVectorContents = UndefinedBooleanContent;
    695   SchedPreferenceInfo = Sched::ILP;
    696   JumpBufSize = 0;
    697   JumpBufAlignment = 0;
    698   MinFunctionAlignment = 0;
    699   PrefFunctionAlignment = 0;
    700   PrefLoopAlignment = 0;
    701   MinStackArgumentAlignment = 1;
    702   InsertFencesForAtomic = false;
    703   SupportJumpTables = true;
    704   MinimumJumpTableEntries = 4;
    705 
    706   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
    707   InitCmpLibcallCCs(CmpLibcallCCs);
    708   InitLibcallCallingConvs(LibcallCallingConvs);
    709 }
    710 
    711 TargetLoweringBase::~TargetLoweringBase() {
    712   delete &TLOF;
    713 }
    714 
    715 void TargetLoweringBase::initActions() {
    716   // All operations default to being supported.
    717   memset(OpActions, 0, sizeof(OpActions));
    718   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    719   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    720   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    721   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    722   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    723   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    724 
    725   // Set default actions for various operations.
    726   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
    727     // Default all indexed load / store to expand.
    728     for (unsigned IM = (unsigned)ISD::PRE_INC;
    729          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    730       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
    731       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
    732     }
    733 
    734     // Most backends expect to see the node which just returns the value loaded.
    735     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
    736                        (MVT::SimpleValueType)VT, Expand);
    737 
    738     // These operations default to expand.
    739     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
    740     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
    741 
    742     // These library functions default to expand.
    743     setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
    744 
    745     // These operations default to expand for vector types.
    746     if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
    747         VT <= MVT::LAST_VECTOR_VALUETYPE) {
    748       setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    749       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,
    750                          (MVT::SimpleValueType)VT, Expand);
    751       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG,
    752                          (MVT::SimpleValueType)VT, Expand);
    753       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG,
    754                          (MVT::SimpleValueType)VT, Expand);
    755     }
    756   }
    757 
    758   // Most targets ignore the @llvm.prefetch intrinsic.
    759   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    760 
    761   // ConstantFP nodes default to expand.  Targets can either change this to
    762   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    763   // to optimize expansions for certain constants.
    764   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    765   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    766   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    767   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    768   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
    769 
    770   // These library functions default to expand.
    771   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
    772   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
    773   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
    774   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
    775   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
    776   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
    777   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
    778   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
    779   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
    780   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
    781   setOperationAction(ISD::FROUND, MVT::f16, Expand);
    782   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
    783   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
    784   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
    785   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
    786   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
    787   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
    788   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
    789   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
    790   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
    791   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
    792   setOperationAction(ISD::FROUND, MVT::f32, Expand);
    793   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
    794   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
    795   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
    796   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
    797   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
    798   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
    799   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    800   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
    801   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
    802   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
    803   setOperationAction(ISD::FROUND, MVT::f64, Expand);
    804   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
    805   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
    806   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
    807   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
    808   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
    809   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
    810   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
    811   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
    812   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
    813   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
    814   setOperationAction(ISD::FROUND, MVT::f128, Expand);
    815 
    816   // Default ISD::TRAP to expand (which turns it into abort).
    817   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    818 
    819   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
    820   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
    821   //
    822   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
    823 }
    824 
    825 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
    826   return MVT::getIntegerVT(getPointerSizeInBits(AS));
    827 }
    828 
    829 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
    830   return DL->getPointerSizeInBits(AS);
    831 }
    832 
    833 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
    834   assert(Ty->isPointerTy());
    835   return getPointerSizeInBits(Ty->getPointerAddressSpace());
    836 }
    837 
    838 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
    839   return MVT::getIntegerVT(8*DL->getPointerSize(0));
    840 }
    841 
    842 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
    843   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
    844   if (LHSTy.isVector())
    845     return LHSTy;
    846   return getScalarShiftAmountTy(LHSTy);
    847 }
    848 
    849 /// canOpTrap - Returns true if the operation can trap for the value type.
    850 /// VT must be a legal type.
    851 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
    852   assert(isTypeLegal(VT));
    853   switch (Op) {
    854   default:
    855     return false;
    856   case ISD::FDIV:
    857   case ISD::FREM:
    858   case ISD::SDIV:
    859   case ISD::UDIV:
    860   case ISD::SREM:
    861   case ISD::UREM:
    862     return true;
    863   }
    864 }
    865 
    866 
    867 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
    868                                           unsigned &NumIntermediates,
    869                                           MVT &RegisterVT,
    870                                           TargetLoweringBase *TLI) {
    871   // Figure out the right, legal destination reg to copy into.
    872   unsigned NumElts = VT.getVectorNumElements();
    873   MVT EltTy = VT.getVectorElementType();
    874 
    875   unsigned NumVectorRegs = 1;
    876 
    877   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    878   // could break down into LHS/RHS like LegalizeDAG does.
    879   if (!isPowerOf2_32(NumElts)) {
    880     NumVectorRegs = NumElts;
    881     NumElts = 1;
    882   }
    883 
    884   // Divide the input until we get to a supported size.  This will always
    885   // end with a scalar if the target doesn't support vectors.
    886   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    887     NumElts >>= 1;
    888     NumVectorRegs <<= 1;
    889   }
    890 
    891   NumIntermediates = NumVectorRegs;
    892 
    893   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
    894   if (!TLI->isTypeLegal(NewVT))
    895     NewVT = EltTy;
    896   IntermediateVT = NewVT;
    897 
    898   unsigned NewVTSize = NewVT.getSizeInBits();
    899 
    900   // Convert sizes such as i33 to i64.
    901   if (!isPowerOf2_32(NewVTSize))
    902     NewVTSize = NextPowerOf2(NewVTSize);
    903 
    904   MVT DestVT = TLI->getRegisterType(NewVT);
    905   RegisterVT = DestVT;
    906   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    907     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    908 
    909   // Otherwise, promotion or legal types use the same number of registers as
    910   // the vector decimated to the appropriate level.
    911   return NumVectorRegs;
    912 }
    913 
    914 /// isLegalRC - Return true if the value types that can be represented by the
    915 /// specified register class are all legal.
    916 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
    917   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
    918        I != E; ++I) {
    919     if (isTypeLegal(*I))
    920       return true;
    921   }
    922   return false;
    923 }
    924 
    925 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
    926 /// sequence of memory operands that is recognized by PrologEpilogInserter.
    927 MachineBasicBlock*
    928 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
    929                                    MachineBasicBlock *MBB) const {
    930   MachineFunction &MF = *MI->getParent()->getParent();
    931 
    932   // MI changes inside this loop as we grow operands.
    933   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
    934     MachineOperand &MO = MI->getOperand(OperIdx);
    935     if (!MO.isFI())
    936       continue;
    937 
    938     // foldMemoryOperand builds a new MI after replacing a single FI operand
    939     // with the canonical set of five x86 addressing-mode operands.
    940     int FI = MO.getIndex();
    941     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
    942 
    943     // Copy operands before the frame-index.
    944     for (unsigned i = 0; i < OperIdx; ++i)
    945       MIB.addOperand(MI->getOperand(i));
    946     // Add frame index operands: direct-mem-ref tag, #FI, offset.
    947     MIB.addImm(StackMaps::DirectMemRefOp);
    948     MIB.addOperand(MI->getOperand(OperIdx));
    949     MIB.addImm(0);
    950     // Copy the operands after the frame index.
    951     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
    952       MIB.addOperand(MI->getOperand(i));
    953 
    954     // Inherit previous memory operands.
    955     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
    956     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
    957 
    958     // Add a new memory operand for this FI.
    959     const MachineFrameInfo &MFI = *MF.getFrameInfo();
    960     assert(MFI.getObjectOffset(FI) != -1);
    961     MachineMemOperand *MMO =
    962       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    963                               MachineMemOperand::MOLoad,
    964                               TM.getDataLayout()->getPointerSize(),
    965                               MFI.getObjectAlignment(FI));
    966     MIB->addMemOperand(MF, MMO);
    967 
    968     // Replace the instruction and update the operand index.
    969     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
    970     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
    971     MI->eraseFromParent();
    972     MI = MIB;
    973   }
    974   return MBB;
    975 }
    976 
    977 /// findRepresentativeClass - Return the largest legal super-reg register class
    978 /// of the register class for the specified type and its associated "cost".
    979 std::pair<const TargetRegisterClass*, uint8_t>
    980 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
    981   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
    982   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    983   if (!RC)
    984     return std::make_pair(RC, 0);
    985 
    986   // Compute the set of all super-register classes.
    987   BitVector SuperRegRC(TRI->getNumRegClasses());
    988   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
    989     SuperRegRC.setBitsInMask(RCI.getMask());
    990 
    991   // Find the first legal register class with the largest spill size.
    992   const TargetRegisterClass *BestRC = RC;
    993   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
    994     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
    995     // We want the largest possible spill size.
    996     if (SuperRC->getSize() <= BestRC->getSize())
    997       continue;
    998     if (!isLegalRC(SuperRC))
    999       continue;
   1000     BestRC = SuperRC;
   1001   }
   1002   return std::make_pair(BestRC, 1);
   1003 }
   1004 
   1005 /// computeRegisterProperties - Once all of the register classes are added,
   1006 /// this allows us to compute derived properties we expose.
   1007 void TargetLoweringBase::computeRegisterProperties() {
   1008   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
   1009          "Too many value types for ValueTypeActions to hold!");
   1010 
   1011   // Everything defaults to needing one register.
   1012   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1013     NumRegistersForVT[i] = 1;
   1014     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
   1015   }
   1016   // ...except isVoid, which doesn't need any registers.
   1017   NumRegistersForVT[MVT::isVoid] = 0;
   1018 
   1019   // Find the largest integer register class.
   1020   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
   1021   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
   1022     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
   1023 
   1024   // Every integer value type larger than this largest register takes twice as
   1025   // many registers to represent as the previous ValueType.
   1026   for (unsigned ExpandedReg = LargestIntReg + 1;
   1027        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
   1028     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
   1029     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
   1030     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
   1031     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
   1032                                    TypeExpandInteger);
   1033   }
   1034 
   1035   // Inspect all of the ValueType's smaller than the largest integer
   1036   // register to see which ones need promotion.
   1037   unsigned LegalIntReg = LargestIntReg;
   1038   for (unsigned IntReg = LargestIntReg - 1;
   1039        IntReg >= (unsigned)MVT::i1; --IntReg) {
   1040     MVT IVT = (MVT::SimpleValueType)IntReg;
   1041     if (isTypeLegal(IVT)) {
   1042       LegalIntReg = IntReg;
   1043     } else {
   1044       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
   1045         (const MVT::SimpleValueType)LegalIntReg;
   1046       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
   1047     }
   1048   }
   1049 
   1050   // ppcf128 type is really two f64's.
   1051   if (!isTypeLegal(MVT::ppcf128)) {
   1052     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
   1053     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
   1054     TransformToType[MVT::ppcf128] = MVT::f64;
   1055     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
   1056   }
   1057 
   1058   // Decide how to handle f128. If the target does not have native f128 support,
   1059   // expand it to i128 and we will be generating soft float library calls.
   1060   if (!isTypeLegal(MVT::f128)) {
   1061     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
   1062     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
   1063     TransformToType[MVT::f128] = MVT::i128;
   1064     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
   1065   }
   1066 
   1067   // Decide how to handle f64. If the target does not have native f64 support,
   1068   // expand it to i64 and we will be generating soft float library calls.
   1069   if (!isTypeLegal(MVT::f64)) {
   1070     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
   1071     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
   1072     TransformToType[MVT::f64] = MVT::i64;
   1073     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
   1074   }
   1075 
   1076   // Decide how to handle f32. If the target does not have native support for
   1077   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
   1078   if (!isTypeLegal(MVT::f32)) {
   1079     if (isTypeLegal(MVT::f64)) {
   1080       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
   1081       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
   1082       TransformToType[MVT::f32] = MVT::f64;
   1083       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
   1084     } else {
   1085       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
   1086       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
   1087       TransformToType[MVT::f32] = MVT::i32;
   1088       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
   1089     }
   1090   }
   1091 
   1092   // Loop over all of the vector value types to see which need transformations.
   1093   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
   1094        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1095     MVT VT = (MVT::SimpleValueType) i;
   1096     if (isTypeLegal(VT))
   1097       continue;
   1098 
   1099     MVT EltVT = VT.getVectorElementType();
   1100     unsigned NElts = VT.getVectorNumElements();
   1101     bool IsLegalWiderType = false;
   1102     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
   1103     switch (PreferredAction) {
   1104     case TypePromoteInteger: {
   1105       // Try to promote the elements of integer vectors. If no legal
   1106       // promotion was found, fall through to the widen-vector method.
   1107       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1108         MVT SVT = (MVT::SimpleValueType) nVT;
   1109         // Promote vectors of integers to vectors with the same number
   1110         // of elements, with a wider element type.
   1111         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
   1112             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
   1113             && SVT.getScalarType().isInteger()) {
   1114           TransformToType[i] = SVT;
   1115           RegisterTypeForVT[i] = SVT;
   1116           NumRegistersForVT[i] = 1;
   1117           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
   1118           IsLegalWiderType = true;
   1119           break;
   1120         }
   1121       }
   1122       if (IsLegalWiderType)
   1123         break;
   1124     }
   1125     case TypeWidenVector: {
   1126       // Try to widen the vector.
   1127       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1128         MVT SVT = (MVT::SimpleValueType) nVT;
   1129         if (SVT.getVectorElementType() == EltVT
   1130             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
   1131           TransformToType[i] = SVT;
   1132           RegisterTypeForVT[i] = SVT;
   1133           NumRegistersForVT[i] = 1;
   1134           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1135           IsLegalWiderType = true;
   1136           break;
   1137         }
   1138       }
   1139       if (IsLegalWiderType)
   1140         break;
   1141     }
   1142     case TypeSplitVector:
   1143     case TypeScalarizeVector: {
   1144       MVT IntermediateVT;
   1145       MVT RegisterVT;
   1146       unsigned NumIntermediates;
   1147       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
   1148           NumIntermediates, RegisterVT, this);
   1149       RegisterTypeForVT[i] = RegisterVT;
   1150 
   1151       MVT NVT = VT.getPow2VectorType();
   1152       if (NVT == VT) {
   1153         // Type is already a power of 2.  The default action is to split.
   1154         TransformToType[i] = MVT::Other;
   1155         if (PreferredAction == TypeScalarizeVector)
   1156           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
   1157         else
   1158           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
   1159       } else {
   1160         TransformToType[i] = NVT;
   1161         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1162       }
   1163       break;
   1164     }
   1165     default:
   1166       llvm_unreachable("Unknown vector legalization action!");
   1167     }
   1168   }
   1169 
   1170   // Determine the 'representative' register class for each value type.
   1171   // An representative register class is the largest (meaning one which is
   1172   // not a sub-register class / subreg register class) legal register class for
   1173   // a group of value types. For example, on i386, i8, i16, and i32
   1174   // representative would be GR32; while on x86_64 it's GR64.
   1175   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1176     const TargetRegisterClass* RRC;
   1177     uint8_t Cost;
   1178     std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
   1179     RepRegClassForVT[i] = RRC;
   1180     RepRegClassCostForVT[i] = Cost;
   1181   }
   1182 }
   1183 
   1184 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
   1185   assert(!VT.isVector() && "No default SetCC type for vectors!");
   1186   return getPointerTy(0).SimpleTy;
   1187 }
   1188 
   1189 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
   1190   return MVT::i32; // return the default value
   1191 }
   1192 
   1193 /// getVectorTypeBreakdown - Vector types are broken down into some number of
   1194 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
   1195 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
   1196 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
   1197 ///
   1198 /// This method returns the number of registers needed, and the VT for each
   1199 /// register.  It also returns the VT and quantity of the intermediate values
   1200 /// before they are promoted/expanded.
   1201 ///
   1202 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   1203                                                 EVT &IntermediateVT,
   1204                                                 unsigned &NumIntermediates,
   1205                                                 MVT &RegisterVT) const {
   1206   unsigned NumElts = VT.getVectorNumElements();
   1207 
   1208   // If there is a wider vector type with the same element type as this one,
   1209   // or a promoted vector type that has the same number of elements which
   1210   // are wider, then we should convert to that legal vector type.
   1211   // This handles things like <2 x float> -> <4 x float> and
   1212   // <4 x i1> -> <4 x i32>.
   1213   LegalizeTypeAction TA = getTypeAction(Context, VT);
   1214   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
   1215     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
   1216     if (isTypeLegal(RegisterEVT)) {
   1217       IntermediateVT = RegisterEVT;
   1218       RegisterVT = RegisterEVT.getSimpleVT();
   1219       NumIntermediates = 1;
   1220       return 1;
   1221     }
   1222   }
   1223 
   1224   // Figure out the right, legal destination reg to copy into.
   1225   EVT EltTy = VT.getVectorElementType();
   1226 
   1227   unsigned NumVectorRegs = 1;
   1228 
   1229   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1230   // could break down into LHS/RHS like LegalizeDAG does.
   1231   if (!isPowerOf2_32(NumElts)) {
   1232     NumVectorRegs = NumElts;
   1233     NumElts = 1;
   1234   }
   1235 
   1236   // Divide the input until we get to a supported size.  This will always
   1237   // end with a scalar if the target doesn't support vectors.
   1238   while (NumElts > 1 && !isTypeLegal(
   1239                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
   1240     NumElts >>= 1;
   1241     NumVectorRegs <<= 1;
   1242   }
   1243 
   1244   NumIntermediates = NumVectorRegs;
   1245 
   1246   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   1247   if (!isTypeLegal(NewVT))
   1248     NewVT = EltTy;
   1249   IntermediateVT = NewVT;
   1250 
   1251   MVT DestVT = getRegisterType(Context, NewVT);
   1252   RegisterVT = DestVT;
   1253   unsigned NewVTSize = NewVT.getSizeInBits();
   1254 
   1255   // Convert sizes such as i33 to i64.
   1256   if (!isPowerOf2_32(NewVTSize))
   1257     NewVTSize = NextPowerOf2(NewVTSize);
   1258 
   1259   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
   1260     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1261 
   1262   // Otherwise, promotion or legal types use the same number of registers as
   1263   // the vector decimated to the appropriate level.
   1264   return NumVectorRegs;
   1265 }
   1266 
   1267 /// Get the EVTs and ArgFlags collections that represent the legalized return
   1268 /// type of the given function.  This does not require a DAG or a return value,
   1269 /// and is suitable for use before any DAGs for the function are constructed.
   1270 /// TODO: Move this out of TargetLowering.cpp.
   1271 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
   1272                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1273                          const TargetLowering &TLI) {
   1274   SmallVector<EVT, 4> ValueVTs;
   1275   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   1276   unsigned NumValues = ValueVTs.size();
   1277   if (NumValues == 0) return;
   1278 
   1279   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1280     EVT VT = ValueVTs[j];
   1281     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1282 
   1283     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1284       ExtendKind = ISD::SIGN_EXTEND;
   1285     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1286       ExtendKind = ISD::ZERO_EXTEND;
   1287 
   1288     // FIXME: C calling convention requires the return type to be promoted to
   1289     // at least 32-bit. But this is not necessary for non-C calling
   1290     // conventions. The frontend should mark functions whose return values
   1291     // require promoting with signext or zeroext attributes.
   1292     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1293       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1294       if (VT.bitsLT(MinVT))
   1295         VT = MinVT;
   1296     }
   1297 
   1298     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1299     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1300 
   1301     // 'inreg' on function refers to return value
   1302     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1303     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
   1304       Flags.setInReg();
   1305 
   1306     // Propagate extension type if any
   1307     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1308       Flags.setSExt();
   1309     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1310       Flags.setZExt();
   1311 
   1312     for (unsigned i = 0; i < NumParts; ++i)
   1313       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
   1314   }
   1315 }
   1316 
   1317 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1318 /// function arguments in the caller parameter area.  This is the actual
   1319 /// alignment, not its logarithm.
   1320 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
   1321   return DL->getABITypeAlignment(Ty);
   1322 }
   1323 
   1324 //===----------------------------------------------------------------------===//
   1325 //  TargetTransformInfo Helpers
   1326 //===----------------------------------------------------------------------===//
   1327 
   1328 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
   1329   enum InstructionOpcodes {
   1330 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
   1331 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
   1332 #include "llvm/IR/Instruction.def"
   1333   };
   1334   switch (static_cast<InstructionOpcodes>(Opcode)) {
   1335   case Ret:            return 0;
   1336   case Br:             return 0;
   1337   case Switch:         return 0;
   1338   case IndirectBr:     return 0;
   1339   case Invoke:         return 0;
   1340   case Resume:         return 0;
   1341   case Unreachable:    return 0;
   1342   case Add:            return ISD::ADD;
   1343   case FAdd:           return ISD::FADD;
   1344   case Sub:            return ISD::SUB;
   1345   case FSub:           return ISD::FSUB;
   1346   case Mul:            return ISD::MUL;
   1347   case FMul:           return ISD::FMUL;
   1348   case UDiv:           return ISD::UDIV;
   1349   case SDiv:           return ISD::SDIV;
   1350   case FDiv:           return ISD::FDIV;
   1351   case URem:           return ISD::UREM;
   1352   case SRem:           return ISD::SREM;
   1353   case FRem:           return ISD::FREM;
   1354   case Shl:            return ISD::SHL;
   1355   case LShr:           return ISD::SRL;
   1356   case AShr:           return ISD::SRA;
   1357   case And:            return ISD::AND;
   1358   case Or:             return ISD::OR;
   1359   case Xor:            return ISD::XOR;
   1360   case Alloca:         return 0;
   1361   case Load:           return ISD::LOAD;
   1362   case Store:          return ISD::STORE;
   1363   case GetElementPtr:  return 0;
   1364   case Fence:          return 0;
   1365   case AtomicCmpXchg:  return 0;
   1366   case AtomicRMW:      return 0;
   1367   case Trunc:          return ISD::TRUNCATE;
   1368   case ZExt:           return ISD::ZERO_EXTEND;
   1369   case SExt:           return ISD::SIGN_EXTEND;
   1370   case FPToUI:         return ISD::FP_TO_UINT;
   1371   case FPToSI:         return ISD::FP_TO_SINT;
   1372   case UIToFP:         return ISD::UINT_TO_FP;
   1373   case SIToFP:         return ISD::SINT_TO_FP;
   1374   case FPTrunc:        return ISD::FP_ROUND;
   1375   case FPExt:          return ISD::FP_EXTEND;
   1376   case PtrToInt:       return ISD::BITCAST;
   1377   case IntToPtr:       return ISD::BITCAST;
   1378   case BitCast:        return ISD::BITCAST;
   1379   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
   1380   case ICmp:           return ISD::SETCC;
   1381   case FCmp:           return ISD::SETCC;
   1382   case PHI:            return 0;
   1383   case Call:           return 0;
   1384   case Select:         return ISD::SELECT;
   1385   case UserOp1:        return 0;
   1386   case UserOp2:        return 0;
   1387   case VAArg:          return 0;
   1388   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
   1389   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
   1390   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
   1391   case ExtractValue:   return ISD::MERGE_VALUES;
   1392   case InsertValue:    return ISD::MERGE_VALUES;
   1393   case LandingPad:     return 0;
   1394   }
   1395 
   1396   llvm_unreachable("Unknown instruction type encountered!");
   1397 }
   1398 
   1399 std::pair<unsigned, MVT>
   1400 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
   1401   LLVMContext &C = Ty->getContext();
   1402   EVT MTy = getValueType(Ty);
   1403 
   1404   unsigned Cost = 1;
   1405   // We keep legalizing the type until we find a legal kind. We assume that
   1406   // the only operation that costs anything is the split. After splitting
   1407   // we need to handle two types.
   1408   while (true) {
   1409     LegalizeKind LK = getTypeConversion(C, MTy);
   1410 
   1411     if (LK.first == TypeLegal)
   1412       return std::make_pair(Cost, MTy.getSimpleVT());
   1413 
   1414     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
   1415       Cost *= 2;
   1416 
   1417     // Keep legalizing the type.
   1418     MTy = LK.second;
   1419   }
   1420 }
   1421 
   1422 //===----------------------------------------------------------------------===//
   1423 //  Loop Strength Reduction hooks
   1424 //===----------------------------------------------------------------------===//
   1425 
   1426 /// isLegalAddressingMode - Return true if the addressing mode represented
   1427 /// by AM is legal for this target, for a load/store of the specified type.
   1428 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
   1429                                            Type *Ty) const {
   1430   // The default implementation of this implements a conservative RISCy, r+r and
   1431   // r+i addr mode.
   1432 
   1433   // Allows a sign-extended 16-bit immediate field.
   1434   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   1435     return false;
   1436 
   1437   // No global is ever allowed as a base.
   1438   if (AM.BaseGV)
   1439     return false;
   1440 
   1441   // Only support r+r,
   1442   switch (AM.Scale) {
   1443   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   1444     break;
   1445   case 1:
   1446     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   1447       return false;
   1448     // Otherwise we have r+r or r+i.
   1449     break;
   1450   case 2:
   1451     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   1452       return false;
   1453     // Allow 2*r as r+r.
   1454     break;
   1455   default: // Don't allow n * r
   1456     return false;
   1457   }
   1458 
   1459   return true;
   1460 }
   1461