1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass makes sure that all branches are in range. There are several ways 11 // in which this could be done. One aggressive approach is to assume that all 12 // branches are in range and successively replace those that turn out not 13 // to be in range with a longer form (branch relaxation). A simple 14 // implementation is to continually walk through the function relaxing 15 // branches until no more changes are needed and a fixed point is reached. 16 // However, in the pathological worst case, this implementation is 17 // quadratic in the number of blocks; relaxing branch N can make branch N-1 18 // go out of range, which in turn can make branch N-2 go out of range, 19 // and so on. 20 // 21 // An alternative approach is to assume that all branches must be 22 // converted to their long forms, then reinstate the short forms of 23 // branches that, even under this pessimistic assumption, turn out to be 24 // in range (branch shortening). This too can be implemented as a function 25 // walk that is repeated until a fixed point is reached. In general, 26 // the result of shortening is not as good as that of relaxation, and 27 // shortening is also quadratic in the worst case; shortening branch N 28 // can bring branch N-1 in range of the short form, which in turn can do 29 // the same for branch N-2, and so on. The main advantage of shortening 30 // is that each walk through the function produces valid code, so it is 31 // possible to stop at any point after the first walk. The quadraticness 32 // could therefore be handled with a maximum pass count, although the 33 // question then becomes: what maximum count should be used? 34 // 35 // On SystemZ, long branches are only needed for functions bigger than 64k, 36 // which are relatively rare to begin with, and the long branch sequences 37 // are actually relatively cheap. It therefore doesn't seem worth spending 38 // much compilation time on the problem. Instead, the approach we take is: 39 // 40 // (1) Work out the address that each block would have if no branches 41 // need relaxing. Exit the pass early if all branches are in range 42 // according to this assumption. 43 // 44 // (2) Work out the address that each block would have if all branches 45 // need relaxing. 46 // 47 // (3) Walk through the block calculating the final address of each instruction 48 // and relaxing those that need to be relaxed. For backward branches, 49 // this check uses the final address of the target block, as calculated 50 // earlier in the walk. For forward branches, this check uses the 51 // address of the target block that was calculated in (2). Both checks 52 // give a conservatively-correct range. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "SystemZTargetMachine.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/CodeGen/MachineFunctionPass.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetRegisterInfo.h" 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "systemz-long-branch" 70 71 STATISTIC(LongBranches, "Number of long branches."); 72 73 namespace { 74 // Represents positional information about a basic block. 75 struct MBBInfo { 76 // The address that we currently assume the block has. 77 uint64_t Address; 78 79 // The size of the block in bytes, excluding terminators. 80 // This value never changes. 81 uint64_t Size; 82 83 // The minimum alignment of the block, as a log2 value. 84 // This value never changes. 85 unsigned Alignment; 86 87 // The number of terminators in this block. This value never changes. 88 unsigned NumTerminators; 89 90 MBBInfo() 91 : Address(0), Size(0), Alignment(0), NumTerminators(0) {} 92 }; 93 94 // Represents the state of a block terminator. 95 struct TerminatorInfo { 96 // If this terminator is a relaxable branch, this points to the branch 97 // instruction, otherwise it is null. 98 MachineInstr *Branch; 99 100 // The address that we currently assume the terminator has. 101 uint64_t Address; 102 103 // The current size of the terminator in bytes. 104 uint64_t Size; 105 106 // If Branch is nonnull, this is the number of the target block, 107 // otherwise it is unused. 108 unsigned TargetBlock; 109 110 // If Branch is nonnull, this is the length of the longest relaxed form, 111 // otherwise it is zero. 112 unsigned ExtraRelaxSize; 113 114 TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0), 115 ExtraRelaxSize(0) {} 116 }; 117 118 // Used to keep track of the current position while iterating over the blocks. 119 struct BlockPosition { 120 // The address that we assume this position has. 121 uint64_t Address; 122 123 // The number of low bits in Address that are known to be the same 124 // as the runtime address. 125 unsigned KnownBits; 126 127 BlockPosition(unsigned InitialAlignment) 128 : Address(0), KnownBits(InitialAlignment) {} 129 }; 130 131 class SystemZLongBranch : public MachineFunctionPass { 132 public: 133 static char ID; 134 SystemZLongBranch(const SystemZTargetMachine &tm) 135 : MachineFunctionPass(ID), TII(nullptr) {} 136 137 const char *getPassName() const override { 138 return "SystemZ Long Branch"; 139 } 140 141 bool runOnMachineFunction(MachineFunction &F) override; 142 143 private: 144 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block); 145 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator, 146 bool AssumeRelaxed); 147 TerminatorInfo describeTerminator(MachineInstr *MI); 148 uint64_t initMBBInfo(); 149 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address); 150 bool mustRelaxABranch(); 151 void setWorstCaseAddresses(); 152 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode); 153 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode); 154 void relaxBranch(TerminatorInfo &Terminator); 155 void relaxBranches(); 156 157 const SystemZInstrInfo *TII; 158 MachineFunction *MF; 159 SmallVector<MBBInfo, 16> MBBs; 160 SmallVector<TerminatorInfo, 16> Terminators; 161 }; 162 163 char SystemZLongBranch::ID = 0; 164 165 const uint64_t MaxBackwardRange = 0x10000; 166 const uint64_t MaxForwardRange = 0xfffe; 167 } // end anonymous namespace 168 169 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) { 170 return new SystemZLongBranch(TM); 171 } 172 173 // Position describes the state immediately before Block. Update Block 174 // accordingly and move Position to the end of the block's non-terminator 175 // instructions. 176 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position, 177 MBBInfo &Block) { 178 if (Block.Alignment > Position.KnownBits) { 179 // When calculating the address of Block, we need to conservatively 180 // assume that Block had the worst possible misalignment. 181 Position.Address += ((uint64_t(1) << Block.Alignment) - 182 (uint64_t(1) << Position.KnownBits)); 183 Position.KnownBits = Block.Alignment; 184 } 185 186 // Align the addresses. 187 uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1; 188 Position.Address = (Position.Address + AlignMask) & ~AlignMask; 189 190 // Record the block's position. 191 Block.Address = Position.Address; 192 193 // Move past the non-terminators in the block. 194 Position.Address += Block.Size; 195 } 196 197 // Position describes the state immediately before Terminator. 198 // Update Terminator accordingly and move Position past it. 199 // Assume that Terminator will be relaxed if AssumeRelaxed. 200 void SystemZLongBranch::skipTerminator(BlockPosition &Position, 201 TerminatorInfo &Terminator, 202 bool AssumeRelaxed) { 203 Terminator.Address = Position.Address; 204 Position.Address += Terminator.Size; 205 if (AssumeRelaxed) 206 Position.Address += Terminator.ExtraRelaxSize; 207 } 208 209 // Return a description of terminator instruction MI. 210 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) { 211 TerminatorInfo Terminator; 212 Terminator.Size = TII->getInstSizeInBytes(MI); 213 if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) { 214 switch (MI->getOpcode()) { 215 case SystemZ::J: 216 // Relaxes to JG, which is 2 bytes longer. 217 Terminator.ExtraRelaxSize = 2; 218 break; 219 case SystemZ::BRC: 220 // Relaxes to BRCL, which is 2 bytes longer. 221 Terminator.ExtraRelaxSize = 2; 222 break; 223 case SystemZ::BRCT: 224 case SystemZ::BRCTG: 225 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer. 226 Terminator.ExtraRelaxSize = 6; 227 break; 228 case SystemZ::CRJ: 229 case SystemZ::CLRJ: 230 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer. 231 Terminator.ExtraRelaxSize = 2; 232 break; 233 case SystemZ::CGRJ: 234 case SystemZ::CLGRJ: 235 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer. 236 Terminator.ExtraRelaxSize = 4; 237 break; 238 case SystemZ::CIJ: 239 case SystemZ::CGIJ: 240 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer. 241 Terminator.ExtraRelaxSize = 4; 242 break; 243 case SystemZ::CLIJ: 244 case SystemZ::CLGIJ: 245 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer. 246 Terminator.ExtraRelaxSize = 6; 247 break; 248 default: 249 llvm_unreachable("Unrecognized branch instruction"); 250 } 251 Terminator.Branch = MI; 252 Terminator.TargetBlock = 253 TII->getBranchInfo(MI).Target->getMBB()->getNumber(); 254 } 255 return Terminator; 256 } 257 258 // Fill MBBs and Terminators, setting the addresses on the assumption 259 // that no branches need relaxation. Return the size of the function under 260 // this assumption. 261 uint64_t SystemZLongBranch::initMBBInfo() { 262 MF->RenumberBlocks(); 263 unsigned NumBlocks = MF->size(); 264 265 MBBs.clear(); 266 MBBs.resize(NumBlocks); 267 268 Terminators.clear(); 269 Terminators.reserve(NumBlocks); 270 271 BlockPosition Position(MF->getAlignment()); 272 for (unsigned I = 0; I < NumBlocks; ++I) { 273 MachineBasicBlock *MBB = MF->getBlockNumbered(I); 274 MBBInfo &Block = MBBs[I]; 275 276 // Record the alignment, for quick access. 277 Block.Alignment = MBB->getAlignment(); 278 279 // Calculate the size of the fixed part of the block. 280 MachineBasicBlock::iterator MI = MBB->begin(); 281 MachineBasicBlock::iterator End = MBB->end(); 282 while (MI != End && !MI->isTerminator()) { 283 Block.Size += TII->getInstSizeInBytes(MI); 284 ++MI; 285 } 286 skipNonTerminators(Position, Block); 287 288 // Add the terminators. 289 while (MI != End) { 290 if (!MI->isDebugValue()) { 291 assert(MI->isTerminator() && "Terminator followed by non-terminator"); 292 Terminators.push_back(describeTerminator(MI)); 293 skipTerminator(Position, Terminators.back(), false); 294 ++Block.NumTerminators; 295 } 296 ++MI; 297 } 298 } 299 300 return Position.Address; 301 } 302 303 // Return true if, under current assumptions, Terminator would need to be 304 // relaxed if it were placed at address Address. 305 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator, 306 uint64_t Address) { 307 if (!Terminator.Branch) 308 return false; 309 310 const MBBInfo &Target = MBBs[Terminator.TargetBlock]; 311 if (Address >= Target.Address) { 312 if (Address - Target.Address <= MaxBackwardRange) 313 return false; 314 } else { 315 if (Target.Address - Address <= MaxForwardRange) 316 return false; 317 } 318 319 return true; 320 } 321 322 // Return true if, under current assumptions, any terminator needs 323 // to be relaxed. 324 bool SystemZLongBranch::mustRelaxABranch() { 325 for (auto &Terminator : Terminators) 326 if (mustRelaxBranch(Terminator, Terminator.Address)) 327 return true; 328 return false; 329 } 330 331 // Set the address of each block on the assumption that all branches 332 // must be long. 333 void SystemZLongBranch::setWorstCaseAddresses() { 334 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 335 BlockPosition Position(MF->getAlignment()); 336 for (auto &Block : MBBs) { 337 skipNonTerminators(Position, Block); 338 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) { 339 skipTerminator(Position, *TI, true); 340 ++TI; 341 } 342 } 343 } 344 345 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed 346 // by a BRCL on the result. 347 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI, 348 unsigned AddOpcode) { 349 MachineBasicBlock *MBB = MI->getParent(); 350 DebugLoc DL = MI->getDebugLoc(); 351 BuildMI(*MBB, MI, DL, TII->get(AddOpcode)) 352 .addOperand(MI->getOperand(0)) 353 .addOperand(MI->getOperand(1)) 354 .addImm(-1); 355 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL)) 356 .addImm(SystemZ::CCMASK_ICMP) 357 .addImm(SystemZ::CCMASK_CMP_NE) 358 .addOperand(MI->getOperand(2)); 359 // The implicit use of CC is a killing use. 360 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo()); 361 MI->eraseFromParent(); 362 } 363 364 // Split MI into the comparison given by CompareOpcode followed 365 // a BRCL on the result. 366 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI, 367 unsigned CompareOpcode) { 368 MachineBasicBlock *MBB = MI->getParent(); 369 DebugLoc DL = MI->getDebugLoc(); 370 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode)) 371 .addOperand(MI->getOperand(0)) 372 .addOperand(MI->getOperand(1)); 373 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL)) 374 .addImm(SystemZ::CCMASK_ICMP) 375 .addOperand(MI->getOperand(2)) 376 .addOperand(MI->getOperand(3)); 377 // The implicit use of CC is a killing use. 378 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo()); 379 MI->eraseFromParent(); 380 } 381 382 // Relax the branch described by Terminator. 383 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) { 384 MachineInstr *Branch = Terminator.Branch; 385 switch (Branch->getOpcode()) { 386 case SystemZ::J: 387 Branch->setDesc(TII->get(SystemZ::JG)); 388 break; 389 case SystemZ::BRC: 390 Branch->setDesc(TII->get(SystemZ::BRCL)); 391 break; 392 case SystemZ::BRCT: 393 splitBranchOnCount(Branch, SystemZ::AHI); 394 break; 395 case SystemZ::BRCTG: 396 splitBranchOnCount(Branch, SystemZ::AGHI); 397 break; 398 case SystemZ::CRJ: 399 splitCompareBranch(Branch, SystemZ::CR); 400 break; 401 case SystemZ::CGRJ: 402 splitCompareBranch(Branch, SystemZ::CGR); 403 break; 404 case SystemZ::CIJ: 405 splitCompareBranch(Branch, SystemZ::CHI); 406 break; 407 case SystemZ::CGIJ: 408 splitCompareBranch(Branch, SystemZ::CGHI); 409 break; 410 case SystemZ::CLRJ: 411 splitCompareBranch(Branch, SystemZ::CLR); 412 break; 413 case SystemZ::CLGRJ: 414 splitCompareBranch(Branch, SystemZ::CLGR); 415 break; 416 case SystemZ::CLIJ: 417 splitCompareBranch(Branch, SystemZ::CLFI); 418 break; 419 case SystemZ::CLGIJ: 420 splitCompareBranch(Branch, SystemZ::CLGFI); 421 break; 422 default: 423 llvm_unreachable("Unrecognized branch"); 424 } 425 426 Terminator.Size += Terminator.ExtraRelaxSize; 427 Terminator.ExtraRelaxSize = 0; 428 Terminator.Branch = nullptr; 429 430 ++LongBranches; 431 } 432 433 // Run a shortening pass and relax any branches that need to be relaxed. 434 void SystemZLongBranch::relaxBranches() { 435 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 436 BlockPosition Position(MF->getAlignment()); 437 for (auto &Block : MBBs) { 438 skipNonTerminators(Position, Block); 439 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) { 440 assert(Position.Address <= TI->Address && 441 "Addresses shouldn't go forwards"); 442 if (mustRelaxBranch(*TI, Position.Address)) 443 relaxBranch(*TI); 444 skipTerminator(Position, *TI, false); 445 ++TI; 446 } 447 } 448 } 449 450 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) { 451 TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo()); 452 MF = &F; 453 uint64_t Size = initMBBInfo(); 454 if (Size <= MaxForwardRange || !mustRelaxABranch()) 455 return false; 456 457 setWorstCaseAddresses(); 458 relaxBranches(); 459 return true; 460 } 461