Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "OpenGLRenderer"
     18 
     19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
     20 #define CASTER_Z_CAP_RATIO 0.95f
     21 
     22 // When there is no umbra, then just fake the umbra using
     23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
     24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
     25 
     26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
     27 // That is consider pretty fine tessllated polygon so far.
     28 // This is just to prevent using too much some memory when edge slicing is not
     29 // needed any more.
     30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
     31 /**
     32  * Extra vertices for the corner for smoother corner.
     33  * Only for outer loop.
     34  * Note that we use such extra memory to avoid an extra loop.
     35  */
     36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
     37 // Set to 1 if we don't want to have any.
     38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
     39 
     40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
     41 // therefore, the maximum number of extra vertices will be twice bigger.
     42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     43 
     44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
     45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     46 
     47 
     48 #include <math.h>
     49 #include <stdlib.h>
     50 #include <utils/Log.h>
     51 
     52 #include "ShadowTessellator.h"
     53 #include "SpotShadow.h"
     54 #include "Vertex.h"
     55 #include "utils/MathUtils.h"
     56 
     57 // TODO: After we settle down the new algorithm, we can remove the old one and
     58 // its utility functions.
     59 // Right now, we still need to keep it for comparison purpose and future expansion.
     60 namespace android {
     61 namespace uirenderer {
     62 
     63 static const double EPSILON = 1e-7;
     64 
     65 /**
     66  * For each polygon's vertex, the light center will project it to the receiver
     67  * as one of the outline vertex.
     68  * For each outline vertex, we need to store the position and normal.
     69  * Normal here is defined against the edge by the current vertex and the next vertex.
     70  */
     71 struct OutlineData {
     72     Vector2 position;
     73     Vector2 normal;
     74     float radius;
     75 };
     76 
     77 /**
     78  * For each vertex, we need to keep track of its angle, whether it is penumbra or
     79  * umbra, and its corresponding vertex index.
     80  */
     81 struct SpotShadow::VertexAngleData {
     82     // The angle to the vertex from the centroid.
     83     float mAngle;
     84     // True is the vertex comes from penumbra, otherwise it comes from umbra.
     85     bool mIsPenumbra;
     86     // The index of the vertex described by this data.
     87     int mVertexIndex;
     88     void set(float angle, bool isPenumbra, int index) {
     89         mAngle = angle;
     90         mIsPenumbra = isPenumbra;
     91         mVertexIndex = index;
     92     }
     93 };
     94 
     95 /**
     96  * Calculate the angle between and x and a y coordinate.
     97  * The atan2 range from -PI to PI.
     98  */
     99 static float angle(const Vector2& point, const Vector2& center) {
    100     return atan2(point.y - center.y, point.x - center.x);
    101 }
    102 
    103 /**
    104  * Calculate the intersection of a ray with the line segment defined by two points.
    105  *
    106  * Returns a negative value in error conditions.
    107 
    108  * @param rayOrigin The start of the ray
    109  * @param dx The x vector of the ray
    110  * @param dy The y vector of the ray
    111  * @param p1 The first point defining the line segment
    112  * @param p2 The second point defining the line segment
    113  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
    114  */
    115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
    116         const Vector2& p1, const Vector2& p2) {
    117     // The math below is derived from solving this formula, basically the
    118     // intersection point should stay on both the ray and the edge of (p1, p2).
    119     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
    120 
    121     double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
    122     if (divisor == 0) return -1.0f; // error, invalid divisor
    123 
    124 #if DEBUG_SHADOW
    125     double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
    126     if (interpVal < 0 || interpVal > 1) {
    127         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
    128     }
    129 #endif
    130 
    131     double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
    132             rayOrigin.x * (p2.y - p1.y)) / divisor;
    133 
    134     return distance; // may be negative in error cases
    135 }
    136 
    137 /**
    138  * Sort points by their X coordinates
    139  *
    140  * @param points the points as a Vector2 array.
    141  * @param pointsLength the number of vertices of the polygon.
    142  */
    143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
    144     quicksortX(points, 0, pointsLength - 1);
    145 }
    146 
    147 /**
    148  * compute the convex hull of a collection of Points
    149  *
    150  * @param points the points as a Vector2 array.
    151  * @param pointsLength the number of vertices of the polygon.
    152  * @param retPoly pre allocated array of floats to put the vertices
    153  * @return the number of points in the polygon 0 if no intersection
    154  */
    155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
    156     xsort(points, pointsLength);
    157     int n = pointsLength;
    158     Vector2 lUpper[n];
    159     lUpper[0] = points[0];
    160     lUpper[1] = points[1];
    161 
    162     int lUpperSize = 2;
    163 
    164     for (int i = 2; i < n; i++) {
    165         lUpper[lUpperSize] = points[i];
    166         lUpperSize++;
    167 
    168         while (lUpperSize > 2 && !ccw(
    169                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
    170                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
    171                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
    172             // Remove the middle point of the three last
    173             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
    174             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
    175             lUpperSize--;
    176         }
    177     }
    178 
    179     Vector2 lLower[n];
    180     lLower[0] = points[n - 1];
    181     lLower[1] = points[n - 2];
    182 
    183     int lLowerSize = 2;
    184 
    185     for (int i = n - 3; i >= 0; i--) {
    186         lLower[lLowerSize] = points[i];
    187         lLowerSize++;
    188 
    189         while (lLowerSize > 2 && !ccw(
    190                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
    191                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
    192                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
    193             // Remove the middle point of the three last
    194             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
    195             lLowerSize--;
    196         }
    197     }
    198 
    199     // output points in CW ordering
    200     const int total = lUpperSize + lLowerSize - 2;
    201     int outIndex = total - 1;
    202     for (int i = 0; i < lUpperSize; i++) {
    203         retPoly[outIndex] = lUpper[i];
    204         outIndex--;
    205     }
    206 
    207     for (int i = 1; i < lLowerSize - 1; i++) {
    208         retPoly[outIndex] = lLower[i];
    209         outIndex--;
    210     }
    211     // TODO: Add test harness which verify that all the points are inside the hull.
    212     return total;
    213 }
    214 
    215 /**
    216  * Test whether the 3 points form a counter clockwise turn.
    217  *
    218  * @return true if a right hand turn
    219  */
    220 bool SpotShadow::ccw(double ax, double ay, double bx, double by,
    221         double cx, double cy) {
    222     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
    223 }
    224 
    225 /**
    226  * Calculates the intersection of poly1 with poly2 and put in poly2.
    227  * Note that both poly1 and poly2 must be in CW order already!
    228  *
    229  * @param poly1 The 1st polygon, as a Vector2 array.
    230  * @param poly1Length The number of vertices of 1st polygon.
    231  * @param poly2 The 2nd and output polygon, as a Vector2 array.
    232  * @param poly2Length The number of vertices of 2nd polygon.
    233  * @return number of vertices in output polygon as poly2.
    234  */
    235 int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
    236         Vector2* poly2, int poly2Length) {
    237 #if DEBUG_SHADOW
    238     if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
    239         ALOGW("Poly1 is not clockwise! Intersection is wrong!");
    240     }
    241     if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
    242         ALOGW("Poly2 is not clockwise! Intersection is wrong!");
    243     }
    244 #endif
    245     Vector2 poly[poly1Length * poly2Length + 2];
    246     int count = 0;
    247     int pcount = 0;
    248 
    249     // If one vertex from one polygon sits inside another polygon, add it and
    250     // count them.
    251     for (int i = 0; i < poly1Length; i++) {
    252         if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
    253             poly[count] = poly1[i];
    254             count++;
    255             pcount++;
    256 
    257         }
    258     }
    259 
    260     int insidePoly2 = pcount;
    261     for (int i = 0; i < poly2Length; i++) {
    262         if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
    263             poly[count] = poly2[i];
    264             count++;
    265         }
    266     }
    267 
    268     int insidePoly1 = count - insidePoly2;
    269     // If all vertices from poly1 are inside poly2, then just return poly1.
    270     if (insidePoly2 == poly1Length) {
    271         memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
    272         return poly1Length;
    273     }
    274 
    275     // If all vertices from poly2 are inside poly1, then just return poly2.
    276     if (insidePoly1 == poly2Length) {
    277         return poly2Length;
    278     }
    279 
    280     // Since neither polygon fully contain the other one, we need to add all the
    281     // intersection points.
    282     Vector2 intersection = {0, 0};
    283     for (int i = 0; i < poly2Length; i++) {
    284         for (int j = 0; j < poly1Length; j++) {
    285             int poly2LineStart = i;
    286             int poly2LineEnd = ((i + 1) % poly2Length);
    287             int poly1LineStart = j;
    288             int poly1LineEnd = ((j + 1) % poly1Length);
    289             bool found = lineIntersection(
    290                     poly2[poly2LineStart].x, poly2[poly2LineStart].y,
    291                     poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
    292                     poly1[poly1LineStart].x, poly1[poly1LineStart].y,
    293                     poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
    294                     intersection);
    295             if (found) {
    296                 poly[count].x = intersection.x;
    297                 poly[count].y = intersection.y;
    298                 count++;
    299             } else {
    300                 Vector2 delta = poly2[i] - poly1[j];
    301                 if (delta.lengthSquared() < EPSILON) {
    302                     poly[count] = poly2[i];
    303                     count++;
    304                 }
    305             }
    306         }
    307     }
    308 
    309     if (count == 0) {
    310         return 0;
    311     }
    312 
    313     // Sort the result polygon around the center.
    314     Vector2 center = {0.0f, 0.0f};
    315     for (int i = 0; i < count; i++) {
    316         center += poly[i];
    317     }
    318     center /= count;
    319     sort(poly, count, center);
    320 
    321 #if DEBUG_SHADOW
    322     // Since poly2 is overwritten as the result, we need to save a copy to do
    323     // our verification.
    324     Vector2 oldPoly2[poly2Length];
    325     int oldPoly2Length = poly2Length;
    326     memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
    327 #endif
    328 
    329     // Filter the result out from poly and put it into poly2.
    330     poly2[0] = poly[0];
    331     int lastOutputIndex = 0;
    332     for (int i = 1; i < count; i++) {
    333         Vector2 delta = poly[i] - poly2[lastOutputIndex];
    334         if (delta.lengthSquared() >= EPSILON) {
    335             poly2[++lastOutputIndex] = poly[i];
    336         } else {
    337             // If the vertices are too close, pick the inner one, because the
    338             // inner one is more likely to be an intersection point.
    339             Vector2 delta1 = poly[i] - center;
    340             Vector2 delta2 = poly2[lastOutputIndex] - center;
    341             if (delta1.lengthSquared() < delta2.lengthSquared()) {
    342                 poly2[lastOutputIndex] = poly[i];
    343             }
    344         }
    345     }
    346     int resultLength = lastOutputIndex + 1;
    347 
    348 #if DEBUG_SHADOW
    349     testConvex(poly2, resultLength, "intersection");
    350     testConvex(poly1, poly1Length, "input poly1");
    351     testConvex(oldPoly2, oldPoly2Length, "input poly2");
    352 
    353     testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
    354 #endif
    355 
    356     return resultLength;
    357 }
    358 
    359 /**
    360  * Sort points about a center point
    361  *
    362  * @param poly The in and out polyogon as a Vector2 array.
    363  * @param polyLength The number of vertices of the polygon.
    364  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
    365  */
    366 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
    367     quicksortCirc(poly, 0, polyLength - 1, center);
    368 }
    369 
    370 /**
    371  * Swap points pointed to by i and j
    372  */
    373 void SpotShadow::swap(Vector2* points, int i, int j) {
    374     Vector2 temp = points[i];
    375     points[i] = points[j];
    376     points[j] = temp;
    377 }
    378 
    379 /**
    380  * quick sort implementation about the center.
    381  */
    382 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
    383         const Vector2& center) {
    384     int i = low, j = high;
    385     int p = low + (high - low) / 2;
    386     float pivot = angle(points[p], center);
    387     while (i <= j) {
    388         while (angle(points[i], center) > pivot) {
    389             i++;
    390         }
    391         while (angle(points[j], center) < pivot) {
    392             j--;
    393         }
    394 
    395         if (i <= j) {
    396             swap(points, i, j);
    397             i++;
    398             j--;
    399         }
    400     }
    401     if (low < j) quicksortCirc(points, low, j, center);
    402     if (i < high) quicksortCirc(points, i, high, center);
    403 }
    404 
    405 /**
    406  * Sort points by x axis
    407  *
    408  * @param points points to sort
    409  * @param low start index
    410  * @param high end index
    411  */
    412 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
    413     int i = low, j = high;
    414     int p = low + (high - low) / 2;
    415     float pivot = points[p].x;
    416     while (i <= j) {
    417         while (points[i].x < pivot) {
    418             i++;
    419         }
    420         while (points[j].x > pivot) {
    421             j--;
    422         }
    423 
    424         if (i <= j) {
    425             swap(points, i, j);
    426             i++;
    427             j--;
    428         }
    429     }
    430     if (low < j) quicksortX(points, low, j);
    431     if (i < high) quicksortX(points, i, high);
    432 }
    433 
    434 /**
    435  * Test whether a point is inside the polygon.
    436  *
    437  * @param testPoint the point to test
    438  * @param poly the polygon
    439  * @return true if the testPoint is inside the poly.
    440  */
    441 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
    442         const Vector2* poly, int len) {
    443     bool c = false;
    444     double testx = testPoint.x;
    445     double testy = testPoint.y;
    446     for (int i = 0, j = len - 1; i < len; j = i++) {
    447         double startX = poly[j].x;
    448         double startY = poly[j].y;
    449         double endX = poly[i].x;
    450         double endY = poly[i].y;
    451 
    452         if (((endY > testy) != (startY > testy))
    453             && (testx < (startX - endX) * (testy - endY)
    454              / (startY - endY) + endX)) {
    455             c = !c;
    456         }
    457     }
    458     return c;
    459 }
    460 
    461 /**
    462  * Make the polygon turn clockwise.
    463  *
    464  * @param polygon the polygon as a Vector2 array.
    465  * @param len the number of points of the polygon
    466  */
    467 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
    468     if (polygon == 0  || len == 0) {
    469         return;
    470     }
    471     if (!ShadowTessellator::isClockwise(polygon, len)) {
    472         reverse(polygon, len);
    473     }
    474 }
    475 
    476 /**
    477  * Reverse the polygon
    478  *
    479  * @param polygon the polygon as a Vector2 array
    480  * @param len the number of points of the polygon
    481  */
    482 void SpotShadow::reverse(Vector2* polygon, int len) {
    483     int n = len / 2;
    484     for (int i = 0; i < n; i++) {
    485         Vector2 tmp = polygon[i];
    486         int k = len - 1 - i;
    487         polygon[i] = polygon[k];
    488         polygon[k] = tmp;
    489     }
    490 }
    491 
    492 /**
    493  * Intersects two lines in parametric form. This function is called in a tight
    494  * loop, and we need double precision to get things right.
    495  *
    496  * @param x1 the x coordinate point 1 of line 1
    497  * @param y1 the y coordinate point 1 of line 1
    498  * @param x2 the x coordinate point 2 of line 1
    499  * @param y2 the y coordinate point 2 of line 1
    500  * @param x3 the x coordinate point 1 of line 2
    501  * @param y3 the y coordinate point 1 of line 2
    502  * @param x4 the x coordinate point 2 of line 2
    503  * @param y4 the y coordinate point 2 of line 2
    504  * @param ret the x,y location of the intersection
    505  * @return true if it found an intersection
    506  */
    507 inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
    508         double x3, double y3, double x4, double y4, Vector2& ret) {
    509     double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
    510     if (d == 0.0) return false;
    511 
    512     double dx = (x1 * y2 - y1 * x2);
    513     double dy = (x3 * y4 - y3 * x4);
    514     double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
    515     double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
    516 
    517     // The intersection should be in the middle of the point 1 and point 2,
    518     // likewise point 3 and point 4.
    519     if (((x - x1) * (x - x2) > EPSILON)
    520         || ((x - x3) * (x - x4) > EPSILON)
    521         || ((y - y1) * (y - y2) > EPSILON)
    522         || ((y - y3) * (y - y4) > EPSILON)) {
    523         // Not interesected
    524         return false;
    525     }
    526     ret.x = x;
    527     ret.y = y;
    528     return true;
    529 
    530 }
    531 
    532 /**
    533  * Compute a horizontal circular polygon about point (x , y , height) of radius
    534  * (size)
    535  *
    536  * @param points number of the points of the output polygon.
    537  * @param lightCenter the center of the light.
    538  * @param size the light size.
    539  * @param ret result polygon.
    540  */
    541 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
    542         float size, Vector3* ret) {
    543     // TODO: Caching all the sin / cos values and store them in a look up table.
    544     for (int i = 0; i < points; i++) {
    545         double angle = 2 * i * M_PI / points;
    546         ret[i].x = cosf(angle) * size + lightCenter.x;
    547         ret[i].y = sinf(angle) * size + lightCenter.y;
    548         ret[i].z = lightCenter.z;
    549     }
    550 }
    551 
    552 /**
    553  * From light center, project one vertex to the z=0 surface and get the outline.
    554  *
    555  * @param outline The result which is the outline position.
    556  * @param lightCenter The center of light.
    557  * @param polyVertex The input polygon's vertex.
    558  *
    559  * @return float The ratio of (polygon.z / light.z - polygon.z)
    560  */
    561 float SpotShadow::projectCasterToOutline(Vector2& outline,
    562         const Vector3& lightCenter, const Vector3& polyVertex) {
    563     float lightToPolyZ = lightCenter.z - polyVertex.z;
    564     float ratioZ = CASTER_Z_CAP_RATIO;
    565     if (lightToPolyZ != 0) {
    566         // If any caster's vertex is almost above the light, we just keep it as 95%
    567         // of the height of the light.
    568         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
    569     }
    570 
    571     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
    572     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
    573     return ratioZ;
    574 }
    575 
    576 /**
    577  * Generate the shadow spot light of shape lightPoly and a object poly
    578  *
    579  * @param isCasterOpaque whether the caster is opaque
    580  * @param lightCenter the center of the light
    581  * @param lightSize the radius of the light
    582  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
    583  * @param polyLength number of vertexes of the occluding polygon
    584  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
    585  *                            empty strip if error.
    586  */
    587 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
    588         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
    589         VertexBuffer& shadowTriangleStrip) {
    590     if (CC_UNLIKELY(lightCenter.z <= 0)) {
    591         ALOGW("Relative Light Z is not positive. No spot shadow!");
    592         return;
    593     }
    594     if (CC_UNLIKELY(polyLength < 3)) {
    595 #if DEBUG_SHADOW
    596         ALOGW("Invalid polygon length. No spot shadow!");
    597 #endif
    598         return;
    599     }
    600     OutlineData outlineData[polyLength];
    601     Vector2 outlineCentroid;
    602     // Calculate the projected outline for each polygon's vertices from the light center.
    603     //
    604     //                       O     Light
    605     //                      /
    606     //                    /
    607     //                   .     Polygon vertex
    608     //                 /
    609     //               /
    610     //              O     Outline vertices
    611     //
    612     // Ratio = (Poly - Outline) / (Light - Poly)
    613     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
    614     // Outline's radius / Light's radius = Ratio
    615 
    616     // Compute the last outline vertex to make sure we can get the normal and outline
    617     // in one single loop.
    618     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
    619             poly[polyLength - 1]);
    620 
    621     // Take the outline's polygon, calculate the normal for each outline edge.
    622     int currentNormalIndex = polyLength - 1;
    623     int nextNormalIndex = 0;
    624 
    625     for (int i = 0; i < polyLength; i++) {
    626         float ratioZ = projectCasterToOutline(outlineData[i].position,
    627                 lightCenter, poly[i]);
    628         outlineData[i].radius = ratioZ * lightSize;
    629 
    630         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
    631                 outlineData[currentNormalIndex].position,
    632                 outlineData[nextNormalIndex].position);
    633         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
    634         nextNormalIndex++;
    635     }
    636 
    637     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
    638 
    639     int penumbraIndex = 0;
    640     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
    641     // Since the size can be dynamic here, we keep track of the size and update
    642     // the real size at the end.
    643     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
    644     Vector2 penumbra[allocatedPenumbraLength];
    645     int totalExtraCornerSliceNumber = 0;
    646 
    647     Vector2 umbra[polyLength];
    648 
    649     // When centroid is covered by all circles from outline, then we consider
    650     // the umbra is invalid, and we will tune down the shadow strength.
    651     bool hasValidUmbra = true;
    652     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
    653     float minRaitoVI = FLT_MAX;
    654 
    655     for (int i = 0; i < polyLength; i++) {
    656         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
    657         // There is no guarantee that the penumbra is still convex, but for
    658         // each outline vertex, it will connect to all its corresponding penumbra vertices as
    659         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
    660         //
    661         // Penumbra Vertices marked as Pi
    662         // Outline Vertices marked as Vi
    663         //                                            (P3)
    664         //          (P2)                               |     ' (P4)
    665         //   (P1)'   |                                 |   '
    666         //         ' |                                 | '
    667         // (P0)  ------------------------------------------------(P5)
    668         //           | (V0)                            |(V1)
    669         //           |                                 |
    670         //           |                                 |
    671         //           |                                 |
    672         //           |                                 |
    673         //           |                                 |
    674         //           |                                 |
    675         //           |                                 |
    676         //           |                                 |
    677         //       (V3)-----------------------------------(V2)
    678         int preNormalIndex = (i + polyLength - 1) % polyLength;
    679 
    680         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
    681         const Vector2& currentNormal = outlineData[i].normal;
    682 
    683         // Depending on how roundness we want for each corner, we can subdivide
    684         // further here and/or introduce some heuristic to decide how much the
    685         // subdivision should be.
    686         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
    687                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
    688 
    689         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
    690         totalExtraCornerSliceNumber += currentExtraSliceNumber;
    691 #if DEBUG_SHADOW
    692         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
    693         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
    694         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
    695 #endif
    696         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
    697             currentCornerSliceNumber = 1;
    698         }
    699         for (int k = 0; k <= currentCornerSliceNumber; k++) {
    700             Vector2 avgNormal =
    701                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
    702                     currentCornerSliceNumber;
    703             avgNormal.normalize();
    704             penumbra[penumbraIndex++] = outlineData[i].position +
    705                     avgNormal * outlineData[i].radius;
    706         }
    707 
    708 
    709         // Compute the umbra by the intersection from the outline's centroid!
    710         //
    711         //       (V) ------------------------------------
    712         //           |          '                       |
    713         //           |         '                        |
    714         //           |       ' (I)                      |
    715         //           |    '                             |
    716         //           | '             (C)                |
    717         //           |                                  |
    718         //           |                                  |
    719         //           |                                  |
    720         //           |                                  |
    721         //           ------------------------------------
    722         //
    723         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
    724         // intersect with the outline vertex's circle at point (I).
    725         // Now, ratioVI = VI / VC, ratioIC = IC / VC
    726         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
    727         //
    728         // When all of the outline circles cover the the outline centroid, (like I is
    729         // on the other side of C), there is no real umbra any more, so we just fake
    730         // a small area around the centroid as the umbra, and tune down the spot
    731         // shadow's umbra strength to simulate the effect the whole shadow will
    732         // become lighter in this case.
    733         // The ratio can be simulated by using the inverse of maximum of ratioVI for
    734         // all (V).
    735         float distOutline = (outlineData[i].position - outlineCentroid).length();
    736         if (CC_UNLIKELY(distOutline == 0)) {
    737             // If the outline has 0 area, then there is no spot shadow anyway.
    738             ALOGW("Outline has 0 area, no spot shadow!");
    739             return;
    740         }
    741 
    742         float ratioVI = outlineData[i].radius / distOutline;
    743         minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
    744         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
    745             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
    746         }
    747         // When we know we don't have valid umbra, don't bother to compute the
    748         // values below. But we can't skip the loop yet since we want to know the
    749         // maximum ratio.
    750         float ratioIC = 1 - ratioVI;
    751         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
    752     }
    753 
    754     hasValidUmbra = (minRaitoVI <= 1.0);
    755     float shadowStrengthScale = 1.0;
    756     if (!hasValidUmbra) {
    757 #if DEBUG_SHADOW
    758         ALOGW("The object is too close to the light or too small, no real umbra!");
    759 #endif
    760         for (int i = 0; i < polyLength; i++) {
    761             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
    762                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
    763         }
    764         shadowStrengthScale = 1.0 / minRaitoVI;
    765     }
    766 
    767     int penumbraLength = penumbraIndex;
    768     int umbraLength = polyLength;
    769 
    770 #if DEBUG_SHADOW
    771     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
    772     dumpPolygon(poly, polyLength, "input poly");
    773     dumpPolygon(penumbra, penumbraLength, "penumbra");
    774     dumpPolygon(umbra, umbraLength, "umbra");
    775     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
    776 #endif
    777 
    778     // The penumbra and umbra needs to be in convex shape to keep consistency
    779     // and quality.
    780     // Since we are still shooting rays to penumbra, it needs to be convex.
    781     // Umbra can be represented as a fan from the centroid, but visually umbra
    782     // looks nicer when it is convex.
    783     Vector2 finalUmbra[umbraLength];
    784     Vector2 finalPenumbra[penumbraLength];
    785     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
    786     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
    787 
    788     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
    789             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
    790             shadowTriangleStrip, outlineCentroid);
    791 
    792 }
    793 
    794 /**
    795  * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
    796  *
    797  * Returns false in error conditions
    798  *
    799  * @param poly Array of vertices. Note that these *must* be CW.
    800  * @param polyLength The number of vertices in the polygon.
    801  * @param polyCentroid The centroid of the polygon, from which rays will be cast
    802  * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
    803  */
    804 bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
    805         float* rayDist) {
    806     const int rays = SHADOW_RAY_COUNT;
    807     const float step = M_PI * 2 / rays;
    808 
    809     const Vector2* lastVertex = &(poly[polyLength - 1]);
    810     float startAngle = angle(*lastVertex, polyCentroid);
    811 
    812     // Start with the ray that's closest to and less than startAngle
    813     int rayIndex = floor((startAngle - EPSILON) / step);
    814     rayIndex = (rayIndex + rays) % rays; // ensure positive
    815 
    816     for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
    817         /*
    818          * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
    819          * intersect these will be those that are between the two angles from the centroid that the
    820          * vertices define.
    821          *
    822          * Because the polygon vertices are stored clockwise, the closest ray with an angle
    823          * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
    824          * not intersect with poly[i-1], poly[i].
    825          */
    826         float currentAngle = angle(poly[polyIndex], polyCentroid);
    827 
    828         // find first ray that will not intersect the line segment poly[i-1] & poly[i]
    829         int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
    830         firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
    831 
    832         // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
    833         // This may be 0 rays.
    834         while (rayIndex != firstRayIndexOnNextSegment) {
    835             float distanceToIntersect = rayIntersectPoints(polyCentroid,
    836                     cos(rayIndex * step),
    837                     sin(rayIndex * step),
    838                     *lastVertex, poly[polyIndex]);
    839             if (distanceToIntersect < 0) {
    840 #if DEBUG_SHADOW
    841                 ALOGW("ERROR: convertPolyToRayDist failed");
    842 #endif
    843                 return false; // error case, abort
    844             }
    845 
    846             rayDist[rayIndex] = distanceToIntersect;
    847 
    848             rayIndex = (rayIndex - 1 + rays) % rays;
    849         }
    850         lastVertex = &poly[polyIndex];
    851     }
    852 
    853     return true;
    854 }
    855 
    856 int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
    857         const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
    858     // Occluded umbra area is computed as the intersection of the projected 2D
    859     // poly and umbra.
    860     for (int i = 0; i < polyLength; i++) {
    861         occludedUmbra[i].x = poly[i].x;
    862         occludedUmbra[i].y = poly[i].y;
    863     }
    864 
    865     // Both umbra and incoming polygon are guaranteed to be CW, so we can call
    866     // intersection() directly.
    867     return intersection(umbra, umbraLength,
    868             occludedUmbra, polyLength);
    869 }
    870 
    871 /**
    872  * This is only for experimental purpose.
    873  * After intersections are calculated, we could smooth the polygon if needed.
    874  * So far, we don't think it is more appealing yet.
    875  *
    876  * @param level The level of smoothness.
    877  * @param rays The total number of rays.
    878  * @param rayDist (In and Out) The distance for each ray.
    879  *
    880  */
    881 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
    882     for (int k = 0; k < level; k++) {
    883         for (int i = 0; i < rays; i++) {
    884             float p1 = rayDist[(rays - 1 + i) % rays];
    885             float p2 = rayDist[i];
    886             float p3 = rayDist[(i + 1) % rays];
    887             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
    888         }
    889     }
    890 }
    891 
    892 /**
    893  * Generate a array of the angleData for either umbra or penumbra vertices.
    894  *
    895  * This array will be merged and used to guide where to shoot the rays, in clockwise order.
    896  *
    897  * @param angleDataList The result array of angle data.
    898  *
    899  * @return int The maximum angle's index in the array.
    900  */
    901 int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
    902         int polyLength, const Vector2* polygon, const Vector2& centroid,
    903         bool isPenumbra, const char* name) {
    904     float maxAngle = FLT_MIN;
    905     int maxAngleIndex = 0;
    906     for (int i = 0; i < polyLength; i++) {
    907         float currentAngle = angle(polygon[i], centroid);
    908         if (currentAngle > maxAngle) {
    909             maxAngle = currentAngle;
    910             maxAngleIndex = i;
    911         }
    912         angleDataList[i].set(currentAngle, isPenumbra, i);
    913 #if DEBUG_SHADOW
    914         ALOGD("%s AngleList i %d %f", name, i, currentAngle);
    915 #endif
    916     }
    917     return maxAngleIndex;
    918 }
    919 
    920 /**
    921  * Make sure the polygons are indeed in clockwise order.
    922  *
    923  * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
    924  * algorithm is not able to generate it properly.
    925  *
    926  * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
    927  * situation is found, we need to detect it and early return without corrupting the memory.
    928  *
    929  * @return bool True if the angle list is actually from big to small.
    930  */
    931 bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
    932         const char* name) {
    933     int currentIndex = indexOfMaxAngle;
    934 #if DEBUG_SHADOW
    935     ALOGD("max index %d", currentIndex);
    936 #endif
    937     for (int i = 0; i < listLength - 1; i++) {
    938         // TODO: Cache the last angle.
    939         float currentAngle = angleList[currentIndex].mAngle;
    940         float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
    941         if (currentAngle < nextAngle) {
    942 #if DEBUG_SHADOW
    943             ALOGE("%s, is not CW, at index %d", name, currentIndex);
    944 #endif
    945             return false;
    946         }
    947         currentIndex = (currentIndex + 1) % listLength;
    948     }
    949     return true;
    950 }
    951 
    952 /**
    953  * Check the polygon is clockwise.
    954  *
    955  * @return bool True is the polygon is clockwise.
    956  */
    957 bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
    958         const float* polyAngleList) {
    959     bool isPolyCW = true;
    960     // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
    961     for (int i = 0; i < polyAngleLength - 1; i++) {
    962         float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
    963         float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
    964         if (currentAngle < nextAngle) {
    965             isPolyCW = false;
    966         }
    967     }
    968     return isPolyCW;
    969 }
    970 
    971 /**
    972  * Given the sorted array of all the vertices angle data, calculate for each
    973  * vertices, the offset value to array element which represent the start edge
    974  * of the polygon we need to shoot the ray at.
    975  *
    976  * TODO: Calculate this for umbra and penumbra in one loop using one single array.
    977  *
    978  * @param distances The result of the array distance counter.
    979  */
    980 void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
    981         const VertexAngleData* allVerticesAngleData, int* distances) {
    982 
    983     bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
    984     // If we want distance to inner, then we just set to 0 when we see inner.
    985     bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
    986     int distanceCounter = 0;
    987     if (needsSearch) {
    988         int foundIndex = -1;
    989         for (int i = (angleLength - 1); i >= 0; i--) {
    990             bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
    991             // If we need distance to inner, then we need to find a inner vertex.
    992             if (currentIsOuter != firstVertexIsPenumbra) {
    993                 foundIndex = i;
    994                 break;
    995             }
    996         }
    997         LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
    998                 " umbra or penumbra's length is 0");
    999         distanceCounter = angleLength - foundIndex;
   1000     }
   1001 #if DEBUG_SHADOW
   1002     ALOGD("distances[0] is %d", distanceCounter);
   1003 #endif
   1004 
   1005     distances[0] = distanceCounter; // means never see a target poly
   1006 
   1007     for (int i = 1; i < angleLength; i++) {
   1008         bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
   1009         // When we needs for distance for each outer vertex to inner, then we
   1010         // increase the distance when seeing outer vertices. Otherwise, we clear
   1011         // to 0.
   1012         bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
   1013         // If counter is not -1, that means we have seen an other polygon's vertex.
   1014         if (needsIncrement && distanceCounter != -1) {
   1015             distanceCounter++;
   1016         } else {
   1017             distanceCounter = 0;
   1018         }
   1019         distances[i] = distanceCounter;
   1020     }
   1021 }
   1022 
   1023 /**
   1024  * Given umbra and penumbra angle data list, merge them by sorting the angle
   1025  * from the biggest to smallest.
   1026  *
   1027  * @param allVerticesAngleData The result array of merged angle data.
   1028  */
   1029 void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
   1030         const VertexAngleData* umbraAngleList, int umbraLength,
   1031         const VertexAngleData* penumbraAngleList, int penumbraLength,
   1032         VertexAngleData* allVerticesAngleData) {
   1033 
   1034     int totalRayNumber = umbraLength + penumbraLength;
   1035     int umbraIndex = maxUmbraAngleIndex;
   1036     int penumbraIndex = maxPenumbraAngleIndex;
   1037 
   1038     float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
   1039     float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
   1040 
   1041     // TODO: Clean this up using a while loop with 2 iterators.
   1042     for (int i = 0; i < totalRayNumber; i++) {
   1043         if (currentUmbraAngle > currentPenumbraAngle) {
   1044             allVerticesAngleData[i] = umbraAngleList[umbraIndex];
   1045             umbraIndex = (umbraIndex + 1) % umbraLength;
   1046 
   1047             // If umbraIndex round back, that means we are running out of
   1048             // umbra vertices to merge, so just copy all the penumbra leftover.
   1049             // Otherwise, we update the currentUmbraAngle.
   1050             if (umbraIndex != maxUmbraAngleIndex) {
   1051                 currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
   1052             } else {
   1053                 for (int j = i + 1; j < totalRayNumber; j++) {
   1054                     allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
   1055                     penumbraIndex = (penumbraIndex + 1) % penumbraLength;
   1056                 }
   1057                 break;
   1058             }
   1059         } else {
   1060             allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
   1061             penumbraIndex = (penumbraIndex + 1) % penumbraLength;
   1062             // If penumbraIndex round back, that means we are running out of
   1063             // penumbra vertices to merge, so just copy all the umbra leftover.
   1064             // Otherwise, we update the currentPenumbraAngle.
   1065             if (penumbraIndex != maxPenumbraAngleIndex) {
   1066                 currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
   1067             } else {
   1068                 for (int j = i + 1; j < totalRayNumber; j++) {
   1069                     allVerticesAngleData[j] = umbraAngleList[umbraIndex];
   1070                     umbraIndex = (umbraIndex + 1) % umbraLength;
   1071                 }
   1072                 break;
   1073             }
   1074         }
   1075     }
   1076 }
   1077 
   1078 #if DEBUG_SHADOW
   1079 /**
   1080  * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
   1081  * each vertex and its neighbor.
   1082  */
   1083 static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
   1084         const int* distances, int angleLength, const char* name) {
   1085     int currentDistance = distances[0];
   1086     for (int i = 1; i < angleLength; i++) {
   1087         if (distances[i] != INT_MIN) {
   1088             if (!((currentDistance + 1) == distances[i]
   1089                 || distances[i] == 0)) {
   1090                 ALOGE("Wrong distance found at i %d name %s", i, name);
   1091             }
   1092             currentDistance = distances[i];
   1093             if (currentDistance != 0) {
   1094                 bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
   1095                 for (int j = 1; j <= (currentDistance - 1); j++) {
   1096                     bool neigborOuter =
   1097                             allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
   1098                     if (neigborOuter != currentOuter) {
   1099                         ALOGE("Wrong distance found at i %d name %s", i, name);
   1100                     }
   1101                 }
   1102                 bool oppositeOuter =
   1103                     allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
   1104                 if (oppositeOuter == currentOuter) {
   1105                     ALOGE("Wrong distance found at i %d name %s", i, name);
   1106                 }
   1107             }
   1108         }
   1109     }
   1110 }
   1111 
   1112 /**
   1113  * DEBUG ONLY: Verify all the angle data compuated are  is correctly done
   1114  */
   1115 static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
   1116         const int* distancesToInner, const int* distancesToOuter,
   1117         const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
   1118         const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
   1119         int penumbraLength) {
   1120     for (int i = 0; i < totalRayNumber; i++) {
   1121         ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
   1122               " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
   1123                 !allVerticesAngleData[i].mIsPenumbra,
   1124                 allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
   1125     }
   1126 
   1127     verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
   1128     verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
   1129 
   1130     for (int i = 0; i < totalRayNumber; i++) {
   1131         if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
   1132             ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
   1133                     " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
   1134         }
   1135     }
   1136     int currentUmbraVertexIndex =
   1137             umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
   1138     int currentPenumbraVertexIndex =
   1139             penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
   1140     for (int i = 0; i < totalRayNumber; i++) {
   1141         if (allVerticesAngleData[i].mIsPenumbra == true) {
   1142             if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
   1143                 ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
   1144                         "currentpenumbraVertexIndex %d", i,
   1145                         allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
   1146             }
   1147             currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
   1148         } else {
   1149             if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
   1150                 ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
   1151                         "currentUmbraVertexIndex %d", i,
   1152                         allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
   1153             }
   1154             currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
   1155         }
   1156     }
   1157     for (int i = 0; i < totalRayNumber - 1; i++) {
   1158         float currentAngle = allVerticesAngleData[i].mAngle;
   1159         float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
   1160         if (currentAngle < nextAngle) {
   1161             ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
   1162         }
   1163     }
   1164 }
   1165 #endif
   1166 
   1167 /**
   1168  * In order to compute the occluded umbra, we need to setup the angle data list
   1169  * for the polygon data. Since we only store one poly vertex per polygon vertex,
   1170  * this array only needs to be a float array which are the angles for each vertex.
   1171  *
   1172  * @param polyAngleList The result list
   1173  *
   1174  * @return int The index for the maximum angle in this array.
   1175  */
   1176 int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
   1177         const Vector2* poly2d, const Vector2& centroid) {
   1178     int maxPolyAngleIndex = -1;
   1179     float maxPolyAngle = -FLT_MAX;
   1180     for (int i = 0; i < polyAngleLength; i++) {
   1181         polyAngleList[i] = angle(poly2d[i], centroid);
   1182         if (polyAngleList[i] > maxPolyAngle) {
   1183             maxPolyAngle = polyAngleList[i];
   1184             maxPolyAngleIndex = i;
   1185         }
   1186     }
   1187     return maxPolyAngleIndex;
   1188 }
   1189 
   1190 /**
   1191  * For umbra and penumbra, given the offset info and the current ray number,
   1192  * find the right edge index (the (starting vertex) for the ray to shoot at.
   1193  *
   1194  * @return int The index of the starting vertex of the edge.
   1195  */
   1196 inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
   1197         const VertexAngleData* allVerticesAngleData) {
   1198     int tempOffset = offsets[rayIndex];
   1199     int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
   1200     return allVerticesAngleData[targetRayIndex].mVertexIndex;
   1201 }
   1202 
   1203 /**
   1204  * For the occluded umbra, given the array of angles, find the index of the
   1205  * starting vertex of the edge, for the ray to shoo at.
   1206  *
   1207  * TODO: Save the last result to shorten the search distance.
   1208  *
   1209  * @return int The index of the starting vertex of the edge.
   1210  */
   1211 inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
   1212         const float* polyAngleList, float rayAngle) {
   1213     int minPolyAngleIndex  = (maxPolyAngleIndex + polyLength - 1) % polyLength;
   1214     int resultIndex = -1;
   1215     if (rayAngle > polyAngleList[maxPolyAngleIndex]
   1216         || rayAngle <= polyAngleList[minPolyAngleIndex]) {
   1217         resultIndex = minPolyAngleIndex;
   1218     } else {
   1219         for (int i = 0; i < polyLength - 1; i++) {
   1220             int currentIndex = (maxPolyAngleIndex + i) % polyLength;
   1221             int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
   1222             if (rayAngle <= polyAngleList[currentIndex]
   1223                 && rayAngle > polyAngleList[nextIndex]) {
   1224                 resultIndex = currentIndex;
   1225             }
   1226         }
   1227     }
   1228     if (CC_UNLIKELY(resultIndex == -1)) {
   1229         // TODO: Add more error handling here.
   1230         ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
   1231     }
   1232     return resultIndex;
   1233 }
   1234 
   1235 /**
   1236  * Convert the incoming polygons into arrays of vertices, for each ray.
   1237  * Ray only shoots when there is one vertex either on penumbra on umbra.
   1238  *
   1239  * Finally, it will generate vertices per ray for umbra, penumbra and optionally
   1240  * occludedUmbra.
   1241  *
   1242  * Return true (success) when all vertices are generated
   1243  */
   1244 int SpotShadow::convertPolysToVerticesPerRay(
   1245         bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
   1246         const Vector2* umbra, int umbraLength, const Vector2* penumbra,
   1247         int penumbraLength, const Vector2& centroid,
   1248         Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
   1249         Vector2* occludedUmbraVerticesPerRay) {
   1250     int totalRayNumber = umbraLength + penumbraLength;
   1251 
   1252     // For incoming umbra / penumbra polygons, we will build an intermediate data
   1253     // structure to help us sort all the vertices according to the vertices.
   1254     // Using this data structure, we can tell where (the angle) to shoot the ray,
   1255     // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
   1256     //
   1257     // We first parse each vertices and generate a table of VertexAngleData.
   1258     // Based on that, we create 2 arrays telling us which edge to shoot at.
   1259     VertexAngleData allVerticesAngleData[totalRayNumber];
   1260     VertexAngleData umbraAngleList[umbraLength];
   1261     VertexAngleData penumbraAngleList[penumbraLength];
   1262 
   1263     int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
   1264     float polyAngleList[polyAngleLength];
   1265 
   1266     const int maxUmbraAngleIndex =
   1267             setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
   1268     const int maxPenumbraAngleIndex =
   1269             setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
   1270     const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
   1271 
   1272     // Check all the polygons here are CW.
   1273     bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
   1274     bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
   1275             umbraAngleList, "umbra");
   1276     bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
   1277             penumbraAngleList, "penumbra");
   1278 
   1279     if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
   1280 #if DEBUG_SHADOW
   1281         ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
   1282                 isUmbraCW, isPenumbraCW, isPolyCW);
   1283 #endif
   1284         return false;
   1285     }
   1286 
   1287     mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
   1288             umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
   1289             allVerticesAngleData);
   1290 
   1291     // Calculate the offset to the left most Inner vertex for each outerVertex.
   1292     // Then the offset to the left most Outer vertex for each innerVertex.
   1293     int offsetToInner[totalRayNumber];
   1294     int offsetToOuter[totalRayNumber];
   1295     calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
   1296     calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
   1297 
   1298     // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
   1299     for (int i = 0; i < totalRayNumber; i++) {
   1300         float rayAngle = allVerticesAngleData[i].mAngle;
   1301         bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
   1302 
   1303         float dx = cosf(rayAngle);
   1304         float dy = sinf(rayAngle);
   1305         float distanceToIntersectUmbra = -1;
   1306 
   1307         if (isUmbraVertex) {
   1308             // We can just copy umbra easily, and calculate the distance for the
   1309             // occluded umbra computation.
   1310             int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
   1311             umbraVerticesPerRay[i] = umbra[startUmbraIndex];
   1312             if (hasOccludedUmbraArea) {
   1313                 distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
   1314             }
   1315 
   1316             //shoot ray to penumbra only
   1317             int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
   1318                     allVerticesAngleData);
   1319             float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
   1320                     penumbra[startPenumbraIndex],
   1321                     penumbra[(startPenumbraIndex + 1) % penumbraLength]);
   1322             if (distanceToIntersectPenumbra < 0) {
   1323 #if DEBUG_SHADOW
   1324                 ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
   1325                         rayAngle, dx, dy);
   1326 #endif
   1327                 distanceToIntersectPenumbra = 0;
   1328             }
   1329             penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
   1330             penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
   1331         } else {
   1332             // We can just copy the penumbra
   1333             int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
   1334             penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
   1335 
   1336             // And shoot ray to umbra only
   1337             int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
   1338                     allVerticesAngleData);
   1339 
   1340             distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
   1341                     umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
   1342             if (distanceToIntersectUmbra < 0) {
   1343 #if DEBUG_SHADOW
   1344                 ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
   1345                         rayAngle, dx, dy);
   1346 #endif
   1347                 distanceToIntersectUmbra = 0;
   1348             }
   1349             umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
   1350             umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
   1351         }
   1352 
   1353         if (hasOccludedUmbraArea) {
   1354             // Shoot the same ray to the poly2d, and get the distance.
   1355             int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
   1356                     polyAngleList, rayAngle);
   1357 
   1358             float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
   1359                     poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
   1360             if (distanceToIntersectPoly < 0) {
   1361                 distanceToIntersectPoly = 0;
   1362             }
   1363             distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
   1364             occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
   1365             occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
   1366         }
   1367     }
   1368 
   1369 #if DEBUG_SHADOW
   1370     verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
   1371             offsetToOuter,  umbraAngleList, maxUmbraAngleIndex,  umbraLength,
   1372             penumbraAngleList,  maxPenumbraAngleIndex, penumbraLength);
   1373 #endif
   1374     return true; // success
   1375 
   1376 }
   1377 
   1378 /**
   1379  * Generate a triangle strip given two convex polygon
   1380 **/
   1381 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
   1382         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
   1383         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
   1384         const Vector2& centroid) {
   1385 
   1386     bool hasOccludedUmbraArea = false;
   1387     Vector2 poly2d[polyLength];
   1388 
   1389     if (isCasterOpaque) {
   1390         for (int i = 0; i < polyLength; i++) {
   1391             poly2d[i].x = poly[i].x;
   1392             poly2d[i].y = poly[i].y;
   1393         }
   1394         // Make sure the centroid is inside the umbra, otherwise, fall back to the
   1395         // approach as if there is no occluded umbra area.
   1396         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
   1397             hasOccludedUmbraArea = true;
   1398         }
   1399     }
   1400 
   1401     int totalRayNum = umbraLength + penumbraLength;
   1402     Vector2 umbraVertices[totalRayNum];
   1403     Vector2 penumbraVertices[totalRayNum];
   1404     Vector2 occludedUmbraVertices[totalRayNum];
   1405     bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
   1406             polyLength, umbra, umbraLength, penumbra, penumbraLength,
   1407             centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
   1408     if (!convertSuccess) {
   1409         return;
   1410     }
   1411 
   1412     // Minimal value is 1, for each vertex show up once.
   1413     // The bigger this value is , the smoother the look is, but more memory
   1414     // is consumed.
   1415     // When the ray number is high, that means the polygon has been fine
   1416     // tessellated, we don't need this extra slice, just keep it as 1.
   1417     int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
   1418 
   1419     // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
   1420     int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
   1421     int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
   1422     int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
   1423     AlphaVertex* shadowVertices =
   1424             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
   1425     uint16_t* indexBuffer =
   1426             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
   1427 
   1428     int indexBufferIndex = 0;
   1429     int vertexBufferIndex = 0;
   1430 
   1431     uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
   1432     // Should be something like 0 0 0  1 1 1 2 3 3 3...
   1433     int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
   1434     int realUmbraVertexCount = 0;
   1435     for (int i = 0; i < totalRayNum; i++) {
   1436         Vector2 currentPenumbra = penumbraVertices[i];
   1437         Vector2 currentUmbra = umbraVertices[i];
   1438 
   1439         Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
   1440         Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
   1441         // NextUmbra/Penumbra will be done in the next loop!!
   1442         for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
   1443             const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
   1444                 + nextPenumbra * weight) / sliceNumberPerEdge;
   1445 
   1446             const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
   1447                 + nextUmbra * weight) / sliceNumberPerEdge;
   1448 
   1449             // In the vertex buffer, we fill the Penumbra first, then umbra.
   1450             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
   1451             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
   1452                     slicedPenumbra.y, 0.0f);
   1453 
   1454             // When we add umbra vertex, we need to remember its current ray number.
   1455             // And its own vertexBufferIndex. This is for occluded umbra usage.
   1456             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
   1457             rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
   1458             slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
   1459             realUmbraVertexCount++;
   1460             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
   1461                     slicedUmbra.y, M_PI);
   1462         }
   1463     }
   1464 
   1465     indexBuffer[indexBufferIndex++] = 0;
   1466     //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
   1467     //beginning of occluded area.
   1468     indexBuffer[indexBufferIndex++] = 1;
   1469 
   1470     float occludedUmbraAlpha = M_PI;
   1471     if (hasOccludedUmbraArea) {
   1472         // Now the occludedUmbra area;
   1473         int currentRayNumber = -1;
   1474         int firstOccludedUmbraIndex = -1;
   1475         for (int i = 0; i < realUmbraVertexCount; i++) {
   1476             indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
   1477 
   1478             // If the occludedUmbra vertex has not been added yet, then add it.
   1479             // Otherwise, just use the previously added occludedUmbra vertices.
   1480             if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
   1481                 currentRayNumber++;
   1482                 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
   1483                 // We need to remember the begining of the occludedUmbra vertices
   1484                 // to close this loop.
   1485                 if (currentRayNumber == 0) {
   1486                     firstOccludedUmbraIndex = vertexBufferIndex;
   1487                 }
   1488                 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
   1489                         occludedUmbraVertices[currentRayNumber].x,
   1490                         occludedUmbraVertices[currentRayNumber].y,
   1491                         occludedUmbraAlpha);
   1492             } else {
   1493                 indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
   1494             }
   1495         }
   1496         // Close the loop here!
   1497         indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
   1498         indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
   1499     } else {
   1500         int lastCentroidIndex = vertexBufferIndex;
   1501         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
   1502                 centroid.y, occludedUmbraAlpha);
   1503         for (int i = 0; i < realUmbraVertexCount; i++) {
   1504             indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
   1505             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
   1506         }
   1507         // Close the loop here!
   1508         indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
   1509         indexBuffer[indexBufferIndex++] = lastCentroidIndex;
   1510     }
   1511 
   1512 #if DEBUG_SHADOW
   1513     ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
   1514     ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
   1515     for (int i = 0; i < vertexBufferIndex; i++) {
   1516         ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
   1517                 shadowVertices[i].alpha);
   1518     }
   1519     for (int i = 0; i < indexBufferIndex; i++) {
   1520         ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
   1521     }
   1522 #endif
   1523 
   1524     // At the end, update the real index and vertex buffer size.
   1525     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
   1526     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
   1527     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
   1528     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
   1529 
   1530     shadowTriangleStrip.setMode(VertexBuffer::kIndices);
   1531     shadowTriangleStrip.computeBounds<AlphaVertex>();
   1532 }
   1533 
   1534 #if DEBUG_SHADOW
   1535 
   1536 #define TEST_POINT_NUMBER 128
   1537 /**
   1538  * Calculate the bounds for generating random test points.
   1539  */
   1540 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
   1541         Vector2& upperBound) {
   1542     if (inVector.x < lowerBound.x) {
   1543         lowerBound.x = inVector.x;
   1544     }
   1545 
   1546     if (inVector.y < lowerBound.y) {
   1547         lowerBound.y = inVector.y;
   1548     }
   1549 
   1550     if (inVector.x > upperBound.x) {
   1551         upperBound.x = inVector.x;
   1552     }
   1553 
   1554     if (inVector.y > upperBound.y) {
   1555         upperBound.y = inVector.y;
   1556     }
   1557 }
   1558 
   1559 /**
   1560  * For debug purpose, when things go wrong, dump the whole polygon data.
   1561  */
   1562 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
   1563     for (int i = 0; i < polyLength; i++) {
   1564         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1565     }
   1566 }
   1567 
   1568 /**
   1569  * For debug purpose, when things go wrong, dump the whole polygon data.
   1570  */
   1571 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
   1572     for (int i = 0; i < polyLength; i++) {
   1573         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1574     }
   1575 }
   1576 
   1577 /**
   1578  * Test whether the polygon is convex.
   1579  */
   1580 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
   1581         const char* name) {
   1582     bool isConvex = true;
   1583     for (int i = 0; i < polygonLength; i++) {
   1584         Vector2 start = polygon[i];
   1585         Vector2 middle = polygon[(i + 1) % polygonLength];
   1586         Vector2 end = polygon[(i + 2) % polygonLength];
   1587 
   1588         double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
   1589                 (double(middle.y) - start.y) * (double(end.x) - start.x);
   1590         bool isCCWOrCoLinear = (delta >= EPSILON);
   1591 
   1592         if (isCCWOrCoLinear) {
   1593             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
   1594                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
   1595                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
   1596             isConvex = false;
   1597             break;
   1598         }
   1599     }
   1600     return isConvex;
   1601 }
   1602 
   1603 /**
   1604  * Test whether or not the polygon (intersection) is within the 2 input polygons.
   1605  * Using Marte Carlo method, we generate a random point, and if it is inside the
   1606  * intersection, then it must be inside both source polygons.
   1607  */
   1608 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
   1609         const Vector2* poly2, int poly2Length,
   1610         const Vector2* intersection, int intersectionLength) {
   1611     // Find the min and max of x and y.
   1612     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
   1613     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
   1614     for (int i = 0; i < poly1Length; i++) {
   1615         updateBound(poly1[i], lowerBound, upperBound);
   1616     }
   1617     for (int i = 0; i < poly2Length; i++) {
   1618         updateBound(poly2[i], lowerBound, upperBound);
   1619     }
   1620 
   1621     bool dumpPoly = false;
   1622     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
   1623         // Generate a random point between minX, minY and maxX, maxY.
   1624         double randomX = rand() / double(RAND_MAX);
   1625         double randomY = rand() / double(RAND_MAX);
   1626 
   1627         Vector2 testPoint;
   1628         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
   1629         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
   1630 
   1631         // If the random point is in both poly 1 and 2, then it must be intersection.
   1632         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
   1633             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
   1634                 dumpPoly = true;
   1635                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1636                         " not in the poly1",
   1637                         testPoint.x, testPoint.y);
   1638             }
   1639 
   1640             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
   1641                 dumpPoly = true;
   1642                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1643                         " not in the poly2",
   1644                         testPoint.x, testPoint.y);
   1645             }
   1646         }
   1647     }
   1648 
   1649     if (dumpPoly) {
   1650         dumpPolygon(intersection, intersectionLength, "intersection");
   1651         for (int i = 1; i < intersectionLength; i++) {
   1652             Vector2 delta = intersection[i] - intersection[i - 1];
   1653             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
   1654         }
   1655 
   1656         dumpPolygon(poly1, poly1Length, "poly 1");
   1657         dumpPolygon(poly2, poly2Length, "poly 2");
   1658     }
   1659 }
   1660 #endif
   1661 
   1662 }; // namespace uirenderer
   1663 }; // namespace android
   1664