Home | History | Annotate | Download | only in MCTargetDesc
      1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the AArch64 addressing mode implementation stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
     15 #define LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
     16 
     17 #include "llvm/ADT/APFloat.h"
     18 #include "llvm/ADT/APInt.h"
     19 #include "llvm/Support/ErrorHandling.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 
     23 namespace llvm {
     24 
     25 /// AArch64_AM - AArch64 Addressing Mode Stuff
     26 namespace AArch64_AM {
     27 
     28 //===----------------------------------------------------------------------===//
     29 // Shifts
     30 //
     31 
     32 enum ShiftExtendType {
     33   InvalidShiftExtend = -1,
     34   LSL = 0,
     35   LSR,
     36   ASR,
     37   ROR,
     38   MSL,
     39 
     40   UXTB,
     41   UXTH,
     42   UXTW,
     43   UXTX,
     44 
     45   SXTB,
     46   SXTH,
     47   SXTW,
     48   SXTX,
     49 };
     50 
     51 /// getShiftName - Get the string encoding for the shift type.
     52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
     53   switch (ST) {
     54   default: assert(false && "unhandled shift type!");
     55   case AArch64_AM::LSL: return "lsl";
     56   case AArch64_AM::LSR: return "lsr";
     57   case AArch64_AM::ASR: return "asr";
     58   case AArch64_AM::ROR: return "ror";
     59   case AArch64_AM::MSL: return "msl";
     60   case AArch64_AM::UXTB: return "uxtb";
     61   case AArch64_AM::UXTH: return "uxth";
     62   case AArch64_AM::UXTW: return "uxtw";
     63   case AArch64_AM::UXTX: return "uxtx";
     64   case AArch64_AM::SXTB: return "sxtb";
     65   case AArch64_AM::SXTH: return "sxth";
     66   case AArch64_AM::SXTW: return "sxtw";
     67   case AArch64_AM::SXTX: return "sxtx";
     68   }
     69   return nullptr;
     70 }
     71 
     72 /// getShiftType - Extract the shift type.
     73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
     74   switch ((Imm >> 6) & 0x7) {
     75   default: return AArch64_AM::InvalidShiftExtend;
     76   case 0: return AArch64_AM::LSL;
     77   case 1: return AArch64_AM::LSR;
     78   case 2: return AArch64_AM::ASR;
     79   case 3: return AArch64_AM::ROR;
     80   case 4: return AArch64_AM::MSL;
     81   }
     82 }
     83 
     84 /// getShiftValue - Extract the shift value.
     85 static inline unsigned getShiftValue(unsigned Imm) {
     86   return Imm & 0x3f;
     87 }
     88 
     89 /// getShifterImm - Encode the shift type and amount:
     90 ///   imm:     6-bit shift amount
     91 ///   shifter: 000 ==> lsl
     92 ///            001 ==> lsr
     93 ///            010 ==> asr
     94 ///            011 ==> ror
     95 ///            100 ==> msl
     96 ///   {8-6}  = shifter
     97 ///   {5-0}  = imm
     98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
     99                                      unsigned Imm) {
    100   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
    101   unsigned STEnc = 0;
    102   switch (ST) {
    103   default:  llvm_unreachable("Invalid shift requested");
    104   case AArch64_AM::LSL: STEnc = 0; break;
    105   case AArch64_AM::LSR: STEnc = 1; break;
    106   case AArch64_AM::ASR: STEnc = 2; break;
    107   case AArch64_AM::ROR: STEnc = 3; break;
    108   case AArch64_AM::MSL: STEnc = 4; break;
    109   }
    110   return (STEnc << 6) | (Imm & 0x3f);
    111 }
    112 
    113 //===----------------------------------------------------------------------===//
    114 // Extends
    115 //
    116 
    117 /// getArithShiftValue - get the arithmetic shift value.
    118 static inline unsigned getArithShiftValue(unsigned Imm) {
    119   return Imm & 0x7;
    120 }
    121 
    122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
    123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
    124   assert((Imm & 0x7) == Imm && "invalid immediate!");
    125   switch (Imm) {
    126   default: llvm_unreachable("Compiler bug!");
    127   case 0: return AArch64_AM::UXTB;
    128   case 1: return AArch64_AM::UXTH;
    129   case 2: return AArch64_AM::UXTW;
    130   case 3: return AArch64_AM::UXTX;
    131   case 4: return AArch64_AM::SXTB;
    132   case 5: return AArch64_AM::SXTH;
    133   case 6: return AArch64_AM::SXTW;
    134   case 7: return AArch64_AM::SXTX;
    135   }
    136 }
    137 
    138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
    139   return getExtendType((Imm >> 3) & 0x7);
    140 }
    141 
    142 /// Mapping from extend bits to required operation:
    143 ///   shifter: 000 ==> uxtb
    144 ///            001 ==> uxth
    145 ///            010 ==> uxtw
    146 ///            011 ==> uxtx
    147 ///            100 ==> sxtb
    148 ///            101 ==> sxth
    149 ///            110 ==> sxtw
    150 ///            111 ==> sxtx
    151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
    152   switch (ET) {
    153   default: llvm_unreachable("Invalid extend type requested");
    154   case AArch64_AM::UXTB: return 0; break;
    155   case AArch64_AM::UXTH: return 1; break;
    156   case AArch64_AM::UXTW: return 2; break;
    157   case AArch64_AM::UXTX: return 3; break;
    158   case AArch64_AM::SXTB: return 4; break;
    159   case AArch64_AM::SXTH: return 5; break;
    160   case AArch64_AM::SXTW: return 6; break;
    161   case AArch64_AM::SXTX: return 7; break;
    162   }
    163 }
    164 
    165 /// getArithExtendImm - Encode the extend type and shift amount for an
    166 ///                     arithmetic instruction:
    167 ///   imm:     3-bit extend amount
    168 ///   {5-3}  = shifter
    169 ///   {2-0}  = imm3
    170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
    171                                          unsigned Imm) {
    172   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
    173   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
    174 }
    175 
    176 /// getMemDoShift - Extract the "do shift" flag value for load/store
    177 /// instructions.
    178 static inline bool getMemDoShift(unsigned Imm) {
    179   return (Imm & 0x1) != 0;
    180 }
    181 
    182 /// getExtendType - Extract the extend type for the offset operand of
    183 /// loads/stores.
    184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
    185   return getExtendType((Imm >> 1) & 0x7);
    186 }
    187 
    188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
    189 ///   doshift:     should the offset be scaled by the access size
    190 ///   shifter: 000 ==> uxtb
    191 ///            001 ==> uxth
    192 ///            010 ==> uxtw
    193 ///            011 ==> uxtx
    194 ///            100 ==> sxtb
    195 ///            101 ==> sxth
    196 ///            110 ==> sxtw
    197 ///            111 ==> sxtx
    198 ///   {3-1}  = shifter
    199 ///   {0}  = doshift
    200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
    201                                        bool DoShift) {
    202   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
    203 }
    204 
    205 static inline uint64_t ror(uint64_t elt, unsigned size) {
    206   return ((elt & 1) << (size-1)) | (elt >> 1);
    207 }
    208 
    209 /// processLogicalImmediate - Determine if an immediate value can be encoded
    210 /// as the immediate operand of a logical instruction for the given register
    211 /// size.  If so, return true with "encoding" set to the encoded value in
    212 /// the form N:immr:imms.
    213 static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize,
    214                                            uint64_t &encoding) {
    215   if (imm == 0ULL || imm == ~0ULL ||
    216       (regSize != 64 && (imm >> regSize != 0 || imm == ~0U)))
    217     return false;
    218 
    219   unsigned size = 2;
    220   uint64_t eltVal = imm;
    221 
    222   // First, determine the element size.
    223   while (size < regSize) {
    224     unsigned numElts = regSize / size;
    225     unsigned mask = (1ULL << size) - 1;
    226     uint64_t lowestEltVal = imm & mask;
    227 
    228     bool allMatched = true;
    229     for (unsigned i = 1; i < numElts; ++i) {
    230      uint64_t currEltVal = (imm >> (i*size)) & mask;
    231       if (currEltVal != lowestEltVal) {
    232         allMatched = false;
    233         break;
    234       }
    235     }
    236 
    237     if (allMatched) {
    238       eltVal = lowestEltVal;
    239       break;
    240     }
    241 
    242     size *= 2;
    243   }
    244 
    245   // Second, determine the rotation to make the element be: 0^m 1^n.
    246   for (unsigned i = 0; i < size; ++i) {
    247     eltVal = ror(eltVal, size);
    248     uint32_t clz = countLeadingZeros(eltVal) - (64 - size);
    249     uint32_t cto = CountTrailingOnes_64(eltVal);
    250 
    251     if (clz + cto == size) {
    252       // Encode in immr the number of RORs it would take to get *from* this
    253       // element value to our target value, where i+1 is the number of RORs
    254       // to go the opposite direction.
    255       unsigned immr = size - (i + 1);
    256 
    257       // If size has a 1 in the n'th bit, create a value that has zeroes in
    258       // bits [0, n] and ones above that.
    259       uint64_t nimms = ~(size-1) << 1;
    260 
    261       // Or the CTO value into the low bits, which must be below the Nth bit
    262       // bit mentioned above.
    263       nimms |= (cto-1);
    264 
    265       // Extract the seventh bit and toggle it to create the N field.
    266       unsigned N = ((nimms >> 6) & 1) ^ 1;
    267 
    268       encoding = (N << 12) | (immr << 6) | (nimms & 0x3f);
    269       return true;
    270     }
    271   }
    272 
    273   return false;
    274 }
    275 
    276 /// isLogicalImmediate - Return true if the immediate is valid for a logical
    277 /// immediate instruction of the given register size. Return false otherwise.
    278 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
    279   uint64_t encoding;
    280   return processLogicalImmediate(imm, regSize, encoding);
    281 }
    282 
    283 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
    284 /// immediate instruction of the given register size.
    285 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
    286   uint64_t encoding = 0;
    287   bool res = processLogicalImmediate(imm, regSize, encoding);
    288   assert(res && "invalid logical immediate");
    289   (void)res;
    290   return encoding;
    291 }
    292 
    293 /// decodeLogicalImmediate - Decode a logical immediate value in the form
    294 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
    295 /// integer value it represents with regSize bits.
    296 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
    297   // Extract the N, imms, and immr fields.
    298   unsigned N = (val >> 12) & 1;
    299   unsigned immr = (val >> 6) & 0x3f;
    300   unsigned imms = val & 0x3f;
    301 
    302   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
    303   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
    304   assert(len >= 0 && "undefined logical immediate encoding");
    305   unsigned size = (1 << len);
    306   unsigned R = immr & (size - 1);
    307   unsigned S = imms & (size - 1);
    308   assert(S != size - 1 && "undefined logical immediate encoding");
    309   uint64_t pattern = (1ULL << (S + 1)) - 1;
    310   for (unsigned i = 0; i < R; ++i)
    311     pattern = ror(pattern, size);
    312 
    313   // Replicate the pattern to fill the regSize.
    314   while (size != regSize) {
    315     pattern |= (pattern << size);
    316     size *= 2;
    317   }
    318   return pattern;
    319 }
    320 
    321 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
    322 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
    323 /// is a valid encoding for an integer value with regSize bits.
    324 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
    325                                                  unsigned regSize) {
    326   // Extract the N and imms fields needed for checking.
    327   unsigned N = (val >> 12) & 1;
    328   unsigned imms = val & 0x3f;
    329 
    330   if (regSize == 32 && N != 0) // undefined logical immediate encoding
    331     return false;
    332   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
    333   if (len < 0) // undefined logical immediate encoding
    334     return false;
    335   unsigned size = (1 << len);
    336   unsigned S = imms & (size - 1);
    337   if (S == size - 1) // undefined logical immediate encoding
    338     return false;
    339 
    340   return true;
    341 }
    342 
    343 //===----------------------------------------------------------------------===//
    344 // Floating-point Immediates
    345 //
    346 static inline float getFPImmFloat(unsigned Imm) {
    347   // We expect an 8-bit binary encoding of a floating-point number here.
    348   union {
    349     uint32_t I;
    350     float F;
    351   } FPUnion;
    352 
    353   uint8_t Sign = (Imm >> 7) & 0x1;
    354   uint8_t Exp = (Imm >> 4) & 0x7;
    355   uint8_t Mantissa = Imm & 0xf;
    356 
    357   //   8-bit FP    iEEEE Float Encoding
    358   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
    359   //
    360   // where B = NOT(b);
    361 
    362   FPUnion.I = 0;
    363   FPUnion.I |= Sign << 31;
    364   FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
    365   FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
    366   FPUnion.I |= (Exp & 0x3) << 23;
    367   FPUnion.I |= Mantissa << 19;
    368   return FPUnion.F;
    369 }
    370 
    371 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
    372 /// floating-point value. If the value cannot be represented as an 8-bit
    373 /// floating-point value, then return -1.
    374 static inline int getFP32Imm(const APInt &Imm) {
    375   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
    376   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
    377   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
    378 
    379   // We can handle 4 bits of mantissa.
    380   // mantissa = (16+UInt(e:f:g:h))/16.
    381   if (Mantissa & 0x7ffff)
    382     return -1;
    383   Mantissa >>= 19;
    384   if ((Mantissa & 0xf) != Mantissa)
    385     return -1;
    386 
    387   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    388   if (Exp < -3 || Exp > 4)
    389     return -1;
    390   Exp = ((Exp+3) & 0x7) ^ 4;
    391 
    392   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
    393 }
    394 
    395 static inline int getFP32Imm(const APFloat &FPImm) {
    396   return getFP32Imm(FPImm.bitcastToAPInt());
    397 }
    398 
    399 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
    400 /// floating-point value. If the value cannot be represented as an 8-bit
    401 /// floating-point value, then return -1.
    402 static inline int getFP64Imm(const APInt &Imm) {
    403   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
    404   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
    405   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
    406 
    407   // We can handle 4 bits of mantissa.
    408   // mantissa = (16+UInt(e:f:g:h))/16.
    409   if (Mantissa & 0xffffffffffffULL)
    410     return -1;
    411   Mantissa >>= 48;
    412   if ((Mantissa & 0xf) != Mantissa)
    413     return -1;
    414 
    415   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    416   if (Exp < -3 || Exp > 4)
    417     return -1;
    418   Exp = ((Exp+3) & 0x7) ^ 4;
    419 
    420   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
    421 }
    422 
    423 static inline int getFP64Imm(const APFloat &FPImm) {
    424   return getFP64Imm(FPImm.bitcastToAPInt());
    425 }
    426 
    427 //===--------------------------------------------------------------------===//
    428 // AdvSIMD Modified Immediates
    429 //===--------------------------------------------------------------------===//
    430 
    431 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
    432 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
    433   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    434          ((Imm & 0xffffff00ffffff00ULL) == 0);
    435 }
    436 
    437 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
    438   return (Imm & 0xffULL);
    439 }
    440 
    441 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
    442   uint64_t EncVal = Imm;
    443   return (EncVal << 32) | EncVal;
    444 }
    445 
    446 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
    447 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
    448   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    449          ((Imm & 0xffff00ffffff00ffULL) == 0);
    450 }
    451 
    452 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
    453   return (Imm & 0xff00ULL) >> 8;
    454 }
    455 
    456 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
    457   uint64_t EncVal = Imm;
    458   return (EncVal << 40) | (EncVal << 8);
    459 }
    460 
    461 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
    462 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
    463   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    464          ((Imm & 0xff00ffffff00ffffULL) == 0);
    465 }
    466 
    467 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
    468   return (Imm & 0xff0000ULL) >> 16;
    469 }
    470 
    471 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
    472   uint64_t EncVal = Imm;
    473   return (EncVal << 48) | (EncVal << 16);
    474 }
    475 
    476 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
    477 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
    478   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    479          ((Imm & 0x00ffffff00ffffffULL) == 0);
    480 }
    481 
    482 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
    483   return (Imm & 0xff000000ULL) >> 24;
    484 }
    485 
    486 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
    487   uint64_t EncVal = Imm;
    488   return (EncVal << 56) | (EncVal << 24);
    489 }
    490 
    491 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
    492 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
    493   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    494          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
    495          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
    496 }
    497 
    498 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
    499   return (Imm & 0xffULL);
    500 }
    501 
    502 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
    503   uint64_t EncVal = Imm;
    504   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
    505 }
    506 
    507 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
    508 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
    509   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    510          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
    511          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
    512 }
    513 
    514 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
    515   return (Imm & 0xff00ULL) >> 8;
    516 }
    517 
    518 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
    519   uint64_t EncVal = Imm;
    520   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
    521 }
    522 
    523 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
    524 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
    525   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    526          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
    527 }
    528 
    529 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
    530   return (Imm & 0xff00ULL) >> 8;
    531 }
    532 
    533 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
    534   uint64_t EncVal = Imm;
    535   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
    536 }
    537 
    538 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
    539 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
    540   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    541          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
    542 }
    543 
    544 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
    545   uint64_t EncVal = Imm;
    546   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
    547 }
    548 
    549 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
    550   return (Imm & 0x00ff0000ULL) >> 16;
    551 }
    552 
    553 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
    554 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
    555   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    556          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
    557          ((Imm >> 56) == (Imm & 0x000000ffULL));
    558 }
    559 
    560 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
    561   return (Imm & 0xffULL);
    562 }
    563 
    564 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
    565   uint64_t EncVal = Imm;
    566   EncVal |= (EncVal << 8);
    567   EncVal |= (EncVal << 16);
    568   EncVal |= (EncVal << 32);
    569   return EncVal;
    570 }
    571 
    572 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
    573 // cmode: 1110, op: 1
    574 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
    575   uint64_t ByteA = Imm & 0xff00000000000000ULL;
    576   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
    577   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
    578   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
    579   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
    580   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
    581   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
    582   uint64_t ByteH = Imm & 0x00000000000000ffULL;
    583 
    584   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
    585          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
    586          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
    587          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
    588          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
    589          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
    590          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
    591          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
    592 }
    593 
    594 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
    595   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
    596   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
    597   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
    598   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
    599   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
    600   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
    601   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
    602   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
    603 
    604   uint8_t EncVal = BitA;
    605   EncVal <<= 1;
    606   EncVal |= BitB;
    607   EncVal <<= 1;
    608   EncVal |= BitC;
    609   EncVal <<= 1;
    610   EncVal |= BitD;
    611   EncVal <<= 1;
    612   EncVal |= BitE;
    613   EncVal <<= 1;
    614   EncVal |= BitF;
    615   EncVal <<= 1;
    616   EncVal |= BitG;
    617   EncVal <<= 1;
    618   EncVal |= BitH;
    619   return EncVal;
    620 }
    621 
    622 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
    623   uint64_t EncVal = 0;
    624   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
    625   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
    626   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
    627   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
    628   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
    629   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
    630   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
    631   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
    632   return EncVal;
    633 }
    634 
    635 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
    636 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
    637   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
    638   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
    639          (BString == 0x1f || BString == 0x20) &&
    640          ((Imm & 0x0007ffff0007ffffULL) == 0);
    641 }
    642 
    643 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
    644   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
    645   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
    646   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
    647   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
    648   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
    649   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
    650   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
    651   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
    652 
    653   uint8_t EncVal = BitA;
    654   EncVal <<= 1;
    655   EncVal |= BitB;
    656   EncVal <<= 1;
    657   EncVal |= BitC;
    658   EncVal <<= 1;
    659   EncVal |= BitD;
    660   EncVal <<= 1;
    661   EncVal |= BitE;
    662   EncVal <<= 1;
    663   EncVal |= BitF;
    664   EncVal <<= 1;
    665   EncVal |= BitG;
    666   EncVal <<= 1;
    667   EncVal |= BitH;
    668   return EncVal;
    669 }
    670 
    671 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
    672   uint64_t EncVal = 0;
    673   if (Imm & 0x80) EncVal |= 0x80000000ULL;
    674   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
    675   else            EncVal |= 0x40000000ULL;
    676   if (Imm & 0x20) EncVal |= 0x01000000ULL;
    677   if (Imm & 0x10) EncVal |= 0x00800000ULL;
    678   if (Imm & 0x08) EncVal |= 0x00400000ULL;
    679   if (Imm & 0x04) EncVal |= 0x00200000ULL;
    680   if (Imm & 0x02) EncVal |= 0x00100000ULL;
    681   if (Imm & 0x01) EncVal |= 0x00080000ULL;
    682   return (EncVal << 32) | EncVal;
    683 }
    684 
    685 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
    686 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
    687   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
    688   return ((BString == 0xff || BString == 0x100) &&
    689          ((Imm & 0x0000ffffffffffffULL) == 0));
    690 }
    691 
    692 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
    693   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
    694   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
    695   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
    696   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
    697   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
    698   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
    699   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
    700   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
    701 
    702   uint8_t EncVal = BitA;
    703   EncVal <<= 1;
    704   EncVal |= BitB;
    705   EncVal <<= 1;
    706   EncVal |= BitC;
    707   EncVal <<= 1;
    708   EncVal |= BitD;
    709   EncVal <<= 1;
    710   EncVal |= BitE;
    711   EncVal <<= 1;
    712   EncVal |= BitF;
    713   EncVal <<= 1;
    714   EncVal |= BitG;
    715   EncVal <<= 1;
    716   EncVal |= BitH;
    717   return EncVal;
    718 }
    719 
    720 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
    721   uint64_t EncVal = 0;
    722   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
    723   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
    724   else            EncVal |= 0x4000000000000000ULL;
    725   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
    726   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
    727   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
    728   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
    729   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
    730   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
    731   return (EncVal << 32) | EncVal;
    732 }
    733 
    734 } // end namespace AArch64_AM
    735 
    736 } // end namespace llvm
    737 
    738 #endif
    739