1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/SelectionDAG.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Target/TargetLowering.h" 28 using namespace llvm; 29 30 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 31 /// of insertvalue or extractvalue indices that identify a member, return 32 /// the linearized index of the start of the member. 33 /// 34 unsigned llvm::ComputeLinearIndex(Type *Ty, 35 const unsigned *Indices, 36 const unsigned *IndicesEnd, 37 unsigned CurIndex) { 38 // Base case: We're done. 39 if (Indices && Indices == IndicesEnd) 40 return CurIndex; 41 42 // Given a struct type, recursively traverse the elements. 43 if (StructType *STy = dyn_cast<StructType>(Ty)) { 44 for (StructType::element_iterator EB = STy->element_begin(), 45 EI = EB, 46 EE = STy->element_end(); 47 EI != EE; ++EI) { 48 if (Indices && *Indices == unsigned(EI - EB)) 49 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 50 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 51 } 52 return CurIndex; 53 } 54 // Given an array type, recursively traverse the elements. 55 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 56 Type *EltTy = ATy->getElementType(); 57 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 58 if (Indices && *Indices == i) 59 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 60 CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex); 61 } 62 return CurIndex; 63 } 64 // We haven't found the type we're looking for, so keep searching. 65 return CurIndex + 1; 66 } 67 68 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 69 /// EVTs that represent all the individual underlying 70 /// non-aggregate types that comprise it. 71 /// 72 /// If Offsets is non-null, it points to a vector to be filled in 73 /// with the in-memory offsets of each of the individual values. 74 /// 75 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 76 SmallVectorImpl<EVT> &ValueVTs, 77 SmallVectorImpl<uint64_t> *Offsets, 78 uint64_t StartingOffset) { 79 // Given a struct type, recursively traverse the elements. 80 if (StructType *STy = dyn_cast<StructType>(Ty)) { 81 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 82 for (StructType::element_iterator EB = STy->element_begin(), 83 EI = EB, 84 EE = STy->element_end(); 85 EI != EE; ++EI) 86 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 87 StartingOffset + SL->getElementOffset(EI - EB)); 88 return; 89 } 90 // Given an array type, recursively traverse the elements. 91 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 92 Type *EltTy = ATy->getElementType(); 93 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 94 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 95 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 96 StartingOffset + i * EltSize); 97 return; 98 } 99 // Interpret void as zero return values. 100 if (Ty->isVoidTy()) 101 return; 102 // Base case: we can get an EVT for this LLVM IR type. 103 ValueVTs.push_back(TLI.getValueType(Ty)); 104 if (Offsets) 105 Offsets->push_back(StartingOffset); 106 } 107 108 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 109 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 110 V = V->stripPointerCasts(); 111 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 112 113 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 114 assert(GV->hasInitializer() && 115 "The EH catch-all value must have an initializer"); 116 Value *Init = GV->getInitializer(); 117 GV = dyn_cast<GlobalVariable>(Init); 118 if (!GV) V = cast<ConstantPointerNull>(Init); 119 } 120 121 assert((GV || isa<ConstantPointerNull>(V)) && 122 "TypeInfo must be a global variable or NULL"); 123 return GV; 124 } 125 126 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 127 /// processed uses a memory 'm' constraint. 128 bool 129 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 130 const TargetLowering &TLI) { 131 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 132 InlineAsm::ConstraintInfo &CI = CInfos[i]; 133 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 134 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 135 if (CType == TargetLowering::C_Memory) 136 return true; 137 } 138 139 // Indirect operand accesses access memory. 140 if (CI.isIndirect) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// getFCmpCondCode - Return the ISD condition code corresponding to 148 /// the given LLVM IR floating-point condition code. This includes 149 /// consideration of global floating-point math flags. 150 /// 151 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 152 switch (Pred) { 153 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 154 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 155 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 156 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 157 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 158 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 159 case FCmpInst::FCMP_ONE: return ISD::SETONE; 160 case FCmpInst::FCMP_ORD: return ISD::SETO; 161 case FCmpInst::FCMP_UNO: return ISD::SETUO; 162 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 163 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 164 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 165 case FCmpInst::FCMP_ULT: return ISD::SETULT; 166 case FCmpInst::FCMP_ULE: return ISD::SETULE; 167 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 168 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 169 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 170 } 171 } 172 173 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 174 switch (CC) { 175 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 176 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 177 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 178 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 179 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 180 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 181 default: return CC; 182 } 183 } 184 185 /// getICmpCondCode - Return the ISD condition code corresponding to 186 /// the given LLVM IR integer condition code. 187 /// 188 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 189 switch (Pred) { 190 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 191 case ICmpInst::ICMP_NE: return ISD::SETNE; 192 case ICmpInst::ICMP_SLE: return ISD::SETLE; 193 case ICmpInst::ICMP_ULE: return ISD::SETULE; 194 case ICmpInst::ICMP_SGE: return ISD::SETGE; 195 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 196 case ICmpInst::ICMP_SLT: return ISD::SETLT; 197 case ICmpInst::ICMP_ULT: return ISD::SETULT; 198 case ICmpInst::ICMP_SGT: return ISD::SETGT; 199 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 200 default: 201 llvm_unreachable("Invalid ICmp predicate opcode!"); 202 } 203 } 204 205 static bool isNoopBitcast(Type *T1, Type *T2, 206 const TargetLoweringBase& TLI) { 207 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 208 (isa<VectorType>(T1) && isa<VectorType>(T2) && 209 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 210 } 211 212 /// Look through operations that will be free to find the earliest source of 213 /// this value. 214 /// 215 /// @param ValLoc If V has aggegate type, we will be interested in a particular 216 /// scalar component. This records its address; the reverse of this list gives a 217 /// sequence of indices appropriate for an extractvalue to locate the important 218 /// value. This value is updated during the function and on exit will indicate 219 /// similar information for the Value returned. 220 /// 221 /// @param DataBits If this function looks through truncate instructions, this 222 /// will record the smallest size attained. 223 static const Value *getNoopInput(const Value *V, 224 SmallVectorImpl<unsigned> &ValLoc, 225 unsigned &DataBits, 226 const TargetLoweringBase &TLI) { 227 while (true) { 228 // Try to look through V1; if V1 is not an instruction, it can't be looked 229 // through. 230 const Instruction *I = dyn_cast<Instruction>(V); 231 if (!I || I->getNumOperands() == 0) return V; 232 const Value *NoopInput = nullptr; 233 234 Value *Op = I->getOperand(0); 235 if (isa<BitCastInst>(I)) { 236 // Look through truly no-op bitcasts. 237 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 238 NoopInput = Op; 239 } else if (isa<GetElementPtrInst>(I)) { 240 // Look through getelementptr 241 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 242 NoopInput = Op; 243 } else if (isa<IntToPtrInst>(I)) { 244 // Look through inttoptr. 245 // Make sure this isn't a truncating or extending cast. We could 246 // support this eventually, but don't bother for now. 247 if (!isa<VectorType>(I->getType()) && 248 TLI.getPointerTy().getSizeInBits() == 249 cast<IntegerType>(Op->getType())->getBitWidth()) 250 NoopInput = Op; 251 } else if (isa<PtrToIntInst>(I)) { 252 // Look through ptrtoint. 253 // Make sure this isn't a truncating or extending cast. We could 254 // support this eventually, but don't bother for now. 255 if (!isa<VectorType>(I->getType()) && 256 TLI.getPointerTy().getSizeInBits() == 257 cast<IntegerType>(I->getType())->getBitWidth()) 258 NoopInput = Op; 259 } else if (isa<TruncInst>(I) && 260 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 261 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 262 NoopInput = Op; 263 } else if (isa<CallInst>(I)) { 264 // Look through call (skipping callee) 265 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 266 i != e; ++i) { 267 unsigned attrInd = i - I->op_begin() + 1; 268 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 269 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 270 NoopInput = *i; 271 break; 272 } 273 } 274 } else if (isa<InvokeInst>(I)) { 275 // Look through invoke (skipping BB, BB, Callee) 276 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 277 i != e; ++i) { 278 unsigned attrInd = i - I->op_begin() + 1; 279 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 280 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 281 NoopInput = *i; 282 break; 283 } 284 } 285 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 286 // Value may come from either the aggregate or the scalar 287 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 288 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(), 289 ValLoc.rbegin())) { 290 // The type being inserted is a nested sub-type of the aggregate; we 291 // have to remove those initial indices to get the location we're 292 // interested in for the operand. 293 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 294 NoopInput = IVI->getInsertedValueOperand(); 295 } else { 296 // The struct we're inserting into has the value we're interested in, no 297 // change of address. 298 NoopInput = Op; 299 } 300 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 301 // The part we're interested in will inevitably be some sub-section of the 302 // previous aggregate. Combine the two paths to obtain the true address of 303 // our element. 304 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 305 std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(), 306 std::back_inserter(ValLoc)); 307 NoopInput = Op; 308 } 309 // Terminate if we couldn't find anything to look through. 310 if (!NoopInput) 311 return V; 312 313 V = NoopInput; 314 } 315 } 316 317 /// Return true if this scalar return value only has bits discarded on its path 318 /// from the "tail call" to the "ret". This includes the obvious noop 319 /// instructions handled by getNoopInput above as well as free truncations (or 320 /// extensions prior to the call). 321 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 322 SmallVectorImpl<unsigned> &RetIndices, 323 SmallVectorImpl<unsigned> &CallIndices, 324 bool AllowDifferingSizes, 325 const TargetLoweringBase &TLI) { 326 327 // Trace the sub-value needed by the return value as far back up the graph as 328 // possible, in the hope that it will intersect with the value produced by the 329 // call. In the simple case with no "returned" attribute, the hope is actually 330 // that we end up back at the tail call instruction itself. 331 unsigned BitsRequired = UINT_MAX; 332 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI); 333 334 // If this slot in the value returned is undef, it doesn't matter what the 335 // call puts there, it'll be fine. 336 if (isa<UndefValue>(RetVal)) 337 return true; 338 339 // Now do a similar search up through the graph to find where the value 340 // actually returned by the "tail call" comes from. In the simple case without 341 // a "returned" attribute, the search will be blocked immediately and the loop 342 // a Noop. 343 unsigned BitsProvided = UINT_MAX; 344 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI); 345 346 // There's no hope if we can't actually trace them to (the same part of!) the 347 // same value. 348 if (CallVal != RetVal || CallIndices != RetIndices) 349 return false; 350 351 // However, intervening truncates may have made the call non-tail. Make sure 352 // all the bits that are needed by the "ret" have been provided by the "tail 353 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 354 // extensions too. 355 if (BitsProvided < BitsRequired || 356 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 357 return false; 358 359 return true; 360 } 361 362 /// For an aggregate type, determine whether a given index is within bounds or 363 /// not. 364 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 365 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 366 return Idx < AT->getNumElements(); 367 368 return Idx < cast<StructType>(T)->getNumElements(); 369 } 370 371 /// Move the given iterators to the next leaf type in depth first traversal. 372 /// 373 /// Performs a depth-first traversal of the type as specified by its arguments, 374 /// stopping at the next leaf node (which may be a legitimate scalar type or an 375 /// empty struct or array). 376 /// 377 /// @param SubTypes List of the partial components making up the type from 378 /// outermost to innermost non-empty aggregate. The element currently 379 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 380 /// 381 /// @param Path Set of extractvalue indices leading from the outermost type 382 /// (SubTypes[0]) to the leaf node currently represented. 383 /// 384 /// @returns true if a new type was found, false otherwise. Calling this 385 /// function again on a finished iterator will repeatedly return 386 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 387 /// aggregate or a non-aggregate 388 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 389 SmallVectorImpl<unsigned> &Path) { 390 // First march back up the tree until we can successfully increment one of the 391 // coordinates in Path. 392 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 393 Path.pop_back(); 394 SubTypes.pop_back(); 395 } 396 397 // If we reached the top, then the iterator is done. 398 if (Path.empty()) 399 return false; 400 401 // We know there's *some* valid leaf now, so march back down the tree picking 402 // out the left-most element at each node. 403 ++Path.back(); 404 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 405 while (DeeperType->isAggregateType()) { 406 CompositeType *CT = cast<CompositeType>(DeeperType); 407 if (!indexReallyValid(CT, 0)) 408 return true; 409 410 SubTypes.push_back(CT); 411 Path.push_back(0); 412 413 DeeperType = CT->getTypeAtIndex(0U); 414 } 415 416 return true; 417 } 418 419 /// Find the first non-empty, scalar-like type in Next and setup the iterator 420 /// components. 421 /// 422 /// Assuming Next is an aggregate of some kind, this function will traverse the 423 /// tree from left to right (i.e. depth-first) looking for the first 424 /// non-aggregate type which will play a role in function return. 425 /// 426 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 427 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 428 /// i32 in that type. 429 static bool firstRealType(Type *Next, 430 SmallVectorImpl<CompositeType *> &SubTypes, 431 SmallVectorImpl<unsigned> &Path) { 432 // First initialise the iterator components to the first "leaf" node 433 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 434 // despite nominally being an aggregate). 435 while (Next->isAggregateType() && 436 indexReallyValid(cast<CompositeType>(Next), 0)) { 437 SubTypes.push_back(cast<CompositeType>(Next)); 438 Path.push_back(0); 439 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 440 } 441 442 // If there's no Path now, Next was originally scalar already (or empty 443 // leaf). We're done. 444 if (Path.empty()) 445 return true; 446 447 // Otherwise, use normal iteration to keep looking through the tree until we 448 // find a non-aggregate type. 449 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 450 if (!advanceToNextLeafType(SubTypes, Path)) 451 return false; 452 } 453 454 return true; 455 } 456 457 /// Set the iterator data-structures to the next non-empty, non-aggregate 458 /// subtype. 459 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 460 SmallVectorImpl<unsigned> &Path) { 461 do { 462 if (!advanceToNextLeafType(SubTypes, Path)) 463 return false; 464 465 assert(!Path.empty() && "found a leaf but didn't set the path?"); 466 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 467 468 return true; 469 } 470 471 472 /// Test if the given instruction is in a position to be optimized 473 /// with a tail-call. This roughly means that it's in a block with 474 /// a return and there's nothing that needs to be scheduled 475 /// between it and the return. 476 /// 477 /// This function only tests target-independent requirements. 478 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const SelectionDAG &DAG) { 479 const Instruction *I = CS.getInstruction(); 480 const BasicBlock *ExitBB = I->getParent(); 481 const TerminatorInst *Term = ExitBB->getTerminator(); 482 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 483 484 // The block must end in a return statement or unreachable. 485 // 486 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 487 // an unreachable, for now. The way tailcall optimization is currently 488 // implemented means it will add an epilogue followed by a jump. That is 489 // not profitable. Also, if the callee is a special function (e.g. 490 // longjmp on x86), it can end up causing miscompilation that has not 491 // been fully understood. 492 if (!Ret && 493 (!DAG.getTarget().Options.GuaranteedTailCallOpt || 494 !isa<UnreachableInst>(Term))) 495 return false; 496 497 // If I will have a chain, make sure no other instruction that will have a 498 // chain interposes between I and the return. 499 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 500 !isSafeToSpeculativelyExecute(I)) 501 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 502 if (&*BBI == I) 503 break; 504 // Debug info intrinsics do not get in the way of tail call optimization. 505 if (isa<DbgInfoIntrinsic>(BBI)) 506 continue; 507 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 508 !isSafeToSpeculativelyExecute(BBI)) 509 return false; 510 } 511 512 return returnTypeIsEligibleForTailCall(ExitBB->getParent(), I, Ret, 513 *DAG.getTarget().getTargetLowering()); 514 } 515 516 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 517 const Instruction *I, 518 const ReturnInst *Ret, 519 const TargetLoweringBase &TLI) { 520 // If the block ends with a void return or unreachable, it doesn't matter 521 // what the call's return type is. 522 if (!Ret || Ret->getNumOperands() == 0) return true; 523 524 // If the return value is undef, it doesn't matter what the call's 525 // return type is. 526 if (isa<UndefValue>(Ret->getOperand(0))) return true; 527 528 // Make sure the attributes attached to each return are compatible. 529 AttrBuilder CallerAttrs(F->getAttributes(), 530 AttributeSet::ReturnIndex); 531 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 532 AttributeSet::ReturnIndex); 533 534 // Noalias is completely benign as far as calling convention goes, it 535 // shouldn't affect whether the call is a tail call. 536 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 537 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 538 539 bool AllowDifferingSizes = true; 540 if (CallerAttrs.contains(Attribute::ZExt)) { 541 if (!CalleeAttrs.contains(Attribute::ZExt)) 542 return false; 543 544 AllowDifferingSizes = false; 545 CallerAttrs.removeAttribute(Attribute::ZExt); 546 CalleeAttrs.removeAttribute(Attribute::ZExt); 547 } else if (CallerAttrs.contains(Attribute::SExt)) { 548 if (!CalleeAttrs.contains(Attribute::SExt)) 549 return false; 550 551 AllowDifferingSizes = false; 552 CallerAttrs.removeAttribute(Attribute::SExt); 553 CalleeAttrs.removeAttribute(Attribute::SExt); 554 } 555 556 // If they're still different, there's some facet we don't understand 557 // (currently only "inreg", but in future who knows). It may be OK but the 558 // only safe option is to reject the tail call. 559 if (CallerAttrs != CalleeAttrs) 560 return false; 561 562 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 563 SmallVector<unsigned, 4> RetPath, CallPath; 564 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 565 566 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 567 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 568 569 // Nothing's actually returned, it doesn't matter what the callee put there 570 // it's a valid tail call. 571 if (RetEmpty) 572 return true; 573 574 // Iterate pairwise through each of the value types making up the tail call 575 // and the corresponding return. For each one we want to know whether it's 576 // essentially going directly from the tail call to the ret, via operations 577 // that end up not generating any code. 578 // 579 // We allow a certain amount of covariance here. For example it's permitted 580 // for the tail call to define more bits than the ret actually cares about 581 // (e.g. via a truncate). 582 do { 583 if (CallEmpty) { 584 // We've exhausted the values produced by the tail call instruction, the 585 // rest are essentially undef. The type doesn't really matter, but we need 586 // *something*. 587 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 588 CallVal = UndefValue::get(SlotType); 589 } 590 591 // The manipulations performed when we're looking through an insertvalue or 592 // an extractvalue would happen at the front of the RetPath list, so since 593 // we have to copy it anyway it's more efficient to create a reversed copy. 594 using std::copy; 595 SmallVector<unsigned, 4> TmpRetPath, TmpCallPath; 596 copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath)); 597 copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath)); 598 599 // Finally, we can check whether the value produced by the tail call at this 600 // index is compatible with the value we return. 601 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 602 AllowDifferingSizes, TLI)) 603 return false; 604 605 CallEmpty = !nextRealType(CallSubTypes, CallPath); 606 } while(nextRealType(RetSubTypes, RetPath)); 607 608 return true; 609 } 610