Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_DALVIK
     18 
     19 #include "thread.h"
     20 
     21 #include <cutils/trace.h>
     22 #include <pthread.h>
     23 #include <signal.h>
     24 #include <sys/resource.h>
     25 #include <sys/time.h>
     26 
     27 #include <algorithm>
     28 #include <bitset>
     29 #include <cerrno>
     30 #include <iostream>
     31 #include <list>
     32 
     33 #include "arch/context.h"
     34 #include "base/mutex.h"
     35 #include "class_linker-inl.h"
     36 #include "class_linker.h"
     37 #include "debugger.h"
     38 #include "dex_file-inl.h"
     39 #include "entrypoints/entrypoint_utils.h"
     40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     41 #include "gc_map.h"
     42 #include "gc/accounting/card_table-inl.h"
     43 #include "gc/allocator/rosalloc.h"
     44 #include "gc/heap.h"
     45 #include "gc/space/space.h"
     46 #include "handle_scope-inl.h"
     47 #include "handle_scope.h"
     48 #include "indirect_reference_table-inl.h"
     49 #include "jni_internal.h"
     50 #include "mirror/art_field-inl.h"
     51 #include "mirror/art_method-inl.h"
     52 #include "mirror/class_loader.h"
     53 #include "mirror/class-inl.h"
     54 #include "mirror/object_array-inl.h"
     55 #include "mirror/stack_trace_element.h"
     56 #include "monitor.h"
     57 #include "object_lock.h"
     58 #include "quick_exception_handler.h"
     59 #include "quick/quick_method_frame_info.h"
     60 #include "reflection.h"
     61 #include "runtime.h"
     62 #include "scoped_thread_state_change.h"
     63 #include "ScopedLocalRef.h"
     64 #include "ScopedUtfChars.h"
     65 #include "stack.h"
     66 #include "thread_list.h"
     67 #include "thread-inl.h"
     68 #include "utils.h"
     69 #include "verifier/dex_gc_map.h"
     70 #include "verify_object-inl.h"
     71 #include "vmap_table.h"
     72 #include "well_known_classes.h"
     73 
     74 namespace art {
     75 
     76 bool Thread::is_started_ = false;
     77 pthread_key_t Thread::pthread_key_self_;
     78 ConditionVariable* Thread::resume_cond_ = nullptr;
     79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
     80 
     81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
     82 
     83 void Thread::InitCardTable() {
     84   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
     85 }
     86 
     87 static void UnimplementedEntryPoint() {
     88   UNIMPLEMENTED(FATAL);
     89 }
     90 
     91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
     92                      PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
     93 
     94 void Thread::InitTlsEntryPoints() {
     95   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
     96   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
     97   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
     98                                                 sizeof(tlsPtr_.quick_entrypoints));
     99   for (uintptr_t* it = begin; it != end; ++it) {
    100     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    101   }
    102   InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
    103                   &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
    104 }
    105 
    106 void Thread::ResetQuickAllocEntryPointsForThread() {
    107   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
    108 }
    109 
    110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
    111   tlsPtr_.deoptimization_shadow_frame = sf;
    112 }
    113 
    114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
    115   tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
    116 }
    117 
    118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
    119   ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
    120   tlsPtr_.deoptimization_shadow_frame = nullptr;
    121   ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
    122   return sf;
    123 }
    124 
    125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
    126   sf->SetLink(tlsPtr_.shadow_frame_under_construction);
    127   tlsPtr_.shadow_frame_under_construction = sf;
    128 }
    129 
    130 void Thread::ClearShadowFrameUnderConstruction() {
    131   CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
    132   tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
    133 }
    134 
    135 void Thread::InitTid() {
    136   tls32_.tid = ::art::GetTid();
    137 }
    138 
    139 void Thread::InitAfterFork() {
    140   // One thread (us) survived the fork, but we have a new tid so we need to
    141   // update the value stashed in this Thread*.
    142   InitTid();
    143 }
    144 
    145 void* Thread::CreateCallback(void* arg) {
    146   Thread* self = reinterpret_cast<Thread*>(arg);
    147   Runtime* runtime = Runtime::Current();
    148   if (runtime == nullptr) {
    149     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    150     return nullptr;
    151   }
    152   {
    153     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    154     //       after self->Init().
    155     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    156     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    157     // while threads are being born).
    158     CHECK(!runtime->IsShuttingDownLocked());
    159     self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    160     Runtime::Current()->EndThreadBirth();
    161   }
    162   {
    163     ScopedObjectAccess soa(self);
    164 
    165     // Copy peer into self, deleting global reference when done.
    166     CHECK(self->tlsPtr_.jpeer != nullptr);
    167     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
    168     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    169     self->tlsPtr_.jpeer = nullptr;
    170     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
    171     Dbg::PostThreadStart(self);
    172 
    173     // Invoke the 'run' method of our java.lang.Thread.
    174     mirror::Object* receiver = self->tlsPtr_.opeer;
    175     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    176     InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
    177   }
    178   // Detach and delete self.
    179   Runtime::Current()->GetThreadList()->Unregister(self);
    180 
    181   return nullptr;
    182 }
    183 
    184 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    185                                   mirror::Object* thread_peer) {
    186   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
    187   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    188   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    189   // to stop it from going away.
    190   if (kIsDebugBuild) {
    191     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    192     if (result != nullptr && !result->IsSuspended()) {
    193       Locks::thread_list_lock_->AssertHeld(soa.Self());
    194     }
    195   }
    196   return result;
    197 }
    198 
    199 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    200                                   jobject java_thread) {
    201   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
    202 }
    203 
    204 static size_t FixStackSize(size_t stack_size) {
    205   // A stack size of zero means "use the default".
    206   if (stack_size == 0) {
    207     stack_size = Runtime::Current()->GetDefaultStackSize();
    208   }
    209 
    210   // Dalvik used the bionic pthread default stack size for native threads,
    211   // so include that here to support apps that expect large native stacks.
    212   stack_size += 1 * MB;
    213 
    214   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    215   if (stack_size < PTHREAD_STACK_MIN) {
    216     stack_size = PTHREAD_STACK_MIN;
    217   }
    218 
    219   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    220     // It's likely that callers are trying to ensure they have at least a certain amount of
    221     // stack space, so we should add our reserved space on top of what they requested, rather
    222     // than implicitly take it away from them.
    223     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    224   } else {
    225     // If we are going to use implicit stack checks, allocate space for the protected
    226     // region at the bottom of the stack.
    227     stack_size += Thread::kStackOverflowImplicitCheckSize +
    228         GetStackOverflowReservedBytes(kRuntimeISA);
    229   }
    230 
    231   // Some systems require the stack size to be a multiple of the system page size, so round up.
    232   stack_size = RoundUp(stack_size, kPageSize);
    233 
    234   return stack_size;
    235 }
    236 
    237 // Global variable to prevent the compiler optimizing away the page reads for the stack.
    238 byte dont_optimize_this;
    239 
    240 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    241 // overflow is detected.  It is located right below the stack_begin_.
    242 //
    243 // There is a little complexity here that deserves a special mention.  On some
    244 // architectures, the stack created using a VM_GROWSDOWN flag
    245 // to prevent memory being allocated when it's not needed.  This flag makes the
    246 // kernel only allocate memory for the stack by growing down in memory.  Because we
    247 // want to put an mprotected region far away from that at the stack top, we need
    248 // to make sure the pages for the stack are mapped in before we call mprotect.  We do
    249 // this by reading every page from the stack bottom (highest address) to the stack top.
    250 // We then madvise this away.
    251 void Thread::InstallImplicitProtection() {
    252   byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    253   byte* stack_himem = tlsPtr_.stack_end;
    254   byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
    255       ~(kPageSize - 1));    // Page containing current top of stack.
    256 
    257   // First remove the protection on the protected region as will want to read and
    258   // write it.  This may fail (on the first attempt when the stack is not mapped)
    259   // but we ignore that.
    260   UnprotectStack();
    261 
    262   // Map in the stack.  This must be done by reading from the
    263   // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
    264   // in the kernel.  Any access more than a page below the current SP might cause
    265   // a segv.
    266 
    267   // Read every page from the high address to the low.
    268   for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
    269     dont_optimize_this = *p;
    270   }
    271 
    272   VLOG(threads) << "installing stack protected region at " << std::hex <<
    273       static_cast<void*>(pregion) << " to " <<
    274       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    275 
    276   // Protect the bottom of the stack to prevent read/write to it.
    277   ProtectStack();
    278 
    279   // Tell the kernel that we won't be needing these pages any more.
    280   // NB. madvise will probably write zeroes into the memory (on linux it does).
    281   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    282   madvise(pregion, unwanted_size, MADV_DONTNEED);
    283 }
    284 
    285 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    286   CHECK(java_peer != nullptr);
    287   Thread* self = static_cast<JNIEnvExt*>(env)->self;
    288   Runtime* runtime = Runtime::Current();
    289 
    290   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    291   bool thread_start_during_shutdown = false;
    292   {
    293     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    294     if (runtime->IsShuttingDownLocked()) {
    295       thread_start_during_shutdown = true;
    296     } else {
    297       runtime->StartThreadBirth();
    298     }
    299   }
    300   if (thread_start_during_shutdown) {
    301     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    302     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    303     return;
    304   }
    305 
    306   Thread* child_thread = new Thread(is_daemon);
    307   // Use global JNI ref to hold peer live while child thread starts.
    308   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    309   stack_size = FixStackSize(stack_size);
    310 
    311   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
    312   // assign it.
    313   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    314                     reinterpret_cast<jlong>(child_thread));
    315 
    316   pthread_t new_pthread;
    317   pthread_attr_t attr;
    318   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    319   CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
    320   CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    321   int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
    322   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    323 
    324   if (pthread_create_result != 0) {
    325     // pthread_create(3) failed, so clean up.
    326     {
    327       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    328       runtime->EndThreadBirth();
    329     }
    330     // Manually delete the global reference since Thread::Init will not have been run.
    331     env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    332     child_thread->tlsPtr_.jpeer = nullptr;
    333     delete child_thread;
    334     child_thread = nullptr;
    335     // TODO: remove from thread group?
    336     env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    337     {
    338       std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
    339                                    PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    340       ScopedObjectAccess soa(env);
    341       soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    342     }
    343   }
    344 }
    345 
    346 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
    347   // This function does all the initialization that must be run by the native thread it applies to.
    348   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    349   // we can handshake with the corresponding native thread when it's ready.) Check this native
    350   // thread hasn't been through here already...
    351   CHECK(Thread::Current() == nullptr);
    352   SetUpAlternateSignalStack();
    353   InitCpu();
    354   InitTlsEntryPoints();
    355   RemoveSuspendTrigger();
    356   InitCardTable();
    357   InitTid();
    358   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    359   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    360   tlsPtr_.pthread_self = pthread_self();
    361   CHECK(is_started_);
    362   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    363   DCHECK_EQ(Thread::Current(), this);
    364 
    365   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    366   InitStackHwm();
    367 
    368   tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
    369   thread_list->Register(this);
    370 }
    371 
    372 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
    373                        bool create_peer) {
    374   Thread* self;
    375   Runtime* runtime = Runtime::Current();
    376   if (runtime == nullptr) {
    377     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    378     return nullptr;
    379   }
    380   {
    381     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    382     if (runtime->IsShuttingDownLocked()) {
    383       LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
    384       return nullptr;
    385     } else {
    386       Runtime::Current()->StartThreadBirth();
    387       self = new Thread(as_daemon);
    388       self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    389       Runtime::Current()->EndThreadBirth();
    390     }
    391   }
    392 
    393   CHECK_NE(self->GetState(), kRunnable);
    394   self->SetState(kNative);
    395 
    396   // If we're the main thread, ClassLinker won't be created until after we're attached,
    397   // so that thread needs a two-stage attach. Regular threads don't need this hack.
    398   // In the compiler, all threads need this hack, because no-one's going to be getting
    399   // a native peer!
    400   if (create_peer) {
    401     self->CreatePeer(thread_name, as_daemon, thread_group);
    402   } else {
    403     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    404     if (thread_name != nullptr) {
    405       self->tlsPtr_.name->assign(thread_name);
    406       ::art::SetThreadName(thread_name);
    407     } else if (self->GetJniEnv()->check_jni) {
    408       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    409     }
    410   }
    411 
    412   return self;
    413 }
    414 
    415 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    416   Runtime* runtime = Runtime::Current();
    417   CHECK(runtime->IsStarted());
    418   JNIEnv* env = tlsPtr_.jni_env;
    419 
    420   if (thread_group == nullptr) {
    421     thread_group = runtime->GetMainThreadGroup();
    422   }
    423   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    424   jint thread_priority = GetNativePriority();
    425   jboolean thread_is_daemon = as_daemon;
    426 
    427   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    428   if (peer.get() == nullptr) {
    429     CHECK(IsExceptionPending());
    430     return;
    431   }
    432   {
    433     ScopedObjectAccess soa(this);
    434     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
    435   }
    436   env->CallNonvirtualVoidMethod(peer.get(),
    437                                 WellKnownClasses::java_lang_Thread,
    438                                 WellKnownClasses::java_lang_Thread_init,
    439                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    440   AssertNoPendingException();
    441 
    442   Thread* self = this;
    443   DCHECK_EQ(self, Thread::Current());
    444   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    445                     reinterpret_cast<jlong>(self));
    446 
    447   ScopedObjectAccess soa(self);
    448   StackHandleScope<1> hs(self);
    449   Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
    450   if (peer_thread_name.Get() == nullptr) {
    451     // The Thread constructor should have set the Thread.name to a
    452     // non-null value. However, because we can run without code
    453     // available (in the compiler, in tests), we manually assign the
    454     // fields the constructor should have set.
    455     if (runtime->IsActiveTransaction()) {
    456       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    457     } else {
    458       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    459     }
    460     peer_thread_name.Assign(GetThreadName(soa));
    461   }
    462   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    463   if (peer_thread_name.Get() != nullptr) {
    464     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    465   }
    466 }
    467 
    468 template<bool kTransactionActive>
    469 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
    470                       jobject thread_name, jint thread_priority) {
    471   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
    472       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
    473   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
    474       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
    475   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
    476       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
    477   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
    478       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
    479 }
    480 
    481 void Thread::SetThreadName(const char* name) {
    482   tlsPtr_.name->assign(name);
    483   ::art::SetThreadName(name);
    484   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
    485 }
    486 
    487 void Thread::InitStackHwm() {
    488   void* read_stack_base;
    489   size_t read_stack_size;
    490   size_t read_guard_size;
    491   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
    492 
    493   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
    494   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
    495                                 read_stack_base,
    496                                 PrettySize(read_stack_size).c_str(),
    497                                 PrettySize(read_guard_size).c_str());
    498 
    499   tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
    500   tlsPtr_.stack_size = read_stack_size;
    501 
    502   // The minimum stack size we can cope with is the overflow reserved bytes (typically
    503   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
    504   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
    505   // between 8K and 12K.
    506   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
    507     + 4 * KB;
    508   if (read_stack_size <= min_stack) {
    509     LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
    510         << " bytes)";
    511   }
    512 
    513   // TODO: move this into the Linux GetThreadStack implementation.
    514 #if !defined(__APPLE__)
    515   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
    516   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
    517   // will be broken because we'll die long before we get close to 2GB.
    518   bool is_main_thread = (::art::GetTid() == getpid());
    519   if (is_main_thread) {
    520     rlimit stack_limit;
    521     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
    522       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
    523     }
    524     if (stack_limit.rlim_cur == RLIM_INFINITY) {
    525       // Find the default stack size for new threads...
    526       pthread_attr_t default_attributes;
    527       size_t default_stack_size;
    528       CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
    529       CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
    530                          "default stack size query");
    531       CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
    532 
    533       // ...and use that as our limit.
    534       size_t old_stack_size = read_stack_size;
    535       tlsPtr_.stack_size = default_stack_size;
    536       tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
    537       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
    538                     << " to " << PrettySize(default_stack_size)
    539                     << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
    540     }
    541   }
    542 #endif
    543 
    544   // Set stack_end_ to the bottom of the stack saving space of stack overflows
    545 
    546   Runtime* runtime = Runtime::Current();
    547   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
    548   ResetDefaultStackEnd();
    549 
    550   // Install the protected region if we are doing implicit overflow checks.
    551   if (implicit_stack_check) {
    552     // The thread might have protected region at the bottom.  We need
    553     // to install our own region so we need to move the limits
    554     // of the stack to make room for it.
    555 
    556     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
    557     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
    558     tlsPtr_.stack_size -= read_guard_size;
    559 
    560     InstallImplicitProtection();
    561   }
    562 
    563   // Sanity check.
    564   int stack_variable;
    565   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
    566 }
    567 
    568 void Thread::ShortDump(std::ostream& os) const {
    569   os << "Thread[";
    570   if (GetThreadId() != 0) {
    571     // If we're in kStarting, we won't have a thin lock id or tid yet.
    572     os << GetThreadId()
    573              << ",tid=" << GetTid() << ',';
    574   }
    575   os << GetState()
    576            << ",Thread*=" << this
    577            << ",peer=" << tlsPtr_.opeer
    578            << ",\"" << *tlsPtr_.name << "\""
    579            << "]";
    580 }
    581 
    582 void Thread::Dump(std::ostream& os) const {
    583   DumpState(os);
    584   DumpStack(os);
    585 }
    586 
    587 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
    588   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
    589   return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
    590 }
    591 
    592 void Thread::GetThreadName(std::string& name) const {
    593   name.assign(*tlsPtr_.name);
    594 }
    595 
    596 uint64_t Thread::GetCpuMicroTime() const {
    597 #if defined(HAVE_POSIX_CLOCKS)
    598   clockid_t cpu_clock_id;
    599   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
    600   timespec now;
    601   clock_gettime(cpu_clock_id, &now);
    602   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
    603 #else
    604   UNIMPLEMENTED(WARNING);
    605   return -1;
    606 #endif
    607 }
    608 
    609 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
    610 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
    611   LOG(ERROR) << *thread << " suspend count already zero.";
    612   Locks::thread_suspend_count_lock_->Unlock(self);
    613   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    614     Locks::mutator_lock_->SharedTryLock(self);
    615     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    616       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
    617     }
    618   }
    619   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    620     Locks::thread_list_lock_->TryLock(self);
    621     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    622       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
    623     }
    624   }
    625   std::ostringstream ss;
    626   Runtime::Current()->GetThreadList()->DumpLocked(ss);
    627   LOG(FATAL) << ss.str();
    628 }
    629 
    630 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
    631   if (kIsDebugBuild) {
    632     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
    633           << delta << " " << tls32_.debug_suspend_count << " " << this;
    634     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
    635     Locks::thread_suspend_count_lock_->AssertHeld(self);
    636     if (this != self && !IsSuspended()) {
    637       Locks::thread_list_lock_->AssertHeld(self);
    638     }
    639   }
    640   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
    641     UnsafeLogFatalForSuspendCount(self, this);
    642     return;
    643   }
    644 
    645   tls32_.suspend_count += delta;
    646   if (for_debugger) {
    647     tls32_.debug_suspend_count += delta;
    648   }
    649 
    650   if (tls32_.suspend_count == 0) {
    651     AtomicClearFlag(kSuspendRequest);
    652   } else {
    653     AtomicSetFlag(kSuspendRequest);
    654     TriggerSuspend();
    655   }
    656 }
    657 
    658 void Thread::RunCheckpointFunction() {
    659   Closure *checkpoints[kMaxCheckpoints];
    660 
    661   // Grab the suspend_count lock and copy the current set of
    662   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
    663   // function will also grab this lock so we prevent a race between setting
    664   // the kCheckpointRequest flag and clearing it.
    665   {
    666     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
    667     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    668       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
    669       tlsPtr_.checkpoint_functions[i] = nullptr;
    670     }
    671     AtomicClearFlag(kCheckpointRequest);
    672   }
    673 
    674   // Outside the lock, run all the checkpoint functions that
    675   // we collected.
    676   bool found_checkpoint = false;
    677   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    678     if (checkpoints[i] != nullptr) {
    679       ATRACE_BEGIN("Checkpoint function");
    680       checkpoints[i]->Run(this);
    681       ATRACE_END();
    682       found_checkpoint = true;
    683     }
    684   }
    685   CHECK(found_checkpoint);
    686 }
    687 
    688 bool Thread::RequestCheckpoint(Closure* function) {
    689   union StateAndFlags old_state_and_flags;
    690   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
    691   if (old_state_and_flags.as_struct.state != kRunnable) {
    692     return false;  // Fail, thread is suspended and so can't run a checkpoint.
    693   }
    694 
    695   uint32_t available_checkpoint = kMaxCheckpoints;
    696   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
    697     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
    698       available_checkpoint = i;
    699       break;
    700     }
    701   }
    702   if (available_checkpoint == kMaxCheckpoints) {
    703     // No checkpoint functions available, we can't run a checkpoint
    704     return false;
    705   }
    706   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
    707 
    708   // Checkpoint function installed now install flag bit.
    709   // We must be runnable to request a checkpoint.
    710   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
    711   union StateAndFlags new_state_and_flags;
    712   new_state_and_flags.as_int = old_state_and_flags.as_int;
    713   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
    714   bool success =
    715       tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
    716                                                                                        new_state_and_flags.as_int);
    717   if (UNLIKELY(!success)) {
    718     // The thread changed state before the checkpoint was installed.
    719     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
    720     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
    721   } else {
    722     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
    723     TriggerSuspend();
    724   }
    725   return success;
    726 }
    727 
    728 void Thread::FullSuspendCheck() {
    729   VLOG(threads) << this << " self-suspending";
    730   ATRACE_BEGIN("Full suspend check");
    731   // Make thread appear suspended to other threads, release mutator_lock_.
    732   TransitionFromRunnableToSuspended(kSuspended);
    733   // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
    734   TransitionFromSuspendedToRunnable();
    735   ATRACE_END();
    736   VLOG(threads) << this << " self-reviving";
    737 }
    738 
    739 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
    740   std::string group_name;
    741   int priority;
    742   bool is_daemon = false;
    743   Thread* self = Thread::Current();
    744 
    745   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
    746   // cause ScopedObjectAccessUnchecked to deadlock.
    747   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
    748     ScopedObjectAccessUnchecked soa(self);
    749     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
    750         ->GetInt(thread->tlsPtr_.opeer);
    751     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
    752         ->GetBoolean(thread->tlsPtr_.opeer);
    753 
    754     mirror::Object* thread_group =
    755         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
    756 
    757     if (thread_group != nullptr) {
    758       mirror::ArtField* group_name_field =
    759           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
    760       mirror::String* group_name_string =
    761           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
    762       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
    763     }
    764   } else {
    765     priority = GetNativePriority();
    766   }
    767 
    768   std::string scheduler_group_name(GetSchedulerGroupName(tid));
    769   if (scheduler_group_name.empty()) {
    770     scheduler_group_name = "default";
    771   }
    772 
    773   if (thread != nullptr) {
    774     os << '"' << *thread->tlsPtr_.name << '"';
    775     if (is_daemon) {
    776       os << " daemon";
    777     }
    778     os << " prio=" << priority
    779        << " tid=" << thread->GetThreadId()
    780        << " " << thread->GetState();
    781     if (thread->IsStillStarting()) {
    782       os << " (still starting up)";
    783     }
    784     os << "\n";
    785   } else {
    786     os << '"' << ::art::GetThreadName(tid) << '"'
    787        << " prio=" << priority
    788        << " (not attached)\n";
    789   }
    790 
    791   if (thread != nullptr) {
    792     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    793     os << "  | group=\"" << group_name << "\""
    794        << " sCount=" << thread->tls32_.suspend_count
    795        << " dsCount=" << thread->tls32_.debug_suspend_count
    796        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
    797        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
    798   }
    799 
    800   os << "  | sysTid=" << tid
    801      << " nice=" << getpriority(PRIO_PROCESS, tid)
    802      << " cgrp=" << scheduler_group_name;
    803   if (thread != nullptr) {
    804     int policy;
    805     sched_param sp;
    806     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
    807                        __FUNCTION__);
    808     os << " sched=" << policy << "/" << sp.sched_priority
    809        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
    810   }
    811   os << "\n";
    812 
    813   // Grab the scheduler stats for this thread.
    814   std::string scheduler_stats;
    815   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
    816     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
    817   } else {
    818     scheduler_stats = "0 0 0";
    819   }
    820 
    821   char native_thread_state = '?';
    822   int utime = 0;
    823   int stime = 0;
    824   int task_cpu = 0;
    825   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
    826 
    827   os << "  | state=" << native_thread_state
    828      << " schedstat=( " << scheduler_stats << " )"
    829      << " utm=" << utime
    830      << " stm=" << stime
    831      << " core=" << task_cpu
    832      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
    833   if (thread != nullptr) {
    834     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
    835         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
    836         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
    837     // Dump the held mutexes.
    838     os << "  | held mutexes=";
    839     for (size_t i = 0; i < kLockLevelCount; ++i) {
    840       if (i != kMonitorLock) {
    841         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
    842         if (mutex != nullptr) {
    843           os << " \"" << mutex->GetName() << "\"";
    844           if (mutex->IsReaderWriterMutex()) {
    845             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
    846             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
    847               os << "(exclusive held)";
    848             } else {
    849               os << "(shared held)";
    850             }
    851           }
    852         }
    853       }
    854     }
    855     os << "\n";
    856   }
    857 }
    858 
    859 void Thread::DumpState(std::ostream& os) const {
    860   Thread::DumpState(os, this, GetTid());
    861 }
    862 
    863 struct StackDumpVisitor : public StackVisitor {
    864   StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
    865       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    866       : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
    867         last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
    868   }
    869 
    870   virtual ~StackDumpVisitor() {
    871     if (frame_count == 0) {
    872       os << "  (no managed stack frames)\n";
    873     }
    874   }
    875 
    876   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    877     mirror::ArtMethod* m = GetMethod();
    878     if (m->IsRuntimeMethod()) {
    879       return true;
    880     }
    881     const int kMaxRepetition = 3;
    882     mirror::Class* c = m->GetDeclaringClass();
    883     mirror::DexCache* dex_cache = c->GetDexCache();
    884     int line_number = -1;
    885     if (dex_cache != nullptr) {  // be tolerant of bad input
    886       const DexFile& dex_file = *dex_cache->GetDexFile();
    887       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
    888     }
    889     if (line_number == last_line_number && last_method == m) {
    890       ++repetition_count;
    891     } else {
    892       if (repetition_count >= kMaxRepetition) {
    893         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
    894       }
    895       repetition_count = 0;
    896       last_line_number = line_number;
    897       last_method = m;
    898     }
    899     if (repetition_count < kMaxRepetition) {
    900       os << "  at " << PrettyMethod(m, false);
    901       if (m->IsNative()) {
    902         os << "(Native method)";
    903       } else {
    904         const char* source_file(m->GetDeclaringClassSourceFile());
    905         os << "(" << (source_file != nullptr ? source_file : "unavailable")
    906            << ":" << line_number << ")";
    907       }
    908       os << "\n";
    909       if (frame_count == 0) {
    910         Monitor::DescribeWait(os, thread);
    911       }
    912       if (can_allocate) {
    913         // Visit locks, but do not abort on errors. This would trigger a nested abort.
    914         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
    915       }
    916     }
    917 
    918     ++frame_count;
    919     return true;
    920   }
    921 
    922   static void DumpLockedObject(mirror::Object* o, void* context)
    923       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    924     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
    925     os << "  - locked ";
    926     if (o == nullptr) {
    927       os << "an unknown object";
    928     } else {
    929       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
    930           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
    931         // Getting the identity hashcode here would result in lock inflation and suspension of the
    932         // current thread, which isn't safe if this is the only runnable thread.
    933         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
    934                            PrettyTypeOf(o).c_str());
    935       } else {
    936         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
    937       }
    938     }
    939     os << "\n";
    940   }
    941 
    942   std::ostream& os;
    943   const Thread* thread;
    944   const bool can_allocate;
    945   mirror::ArtMethod* last_method;
    946   int last_line_number;
    947   int repetition_count;
    948   int frame_count;
    949 };
    950 
    951 static bool ShouldShowNativeStack(const Thread* thread)
    952     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    953   ThreadState state = thread->GetState();
    954 
    955   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
    956   if (state > kWaiting && state < kStarting) {
    957     return true;
    958   }
    959 
    960   // In an Object.wait variant or Thread.sleep? That's not interesting.
    961   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
    962     return false;
    963   }
    964 
    965   // Threads with no managed stack frames should be shown.
    966   const ManagedStack* managed_stack = thread->GetManagedStack();
    967   if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
    968       managed_stack->GetTopShadowFrame() == NULL)) {
    969     return true;
    970   }
    971 
    972   // In some other native method? That's interesting.
    973   // We don't just check kNative because native methods will be in state kSuspended if they're
    974   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
    975   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
    976   mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
    977   return current_method != nullptr && current_method->IsNative();
    978 }
    979 
    980 void Thread::DumpJavaStack(std::ostream& os) const {
    981   std::unique_ptr<Context> context(Context::Create());
    982   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
    983                           !tls32_.throwing_OutOfMemoryError);
    984   dumper.WalkStack();
    985 }
    986 
    987 void Thread::DumpStack(std::ostream& os) const {
    988   // TODO: we call this code when dying but may not have suspended the thread ourself. The
    989   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
    990   //       the race with the thread_suspend_count_lock_).
    991   bool dump_for_abort = (gAborting > 0);
    992   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
    993   if (!kIsDebugBuild) {
    994     // We always want to dump the stack for an abort, however, there is no point dumping another
    995     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
    996     safe_to_dump = (safe_to_dump || dump_for_abort);
    997   }
    998   if (safe_to_dump) {
    999     // If we're currently in native code, dump that stack before dumping the managed stack.
   1000     if (dump_for_abort || ShouldShowNativeStack(this)) {
   1001       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1002       DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
   1003     }
   1004     DumpJavaStack(os);
   1005   } else {
   1006     os << "Not able to dump stack of thread that isn't suspended";
   1007   }
   1008 }
   1009 
   1010 void Thread::ThreadExitCallback(void* arg) {
   1011   Thread* self = reinterpret_cast<Thread*>(arg);
   1012   if (self->tls32_.thread_exit_check_count == 0) {
   1013     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   1014         "going to use a pthread_key_create destructor?): " << *self;
   1015     CHECK(is_started_);
   1016     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   1017     self->tls32_.thread_exit_check_count = 1;
   1018   } else {
   1019     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   1020   }
   1021 }
   1022 
   1023 void Thread::Startup() {
   1024   CHECK(!is_started_);
   1025   is_started_ = true;
   1026   {
   1027     // MutexLock to keep annotalysis happy.
   1028     //
   1029     // Note we use nullptr for the thread because Thread::Current can
   1030     // return garbage since (is_started_ == true) and
   1031     // Thread::pthread_key_self_ is not yet initialized.
   1032     // This was seen on glibc.
   1033     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   1034     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   1035                                          *Locks::thread_suspend_count_lock_);
   1036   }
   1037 
   1038   // Allocate a TLS slot.
   1039   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
   1040 
   1041   // Double-check the TLS slot allocation.
   1042   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   1043     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   1044   }
   1045 }
   1046 
   1047 void Thread::FinishStartup() {
   1048   Runtime* runtime = Runtime::Current();
   1049   CHECK(runtime->IsStarted());
   1050 
   1051   // Finish attaching the main thread.
   1052   ScopedObjectAccess soa(Thread::Current());
   1053   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   1054 
   1055   Runtime::Current()->GetClassLinker()->RunRootClinits();
   1056 }
   1057 
   1058 void Thread::Shutdown() {
   1059   CHECK(is_started_);
   1060   is_started_ = false;
   1061   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   1062   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   1063   if (resume_cond_ != nullptr) {
   1064     delete resume_cond_;
   1065     resume_cond_ = nullptr;
   1066   }
   1067 }
   1068 
   1069 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
   1070   wait_mutex_ = new Mutex("a thread wait mutex");
   1071   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   1072   tlsPtr_.debug_invoke_req = new DebugInvokeReq;
   1073   tlsPtr_.single_step_control = new SingleStepControl;
   1074   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   1075   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   1076   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
   1077 
   1078   CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
   1079   tls32_.state_and_flags.as_struct.flags = 0;
   1080   tls32_.state_and_flags.as_struct.state = kNative;
   1081   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   1082   std::fill(tlsPtr_.rosalloc_runs,
   1083             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
   1084             gc::allocator::RosAlloc::GetDedicatedFullRun());
   1085   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
   1086     tlsPtr_.checkpoint_functions[i] = nullptr;
   1087   }
   1088 }
   1089 
   1090 bool Thread::IsStillStarting() const {
   1091   // You might think you can check whether the state is kStarting, but for much of thread startup,
   1092   // the thread is in kNative; it might also be in kVmWait.
   1093   // You might think you can check whether the peer is nullptr, but the peer is actually created and
   1094   // assigned fairly early on, and needs to be.
   1095   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   1096   // this thread _ever_ entered kRunnable".
   1097   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   1098       (*tlsPtr_.name == kThreadNameDuringStartup);
   1099 }
   1100 
   1101 void Thread::AssertNoPendingException() const {
   1102   if (UNLIKELY(IsExceptionPending())) {
   1103     ScopedObjectAccess soa(Thread::Current());
   1104     mirror::Throwable* exception = GetException(nullptr);
   1105     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
   1106   }
   1107 }
   1108 
   1109 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   1110   if (UNLIKELY(IsExceptionPending())) {
   1111     ScopedObjectAccess soa(Thread::Current());
   1112     mirror::Throwable* exception = GetException(nullptr);
   1113     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   1114         << exception->Dump();
   1115   }
   1116 }
   1117 
   1118 static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
   1119                                RootType /*root_type*/)
   1120     NO_THREAD_SAFETY_ANALYSIS {
   1121   Thread* self = reinterpret_cast<Thread*>(arg);
   1122   mirror::Object* entered_monitor = *object;
   1123   if (self->HoldsLock(entered_monitor)) {
   1124     LOG(WARNING) << "Calling MonitorExit on object "
   1125                  << object << " (" << PrettyTypeOf(entered_monitor) << ")"
   1126                  << " left locked by native thread "
   1127                  << *Thread::Current() << " which is detaching";
   1128     entered_monitor->MonitorExit(self);
   1129   }
   1130 }
   1131 
   1132 void Thread::Destroy() {
   1133   Thread* self = this;
   1134   DCHECK_EQ(self, Thread::Current());
   1135 
   1136   if (tlsPtr_.opeer != nullptr) {
   1137     ScopedObjectAccess soa(self);
   1138     // We may need to call user-supplied managed code, do this before final clean-up.
   1139     HandleUncaughtExceptions(soa);
   1140     RemoveFromThreadGroup(soa);
   1141 
   1142     // this.nativePeer = 0;
   1143     if (Runtime::Current()->IsActiveTransaction()) {
   1144       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1145           ->SetLong<true>(tlsPtr_.opeer, 0);
   1146     } else {
   1147       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1148           ->SetLong<false>(tlsPtr_.opeer, 0);
   1149     }
   1150     Dbg::PostThreadDeath(self);
   1151 
   1152     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   1153     // who is waiting.
   1154     mirror::Object* lock =
   1155         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   1156     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   1157     if (lock != nullptr) {
   1158       StackHandleScope<1> hs(self);
   1159       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   1160       ObjectLock<mirror::Object> locker(self, h_obj);
   1161       locker.NotifyAll();
   1162     }
   1163   }
   1164 
   1165   // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   1166   if (tlsPtr_.jni_env != nullptr) {
   1167     tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
   1168   }
   1169 }
   1170 
   1171 Thread::~Thread() {
   1172   if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
   1173     // If pthread_create fails we don't have a jni env here.
   1174     tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   1175     tlsPtr_.jpeer = nullptr;
   1176   }
   1177   tlsPtr_.opeer = nullptr;
   1178 
   1179   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   1180   if (initialized) {
   1181     delete tlsPtr_.jni_env;
   1182     tlsPtr_.jni_env = nullptr;
   1183   }
   1184   CHECK_NE(GetState(), kRunnable);
   1185   CHECK_NE(ReadFlag(kCheckpointRequest), true);
   1186   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
   1187   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
   1188   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
   1189 
   1190   // We may be deleting a still born thread.
   1191   SetStateUnsafe(kTerminated);
   1192 
   1193   delete wait_cond_;
   1194   delete wait_mutex_;
   1195 
   1196   if (tlsPtr_.long_jump_context != nullptr) {
   1197     delete tlsPtr_.long_jump_context;
   1198   }
   1199 
   1200   if (initialized) {
   1201     CleanupCpu();
   1202   }
   1203 
   1204   delete tlsPtr_.debug_invoke_req;
   1205   delete tlsPtr_.single_step_control;
   1206   delete tlsPtr_.instrumentation_stack;
   1207   delete tlsPtr_.name;
   1208   delete tlsPtr_.stack_trace_sample;
   1209   free(tlsPtr_.nested_signal_state);
   1210 
   1211   Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   1212 
   1213   TearDownAlternateSignalStack();
   1214 }
   1215 
   1216 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
   1217   if (!IsExceptionPending()) {
   1218     return;
   1219   }
   1220   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1221   ScopedThreadStateChange tsc(this, kNative);
   1222 
   1223   // Get and clear the exception.
   1224   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   1225   tlsPtr_.jni_env->ExceptionClear();
   1226 
   1227   // If the thread has its own handler, use that.
   1228   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
   1229                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
   1230                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
   1231   if (handler.get() == nullptr) {
   1232     // Otherwise use the thread group's default handler.
   1233     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
   1234                                                   WellKnownClasses::java_lang_Thread_group));
   1235   }
   1236 
   1237   // Call the handler.
   1238   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
   1239       WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
   1240       peer.get(), exception.get());
   1241 
   1242   // If the handler threw, clear that exception too.
   1243   tlsPtr_.jni_env->ExceptionClear();
   1244 }
   1245 
   1246 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
   1247   // this.group.removeThread(this);
   1248   // group can be null if we're in the compiler or a test.
   1249   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
   1250       ->GetObject(tlsPtr_.opeer);
   1251   if (ogroup != nullptr) {
   1252     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   1253     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1254     ScopedThreadStateChange tsc(soa.Self(), kNative);
   1255     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   1256                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   1257                                     peer.get());
   1258   }
   1259 }
   1260 
   1261 size_t Thread::NumHandleReferences() {
   1262   size_t count = 0;
   1263   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1264     count += cur->NumberOfReferences();
   1265   }
   1266   return count;
   1267 }
   1268 
   1269 bool Thread::HandleScopeContains(jobject obj) const {
   1270   StackReference<mirror::Object>* hs_entry =
   1271       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   1272   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1273     if (cur->Contains(hs_entry)) {
   1274       return true;
   1275     }
   1276   }
   1277   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   1278   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   1279 }
   1280 
   1281 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
   1282   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1283     size_t num_refs = cur->NumberOfReferences();
   1284     for (size_t j = 0; j < num_refs; ++j) {
   1285       mirror::Object* object = cur->GetReference(j);
   1286       if (object != nullptr) {
   1287         mirror::Object* old_obj = object;
   1288         visitor(&object, arg, thread_id, kRootNativeStack);
   1289         if (old_obj != object) {
   1290           cur->SetReference(j, object);
   1291         }
   1292       }
   1293     }
   1294   }
   1295 }
   1296 
   1297 mirror::Object* Thread::DecodeJObject(jobject obj) const {
   1298   Locks::mutator_lock_->AssertSharedHeld(this);
   1299   if (obj == nullptr) {
   1300     return nullptr;
   1301   }
   1302   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   1303   IndirectRefKind kind = GetIndirectRefKind(ref);
   1304   mirror::Object* result;
   1305   // The "kinds" below are sorted by the frequency we expect to encounter them.
   1306   if (kind == kLocal) {
   1307     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
   1308     // Local references do not need a read barrier.
   1309     result = locals.Get<kWithoutReadBarrier>(ref);
   1310   } else if (kind == kHandleScopeOrInvalid) {
   1311     // TODO: make stack indirect reference table lookup more efficient.
   1312     // Check if this is a local reference in the handle scope.
   1313     if (LIKELY(HandleScopeContains(obj))) {
   1314       // Read from handle scope.
   1315       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   1316       VerifyObject(result);
   1317     } else {
   1318       result = kInvalidIndirectRefObject;
   1319     }
   1320   } else if (kind == kGlobal) {
   1321     JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
   1322     result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
   1323   } else {
   1324     DCHECK_EQ(kind, kWeakGlobal);
   1325     result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   1326     if (result == kClearedJniWeakGlobal) {
   1327       // This is a special case where it's okay to return nullptr.
   1328       return nullptr;
   1329     }
   1330   }
   1331 
   1332   if (UNLIKELY(result == nullptr)) {
   1333     JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
   1334   }
   1335   return result;
   1336 }
   1337 
   1338 // Implements java.lang.Thread.interrupted.
   1339 bool Thread::Interrupted() {
   1340   MutexLock mu(Thread::Current(), *wait_mutex_);
   1341   bool interrupted = IsInterruptedLocked();
   1342   SetInterruptedLocked(false);
   1343   return interrupted;
   1344 }
   1345 
   1346 // Implements java.lang.Thread.isInterrupted.
   1347 bool Thread::IsInterrupted() {
   1348   MutexLock mu(Thread::Current(), *wait_mutex_);
   1349   return IsInterruptedLocked();
   1350 }
   1351 
   1352 void Thread::Interrupt(Thread* self) {
   1353   MutexLock mu(self, *wait_mutex_);
   1354   if (interrupted_) {
   1355     return;
   1356   }
   1357   interrupted_ = true;
   1358   NotifyLocked(self);
   1359 }
   1360 
   1361 void Thread::Notify() {
   1362   Thread* self = Thread::Current();
   1363   MutexLock mu(self, *wait_mutex_);
   1364   NotifyLocked(self);
   1365 }
   1366 
   1367 void Thread::NotifyLocked(Thread* self) {
   1368   if (wait_monitor_ != nullptr) {
   1369     wait_cond_->Signal(self);
   1370   }
   1371 }
   1372 
   1373 class CountStackDepthVisitor : public StackVisitor {
   1374  public:
   1375   explicit CountStackDepthVisitor(Thread* thread)
   1376       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1377       : StackVisitor(thread, nullptr),
   1378         depth_(0), skip_depth_(0), skipping_(true) {}
   1379 
   1380   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1381     // We want to skip frames up to and including the exception's constructor.
   1382     // Note we also skip the frame if it doesn't have a method (namely the callee
   1383     // save frame)
   1384     mirror::ArtMethod* m = GetMethod();
   1385     if (skipping_ && !m->IsRuntimeMethod() &&
   1386         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   1387       skipping_ = false;
   1388     }
   1389     if (!skipping_) {
   1390       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   1391         ++depth_;
   1392       }
   1393     } else {
   1394       ++skip_depth_;
   1395     }
   1396     return true;
   1397   }
   1398 
   1399   int GetDepth() const {
   1400     return depth_;
   1401   }
   1402 
   1403   int GetSkipDepth() const {
   1404     return skip_depth_;
   1405   }
   1406 
   1407  private:
   1408   uint32_t depth_;
   1409   uint32_t skip_depth_;
   1410   bool skipping_;
   1411 };
   1412 
   1413 template<bool kTransactionActive>
   1414 class BuildInternalStackTraceVisitor : public StackVisitor {
   1415  public:
   1416   explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   1417       : StackVisitor(thread, nullptr), self_(self),
   1418         skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
   1419 
   1420   bool Init(int depth)
   1421       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1422     // Allocate method trace with an extra slot that will hold the PC trace
   1423     StackHandleScope<1> hs(self_);
   1424     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1425     Handle<mirror::ObjectArray<mirror::Object>> method_trace(
   1426         hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
   1427     if (method_trace.Get() == nullptr) {
   1428       return false;
   1429     }
   1430     mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
   1431     if (dex_pc_trace == nullptr) {
   1432       return false;
   1433     }
   1434     // Save PC trace in last element of method trace, also places it into the
   1435     // object graph.
   1436     // We are called from native: use non-transactional mode.
   1437     method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
   1438     // Set the Object*s and assert that no thread suspension is now possible.
   1439     const char* last_no_suspend_cause =
   1440         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   1441     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   1442     method_trace_ = method_trace.Get();
   1443     dex_pc_trace_ = dex_pc_trace;
   1444     return true;
   1445   }
   1446 
   1447   virtual ~BuildInternalStackTraceVisitor() {
   1448     if (method_trace_ != nullptr) {
   1449       self_->EndAssertNoThreadSuspension(nullptr);
   1450     }
   1451   }
   1452 
   1453   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1454     if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
   1455       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   1456     }
   1457     if (skip_depth_ > 0) {
   1458       skip_depth_--;
   1459       return true;
   1460     }
   1461     mirror::ArtMethod* m = GetMethod();
   1462     if (m->IsRuntimeMethod()) {
   1463       return true;  // Ignore runtime frames (in particular callee save).
   1464     }
   1465     method_trace_->Set<kTransactionActive>(count_, m);
   1466     dex_pc_trace_->Set<kTransactionActive>(count_,
   1467         m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
   1468     ++count_;
   1469     return true;
   1470   }
   1471 
   1472   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   1473     return method_trace_;
   1474   }
   1475 
   1476  private:
   1477   Thread* const self_;
   1478   // How many more frames to skip.
   1479   int32_t skip_depth_;
   1480   // Current position down stack trace.
   1481   uint32_t count_;
   1482   // Array of dex PC values.
   1483   mirror::IntArray* dex_pc_trace_;
   1484   // An array of the methods on the stack, the last entry is a reference to the PC trace.
   1485   mirror::ObjectArray<mirror::Object>* method_trace_;
   1486 };
   1487 
   1488 template<bool kTransactionActive>
   1489 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   1490   // Compute depth of stack
   1491   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
   1492   count_visitor.WalkStack();
   1493   int32_t depth = count_visitor.GetDepth();
   1494   int32_t skip_depth = count_visitor.GetSkipDepth();
   1495 
   1496   // Build internal stack trace.
   1497   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   1498                                                                          const_cast<Thread*>(this),
   1499                                                                          skip_depth);
   1500   if (!build_trace_visitor.Init(depth)) {
   1501     return nullptr;  // Allocation failed.
   1502   }
   1503   build_trace_visitor.WalkStack();
   1504   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   1505   if (kIsDebugBuild) {
   1506     for (int32_t i = 0; i < trace->GetLength(); ++i) {
   1507       CHECK(trace->Get(i) != nullptr);
   1508     }
   1509   }
   1510   return soa.AddLocalReference<jobjectArray>(trace);
   1511 }
   1512 template jobject Thread::CreateInternalStackTrace<false>(
   1513     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1514 template jobject Thread::CreateInternalStackTrace<true>(
   1515     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1516 
   1517 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   1518     const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
   1519     int* stack_depth) {
   1520   // Decode the internal stack trace into the depth, method trace and PC trace
   1521   int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
   1522 
   1523   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1524 
   1525   jobjectArray result;
   1526 
   1527   if (output_array != nullptr) {
   1528     // Reuse the array we were given.
   1529     result = output_array;
   1530     // ...adjusting the number of frames we'll write to not exceed the array length.
   1531     const int32_t traces_length =
   1532         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
   1533     depth = std::min(depth, traces_length);
   1534   } else {
   1535     // Create java_trace array and place in local reference table
   1536     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   1537         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   1538     if (java_traces == nullptr) {
   1539       return nullptr;
   1540     }
   1541     result = soa.AddLocalReference<jobjectArray>(java_traces);
   1542   }
   1543 
   1544   if (stack_depth != nullptr) {
   1545     *stack_depth = depth;
   1546   }
   1547 
   1548   for (int32_t i = 0; i < depth; ++i) {
   1549     mirror::ObjectArray<mirror::Object>* method_trace =
   1550           soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
   1551     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   1552     mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
   1553     int32_t line_number;
   1554     StackHandleScope<3> hs(soa.Self());
   1555     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   1556     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   1557     if (method->IsProxyMethod()) {
   1558       line_number = -1;
   1559       class_name_object.Assign(method->GetDeclaringClass()->GetName());
   1560       // source_name_object intentionally left null for proxy methods
   1561     } else {
   1562       mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
   1563       uint32_t dex_pc = pc_trace->Get(i);
   1564       line_number = method->GetLineNumFromDexPC(dex_pc);
   1565       // Allocate element, potentially triggering GC
   1566       // TODO: reuse class_name_object via Class::name_?
   1567       const char* descriptor = method->GetDeclaringClassDescriptor();
   1568       CHECK(descriptor != nullptr);
   1569       std::string class_name(PrettyDescriptor(descriptor));
   1570       class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   1571       if (class_name_object.Get() == nullptr) {
   1572         return nullptr;
   1573       }
   1574       const char* source_file = method->GetDeclaringClassSourceFile();
   1575       if (source_file != nullptr) {
   1576         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   1577         if (source_name_object.Get() == nullptr) {
   1578           return nullptr;
   1579         }
   1580       }
   1581     }
   1582     const char* method_name = method->GetName();
   1583     CHECK(method_name != nullptr);
   1584     Handle<mirror::String> method_name_object(
   1585         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   1586     if (method_name_object.Get() == nullptr) {
   1587       return nullptr;
   1588     }
   1589     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
   1590         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
   1591     if (obj == nullptr) {
   1592       return nullptr;
   1593     }
   1594     // We are called from native: use non-transactional mode.
   1595     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
   1596   }
   1597   return result;
   1598 }
   1599 
   1600 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
   1601                                 const char* exception_class_descriptor, const char* fmt, ...) {
   1602   va_list args;
   1603   va_start(args, fmt);
   1604   ThrowNewExceptionV(throw_location, exception_class_descriptor,
   1605                      fmt, args);
   1606   va_end(args);
   1607 }
   1608 
   1609 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
   1610                                 const char* exception_class_descriptor,
   1611                                 const char* fmt, va_list ap) {
   1612   std::string msg;
   1613   StringAppendV(&msg, fmt, ap);
   1614   ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
   1615 }
   1616 
   1617 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
   1618                                const char* msg) {
   1619   // Callers should either clear or call ThrowNewWrappedException.
   1620   AssertNoPendingExceptionForNewException(msg);
   1621   ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
   1622 }
   1623 
   1624 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
   1625                                       const char* exception_class_descriptor,
   1626                                       const char* msg) {
   1627   DCHECK_EQ(this, Thread::Current());
   1628   ScopedObjectAccessUnchecked soa(this);
   1629   StackHandleScope<5> hs(soa.Self());
   1630   // Ensure we don't forget arguments over object allocation.
   1631   Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
   1632   Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
   1633   // Ignore the cause throw location. TODO: should we report this as a re-throw?
   1634   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
   1635   bool is_exception_reported = IsExceptionReportedToInstrumentation();
   1636   ClearException();
   1637   Runtime* runtime = Runtime::Current();
   1638 
   1639   mirror::ClassLoader* cl = nullptr;
   1640   if (saved_throw_method.Get() != nullptr) {
   1641     cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
   1642   }
   1643   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
   1644   Handle<mirror::Class> exception_class(
   1645       hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
   1646                                                         class_loader)));
   1647   if (UNLIKELY(exception_class.Get() == nullptr)) {
   1648     CHECK(IsExceptionPending());
   1649     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   1650     return;
   1651   }
   1652 
   1653   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
   1654     DCHECK(IsExceptionPending());
   1655     return;
   1656   }
   1657   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   1658   Handle<mirror::Throwable> exception(
   1659       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
   1660 
   1661   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   1662   if (exception.Get() == nullptr) {
   1663     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1664                                          throw_location.GetDexPc());
   1665     SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1666     SetExceptionReportedToInstrumentation(is_exception_reported);
   1667     return;
   1668   }
   1669 
   1670   // Choose an appropriate constructor and set up the arguments.
   1671   const char* signature;
   1672   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   1673   if (msg != nullptr) {
   1674     // Ensure we remember this and the method over the String allocation.
   1675     msg_string.reset(
   1676         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   1677     if (UNLIKELY(msg_string.get() == nullptr)) {
   1678       CHECK(IsExceptionPending());  // OOME.
   1679       return;
   1680     }
   1681     if (cause.get() == nullptr) {
   1682       signature = "(Ljava/lang/String;)V";
   1683     } else {
   1684       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   1685     }
   1686   } else {
   1687     if (cause.get() == nullptr) {
   1688       signature = "()V";
   1689     } else {
   1690       signature = "(Ljava/lang/Throwable;)V";
   1691     }
   1692   }
   1693   mirror::ArtMethod* exception_init_method =
   1694       exception_class->FindDeclaredDirectMethod("<init>", signature);
   1695 
   1696   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   1697       << PrettyDescriptor(exception_class_descriptor);
   1698 
   1699   if (UNLIKELY(!runtime->IsStarted())) {
   1700     // Something is trying to throw an exception without a started runtime, which is the common
   1701     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   1702     // the exception fields directly.
   1703     if (msg != nullptr) {
   1704       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
   1705     }
   1706     if (cause.get() != nullptr) {
   1707       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
   1708     }
   1709     ScopedLocalRef<jobject> trace(GetJniEnv(),
   1710                                   Runtime::Current()->IsActiveTransaction()
   1711                                       ? CreateInternalStackTrace<true>(soa)
   1712                                       : CreateInternalStackTrace<false>(soa));
   1713     if (trace.get() != nullptr) {
   1714       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
   1715     }
   1716     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1717                                          throw_location.GetDexPc());
   1718     SetException(gc_safe_throw_location, exception.Get());
   1719     SetExceptionReportedToInstrumentation(is_exception_reported);
   1720   } else {
   1721     jvalue jv_args[2];
   1722     size_t i = 0;
   1723 
   1724     if (msg != nullptr) {
   1725       jv_args[i].l = msg_string.get();
   1726       ++i;
   1727     }
   1728     if (cause.get() != nullptr) {
   1729       jv_args[i].l = cause.get();
   1730       ++i;
   1731     }
   1732     InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
   1733     if (LIKELY(!IsExceptionPending())) {
   1734       ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1735                                            throw_location.GetDexPc());
   1736       SetException(gc_safe_throw_location, exception.Get());
   1737       SetExceptionReportedToInstrumentation(is_exception_reported);
   1738     }
   1739   }
   1740 }
   1741 
   1742 void Thread::ThrowOutOfMemoryError(const char* msg) {
   1743   LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   1744       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   1745   ThrowLocation throw_location = GetCurrentLocationForThrow();
   1746   if (!tls32_.throwing_OutOfMemoryError) {
   1747     tls32_.throwing_OutOfMemoryError = true;
   1748     ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
   1749     tls32_.throwing_OutOfMemoryError = false;
   1750   } else {
   1751     Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
   1752     SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1753   }
   1754 }
   1755 
   1756 Thread* Thread::CurrentFromGdb() {
   1757   return Thread::Current();
   1758 }
   1759 
   1760 void Thread::DumpFromGdb() const {
   1761   std::ostringstream ss;
   1762   Dump(ss);
   1763   std::string str(ss.str());
   1764   // log to stderr for debugging command line processes
   1765   std::cerr << str;
   1766 #ifdef HAVE_ANDROID_OS
   1767   // log to logcat for debugging frameworks processes
   1768   LOG(INFO) << str;
   1769 #endif
   1770 }
   1771 
   1772 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   1773 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
   1774 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
   1775 
   1776 template<size_t ptr_size>
   1777 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   1778 #define DO_THREAD_OFFSET(x, y) \
   1779     if (offset == x.Uint32Value()) { \
   1780       os << y; \
   1781       return; \
   1782     }
   1783   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   1784   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   1785   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   1786   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   1787   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   1788   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   1789   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   1790   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   1791   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   1792   DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
   1793   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   1794   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   1795   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   1796 #undef DO_THREAD_OFFSET
   1797 
   1798 #define INTERPRETER_ENTRY_POINT_INFO(x) \
   1799     if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1800       os << #x; \
   1801       return; \
   1802     }
   1803   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
   1804   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
   1805 #undef INTERPRETER_ENTRY_POINT_INFO
   1806 
   1807 #define JNI_ENTRY_POINT_INFO(x) \
   1808     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1809       os << #x; \
   1810       return; \
   1811     }
   1812   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   1813 #undef JNI_ENTRY_POINT_INFO
   1814 
   1815 #define PORTABLE_ENTRY_POINT_INFO(x) \
   1816     if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1817       os << #x; \
   1818       return; \
   1819     }
   1820   PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
   1821   PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
   1822   PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
   1823 #undef PORTABLE_ENTRY_POINT_INFO
   1824 
   1825 #define QUICK_ENTRY_POINT_INFO(x) \
   1826     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1827       os << #x; \
   1828       return; \
   1829     }
   1830   QUICK_ENTRY_POINT_INFO(pAllocArray)
   1831   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   1832   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
   1833   QUICK_ENTRY_POINT_INFO(pAllocObject)
   1834   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   1835   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   1836   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
   1837   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
   1838   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
   1839   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   1840   QUICK_ENTRY_POINT_INFO(pCheckCast)
   1841   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   1842   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   1843   QUICK_ENTRY_POINT_INFO(pInitializeType)
   1844   QUICK_ENTRY_POINT_INFO(pResolveString)
   1845   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   1846   QUICK_ENTRY_POINT_INFO(pSet32Static)
   1847   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   1848   QUICK_ENTRY_POINT_INFO(pSet64Static)
   1849   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   1850   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   1851   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   1852   QUICK_ENTRY_POINT_INFO(pGet32Static)
   1853   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   1854   QUICK_ENTRY_POINT_INFO(pGet64Static)
   1855   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   1856   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   1857   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
   1858   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
   1859   QUICK_ENTRY_POINT_INFO(pAputObject)
   1860   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
   1861   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   1862   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   1863   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   1864   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   1865   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   1866   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   1867   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   1868   QUICK_ENTRY_POINT_INFO(pLockObject)
   1869   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   1870   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   1871   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   1872   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   1873   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   1874   QUICK_ENTRY_POINT_INFO(pFmod)
   1875   QUICK_ENTRY_POINT_INFO(pL2d)
   1876   QUICK_ENTRY_POINT_INFO(pFmodf)
   1877   QUICK_ENTRY_POINT_INFO(pL2f)
   1878   QUICK_ENTRY_POINT_INFO(pD2iz)
   1879   QUICK_ENTRY_POINT_INFO(pF2iz)
   1880   QUICK_ENTRY_POINT_INFO(pIdivmod)
   1881   QUICK_ENTRY_POINT_INFO(pD2l)
   1882   QUICK_ENTRY_POINT_INFO(pF2l)
   1883   QUICK_ENTRY_POINT_INFO(pLdiv)
   1884   QUICK_ENTRY_POINT_INFO(pLmod)
   1885   QUICK_ENTRY_POINT_INFO(pLmul)
   1886   QUICK_ENTRY_POINT_INFO(pShlLong)
   1887   QUICK_ENTRY_POINT_INFO(pShrLong)
   1888   QUICK_ENTRY_POINT_INFO(pUshrLong)
   1889   QUICK_ENTRY_POINT_INFO(pIndexOf)
   1890   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   1891   QUICK_ENTRY_POINT_INFO(pMemcpy)
   1892   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   1893   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   1894   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   1895   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   1896   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   1897   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   1898   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   1899   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   1900   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   1901   QUICK_ENTRY_POINT_INFO(pDeliverException)
   1902   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   1903   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   1904   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
   1905   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   1906   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   1907   QUICK_ENTRY_POINT_INFO(pA64Load)
   1908   QUICK_ENTRY_POINT_INFO(pA64Store)
   1909 #undef QUICK_ENTRY_POINT_INFO
   1910 
   1911   os << offset;
   1912 }
   1913 
   1914 void Thread::QuickDeliverException() {
   1915   // Get exception from thread.
   1916   ThrowLocation throw_location;
   1917   mirror::Throwable* exception = GetException(&throw_location);
   1918   CHECK(exception != nullptr);
   1919   // Don't leave exception visible while we try to find the handler, which may cause class
   1920   // resolution.
   1921   bool is_exception_reported = IsExceptionReportedToInstrumentation();
   1922   ClearException();
   1923   bool is_deoptimization = (exception == GetDeoptimizationException());
   1924   QuickExceptionHandler exception_handler(this, is_deoptimization);
   1925   if (is_deoptimization) {
   1926     exception_handler.DeoptimizeStack();
   1927   } else {
   1928     exception_handler.FindCatch(throw_location, exception, is_exception_reported);
   1929   }
   1930   exception_handler.UpdateInstrumentationStack();
   1931   exception_handler.DoLongJump();
   1932   LOG(FATAL) << "UNREACHABLE";
   1933 }
   1934 
   1935 Context* Thread::GetLongJumpContext() {
   1936   Context* result = tlsPtr_.long_jump_context;
   1937   if (result == nullptr) {
   1938     result = Context::Create();
   1939   } else {
   1940     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   1941     result->Reset();
   1942   }
   1943   return result;
   1944 }
   1945 
   1946 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   1947 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   1948 struct CurrentMethodVisitor FINAL : public StackVisitor {
   1949   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
   1950       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1951       : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
   1952         abort_on_error_(abort_on_error) {}
   1953   bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1954     mirror::ArtMethod* m = GetMethod();
   1955     if (m->IsRuntimeMethod()) {
   1956       // Continue if this is a runtime method.
   1957       return true;
   1958     }
   1959     if (context_ != nullptr) {
   1960       this_object_ = GetThisObject();
   1961     }
   1962     method_ = m;
   1963     dex_pc_ = GetDexPc(abort_on_error_);
   1964     return false;
   1965   }
   1966   mirror::Object* this_object_;
   1967   mirror::ArtMethod* method_;
   1968   uint32_t dex_pc_;
   1969   const bool abort_on_error_;
   1970 };
   1971 
   1972 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
   1973   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
   1974   visitor.WalkStack(false);
   1975   if (dex_pc != nullptr) {
   1976     *dex_pc = visitor.dex_pc_;
   1977   }
   1978   return visitor.method_;
   1979 }
   1980 
   1981 ThrowLocation Thread::GetCurrentLocationForThrow() {
   1982   Context* context = GetLongJumpContext();
   1983   CurrentMethodVisitor visitor(this, context, true);
   1984   visitor.WalkStack(false);
   1985   ReleaseLongJumpContext(context);
   1986   return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
   1987 }
   1988 
   1989 bool Thread::HoldsLock(mirror::Object* object) const {
   1990   if (object == nullptr) {
   1991     return false;
   1992   }
   1993   return object->GetLockOwnerThreadId() == GetThreadId();
   1994 }
   1995 
   1996 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   1997 template <typename RootVisitor>
   1998 class ReferenceMapVisitor : public StackVisitor {
   1999  public:
   2000   ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
   2001       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   2002       : StackVisitor(thread, context), visitor_(visitor) {}
   2003 
   2004   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2005     if (false) {
   2006       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
   2007                 << StringPrintf("@ PC:%04x", GetDexPc());
   2008     }
   2009     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   2010     if (shadow_frame != nullptr) {
   2011       VisitShadowFrame(shadow_frame);
   2012     } else {
   2013       VisitQuickFrame();
   2014     }
   2015     return true;
   2016   }
   2017 
   2018   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2019     mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
   2020     visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
   2021     mirror::ArtMethod* m = *method_addr;
   2022     DCHECK(m != nullptr);
   2023     size_t num_regs = shadow_frame->NumberOfVRegs();
   2024     if (m->IsNative() || shadow_frame->HasReferenceArray()) {
   2025       // handle scope for JNI or References for interpreter.
   2026       for (size_t reg = 0; reg < num_regs; ++reg) {
   2027         mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2028         if (ref != nullptr) {
   2029           mirror::Object* new_ref = ref;
   2030           visitor_(&new_ref, reg, this);
   2031           if (new_ref != ref) {
   2032             shadow_frame->SetVRegReference(reg, new_ref);
   2033           }
   2034         }
   2035       }
   2036     } else {
   2037       // Java method.
   2038       // Portable path use DexGcMap and store in Method.native_gc_map_.
   2039       const uint8_t* gc_map = m->GetNativeGcMap();
   2040       CHECK(gc_map != nullptr) << PrettyMethod(m);
   2041       verifier::DexPcToReferenceMap dex_gc_map(gc_map);
   2042       uint32_t dex_pc = shadow_frame->GetDexPC();
   2043       const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
   2044       DCHECK(reg_bitmap != nullptr);
   2045       num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
   2046       for (size_t reg = 0; reg < num_regs; ++reg) {
   2047         if (TestBitmap(reg, reg_bitmap)) {
   2048           mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2049           if (ref != nullptr) {
   2050             mirror::Object* new_ref = ref;
   2051             visitor_(&new_ref, reg, this);
   2052             if (new_ref != ref) {
   2053               shadow_frame->SetVRegReference(reg, new_ref);
   2054             }
   2055           }
   2056         }
   2057       }
   2058     }
   2059   }
   2060 
   2061  private:
   2062   void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2063     StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
   2064     mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
   2065     mirror::ArtMethod* old_method = m;
   2066     visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
   2067     if (m != old_method) {
   2068       cur_quick_frame->Assign(m);
   2069     }
   2070 
   2071     // Process register map (which native and runtime methods don't have)
   2072     if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
   2073       const uint8_t* native_gc_map = m->GetNativeGcMap();
   2074       CHECK(native_gc_map != nullptr) << PrettyMethod(m);
   2075       const DexFile::CodeItem* code_item = m->GetCodeItem();
   2076       DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
   2077       NativePcOffsetToReferenceMap map(native_gc_map);
   2078       size_t num_regs = std::min(map.RegWidth() * 8,
   2079                                  static_cast<size_t>(code_item->registers_size_));
   2080       if (num_regs > 0) {
   2081         Runtime* runtime = Runtime::Current();
   2082         const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
   2083         uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
   2084         const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
   2085         DCHECK(reg_bitmap != nullptr);
   2086         const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
   2087         const VmapTable vmap_table(m->GetVmapTable(code_pointer));
   2088         QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
   2089         // For all dex registers in the bitmap
   2090         StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
   2091         DCHECK(cur_quick_frame != nullptr);
   2092         for (size_t reg = 0; reg < num_regs; ++reg) {
   2093           // Does this register hold a reference?
   2094           if (TestBitmap(reg, reg_bitmap)) {
   2095             uint32_t vmap_offset;
   2096             if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
   2097               int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
   2098                                                         kReferenceVReg);
   2099               // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
   2100               mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
   2101               if (*ref_addr != nullptr) {
   2102                 visitor_(ref_addr, reg, this);
   2103               }
   2104             } else {
   2105               StackReference<mirror::Object>* ref_addr =
   2106                   reinterpret_cast<StackReference<mirror::Object>*>(
   2107                       GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
   2108                                   frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
   2109               mirror::Object* ref = ref_addr->AsMirrorPtr();
   2110               if (ref != nullptr) {
   2111                 mirror::Object* new_ref = ref;
   2112                 visitor_(&new_ref, reg, this);
   2113                 if (ref != new_ref) {
   2114                   ref_addr->Assign(new_ref);
   2115                 }
   2116               }
   2117             }
   2118           }
   2119         }
   2120       }
   2121     }
   2122   }
   2123 
   2124   static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
   2125     return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
   2126   }
   2127 
   2128   // Visitor for when we visit a root.
   2129   const RootVisitor& visitor_;
   2130 };
   2131 
   2132 class RootCallbackVisitor {
   2133  public:
   2134   RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
   2135      : callback_(callback), arg_(arg), tid_(tid) {}
   2136 
   2137   void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
   2138     callback_(obj, arg_, tid_, kRootJavaFrame);
   2139   }
   2140 
   2141  private:
   2142   RootCallback* const callback_;
   2143   void* const arg_;
   2144   const uint32_t tid_;
   2145 };
   2146 
   2147 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
   2148   VerifyObject(class_loader_override);
   2149   tlsPtr_.class_loader_override = class_loader_override;
   2150 }
   2151 
   2152 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
   2153   uint32_t thread_id = GetThreadId();
   2154   if (tlsPtr_.opeer != nullptr) {
   2155     visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
   2156   }
   2157   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   2158     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
   2159   }
   2160   tlsPtr_.throw_location.VisitRoots(visitor, arg);
   2161   if (tlsPtr_.class_loader_override != nullptr) {
   2162     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
   2163             kRootNativeStack);
   2164   }
   2165   if (tlsPtr_.monitor_enter_object != nullptr) {
   2166     visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
   2167   }
   2168   tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
   2169   tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
   2170   HandleScopeVisitRoots(visitor, arg, thread_id);
   2171   if (tlsPtr_.debug_invoke_req != nullptr) {
   2172     tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
   2173   }
   2174   if (tlsPtr_.single_step_control != nullptr) {
   2175     tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
   2176   }
   2177   if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
   2178     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
   2179     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
   2180     for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
   2181         shadow_frame = shadow_frame->GetLink()) {
   2182       mapper.VisitShadowFrame(shadow_frame);
   2183     }
   2184   }
   2185   if (tlsPtr_.shadow_frame_under_construction != nullptr) {
   2186     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
   2187     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
   2188     for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
   2189         shadow_frame != nullptr;
   2190         shadow_frame = shadow_frame->GetLink()) {
   2191       mapper.VisitShadowFrame(shadow_frame);
   2192     }
   2193   }
   2194   // Visit roots on this thread's stack
   2195   Context* context = GetLongJumpContext();
   2196   RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
   2197   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
   2198   mapper.WalkStack();
   2199   ReleaseLongJumpContext(context);
   2200   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   2201     if (frame.this_object_ != nullptr) {
   2202       visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
   2203     }
   2204     DCHECK(frame.method_ != nullptr);
   2205     visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
   2206   }
   2207 }
   2208 
   2209 static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
   2210                        RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2211   VerifyObject(*root);
   2212 }
   2213 
   2214 void Thread::VerifyStackImpl() {
   2215   std::unique_ptr<Context> context(Context::Create());
   2216   RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
   2217   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
   2218   mapper.WalkStack();
   2219 }
   2220 
   2221 // Set the stack end to that to be used during a stack overflow
   2222 void Thread::SetStackEndForStackOverflow() {
   2223   // During stack overflow we allow use of the full stack.
   2224   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   2225     // However, we seem to have already extended to use the full stack.
   2226     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   2227                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   2228     DumpStack(LOG(ERROR));
   2229     LOG(FATAL) << "Recursive stack overflow.";
   2230   }
   2231 
   2232   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   2233 
   2234   // Remove the stack overflow protection if is it set up.
   2235   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   2236   if (implicit_stack_check) {
   2237     if (!UnprotectStack()) {
   2238       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   2239     }
   2240   }
   2241 }
   2242 
   2243 void Thread::SetTlab(byte* start, byte* end) {
   2244   DCHECK_LE(start, end);
   2245   tlsPtr_.thread_local_start = start;
   2246   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   2247   tlsPtr_.thread_local_end = end;
   2248   tlsPtr_.thread_local_objects = 0;
   2249 }
   2250 
   2251 bool Thread::HasTlab() const {
   2252   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   2253   if (has_tlab) {
   2254     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   2255   } else {
   2256     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   2257   }
   2258   return has_tlab;
   2259 }
   2260 
   2261 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   2262   thread.ShortDump(os);
   2263   return os;
   2264 }
   2265 
   2266 void Thread::ProtectStack() {
   2267   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2268   VLOG(threads) << "Protecting stack at " << pregion;
   2269   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   2270     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   2271         "Reason: "
   2272         << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   2273   }
   2274 }
   2275 
   2276 bool Thread::UnprotectStack() {
   2277   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2278   VLOG(threads) << "Unprotecting stack at " << pregion;
   2279   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   2280 }
   2281 
   2282 
   2283 }  // namespace art
   2284