Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // This fits circles to a collection of points, where the error is related to
     32 // the distance of a point from the circle. This uses auto-differentiation to
     33 // take the derivatives.
     34 //
     35 // The input format is simple text. Feed on standard in:
     36 //
     37 //   x_initial y_initial r_initial
     38 //   x1 y1
     39 //   x2 y2
     40 //   y3 y3
     41 //   ...
     42 //
     43 // And the result after solving will be printed to stdout:
     44 //
     45 //   x y r
     46 //
     47 // There are closed form solutions [1] to this problem which you may want to
     48 // consider instead of using this one. If you already have a decent guess, Ceres
     49 // can squeeze down the last bit of error.
     50 //
     51 //   [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m
     52 
     53 #include <cstdio>
     54 #include <vector>
     55 
     56 #include "ceres/ceres.h"
     57 #include "gflags/gflags.h"
     58 #include "glog/logging.h"
     59 
     60 using ceres::AutoDiffCostFunction;
     61 using ceres::CauchyLoss;
     62 using ceres::CostFunction;
     63 using ceres::LossFunction;
     64 using ceres::Problem;
     65 using ceres::Solve;
     66 using ceres::Solver;
     67 
     68 DEFINE_double(robust_threshold, 0.0, "Robust loss parameter. Set to 0 for "
     69               "normal squared error (no robustification).");
     70 
     71 // The cost for a single sample. The returned residual is related to the
     72 // distance of the point from the circle (passed in as x, y, m parameters).
     73 //
     74 // Note that the radius is parameterized as r = m^2 to constrain the radius to
     75 // positive values.
     76 class DistanceFromCircleCost {
     77  public:
     78   DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {}
     79   template <typename T> bool operator()(const T* const x,
     80                                         const T* const y,
     81                                         const T* const m,  // r = m^2
     82                                         T* residual) const {
     83     // Since the radius is parameterized as m^2, unpack m to get r.
     84     T r = *m * *m;
     85 
     86     // Get the position of the sample in the circle's coordinate system.
     87     T xp = xx_ - *x;
     88     T yp = yy_ - *y;
     89 
     90     // It is tempting to use the following cost:
     91     //
     92     //   residual[0] = r - sqrt(xp*xp + yp*yp);
     93     //
     94     // which is the distance of the sample from the circle. This works
     95     // reasonably well, but the sqrt() adds strong nonlinearities to the cost
     96     // function. Instead, a different cost is used, which while not strictly a
     97     // distance in the metric sense (it has units distance^2) it produces more
     98     // robust fits when there are outliers. This is because the cost surface is
     99     // more convex.
    100     residual[0] = r*r - xp*xp - yp*yp;
    101     return true;
    102   }
    103 
    104  private:
    105   // The measured x,y coordinate that should be on the circle.
    106   double xx_, yy_;
    107 };
    108 
    109 int main(int argc, char** argv) {
    110   google::ParseCommandLineFlags(&argc, &argv, true);
    111   google::InitGoogleLogging(argv[0]);
    112 
    113   double x, y, r;
    114   if (scanf("%lg %lg %lg", &x, &y, &r) != 3) {
    115     fprintf(stderr, "Couldn't read first line.\n");
    116     return 1;
    117   }
    118   fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r);
    119 
    120   // Save initial values for comparison.
    121   double initial_x = x;
    122   double initial_y = y;
    123   double initial_r = r;
    124 
    125   // Parameterize r as m^2 so that it can't be negative.
    126   double m = sqrt(r);
    127 
    128   Problem problem;
    129 
    130   // Configure the loss function.
    131   LossFunction* loss = NULL;
    132   if (FLAGS_robust_threshold) {
    133     loss = new CauchyLoss(FLAGS_robust_threshold);
    134   }
    135 
    136   // Add the residuals.
    137   double xx, yy;
    138   int num_points = 0;
    139   while (scanf("%lf %lf\n", &xx, &yy) == 2) {
    140     CostFunction *cost =
    141         new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
    142             new DistanceFromCircleCost(xx, yy));
    143     problem.AddResidualBlock(cost, loss, &x, &y, &m);
    144     num_points++;
    145   }
    146 
    147   std::cout << "Got " << num_points << " points.\n";
    148 
    149   // Build and solve the problem.
    150   Solver::Options options;
    151   options.max_num_iterations = 500;
    152   options.linear_solver_type = ceres::DENSE_QR;
    153   Solver::Summary summary;
    154   Solve(options, &problem, &summary);
    155 
    156   // Recover r from m.
    157   r = m * m;
    158 
    159   std::cout << summary.BriefReport() << "\n";
    160   std::cout << "x : " << initial_x << " -> " << x << "\n";
    161   std::cout << "y : " << initial_y << " -> " << y << "\n";
    162   std::cout << "r : " << initial_r << " -> " << r << "\n";
    163   return 0;
    164 }
    165