Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #ifndef CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
     32 #define CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
     33 
     34 #include <set>
     35 #include <utility>
     36 #include <vector>
     37 
     38 #include "ceres/internal/port.h"
     39 
     40 #include "ceres/block_random_access_matrix.h"
     41 #include "ceres/block_sparse_matrix.h"
     42 #include "ceres/block_structure.h"
     43 #include "ceres/cxsparse.h"
     44 #include "ceres/linear_solver.h"
     45 #include "ceres/schur_eliminator.h"
     46 #include "ceres/suitesparse.h"
     47 #include "ceres/internal/scoped_ptr.h"
     48 #include "ceres/types.h"
     49 
     50 #ifdef CERES_USE_EIGEN_SPARSE
     51 #include "Eigen/SparseCholesky"
     52 #endif
     53 
     54 namespace ceres {
     55 namespace internal {
     56 
     57 class BlockSparseMatrix;
     58 
     59 // Base class for Schur complement based linear least squares
     60 // solvers. It assumes that the input linear system Ax = b can be
     61 // partitioned into
     62 //
     63 //  E y + F z = b
     64 //
     65 // Where x = [y;z] is a partition of the variables.  The paritioning
     66 // of the variables is such that, E'E is a block diagonal
     67 // matrix. Further, the rows of A are ordered so that for every
     68 // variable block in y, all the rows containing that variable block
     69 // occur as a vertically contiguous block. i.e the matrix A looks like
     70 //
     71 //              E                 F
     72 //  A = [ y1   0   0   0 |  z1    0    0   0    z5]
     73 //      [ y1   0   0   0 |  z1   z2    0   0     0]
     74 //      [  0  y2   0   0 |   0    0   z3   0     0]
     75 //      [  0   0  y3   0 |  z1   z2   z3  z4    z5]
     76 //      [  0   0  y3   0 |  z1    0    0   0    z5]
     77 //      [  0   0   0  y4 |   0    0    0   0    z5]
     78 //      [  0   0   0  y4 |   0   z2    0   0     0]
     79 //      [  0   0   0  y4 |   0    0    0   0     0]
     80 //      [  0   0   0   0 |  z1    0    0   0     0]
     81 //      [  0   0   0   0 |   0    0   z3  z4    z5]
     82 //
     83 // This structure should be reflected in the corresponding
     84 // CompressedRowBlockStructure object associated with A. The linear
     85 // system Ax = b should either be well posed or the array D below
     86 // should be non-null and the diagonal matrix corresponding to it
     87 // should be non-singular.
     88 //
     89 // SchurComplementSolver has two sub-classes.
     90 //
     91 // DenseSchurComplementSolver: For problems where the Schur complement
     92 // matrix is small and dense, or if CHOLMOD/SuiteSparse is not
     93 // installed. For structure from motion problems, this is solver can
     94 // be used for problems with upto a few hundred cameras.
     95 //
     96 // SparseSchurComplementSolver: For problems where the Schur
     97 // complement matrix is large and sparse. It requires that
     98 // CHOLMOD/SuiteSparse be installed, as it uses CHOLMOD to find a
     99 // sparse Cholesky factorization of the Schur complement. This solver
    100 // can be used for solving structure from motion problems with tens of
    101 // thousands of cameras, though depending on the exact sparsity
    102 // structure, it maybe better to use an iterative solver.
    103 //
    104 // The two solvers can be instantiated by calling
    105 // LinearSolver::CreateLinearSolver with LinearSolver::Options::type
    106 // set to DENSE_SCHUR and SPARSE_SCHUR
    107 // respectively. LinearSolver::Options::elimination_groups[0] should be
    108 // at least 1.
    109 class SchurComplementSolver : public BlockSparseMatrixSolver {
    110  public:
    111   explicit SchurComplementSolver(const LinearSolver::Options& options)
    112       : options_(options) {
    113     CHECK_GT(options.elimination_groups.size(), 1);
    114     CHECK_GT(options.elimination_groups[0], 0);
    115   }
    116 
    117   // LinearSolver methods
    118   virtual ~SchurComplementSolver() {}
    119   virtual LinearSolver::Summary SolveImpl(
    120       BlockSparseMatrix* A,
    121       const double* b,
    122       const LinearSolver::PerSolveOptions& per_solve_options,
    123       double* x);
    124 
    125  protected:
    126   const LinearSolver::Options& options() const { return options_; }
    127 
    128   const BlockRandomAccessMatrix* lhs() const { return lhs_.get(); }
    129   void set_lhs(BlockRandomAccessMatrix* lhs) { lhs_.reset(lhs); }
    130   const double* rhs() const { return rhs_.get(); }
    131   void set_rhs(double* rhs) { rhs_.reset(rhs); }
    132 
    133  private:
    134   virtual void InitStorage(const CompressedRowBlockStructure* bs) = 0;
    135   virtual LinearSolver::Summary SolveReducedLinearSystem(
    136       double* solution) = 0;
    137 
    138   LinearSolver::Options options_;
    139 
    140   scoped_ptr<SchurEliminatorBase> eliminator_;
    141   scoped_ptr<BlockRandomAccessMatrix> lhs_;
    142   scoped_array<double> rhs_;
    143 
    144   CERES_DISALLOW_COPY_AND_ASSIGN(SchurComplementSolver);
    145 };
    146 
    147 // Dense Cholesky factorization based solver.
    148 class DenseSchurComplementSolver : public SchurComplementSolver {
    149  public:
    150   explicit DenseSchurComplementSolver(const LinearSolver::Options& options)
    151       : SchurComplementSolver(options) {}
    152   virtual ~DenseSchurComplementSolver() {}
    153 
    154  private:
    155   virtual void InitStorage(const CompressedRowBlockStructure* bs);
    156   virtual LinearSolver::Summary SolveReducedLinearSystem(
    157       double* solution);
    158 
    159   CERES_DISALLOW_COPY_AND_ASSIGN(DenseSchurComplementSolver);
    160 };
    161 
    162 // Sparse Cholesky factorization based solver.
    163 class SparseSchurComplementSolver : public SchurComplementSolver {
    164  public:
    165   explicit SparseSchurComplementSolver(const LinearSolver::Options& options);
    166   virtual ~SparseSchurComplementSolver();
    167 
    168  private:
    169   virtual void InitStorage(const CompressedRowBlockStructure* bs);
    170   virtual LinearSolver::Summary SolveReducedLinearSystem(
    171       double* solution);
    172   LinearSolver::Summary SolveReducedLinearSystemUsingSuiteSparse(
    173       double* solution);
    174   LinearSolver::Summary SolveReducedLinearSystemUsingCXSparse(
    175       double* solution);
    176   LinearSolver::Summary SolveReducedLinearSystemUsingEigen(
    177       double* solution);
    178 
    179   // Size of the blocks in the Schur complement.
    180   vector<int> blocks_;
    181 
    182   SuiteSparse ss_;
    183   // Symbolic factorization of the reduced linear system. Precomputed
    184   // once and reused in subsequent calls.
    185   cholmod_factor* factor_;
    186 
    187   CXSparse cxsparse_;
    188   // Cached factorization
    189   cs_dis* cxsparse_factor_;
    190 
    191 #ifdef CERES_USE_EIGEN_SPARSE
    192   typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double> > SimplicialLDLT;
    193   scoped_ptr<SimplicialLDLT> simplicial_ldlt_;
    194 #endif
    195 
    196   CERES_DISALLOW_COPY_AND_ASSIGN(SparseSchurComplementSolver);
    197 };
    198 
    199 }  // namespace internal
    200 }  // namespace ceres
    201 
    202 #endif  // CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
    203