1 #include "llvm/Analysis/Passes.h" 2 #include "llvm/ExecutionEngine/ExecutionEngine.h" 3 #include "llvm/ExecutionEngine/JIT.h" 4 #include "llvm/IR/DataLayout.h" 5 #include "llvm/IR/DerivedTypes.h" 6 #include "llvm/IR/IRBuilder.h" 7 #include "llvm/IR/LLVMContext.h" 8 #include "llvm/IR/Module.h" 9 #include "llvm/IR/Verifier.h" 10 #include "llvm/PassManager.h" 11 #include "llvm/Support/TargetSelect.h" 12 #include "llvm/Transforms/Scalar.h" 13 #include <cctype> 14 #include <cstdio> 15 #include <map> 16 #include <string> 17 #include <vector> 18 using namespace llvm; 19 20 //===----------------------------------------------------------------------===// 21 // Lexer 22 //===----------------------------------------------------------------------===// 23 24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 25 // of these for known things. 26 enum Token { 27 tok_eof = -1, 28 29 // commands 30 tok_def = -2, tok_extern = -3, 31 32 // primary 33 tok_identifier = -4, tok_number = -5, 34 35 // control 36 tok_if = -6, tok_then = -7, tok_else = -8, 37 tok_for = -9, tok_in = -10, 38 39 // operators 40 tok_binary = -11, tok_unary = -12 41 }; 42 43 static std::string IdentifierStr; // Filled in if tok_identifier 44 static double NumVal; // Filled in if tok_number 45 46 /// gettok - Return the next token from standard input. 47 static int gettok() { 48 static int LastChar = ' '; 49 50 // Skip any whitespace. 51 while (isspace(LastChar)) 52 LastChar = getchar(); 53 54 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 55 IdentifierStr = LastChar; 56 while (isalnum((LastChar = getchar()))) 57 IdentifierStr += LastChar; 58 59 if (IdentifierStr == "def") return tok_def; 60 if (IdentifierStr == "extern") return tok_extern; 61 if (IdentifierStr == "if") return tok_if; 62 if (IdentifierStr == "then") return tok_then; 63 if (IdentifierStr == "else") return tok_else; 64 if (IdentifierStr == "for") return tok_for; 65 if (IdentifierStr == "in") return tok_in; 66 if (IdentifierStr == "binary") return tok_binary; 67 if (IdentifierStr == "unary") return tok_unary; 68 return tok_identifier; 69 } 70 71 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 72 std::string NumStr; 73 do { 74 NumStr += LastChar; 75 LastChar = getchar(); 76 } while (isdigit(LastChar) || LastChar == '.'); 77 78 NumVal = strtod(NumStr.c_str(), 0); 79 return tok_number; 80 } 81 82 if (LastChar == '#') { 83 // Comment until end of line. 84 do LastChar = getchar(); 85 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 86 87 if (LastChar != EOF) 88 return gettok(); 89 } 90 91 // Check for end of file. Don't eat the EOF. 92 if (LastChar == EOF) 93 return tok_eof; 94 95 // Otherwise, just return the character as its ascii value. 96 int ThisChar = LastChar; 97 LastChar = getchar(); 98 return ThisChar; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Abstract Syntax Tree (aka Parse Tree) 103 //===----------------------------------------------------------------------===// 104 namespace { 105 /// ExprAST - Base class for all expression nodes. 106 class ExprAST { 107 public: 108 virtual ~ExprAST() {} 109 virtual Value *Codegen() = 0; 110 }; 111 112 /// NumberExprAST - Expression class for numeric literals like "1.0". 113 class NumberExprAST : public ExprAST { 114 double Val; 115 public: 116 NumberExprAST(double val) : Val(val) {} 117 virtual Value *Codegen(); 118 }; 119 120 /// VariableExprAST - Expression class for referencing a variable, like "a". 121 class VariableExprAST : public ExprAST { 122 std::string Name; 123 public: 124 VariableExprAST(const std::string &name) : Name(name) {} 125 virtual Value *Codegen(); 126 }; 127 128 /// UnaryExprAST - Expression class for a unary operator. 129 class UnaryExprAST : public ExprAST { 130 char Opcode; 131 ExprAST *Operand; 132 public: 133 UnaryExprAST(char opcode, ExprAST *operand) 134 : Opcode(opcode), Operand(operand) {} 135 virtual Value *Codegen(); 136 }; 137 138 /// BinaryExprAST - Expression class for a binary operator. 139 class BinaryExprAST : public ExprAST { 140 char Op; 141 ExprAST *LHS, *RHS; 142 public: 143 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 144 : Op(op), LHS(lhs), RHS(rhs) {} 145 virtual Value *Codegen(); 146 }; 147 148 /// CallExprAST - Expression class for function calls. 149 class CallExprAST : public ExprAST { 150 std::string Callee; 151 std::vector<ExprAST*> Args; 152 public: 153 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 154 : Callee(callee), Args(args) {} 155 virtual Value *Codegen(); 156 }; 157 158 /// IfExprAST - Expression class for if/then/else. 159 class IfExprAST : public ExprAST { 160 ExprAST *Cond, *Then, *Else; 161 public: 162 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 163 : Cond(cond), Then(then), Else(_else) {} 164 virtual Value *Codegen(); 165 }; 166 167 /// ForExprAST - Expression class for for/in. 168 class ForExprAST : public ExprAST { 169 std::string VarName; 170 ExprAST *Start, *End, *Step, *Body; 171 public: 172 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 173 ExprAST *step, ExprAST *body) 174 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 175 virtual Value *Codegen(); 176 }; 177 178 /// PrototypeAST - This class represents the "prototype" for a function, 179 /// which captures its name, and its argument names (thus implicitly the number 180 /// of arguments the function takes), as well as if it is an operator. 181 class PrototypeAST { 182 std::string Name; 183 std::vector<std::string> Args; 184 bool isOperator; 185 unsigned Precedence; // Precedence if a binary op. 186 public: 187 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 188 bool isoperator = false, unsigned prec = 0) 189 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 190 191 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 192 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 193 194 char getOperatorName() const { 195 assert(isUnaryOp() || isBinaryOp()); 196 return Name[Name.size()-1]; 197 } 198 199 unsigned getBinaryPrecedence() const { return Precedence; } 200 201 Function *Codegen(); 202 }; 203 204 /// FunctionAST - This class represents a function definition itself. 205 class FunctionAST { 206 PrototypeAST *Proto; 207 ExprAST *Body; 208 public: 209 FunctionAST(PrototypeAST *proto, ExprAST *body) 210 : Proto(proto), Body(body) {} 211 212 Function *Codegen(); 213 }; 214 } // end anonymous namespace 215 216 //===----------------------------------------------------------------------===// 217 // Parser 218 //===----------------------------------------------------------------------===// 219 220 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 221 /// token the parser is looking at. getNextToken reads another token from the 222 /// lexer and updates CurTok with its results. 223 static int CurTok; 224 static int getNextToken() { 225 return CurTok = gettok(); 226 } 227 228 /// BinopPrecedence - This holds the precedence for each binary operator that is 229 /// defined. 230 static std::map<char, int> BinopPrecedence; 231 232 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 233 static int GetTokPrecedence() { 234 if (!isascii(CurTok)) 235 return -1; 236 237 // Make sure it's a declared binop. 238 int TokPrec = BinopPrecedence[CurTok]; 239 if (TokPrec <= 0) return -1; 240 return TokPrec; 241 } 242 243 /// Error* - These are little helper functions for error handling. 244 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 245 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 246 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 247 248 static ExprAST *ParseExpression(); 249 250 /// identifierexpr 251 /// ::= identifier 252 /// ::= identifier '(' expression* ')' 253 static ExprAST *ParseIdentifierExpr() { 254 std::string IdName = IdentifierStr; 255 256 getNextToken(); // eat identifier. 257 258 if (CurTok != '(') // Simple variable ref. 259 return new VariableExprAST(IdName); 260 261 // Call. 262 getNextToken(); // eat ( 263 std::vector<ExprAST*> Args; 264 if (CurTok != ')') { 265 while (1) { 266 ExprAST *Arg = ParseExpression(); 267 if (!Arg) return 0; 268 Args.push_back(Arg); 269 270 if (CurTok == ')') break; 271 272 if (CurTok != ',') 273 return Error("Expected ')' or ',' in argument list"); 274 getNextToken(); 275 } 276 } 277 278 // Eat the ')'. 279 getNextToken(); 280 281 return new CallExprAST(IdName, Args); 282 } 283 284 /// numberexpr ::= number 285 static ExprAST *ParseNumberExpr() { 286 ExprAST *Result = new NumberExprAST(NumVal); 287 getNextToken(); // consume the number 288 return Result; 289 } 290 291 /// parenexpr ::= '(' expression ')' 292 static ExprAST *ParseParenExpr() { 293 getNextToken(); // eat (. 294 ExprAST *V = ParseExpression(); 295 if (!V) return 0; 296 297 if (CurTok != ')') 298 return Error("expected ')'"); 299 getNextToken(); // eat ). 300 return V; 301 } 302 303 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 304 static ExprAST *ParseIfExpr() { 305 getNextToken(); // eat the if. 306 307 // condition. 308 ExprAST *Cond = ParseExpression(); 309 if (!Cond) return 0; 310 311 if (CurTok != tok_then) 312 return Error("expected then"); 313 getNextToken(); // eat the then 314 315 ExprAST *Then = ParseExpression(); 316 if (Then == 0) return 0; 317 318 if (CurTok != tok_else) 319 return Error("expected else"); 320 321 getNextToken(); 322 323 ExprAST *Else = ParseExpression(); 324 if (!Else) return 0; 325 326 return new IfExprAST(Cond, Then, Else); 327 } 328 329 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 330 static ExprAST *ParseForExpr() { 331 getNextToken(); // eat the for. 332 333 if (CurTok != tok_identifier) 334 return Error("expected identifier after for"); 335 336 std::string IdName = IdentifierStr; 337 getNextToken(); // eat identifier. 338 339 if (CurTok != '=') 340 return Error("expected '=' after for"); 341 getNextToken(); // eat '='. 342 343 344 ExprAST *Start = ParseExpression(); 345 if (Start == 0) return 0; 346 if (CurTok != ',') 347 return Error("expected ',' after for start value"); 348 getNextToken(); 349 350 ExprAST *End = ParseExpression(); 351 if (End == 0) return 0; 352 353 // The step value is optional. 354 ExprAST *Step = 0; 355 if (CurTok == ',') { 356 getNextToken(); 357 Step = ParseExpression(); 358 if (Step == 0) return 0; 359 } 360 361 if (CurTok != tok_in) 362 return Error("expected 'in' after for"); 363 getNextToken(); // eat 'in'. 364 365 ExprAST *Body = ParseExpression(); 366 if (Body == 0) return 0; 367 368 return new ForExprAST(IdName, Start, End, Step, Body); 369 } 370 371 /// primary 372 /// ::= identifierexpr 373 /// ::= numberexpr 374 /// ::= parenexpr 375 /// ::= ifexpr 376 /// ::= forexpr 377 static ExprAST *ParsePrimary() { 378 switch (CurTok) { 379 default: return Error("unknown token when expecting an expression"); 380 case tok_identifier: return ParseIdentifierExpr(); 381 case tok_number: return ParseNumberExpr(); 382 case '(': return ParseParenExpr(); 383 case tok_if: return ParseIfExpr(); 384 case tok_for: return ParseForExpr(); 385 } 386 } 387 388 /// unary 389 /// ::= primary 390 /// ::= '!' unary 391 static ExprAST *ParseUnary() { 392 // If the current token is not an operator, it must be a primary expr. 393 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 394 return ParsePrimary(); 395 396 // If this is a unary operator, read it. 397 int Opc = CurTok; 398 getNextToken(); 399 if (ExprAST *Operand = ParseUnary()) 400 return new UnaryExprAST(Opc, Operand); 401 return 0; 402 } 403 404 /// binoprhs 405 /// ::= ('+' unary)* 406 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 407 // If this is a binop, find its precedence. 408 while (1) { 409 int TokPrec = GetTokPrecedence(); 410 411 // If this is a binop that binds at least as tightly as the current binop, 412 // consume it, otherwise we are done. 413 if (TokPrec < ExprPrec) 414 return LHS; 415 416 // Okay, we know this is a binop. 417 int BinOp = CurTok; 418 getNextToken(); // eat binop 419 420 // Parse the unary expression after the binary operator. 421 ExprAST *RHS = ParseUnary(); 422 if (!RHS) return 0; 423 424 // If BinOp binds less tightly with RHS than the operator after RHS, let 425 // the pending operator take RHS as its LHS. 426 int NextPrec = GetTokPrecedence(); 427 if (TokPrec < NextPrec) { 428 RHS = ParseBinOpRHS(TokPrec+1, RHS); 429 if (RHS == 0) return 0; 430 } 431 432 // Merge LHS/RHS. 433 LHS = new BinaryExprAST(BinOp, LHS, RHS); 434 } 435 } 436 437 /// expression 438 /// ::= unary binoprhs 439 /// 440 static ExprAST *ParseExpression() { 441 ExprAST *LHS = ParseUnary(); 442 if (!LHS) return 0; 443 444 return ParseBinOpRHS(0, LHS); 445 } 446 447 /// prototype 448 /// ::= id '(' id* ')' 449 /// ::= binary LETTER number? (id, id) 450 /// ::= unary LETTER (id) 451 static PrototypeAST *ParsePrototype() { 452 std::string FnName; 453 454 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 455 unsigned BinaryPrecedence = 30; 456 457 switch (CurTok) { 458 default: 459 return ErrorP("Expected function name in prototype"); 460 case tok_identifier: 461 FnName = IdentifierStr; 462 Kind = 0; 463 getNextToken(); 464 break; 465 case tok_unary: 466 getNextToken(); 467 if (!isascii(CurTok)) 468 return ErrorP("Expected unary operator"); 469 FnName = "unary"; 470 FnName += (char)CurTok; 471 Kind = 1; 472 getNextToken(); 473 break; 474 case tok_binary: 475 getNextToken(); 476 if (!isascii(CurTok)) 477 return ErrorP("Expected binary operator"); 478 FnName = "binary"; 479 FnName += (char)CurTok; 480 Kind = 2; 481 getNextToken(); 482 483 // Read the precedence if present. 484 if (CurTok == tok_number) { 485 if (NumVal < 1 || NumVal > 100) 486 return ErrorP("Invalid precedecnce: must be 1..100"); 487 BinaryPrecedence = (unsigned)NumVal; 488 getNextToken(); 489 } 490 break; 491 } 492 493 if (CurTok != '(') 494 return ErrorP("Expected '(' in prototype"); 495 496 std::vector<std::string> ArgNames; 497 while (getNextToken() == tok_identifier) 498 ArgNames.push_back(IdentifierStr); 499 if (CurTok != ')') 500 return ErrorP("Expected ')' in prototype"); 501 502 // success. 503 getNextToken(); // eat ')'. 504 505 // Verify right number of names for operator. 506 if (Kind && ArgNames.size() != Kind) 507 return ErrorP("Invalid number of operands for operator"); 508 509 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 510 } 511 512 /// definition ::= 'def' prototype expression 513 static FunctionAST *ParseDefinition() { 514 getNextToken(); // eat def. 515 PrototypeAST *Proto = ParsePrototype(); 516 if (Proto == 0) return 0; 517 518 if (ExprAST *E = ParseExpression()) 519 return new FunctionAST(Proto, E); 520 return 0; 521 } 522 523 /// toplevelexpr ::= expression 524 static FunctionAST *ParseTopLevelExpr() { 525 if (ExprAST *E = ParseExpression()) { 526 // Make an anonymous proto. 527 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 528 return new FunctionAST(Proto, E); 529 } 530 return 0; 531 } 532 533 /// external ::= 'extern' prototype 534 static PrototypeAST *ParseExtern() { 535 getNextToken(); // eat extern. 536 return ParsePrototype(); 537 } 538 539 //===----------------------------------------------------------------------===// 540 // Code Generation 541 //===----------------------------------------------------------------------===// 542 543 static Module *TheModule; 544 static IRBuilder<> Builder(getGlobalContext()); 545 static std::map<std::string, Value*> NamedValues; 546 static FunctionPassManager *TheFPM; 547 548 Value *ErrorV(const char *Str) { Error(Str); return 0; } 549 550 Value *NumberExprAST::Codegen() { 551 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 552 } 553 554 Value *VariableExprAST::Codegen() { 555 // Look this variable up in the function. 556 Value *V = NamedValues[Name]; 557 return V ? V : ErrorV("Unknown variable name"); 558 } 559 560 Value *UnaryExprAST::Codegen() { 561 Value *OperandV = Operand->Codegen(); 562 if (OperandV == 0) return 0; 563 564 Function *F = TheModule->getFunction(std::string("unary")+Opcode); 565 if (F == 0) 566 return ErrorV("Unknown unary operator"); 567 568 return Builder.CreateCall(F, OperandV, "unop"); 569 } 570 571 Value *BinaryExprAST::Codegen() { 572 Value *L = LHS->Codegen(); 573 Value *R = RHS->Codegen(); 574 if (L == 0 || R == 0) return 0; 575 576 switch (Op) { 577 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 578 case '-': return Builder.CreateFSub(L, R, "subtmp"); 579 case '*': return Builder.CreateFMul(L, R, "multmp"); 580 case '<': 581 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 582 // Convert bool 0/1 to double 0.0 or 1.0 583 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 584 "booltmp"); 585 default: break; 586 } 587 588 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 589 // a call to it. 590 Function *F = TheModule->getFunction(std::string("binary")+Op); 591 assert(F && "binary operator not found!"); 592 593 Value *Ops[] = { L, R }; 594 return Builder.CreateCall(F, Ops, "binop"); 595 } 596 597 Value *CallExprAST::Codegen() { 598 // Look up the name in the global module table. 599 Function *CalleeF = TheModule->getFunction(Callee); 600 if (CalleeF == 0) 601 return ErrorV("Unknown function referenced"); 602 603 // If argument mismatch error. 604 if (CalleeF->arg_size() != Args.size()) 605 return ErrorV("Incorrect # arguments passed"); 606 607 std::vector<Value*> ArgsV; 608 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 609 ArgsV.push_back(Args[i]->Codegen()); 610 if (ArgsV.back() == 0) return 0; 611 } 612 613 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 614 } 615 616 Value *IfExprAST::Codegen() { 617 Value *CondV = Cond->Codegen(); 618 if (CondV == 0) return 0; 619 620 // Convert condition to a bool by comparing equal to 0.0. 621 CondV = Builder.CreateFCmpONE(CondV, 622 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 623 "ifcond"); 624 625 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 626 627 // Create blocks for the then and else cases. Insert the 'then' block at the 628 // end of the function. 629 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 630 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 631 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 632 633 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 634 635 // Emit then value. 636 Builder.SetInsertPoint(ThenBB); 637 638 Value *ThenV = Then->Codegen(); 639 if (ThenV == 0) return 0; 640 641 Builder.CreateBr(MergeBB); 642 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 643 ThenBB = Builder.GetInsertBlock(); 644 645 // Emit else block. 646 TheFunction->getBasicBlockList().push_back(ElseBB); 647 Builder.SetInsertPoint(ElseBB); 648 649 Value *ElseV = Else->Codegen(); 650 if (ElseV == 0) return 0; 651 652 Builder.CreateBr(MergeBB); 653 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 654 ElseBB = Builder.GetInsertBlock(); 655 656 // Emit merge block. 657 TheFunction->getBasicBlockList().push_back(MergeBB); 658 Builder.SetInsertPoint(MergeBB); 659 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 660 "iftmp"); 661 662 PN->addIncoming(ThenV, ThenBB); 663 PN->addIncoming(ElseV, ElseBB); 664 return PN; 665 } 666 667 Value *ForExprAST::Codegen() { 668 // Output this as: 669 // ... 670 // start = startexpr 671 // goto loop 672 // loop: 673 // variable = phi [start, loopheader], [nextvariable, loopend] 674 // ... 675 // bodyexpr 676 // ... 677 // loopend: 678 // step = stepexpr 679 // nextvariable = variable + step 680 // endcond = endexpr 681 // br endcond, loop, endloop 682 // outloop: 683 684 // Emit the start code first, without 'variable' in scope. 685 Value *StartVal = Start->Codegen(); 686 if (StartVal == 0) return 0; 687 688 // Make the new basic block for the loop header, inserting after current 689 // block. 690 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 691 BasicBlock *PreheaderBB = Builder.GetInsertBlock(); 692 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 693 694 // Insert an explicit fall through from the current block to the LoopBB. 695 Builder.CreateBr(LoopBB); 696 697 // Start insertion in LoopBB. 698 Builder.SetInsertPoint(LoopBB); 699 700 // Start the PHI node with an entry for Start. 701 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); 702 Variable->addIncoming(StartVal, PreheaderBB); 703 704 // Within the loop, the variable is defined equal to the PHI node. If it 705 // shadows an existing variable, we have to restore it, so save it now. 706 Value *OldVal = NamedValues[VarName]; 707 NamedValues[VarName] = Variable; 708 709 // Emit the body of the loop. This, like any other expr, can change the 710 // current BB. Note that we ignore the value computed by the body, but don't 711 // allow an error. 712 if (Body->Codegen() == 0) 713 return 0; 714 715 // Emit the step value. 716 Value *StepVal; 717 if (Step) { 718 StepVal = Step->Codegen(); 719 if (StepVal == 0) return 0; 720 } else { 721 // If not specified, use 1.0. 722 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 723 } 724 725 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); 726 727 // Compute the end condition. 728 Value *EndCond = End->Codegen(); 729 if (EndCond == 0) return EndCond; 730 731 // Convert condition to a bool by comparing equal to 0.0. 732 EndCond = Builder.CreateFCmpONE(EndCond, 733 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 734 "loopcond"); 735 736 // Create the "after loop" block and insert it. 737 BasicBlock *LoopEndBB = Builder.GetInsertBlock(); 738 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 739 740 // Insert the conditional branch into the end of LoopEndBB. 741 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 742 743 // Any new code will be inserted in AfterBB. 744 Builder.SetInsertPoint(AfterBB); 745 746 // Add a new entry to the PHI node for the backedge. 747 Variable->addIncoming(NextVar, LoopEndBB); 748 749 // Restore the unshadowed variable. 750 if (OldVal) 751 NamedValues[VarName] = OldVal; 752 else 753 NamedValues.erase(VarName); 754 755 756 // for expr always returns 0.0. 757 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 758 } 759 760 Function *PrototypeAST::Codegen() { 761 // Make the function type: double(double,double) etc. 762 std::vector<Type*> Doubles(Args.size(), 763 Type::getDoubleTy(getGlobalContext())); 764 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 765 Doubles, false); 766 767 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 768 769 // If F conflicted, there was already something named 'Name'. If it has a 770 // body, don't allow redefinition or reextern. 771 if (F->getName() != Name) { 772 // Delete the one we just made and get the existing one. 773 F->eraseFromParent(); 774 F = TheModule->getFunction(Name); 775 776 // If F already has a body, reject this. 777 if (!F->empty()) { 778 ErrorF("redefinition of function"); 779 return 0; 780 } 781 782 // If F took a different number of args, reject. 783 if (F->arg_size() != Args.size()) { 784 ErrorF("redefinition of function with different # args"); 785 return 0; 786 } 787 } 788 789 // Set names for all arguments. 790 unsigned Idx = 0; 791 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 792 ++AI, ++Idx) { 793 AI->setName(Args[Idx]); 794 795 // Add arguments to variable symbol table. 796 NamedValues[Args[Idx]] = AI; 797 } 798 799 return F; 800 } 801 802 Function *FunctionAST::Codegen() { 803 NamedValues.clear(); 804 805 Function *TheFunction = Proto->Codegen(); 806 if (TheFunction == 0) 807 return 0; 808 809 // If this is an operator, install it. 810 if (Proto->isBinaryOp()) 811 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 812 813 // Create a new basic block to start insertion into. 814 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 815 Builder.SetInsertPoint(BB); 816 817 if (Value *RetVal = Body->Codegen()) { 818 // Finish off the function. 819 Builder.CreateRet(RetVal); 820 821 // Validate the generated code, checking for consistency. 822 verifyFunction(*TheFunction); 823 824 // Optimize the function. 825 TheFPM->run(*TheFunction); 826 827 return TheFunction; 828 } 829 830 // Error reading body, remove function. 831 TheFunction->eraseFromParent(); 832 833 if (Proto->isBinaryOp()) 834 BinopPrecedence.erase(Proto->getOperatorName()); 835 return 0; 836 } 837 838 //===----------------------------------------------------------------------===// 839 // Top-Level parsing and JIT Driver 840 //===----------------------------------------------------------------------===// 841 842 static ExecutionEngine *TheExecutionEngine; 843 844 static void HandleDefinition() { 845 if (FunctionAST *F = ParseDefinition()) { 846 if (Function *LF = F->Codegen()) { 847 fprintf(stderr, "Read function definition:"); 848 LF->dump(); 849 } 850 } else { 851 // Skip token for error recovery. 852 getNextToken(); 853 } 854 } 855 856 static void HandleExtern() { 857 if (PrototypeAST *P = ParseExtern()) { 858 if (Function *F = P->Codegen()) { 859 fprintf(stderr, "Read extern: "); 860 F->dump(); 861 } 862 } else { 863 // Skip token for error recovery. 864 getNextToken(); 865 } 866 } 867 868 static void HandleTopLevelExpression() { 869 // Evaluate a top-level expression into an anonymous function. 870 if (FunctionAST *F = ParseTopLevelExpr()) { 871 if (Function *LF = F->Codegen()) { 872 // JIT the function, returning a function pointer. 873 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 874 875 // Cast it to the right type (takes no arguments, returns a double) so we 876 // can call it as a native function. 877 double (*FP)() = (double (*)())(intptr_t)FPtr; 878 fprintf(stderr, "Evaluated to %f\n", FP()); 879 } 880 } else { 881 // Skip token for error recovery. 882 getNextToken(); 883 } 884 } 885 886 /// top ::= definition | external | expression | ';' 887 static void MainLoop() { 888 while (1) { 889 fprintf(stderr, "ready> "); 890 switch (CurTok) { 891 case tok_eof: return; 892 case ';': getNextToken(); break; // ignore top-level semicolons. 893 case tok_def: HandleDefinition(); break; 894 case tok_extern: HandleExtern(); break; 895 default: HandleTopLevelExpression(); break; 896 } 897 } 898 } 899 900 //===----------------------------------------------------------------------===// 901 // "Library" functions that can be "extern'd" from user code. 902 //===----------------------------------------------------------------------===// 903 904 /// putchard - putchar that takes a double and returns 0. 905 extern "C" 906 double putchard(double X) { 907 putchar((char)X); 908 return 0; 909 } 910 911 /// printd - printf that takes a double prints it as "%f\n", returning 0. 912 extern "C" 913 double printd(double X) { 914 printf("%f\n", X); 915 return 0; 916 } 917 918 //===----------------------------------------------------------------------===// 919 // Main driver code. 920 //===----------------------------------------------------------------------===// 921 922 int main() { 923 InitializeNativeTarget(); 924 LLVMContext &Context = getGlobalContext(); 925 926 // Install standard binary operators. 927 // 1 is lowest precedence. 928 BinopPrecedence['<'] = 10; 929 BinopPrecedence['+'] = 20; 930 BinopPrecedence['-'] = 20; 931 BinopPrecedence['*'] = 40; // highest. 932 933 // Prime the first token. 934 fprintf(stderr, "ready> "); 935 getNextToken(); 936 937 // Make the module, which holds all the code. 938 TheModule = new Module("my cool jit", Context); 939 940 // Create the JIT. This takes ownership of the module. 941 std::string ErrStr; 942 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 943 if (!TheExecutionEngine) { 944 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 945 exit(1); 946 } 947 948 FunctionPassManager OurFPM(TheModule); 949 950 // Set up the optimizer pipeline. Start with registering info about how the 951 // target lays out data structures. 952 TheModule->setDataLayout(TheExecutionEngine->getDataLayout()); 953 OurFPM.add(new DataLayoutPass(TheModule)); 954 // Provide basic AliasAnalysis support for GVN. 955 OurFPM.add(createBasicAliasAnalysisPass()); 956 // Do simple "peephole" optimizations and bit-twiddling optzns. 957 OurFPM.add(createInstructionCombiningPass()); 958 // Reassociate expressions. 959 OurFPM.add(createReassociatePass()); 960 // Eliminate Common SubExpressions. 961 OurFPM.add(createGVNPass()); 962 // Simplify the control flow graph (deleting unreachable blocks, etc). 963 OurFPM.add(createCFGSimplificationPass()); 964 965 OurFPM.doInitialization(); 966 967 // Set the global so the code gen can use this. 968 TheFPM = &OurFPM; 969 970 // Run the main "interpreter loop" now. 971 MainLoop(); 972 973 TheFPM = 0; 974 975 // Print out all of the generated code. 976 TheModule->dump(); 977 978 return 0; 979 } 980