Home | History | Annotate | Download | only in complete
      1 #include "llvm/Analysis/Passes.h"
      2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      3 #include "llvm/ExecutionEngine/JIT.h"
      4 #include "llvm/ExecutionEngine/MCJIT.h"
      5 #include "llvm/ExecutionEngine/ObjectCache.h"
      6 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
      7 #include "llvm/IR/DataLayout.h"
      8 #include "llvm/IR/DerivedTypes.h"
      9 #include "llvm/IR/IRBuilder.h"
     10 #include "llvm/IR/LLVMContext.h"
     11 #include "llvm/IR/Module.h"
     12 #include "llvm/IR/Verifier.h"
     13 #include "llvm/IRReader/IRReader.h"
     14 #include "llvm/PassManager.h"
     15 #include "llvm/Support/CommandLine.h"
     16 #include "llvm/Support/FileSystem.h"
     17 #include "llvm/Support/Path.h"
     18 #include "llvm/Support/SourceMgr.h"
     19 #include "llvm/Support/TargetSelect.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include <cctype>
     23 #include <cstdio>
     24 #include <map>
     25 #include <string>
     26 #include <vector>
     27 
     28 using namespace llvm;
     29 
     30 //===----------------------------------------------------------------------===//
     31 // Command-line options
     32 //===----------------------------------------------------------------------===//
     33 
     34 namespace {
     35   cl::opt<std::string>
     36   InputIR("input-IR",
     37               cl::desc("Specify the name of an IR file to load for function definitions"),
     38               cl::value_desc("input IR file name"));
     39 
     40   cl::opt<bool>
     41   VerboseOutput("verbose",
     42                 cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
     43                 cl::init(false));
     44 
     45   cl::opt<bool>
     46   SuppressPrompts("suppress-prompts",
     47                   cl::desc("Disable printing the 'ready' prompt"),
     48                   cl::init(false));
     49 
     50   cl::opt<bool>
     51   DumpModulesOnExit("dump-modules",
     52                   cl::desc("Dump IR from modules to stderr on shutdown"),
     53                   cl::init(false));
     54 
     55   cl::opt<bool> UseMCJIT(
     56     "use-mcjit", cl::desc("Use the MCJIT execution engine"),
     57     cl::init(true));
     58 
     59   cl::opt<bool> EnableLazyCompilation(
     60     "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
     61     cl::init(true));
     62 
     63   cl::opt<bool> UseObjectCache(
     64     "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
     65     cl::init(false));
     66 } // namespace
     67 
     68 //===----------------------------------------------------------------------===//
     69 // Lexer
     70 //===----------------------------------------------------------------------===//
     71 
     72 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     73 // of these for known things.
     74 enum Token {
     75   tok_eof = -1,
     76 
     77   // commands
     78   tok_def = -2, tok_extern = -3,
     79 
     80   // primary
     81   tok_identifier = -4, tok_number = -5,
     82 
     83   // control
     84   tok_if = -6, tok_then = -7, tok_else = -8,
     85   tok_for = -9, tok_in = -10,
     86 
     87   // operators
     88   tok_binary = -11, tok_unary = -12,
     89 
     90   // var definition
     91   tok_var = -13
     92 };
     93 
     94 static std::string IdentifierStr;  // Filled in if tok_identifier
     95 static double NumVal;              // Filled in if tok_number
     96 
     97 /// gettok - Return the next token from standard input.
     98 static int gettok() {
     99   static int LastChar = ' ';
    100 
    101   // Skip any whitespace.
    102   while (isspace(LastChar))
    103     LastChar = getchar();
    104 
    105   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    106     IdentifierStr = LastChar;
    107     while (isalnum((LastChar = getchar())))
    108       IdentifierStr += LastChar;
    109 
    110     if (IdentifierStr == "def") return tok_def;
    111     if (IdentifierStr == "extern") return tok_extern;
    112     if (IdentifierStr == "if") return tok_if;
    113     if (IdentifierStr == "then") return tok_then;
    114     if (IdentifierStr == "else") return tok_else;
    115     if (IdentifierStr == "for") return tok_for;
    116     if (IdentifierStr == "in") return tok_in;
    117     if (IdentifierStr == "binary") return tok_binary;
    118     if (IdentifierStr == "unary") return tok_unary;
    119     if (IdentifierStr == "var") return tok_var;
    120     return tok_identifier;
    121   }
    122 
    123   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    124     std::string NumStr;
    125     do {
    126       NumStr += LastChar;
    127       LastChar = getchar();
    128     } while (isdigit(LastChar) || LastChar == '.');
    129 
    130     NumVal = strtod(NumStr.c_str(), 0);
    131     return tok_number;
    132   }
    133 
    134   if (LastChar == '#') {
    135     // Comment until end of line.
    136     do LastChar = getchar();
    137     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    138 
    139     if (LastChar != EOF)
    140       return gettok();
    141   }
    142 
    143   // Check for end of file.  Don't eat the EOF.
    144   if (LastChar == EOF)
    145     return tok_eof;
    146 
    147   // Otherwise, just return the character as its ascii value.
    148   int ThisChar = LastChar;
    149   LastChar = getchar();
    150   return ThisChar;
    151 }
    152 
    153 //===----------------------------------------------------------------------===//
    154 // Abstract Syntax Tree (aka Parse Tree)
    155 //===----------------------------------------------------------------------===//
    156 
    157 /// ExprAST - Base class for all expression nodes.
    158 class ExprAST {
    159 public:
    160   virtual ~ExprAST() {}
    161   virtual Value *Codegen() = 0;
    162 };
    163 
    164 /// NumberExprAST - Expression class for numeric literals like "1.0".
    165 class NumberExprAST : public ExprAST {
    166   double Val;
    167 public:
    168   NumberExprAST(double val) : Val(val) {}
    169   virtual Value *Codegen();
    170 };
    171 
    172 /// VariableExprAST - Expression class for referencing a variable, like "a".
    173 class VariableExprAST : public ExprAST {
    174   std::string Name;
    175 public:
    176   VariableExprAST(const std::string &name) : Name(name) {}
    177   const std::string &getName() const { return Name; }
    178   virtual Value *Codegen();
    179 };
    180 
    181 /// UnaryExprAST - Expression class for a unary operator.
    182 class UnaryExprAST : public ExprAST {
    183   char Opcode;
    184   ExprAST *Operand;
    185 public:
    186   UnaryExprAST(char opcode, ExprAST *operand)
    187     : Opcode(opcode), Operand(operand) {}
    188   virtual Value *Codegen();
    189 };
    190 
    191 /// BinaryExprAST - Expression class for a binary operator.
    192 class BinaryExprAST : public ExprAST {
    193   char Op;
    194   ExprAST *LHS, *RHS;
    195 public:
    196   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    197     : Op(op), LHS(lhs), RHS(rhs) {}
    198   virtual Value *Codegen();
    199 };
    200 
    201 /// CallExprAST - Expression class for function calls.
    202 class CallExprAST : public ExprAST {
    203   std::string Callee;
    204   std::vector<ExprAST*> Args;
    205 public:
    206   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    207     : Callee(callee), Args(args) {}
    208   virtual Value *Codegen();
    209 };
    210 
    211 /// IfExprAST - Expression class for if/then/else.
    212 class IfExprAST : public ExprAST {
    213   ExprAST *Cond, *Then, *Else;
    214 public:
    215   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    216   : Cond(cond), Then(then), Else(_else) {}
    217   virtual Value *Codegen();
    218 };
    219 
    220 /// ForExprAST - Expression class for for/in.
    221 class ForExprAST : public ExprAST {
    222   std::string VarName;
    223   ExprAST *Start, *End, *Step, *Body;
    224 public:
    225   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    226              ExprAST *step, ExprAST *body)
    227     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    228   virtual Value *Codegen();
    229 };
    230 
    231 /// VarExprAST - Expression class for var/in
    232 class VarExprAST : public ExprAST {
    233   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    234   ExprAST *Body;
    235 public:
    236   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    237              ExprAST *body)
    238   : VarNames(varnames), Body(body) {}
    239 
    240   virtual Value *Codegen();
    241 };
    242 
    243 /// PrototypeAST - This class represents the "prototype" for a function,
    244 /// which captures its argument names as well as if it is an operator.
    245 class PrototypeAST {
    246   std::string Name;
    247   std::vector<std::string> Args;
    248   bool isOperator;
    249   unsigned Precedence;  // Precedence if a binary op.
    250 public:
    251   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    252                bool isoperator = false, unsigned prec = 0)
    253   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    254 
    255   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    256   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    257 
    258   char getOperatorName() const {
    259     assert(isUnaryOp() || isBinaryOp());
    260     return Name[Name.size()-1];
    261   }
    262 
    263   unsigned getBinaryPrecedence() const { return Precedence; }
    264 
    265   Function *Codegen();
    266 
    267   void CreateArgumentAllocas(Function *F);
    268 };
    269 
    270 /// FunctionAST - This class represents a function definition itself.
    271 class FunctionAST {
    272   PrototypeAST *Proto;
    273   ExprAST *Body;
    274 public:
    275   FunctionAST(PrototypeAST *proto, ExprAST *body)
    276     : Proto(proto), Body(body) {}
    277 
    278   Function *Codegen();
    279 };
    280 
    281 //===----------------------------------------------------------------------===//
    282 // Parser
    283 //===----------------------------------------------------------------------===//
    284 
    285 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    286 /// token the parser is looking at.  getNextToken reads another token from the
    287 /// lexer and updates CurTok with its results.
    288 static int CurTok;
    289 static int getNextToken() {
    290   return CurTok = gettok();
    291 }
    292 
    293 /// BinopPrecedence - This holds the precedence for each binary operator that is
    294 /// defined.
    295 static std::map<char, int> BinopPrecedence;
    296 
    297 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    298 static int GetTokPrecedence() {
    299   if (!isascii(CurTok))
    300     return -1;
    301 
    302   // Make sure it's a declared binop.
    303   int TokPrec = BinopPrecedence[CurTok];
    304   if (TokPrec <= 0) return -1;
    305   return TokPrec;
    306 }
    307 
    308 /// Error* - These are little helper functions for error handling.
    309 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    310 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    311 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    312 
    313 static ExprAST *ParseExpression();
    314 
    315 /// identifierexpr
    316 ///   ::= identifier
    317 ///   ::= identifier '(' expression* ')'
    318 static ExprAST *ParseIdentifierExpr() {
    319   std::string IdName = IdentifierStr;
    320 
    321   getNextToken();  // eat identifier.
    322 
    323   if (CurTok != '(') // Simple variable ref.
    324     return new VariableExprAST(IdName);
    325 
    326   // Call.
    327   getNextToken();  // eat (
    328   std::vector<ExprAST*> Args;
    329   if (CurTok != ')') {
    330     while (1) {
    331       ExprAST *Arg = ParseExpression();
    332       if (!Arg) return 0;
    333       Args.push_back(Arg);
    334 
    335       if (CurTok == ')') break;
    336 
    337       if (CurTok != ',')
    338         return Error("Expected ')' or ',' in argument list");
    339       getNextToken();
    340     }
    341   }
    342 
    343   // Eat the ')'.
    344   getNextToken();
    345 
    346   return new CallExprAST(IdName, Args);
    347 }
    348 
    349 /// numberexpr ::= number
    350 static ExprAST *ParseNumberExpr() {
    351   ExprAST *Result = new NumberExprAST(NumVal);
    352   getNextToken(); // consume the number
    353   return Result;
    354 }
    355 
    356 /// parenexpr ::= '(' expression ')'
    357 static ExprAST *ParseParenExpr() {
    358   getNextToken();  // eat (.
    359   ExprAST *V = ParseExpression();
    360   if (!V) return 0;
    361 
    362   if (CurTok != ')')
    363     return Error("expected ')'");
    364   getNextToken();  // eat ).
    365   return V;
    366 }
    367 
    368 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    369 static ExprAST *ParseIfExpr() {
    370   getNextToken();  // eat the if.
    371 
    372   // condition.
    373   ExprAST *Cond = ParseExpression();
    374   if (!Cond) return 0;
    375 
    376   if (CurTok != tok_then)
    377     return Error("expected then");
    378   getNextToken();  // eat the then
    379 
    380   ExprAST *Then = ParseExpression();
    381   if (Then == 0) return 0;
    382 
    383   if (CurTok != tok_else)
    384     return Error("expected else");
    385 
    386   getNextToken();
    387 
    388   ExprAST *Else = ParseExpression();
    389   if (!Else) return 0;
    390 
    391   return new IfExprAST(Cond, Then, Else);
    392 }
    393 
    394 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    395 static ExprAST *ParseForExpr() {
    396   getNextToken();  // eat the for.
    397 
    398   if (CurTok != tok_identifier)
    399     return Error("expected identifier after for");
    400 
    401   std::string IdName = IdentifierStr;
    402   getNextToken();  // eat identifier.
    403 
    404   if (CurTok != '=')
    405     return Error("expected '=' after for");
    406   getNextToken();  // eat '='.
    407 
    408 
    409   ExprAST *Start = ParseExpression();
    410   if (Start == 0) return 0;
    411   if (CurTok != ',')
    412     return Error("expected ',' after for start value");
    413   getNextToken();
    414 
    415   ExprAST *End = ParseExpression();
    416   if (End == 0) return 0;
    417 
    418   // The step value is optional.
    419   ExprAST *Step = 0;
    420   if (CurTok == ',') {
    421     getNextToken();
    422     Step = ParseExpression();
    423     if (Step == 0) return 0;
    424   }
    425 
    426   if (CurTok != tok_in)
    427     return Error("expected 'in' after for");
    428   getNextToken();  // eat 'in'.
    429 
    430   ExprAST *Body = ParseExpression();
    431   if (Body == 0) return 0;
    432 
    433   return new ForExprAST(IdName, Start, End, Step, Body);
    434 }
    435 
    436 /// varexpr ::= 'var' identifier ('=' expression)?
    437 //                    (',' identifier ('=' expression)?)* 'in' expression
    438 static ExprAST *ParseVarExpr() {
    439   getNextToken();  // eat the var.
    440 
    441   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    442 
    443   // At least one variable name is required.
    444   if (CurTok != tok_identifier)
    445     return Error("expected identifier after var");
    446 
    447   while (1) {
    448     std::string Name = IdentifierStr;
    449     getNextToken();  // eat identifier.
    450 
    451     // Read the optional initializer.
    452     ExprAST *Init = 0;
    453     if (CurTok == '=') {
    454       getNextToken(); // eat the '='.
    455 
    456       Init = ParseExpression();
    457       if (Init == 0) return 0;
    458     }
    459 
    460     VarNames.push_back(std::make_pair(Name, Init));
    461 
    462     // End of var list, exit loop.
    463     if (CurTok != ',') break;
    464     getNextToken(); // eat the ','.
    465 
    466     if (CurTok != tok_identifier)
    467       return Error("expected identifier list after var");
    468   }
    469 
    470   // At this point, we have to have 'in'.
    471   if (CurTok != tok_in)
    472     return Error("expected 'in' keyword after 'var'");
    473   getNextToken();  // eat 'in'.
    474 
    475   ExprAST *Body = ParseExpression();
    476   if (Body == 0) return 0;
    477 
    478   return new VarExprAST(VarNames, Body);
    479 }
    480 
    481 /// primary
    482 ///   ::= identifierexpr
    483 ///   ::= numberexpr
    484 ///   ::= parenexpr
    485 ///   ::= ifexpr
    486 ///   ::= forexpr
    487 ///   ::= varexpr
    488 static ExprAST *ParsePrimary() {
    489   switch (CurTok) {
    490   default: return Error("unknown token when expecting an expression");
    491   case tok_identifier: return ParseIdentifierExpr();
    492   case tok_number:     return ParseNumberExpr();
    493   case '(':            return ParseParenExpr();
    494   case tok_if:         return ParseIfExpr();
    495   case tok_for:        return ParseForExpr();
    496   case tok_var:        return ParseVarExpr();
    497   }
    498 }
    499 
    500 /// unary
    501 ///   ::= primary
    502 ///   ::= '!' unary
    503 static ExprAST *ParseUnary() {
    504   // If the current token is not an operator, it must be a primary expr.
    505   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    506     return ParsePrimary();
    507 
    508   // If this is a unary operator, read it.
    509   int Opc = CurTok;
    510   getNextToken();
    511   if (ExprAST *Operand = ParseUnary())
    512     return new UnaryExprAST(Opc, Operand);
    513   return 0;
    514 }
    515 
    516 /// binoprhs
    517 ///   ::= ('+' unary)*
    518 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    519   // If this is a binop, find its precedence.
    520   while (1) {
    521     int TokPrec = GetTokPrecedence();
    522 
    523     // If this is a binop that binds at least as tightly as the current binop,
    524     // consume it, otherwise we are done.
    525     if (TokPrec < ExprPrec)
    526       return LHS;
    527 
    528     // Okay, we know this is a binop.
    529     int BinOp = CurTok;
    530     getNextToken();  // eat binop
    531 
    532     // Parse the unary expression after the binary operator.
    533     ExprAST *RHS = ParseUnary();
    534     if (!RHS) return 0;
    535 
    536     // If BinOp binds less tightly with RHS than the operator after RHS, let
    537     // the pending operator take RHS as its LHS.
    538     int NextPrec = GetTokPrecedence();
    539     if (TokPrec < NextPrec) {
    540       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    541       if (RHS == 0) return 0;
    542     }
    543 
    544     // Merge LHS/RHS.
    545     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    546   }
    547 }
    548 
    549 /// expression
    550 ///   ::= unary binoprhs
    551 ///
    552 static ExprAST *ParseExpression() {
    553   ExprAST *LHS = ParseUnary();
    554   if (!LHS) return 0;
    555 
    556   return ParseBinOpRHS(0, LHS);
    557 }
    558 
    559 /// prototype
    560 ///   ::= id '(' id* ')'
    561 ///   ::= binary LETTER number? (id, id)
    562 ///   ::= unary LETTER (id)
    563 static PrototypeAST *ParsePrototype() {
    564   std::string FnName;
    565 
    566   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    567   unsigned BinaryPrecedence = 30;
    568 
    569   switch (CurTok) {
    570   default:
    571     return ErrorP("Expected function name in prototype");
    572   case tok_identifier:
    573     FnName = IdentifierStr;
    574     Kind = 0;
    575     getNextToken();
    576     break;
    577   case tok_unary:
    578     getNextToken();
    579     if (!isascii(CurTok))
    580       return ErrorP("Expected unary operator");
    581     FnName = "unary";
    582     FnName += (char)CurTok;
    583     Kind = 1;
    584     getNextToken();
    585     break;
    586   case tok_binary:
    587     getNextToken();
    588     if (!isascii(CurTok))
    589       return ErrorP("Expected binary operator");
    590     FnName = "binary";
    591     FnName += (char)CurTok;
    592     Kind = 2;
    593     getNextToken();
    594 
    595     // Read the precedence if present.
    596     if (CurTok == tok_number) {
    597       if (NumVal < 1 || NumVal > 100)
    598         return ErrorP("Invalid precedecnce: must be 1..100");
    599       BinaryPrecedence = (unsigned)NumVal;
    600       getNextToken();
    601     }
    602     break;
    603   }
    604 
    605   if (CurTok != '(')
    606     return ErrorP("Expected '(' in prototype");
    607 
    608   std::vector<std::string> ArgNames;
    609   while (getNextToken() == tok_identifier)
    610     ArgNames.push_back(IdentifierStr);
    611   if (CurTok != ')')
    612     return ErrorP("Expected ')' in prototype");
    613 
    614   // success.
    615   getNextToken();  // eat ')'.
    616 
    617   // Verify right number of names for operator.
    618   if (Kind && ArgNames.size() != Kind)
    619     return ErrorP("Invalid number of operands for operator");
    620 
    621   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    622 }
    623 
    624 /// definition ::= 'def' prototype expression
    625 static FunctionAST *ParseDefinition() {
    626   getNextToken();  // eat def.
    627   PrototypeAST *Proto = ParsePrototype();
    628   if (Proto == 0) return 0;
    629 
    630   if (ExprAST *E = ParseExpression())
    631     return new FunctionAST(Proto, E);
    632   return 0;
    633 }
    634 
    635 /// toplevelexpr ::= expression
    636 static FunctionAST *ParseTopLevelExpr() {
    637   if (ExprAST *E = ParseExpression()) {
    638     // Make an anonymous proto.
    639     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    640     return new FunctionAST(Proto, E);
    641   }
    642   return 0;
    643 }
    644 
    645 /// external ::= 'extern' prototype
    646 static PrototypeAST *ParseExtern() {
    647   getNextToken();  // eat extern.
    648   return ParsePrototype();
    649 }
    650 
    651 //===----------------------------------------------------------------------===//
    652 // Quick and dirty hack
    653 //===----------------------------------------------------------------------===//
    654 
    655 // FIXME: Obviously we can do better than this
    656 std::string GenerateUniqueName(const char *root)
    657 {
    658   static int i = 0;
    659   char s[16];
    660   sprintf(s, "%s%d", root, i++);
    661   std::string S = s;
    662   return S;
    663 }
    664 
    665 std::string MakeLegalFunctionName(std::string Name)
    666 {
    667   std::string NewName;
    668   if (!Name.length())
    669       return GenerateUniqueName("anon_func_");
    670 
    671   // Start with what we have
    672   NewName = Name;
    673 
    674   // Look for a numberic first character
    675   if (NewName.find_first_of("0123456789") == 0) {
    676     NewName.insert(0, 1, 'n');
    677   }
    678 
    679   // Replace illegal characters with their ASCII equivalent
    680   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    681   size_t pos;
    682   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    683     char old_c = NewName.at(pos);
    684     char new_str[16];
    685     sprintf(new_str, "%d", (int)old_c);
    686     NewName = NewName.replace(pos, 1, new_str);
    687   }
    688 
    689   return NewName;
    690 }
    691 
    692 //===----------------------------------------------------------------------===//
    693 // MCJIT object cache class
    694 //===----------------------------------------------------------------------===//
    695 
    696 class MCJITObjectCache : public ObjectCache {
    697 public:
    698   MCJITObjectCache() {
    699     // Set IR cache directory
    700     sys::fs::current_path(CacheDir);
    701     sys::path::append(CacheDir, "toy_object_cache");
    702   }
    703 
    704   virtual ~MCJITObjectCache() {
    705   }
    706 
    707   virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
    708     // Get the ModuleID
    709     const std::string ModuleID = M->getModuleIdentifier();
    710 
    711     // If we've flagged this as an IR file, cache it
    712     if (0 == ModuleID.compare(0, 3, "IR:")) {
    713       std::string IRFileName = ModuleID.substr(3);
    714       SmallString<128>IRCacheFile = CacheDir;
    715       sys::path::append(IRCacheFile, IRFileName);
    716       if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
    717         fprintf(stderr, "Unable to create cache directory\n");
    718         return;
    719       }
    720       std::string ErrStr;
    721       raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
    722       IRObjectFile << Obj->getBuffer();
    723     }
    724   }
    725 
    726   // MCJIT will call this function before compiling any module
    727   // MCJIT takes ownership of both the MemoryBuffer object and the memory
    728   // to which it refers.
    729   virtual MemoryBuffer* getObject(const Module* M) {
    730     // Get the ModuleID
    731     const std::string ModuleID = M->getModuleIdentifier();
    732 
    733     // If we've flagged this as an IR file, cache it
    734     if (0 == ModuleID.compare(0, 3, "IR:")) {
    735       std::string IRFileName = ModuleID.substr(3);
    736       SmallString<128> IRCacheFile = CacheDir;
    737       sys::path::append(IRCacheFile, IRFileName);
    738       if (!sys::fs::exists(IRCacheFile.str())) {
    739         // This file isn't in our cache
    740         return NULL;
    741       }
    742       std::unique_ptr<MemoryBuffer> IRObjectBuffer;
    743       MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
    744       // MCJIT will want to write into this buffer, and we don't want that
    745       // because the file has probably just been mmapped.  Instead we make
    746       // a copy.  The filed-based buffer will be released when it goes
    747       // out of scope.
    748       return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
    749     }
    750 
    751     return NULL;
    752   }
    753 
    754 private:
    755   SmallString<128> CacheDir;
    756 };
    757 
    758 //===----------------------------------------------------------------------===//
    759 // IR input file handler
    760 //===----------------------------------------------------------------------===//
    761 
    762 Module* parseInputIR(std::string InputFile, LLVMContext &Context) {
    763   SMDiagnostic Err;
    764   Module *M = ParseIRFile(InputFile, Err, Context);
    765   if (!M) {
    766     Err.print("IR parsing failed: ", errs());
    767     return NULL;
    768   }
    769 
    770   char ModID[256];
    771   sprintf(ModID, "IR:%s", InputFile.c_str());
    772   M->setModuleIdentifier(ModID);
    773   return M;
    774 }
    775 
    776 //===----------------------------------------------------------------------===//
    777 // Helper class for execution engine abstraction
    778 //===----------------------------------------------------------------------===//
    779 
    780 class BaseHelper
    781 {
    782 public:
    783   BaseHelper() {}
    784   virtual ~BaseHelper() {}
    785 
    786   virtual Function *getFunction(const std::string FnName) = 0;
    787   virtual Module *getModuleForNewFunction() = 0;
    788   virtual void *getPointerToFunction(Function* F) = 0;
    789   virtual void *getPointerToNamedFunction(const std::string &Name) = 0;
    790   virtual void closeCurrentModule() = 0;
    791   virtual void runFPM(Function &F) = 0;
    792   virtual void dump();
    793 };
    794 
    795 //===----------------------------------------------------------------------===//
    796 // Helper class for JIT execution engine
    797 //===----------------------------------------------------------------------===//
    798 
    799 class JITHelper : public BaseHelper {
    800 public:
    801   JITHelper(LLVMContext &Context) {
    802     // Make the module, which holds all the code.
    803     if (!InputIR.empty()) {
    804       TheModule = parseInputIR(InputIR, Context);
    805     } else {
    806       TheModule = new Module("my cool jit", Context);
    807     }
    808 
    809     // Create the JIT.  This takes ownership of the module.
    810     std::string ErrStr;
    811     TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
    812     if (!TheExecutionEngine) {
    813       fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    814       exit(1);
    815     }
    816 
    817     TheFPM = new FunctionPassManager(TheModule);
    818 
    819     // Set up the optimizer pipeline.  Start with registering info about how the
    820     // target lays out data structures.
    821     TheFPM->add(new DataLayout(*TheExecutionEngine->getDataLayout()));
    822     // Provide basic AliasAnalysis support for GVN.
    823     TheFPM->add(createBasicAliasAnalysisPass());
    824     // Promote allocas to registers.
    825     TheFPM->add(createPromoteMemoryToRegisterPass());
    826     // Do simple "peephole" optimizations and bit-twiddling optzns.
    827     TheFPM->add(createInstructionCombiningPass());
    828     // Reassociate expressions.
    829     TheFPM->add(createReassociatePass());
    830     // Eliminate Common SubExpressions.
    831     TheFPM->add(createGVNPass());
    832     // Simplify the control flow graph (deleting unreachable blocks, etc).
    833     TheFPM->add(createCFGSimplificationPass());
    834 
    835     TheFPM->doInitialization();
    836   }
    837 
    838   virtual ~JITHelper() {
    839     if (TheFPM)
    840       delete TheFPM;
    841     if (TheExecutionEngine)
    842       delete TheExecutionEngine;
    843   }
    844 
    845   virtual Function *getFunction(const std::string FnName) {
    846     assert(TheModule);
    847     return TheModule->getFunction(FnName);
    848   }
    849 
    850   virtual Module *getModuleForNewFunction() {
    851     assert(TheModule);
    852     return TheModule;
    853   }
    854 
    855   virtual void *getPointerToFunction(Function* F) {
    856     assert(TheExecutionEngine);
    857     return TheExecutionEngine->getPointerToFunction(F);
    858   }
    859 
    860   virtual void *getPointerToNamedFunction(const std::string &Name) {
    861     return TheExecutionEngine->getPointerToNamedFunction(Name);
    862   }
    863 
    864   virtual void runFPM(Function &F) {
    865     assert(TheFPM);
    866     TheFPM->run(F);
    867   }
    868 
    869   virtual void closeCurrentModule() {
    870     // This should never be called for JIT
    871     assert(false);
    872   }
    873 
    874   virtual void dump() {
    875     assert(TheModule);
    876     TheModule->dump();
    877   }
    878 
    879 private:
    880   Module *TheModule;
    881   ExecutionEngine *TheExecutionEngine;
    882   FunctionPassManager *TheFPM;
    883 };
    884 
    885 //===----------------------------------------------------------------------===//
    886 // MCJIT helper class
    887 //===----------------------------------------------------------------------===//
    888 
    889 class MCJITHelper : public BaseHelper
    890 {
    891 public:
    892   MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) {
    893     if (!InputIR.empty()) {
    894       Module *M = parseInputIR(InputIR, Context);
    895       Modules.push_back(M);
    896       if (!EnableLazyCompilation)
    897         compileModule(M);
    898     }
    899   }
    900   ~MCJITHelper();
    901 
    902   Function *getFunction(const std::string FnName);
    903   Module *getModuleForNewFunction();
    904   void *getPointerToFunction(Function* F);
    905   void *getPointerToNamedFunction(const std::string &Name);
    906   void closeCurrentModule();
    907   virtual void runFPM(Function &F) {} // Not needed, see compileModule
    908   void dump();
    909 
    910 protected:
    911   ExecutionEngine *compileModule(Module *M);
    912 
    913 private:
    914   typedef std::vector<Module*> ModuleVector;
    915 
    916   MCJITObjectCache OurObjectCache;
    917 
    918   LLVMContext  &Context;
    919   ModuleVector  Modules;
    920 
    921   std::map<Module *, ExecutionEngine *> EngineMap;
    922 
    923   Module       *CurrentModule;
    924 };
    925 
    926 class HelpingMemoryManager : public SectionMemoryManager
    927 {
    928   HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    929   void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    930 
    931 public:
    932   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
    933   virtual ~HelpingMemoryManager() {}
    934 
    935   /// This method returns the address of the specified function.
    936   /// Our implementation will attempt to find functions in other
    937   /// modules associated with the MCJITHelper to cross link functions
    938   /// from one generated module to another.
    939   ///
    940   /// If \p AbortOnFailure is false and no function with the given name is
    941   /// found, this function returns a null pointer. Otherwise, it prints a
    942   /// message to stderr and aborts.
    943   virtual void *getPointerToNamedFunction(const std::string &Name,
    944                                           bool AbortOnFailure = true);
    945 private:
    946   MCJITHelper *MasterHelper;
    947 };
    948 
    949 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
    950                                         bool AbortOnFailure)
    951 {
    952   // Try the standard symbol resolution first, but ask it not to abort.
    953   void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false);
    954   if (pfn)
    955     return pfn;
    956 
    957   pfn = MasterHelper->getPointerToNamedFunction(Name);
    958   if (!pfn && AbortOnFailure)
    959     report_fatal_error("Program used external function '" + Name +
    960                         "' which could not be resolved!");
    961   return pfn;
    962 }
    963 
    964 MCJITHelper::~MCJITHelper()
    965 {
    966   // Walk the vector of modules.
    967   ModuleVector::iterator it, end;
    968   for (it = Modules.begin(), end = Modules.end();
    969        it != end; ++it) {
    970     // See if we have an execution engine for this module.
    971     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
    972     // If we have an EE, the EE owns the module so just delete the EE.
    973     if (mapIt != EngineMap.end()) {
    974       delete mapIt->second;
    975     } else {
    976       // Otherwise, we still own the module.  Delete it now.
    977       delete *it;
    978     }
    979   }
    980 }
    981 
    982 Function *MCJITHelper::getFunction(const std::string FnName) {
    983   ModuleVector::iterator begin = Modules.begin();
    984   ModuleVector::iterator end = Modules.end();
    985   ModuleVector::iterator it;
    986   for (it = begin; it != end; ++it) {
    987     Function *F = (*it)->getFunction(FnName);
    988     if (F) {
    989       if (*it == CurrentModule)
    990           return F;
    991 
    992       assert(CurrentModule != NULL);
    993 
    994       // This function is in a module that has already been JITed.
    995       // We just need a prototype for external linkage.
    996       Function *PF = CurrentModule->getFunction(FnName);
    997       if (PF && !PF->empty()) {
    998         ErrorF("redefinition of function across modules");
    999         return 0;
   1000       }
   1001 
   1002       // If we don't have a prototype yet, create one.
   1003       if (!PF)
   1004         PF = Function::Create(F->getFunctionType(),
   1005                                       Function::ExternalLinkage,
   1006                                       FnName,
   1007                                       CurrentModule);
   1008       return PF;
   1009     }
   1010   }
   1011   return NULL;
   1012 }
   1013 
   1014 Module *MCJITHelper::getModuleForNewFunction() {
   1015   // If we have a Module that hasn't been JITed, use that.
   1016   if (CurrentModule)
   1017     return CurrentModule;
   1018 
   1019   // Otherwise create a new Module.
   1020   std::string ModName = GenerateUniqueName("mcjit_module_");
   1021   Module *M = new Module(ModName, Context);
   1022   Modules.push_back(M);
   1023   CurrentModule = M;
   1024 
   1025   return M;
   1026 }
   1027 
   1028 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
   1029   assert(EngineMap.find(M) == EngineMap.end());
   1030 
   1031   if (M == CurrentModule)
   1032     closeCurrentModule();
   1033 
   1034   std::string ErrStr;
   1035   ExecutionEngine *EE = EngineBuilder(M)
   1036                             .setErrorStr(&ErrStr)
   1037                             .setUseMCJIT(true)
   1038                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
   1039                             .create();
   1040   if (!EE) {
   1041     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1042     exit(1);
   1043   }
   1044 
   1045   if (UseObjectCache)
   1046     EE->setObjectCache(&OurObjectCache);
   1047   // Get the ModuleID so we can identify IR input files
   1048   const std::string ModuleID = M->getModuleIdentifier();
   1049 
   1050   // If we've flagged this as an IR file, it doesn't need function passes run.
   1051   if (0 != ModuleID.compare(0, 3, "IR:")) {
   1052     FunctionPassManager *FPM = 0;
   1053 
   1054     // Create a FPM for this module
   1055     FPM = new FunctionPassManager(M);
   1056 
   1057     // Set up the optimizer pipeline.  Start with registering info about how the
   1058     // target lays out data structures.
   1059     FPM->add(new DataLayout(*EE->getDataLayout()));
   1060     // Provide basic AliasAnalysis support for GVN.
   1061     FPM->add(createBasicAliasAnalysisPass());
   1062     // Promote allocas to registers.
   1063     FPM->add(createPromoteMemoryToRegisterPass());
   1064     // Do simple "peephole" optimizations and bit-twiddling optzns.
   1065     FPM->add(createInstructionCombiningPass());
   1066     // Reassociate expressions.
   1067     FPM->add(createReassociatePass());
   1068     // Eliminate Common SubExpressions.
   1069     FPM->add(createGVNPass());
   1070     // Simplify the control flow graph (deleting unreachable blocks, etc).
   1071     FPM->add(createCFGSimplificationPass());
   1072 
   1073     FPM->doInitialization();
   1074 
   1075     // For each function in the module
   1076     Module::iterator it;
   1077     Module::iterator end = M->end();
   1078     for (it = M->begin(); it != end; ++it) {
   1079       // Run the FPM on this function
   1080       FPM->run(*it);
   1081     }
   1082 
   1083     delete FPM;
   1084   }
   1085 
   1086   EE->finalizeObject();
   1087 
   1088   // Store this engine
   1089   EngineMap[M] = EE;
   1090 
   1091   return EE;
   1092 }
   1093 
   1094 void *MCJITHelper::getPointerToFunction(Function* F) {
   1095   // Look for this function in an existing module
   1096   ModuleVector::iterator begin = Modules.begin();
   1097   ModuleVector::iterator end = Modules.end();
   1098   ModuleVector::iterator it;
   1099   std::string FnName = F->getName();
   1100   for (it = begin; it != end; ++it) {
   1101     Function *MF = (*it)->getFunction(FnName);
   1102     if (MF == F) {
   1103       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1104       if (eeIt != EngineMap.end()) {
   1105         void *P = eeIt->second->getPointerToFunction(F);
   1106         if (P)
   1107           return P;
   1108       } else {
   1109         ExecutionEngine *EE = compileModule(*it);
   1110         void *P = EE->getPointerToFunction(F);
   1111         if (P)
   1112           return P;
   1113       }
   1114     }
   1115   }
   1116   return NULL;
   1117 }
   1118 
   1119 void MCJITHelper::closeCurrentModule() {
   1120     // If we have an open module (and we should), pack it up
   1121   if (CurrentModule) {
   1122     CurrentModule = NULL;
   1123   }
   1124 }
   1125 
   1126 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
   1127 {
   1128   // Look for the functions in our modules, compiling only as necessary
   1129   ModuleVector::iterator begin = Modules.begin();
   1130   ModuleVector::iterator end = Modules.end();
   1131   ModuleVector::iterator it;
   1132   for (it = begin; it != end; ++it) {
   1133     Function *F = (*it)->getFunction(Name);
   1134     if (F && !F->empty()) {
   1135       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1136       if (eeIt != EngineMap.end()) {
   1137         void *P = eeIt->second->getPointerToFunction(F);
   1138         if (P)
   1139           return P;
   1140       } else {
   1141         ExecutionEngine *EE = compileModule(*it);
   1142         void *P = EE->getPointerToFunction(F);
   1143         if (P)
   1144           return P;
   1145       }
   1146     }
   1147   }
   1148   return NULL;
   1149 }
   1150 
   1151 void MCJITHelper::dump()
   1152 {
   1153   ModuleVector::iterator begin = Modules.begin();
   1154   ModuleVector::iterator end = Modules.end();
   1155   ModuleVector::iterator it;
   1156   for (it = begin; it != end; ++it)
   1157     (*it)->dump();
   1158 }
   1159 
   1160 //===----------------------------------------------------------------------===//
   1161 // Code Generation
   1162 //===----------------------------------------------------------------------===//
   1163 
   1164 static BaseHelper *TheHelper;
   1165 static IRBuilder<> Builder(getGlobalContext());
   1166 static std::map<std::string, AllocaInst*> NamedValues;
   1167 
   1168 Value *ErrorV(const char *Str) { Error(Str); return 0; }
   1169 
   1170 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
   1171 /// the function.  This is used for mutable variables etc.
   1172 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
   1173                                           const std::string &VarName) {
   1174   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
   1175                  TheFunction->getEntryBlock().begin());
   1176   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
   1177                            VarName.c_str());
   1178 }
   1179 
   1180 Value *NumberExprAST::Codegen() {
   1181   return ConstantFP::get(getGlobalContext(), APFloat(Val));
   1182 }
   1183 
   1184 Value *VariableExprAST::Codegen() {
   1185   // Look this variable up in the function.
   1186   Value *V = NamedValues[Name];
   1187   if (V == 0) return ErrorV("Unknown variable name");
   1188 
   1189   // Load the value.
   1190   return Builder.CreateLoad(V, Name.c_str());
   1191 }
   1192 
   1193 Value *UnaryExprAST::Codegen() {
   1194   Value *OperandV = Operand->Codegen();
   1195   if (OperandV == 0) return 0;
   1196   Function *F;
   1197   if (UseMCJIT)
   1198     F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
   1199   else
   1200     F = TheHelper->getFunction(std::string("unary")+Opcode);
   1201   if (F == 0)
   1202     return ErrorV("Unknown unary operator");
   1203 
   1204   return Builder.CreateCall(F, OperandV, "unop");
   1205 }
   1206 
   1207 Value *BinaryExprAST::Codegen() {
   1208   // Special case '=' because we don't want to emit the LHS as an expression.
   1209   if (Op == '=') {
   1210     // Assignment requires the LHS to be an identifier.
   1211     // This assume we're building without RTTI because LLVM builds that way by
   1212     // default.  If you build LLVM with RTTI this can be changed to a
   1213     // dynamic_cast for automatic error checking.
   1214     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
   1215     if (!LHSE)
   1216       return ErrorV("destination of '=' must be a variable");
   1217     // Codegen the RHS.
   1218     Value *Val = RHS->Codegen();
   1219     if (Val == 0) return 0;
   1220 
   1221     // Look up the name.
   1222     Value *Variable = NamedValues[LHSE->getName()];
   1223     if (Variable == 0) return ErrorV("Unknown variable name");
   1224 
   1225     Builder.CreateStore(Val, Variable);
   1226     return Val;
   1227   }
   1228 
   1229   Value *L = LHS->Codegen();
   1230   Value *R = RHS->Codegen();
   1231   if (L == 0 || R == 0) return 0;
   1232 
   1233   switch (Op) {
   1234   case '+': return Builder.CreateFAdd(L, R, "addtmp");
   1235   case '-': return Builder.CreateFSub(L, R, "subtmp");
   1236   case '*': return Builder.CreateFMul(L, R, "multmp");
   1237   case '/': return Builder.CreateFDiv(L, R, "divtmp");
   1238   case '<':
   1239     L = Builder.CreateFCmpULT(L, R, "cmptmp");
   1240     // Convert bool 0/1 to double 0.0 or 1.0
   1241     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
   1242                                 "booltmp");
   1243   default: break;
   1244   }
   1245 
   1246   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
   1247   // a call to it.
   1248   Function *F;
   1249   if (UseMCJIT)
   1250     F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
   1251   else
   1252     F = TheHelper->getFunction(std::string("binary")+Op);
   1253   assert(F && "binary operator not found!");
   1254 
   1255   Value *Ops[] = { L, R };
   1256   return Builder.CreateCall(F, Ops, "binop");
   1257 }
   1258 
   1259 Value *CallExprAST::Codegen() {
   1260   // Look up the name in the global module table.
   1261   Function *CalleeF = TheHelper->getFunction(Callee);
   1262   if (CalleeF == 0) {
   1263     char error_str[64];
   1264     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
   1265     return ErrorV(error_str);
   1266   }
   1267 
   1268   // If argument mismatch error.
   1269   if (CalleeF->arg_size() != Args.size())
   1270     return ErrorV("Incorrect # arguments passed");
   1271 
   1272   std::vector<Value*> ArgsV;
   1273   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   1274     ArgsV.push_back(Args[i]->Codegen());
   1275     if (ArgsV.back() == 0) return 0;
   1276   }
   1277 
   1278   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
   1279 }
   1280 
   1281 Value *IfExprAST::Codegen() {
   1282   Value *CondV = Cond->Codegen();
   1283   if (CondV == 0) return 0;
   1284 
   1285   // Convert condition to a bool by comparing equal to 0.0.
   1286   CondV = Builder.CreateFCmpONE(CondV,
   1287                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1288                                 "ifcond");
   1289 
   1290   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1291 
   1292   // Create blocks for the then and else cases.  Insert the 'then' block at the
   1293   // end of the function.
   1294   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
   1295   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
   1296   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
   1297 
   1298   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
   1299 
   1300   // Emit then value.
   1301   Builder.SetInsertPoint(ThenBB);
   1302 
   1303   Value *ThenV = Then->Codegen();
   1304   if (ThenV == 0) return 0;
   1305 
   1306   Builder.CreateBr(MergeBB);
   1307   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
   1308   ThenBB = Builder.GetInsertBlock();
   1309 
   1310   // Emit else block.
   1311   TheFunction->getBasicBlockList().push_back(ElseBB);
   1312   Builder.SetInsertPoint(ElseBB);
   1313 
   1314   Value *ElseV = Else->Codegen();
   1315   if (ElseV == 0) return 0;
   1316 
   1317   Builder.CreateBr(MergeBB);
   1318   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
   1319   ElseBB = Builder.GetInsertBlock();
   1320 
   1321   // Emit merge block.
   1322   TheFunction->getBasicBlockList().push_back(MergeBB);
   1323   Builder.SetInsertPoint(MergeBB);
   1324   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1325                                   "iftmp");
   1326 
   1327   PN->addIncoming(ThenV, ThenBB);
   1328   PN->addIncoming(ElseV, ElseBB);
   1329   return PN;
   1330 }
   1331 
   1332 Value *ForExprAST::Codegen() {
   1333   // Output this as:
   1334   //   var = alloca double
   1335   //   ...
   1336   //   start = startexpr
   1337   //   store start -> var
   1338   //   goto loop
   1339   // loop:
   1340   //   ...
   1341   //   bodyexpr
   1342   //   ...
   1343   // loopend:
   1344   //   step = stepexpr
   1345   //   endcond = endexpr
   1346   //
   1347   //   curvar = load var
   1348   //   nextvar = curvar + step
   1349   //   store nextvar -> var
   1350   //   br endcond, loop, endloop
   1351   // outloop:
   1352 
   1353   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1354 
   1355   // Create an alloca for the variable in the entry block.
   1356   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1357 
   1358   // Emit the start code first, without 'variable' in scope.
   1359   Value *StartVal = Start->Codegen();
   1360   if (StartVal == 0) return 0;
   1361 
   1362   // Store the value into the alloca.
   1363   Builder.CreateStore(StartVal, Alloca);
   1364 
   1365   // Make the new basic block for the loop header, inserting after current
   1366   // block.
   1367   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1368 
   1369   // Insert an explicit fall through from the current block to the LoopBB.
   1370   Builder.CreateBr(LoopBB);
   1371 
   1372   // Start insertion in LoopBB.
   1373   Builder.SetInsertPoint(LoopBB);
   1374 
   1375   // Within the loop, the variable is defined equal to the PHI node.  If it
   1376   // shadows an existing variable, we have to restore it, so save it now.
   1377   AllocaInst *OldVal = NamedValues[VarName];
   1378   NamedValues[VarName] = Alloca;
   1379 
   1380   // Emit the body of the loop.  This, like any other expr, can change the
   1381   // current BB.  Note that we ignore the value computed by the body, but don't
   1382   // allow an error.
   1383   if (Body->Codegen() == 0)
   1384     return 0;
   1385 
   1386   // Emit the step value.
   1387   Value *StepVal;
   1388   if (Step) {
   1389     StepVal = Step->Codegen();
   1390     if (StepVal == 0) return 0;
   1391   } else {
   1392     // If not specified, use 1.0.
   1393     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1394   }
   1395 
   1396   // Compute the end condition.
   1397   Value *EndCond = End->Codegen();
   1398   if (EndCond == 0) return EndCond;
   1399 
   1400   // Reload, increment, and restore the alloca.  This handles the case where
   1401   // the body of the loop mutates the variable.
   1402   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
   1403   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
   1404   Builder.CreateStore(NextVar, Alloca);
   1405 
   1406   // Convert condition to a bool by comparing equal to 0.0.
   1407   EndCond = Builder.CreateFCmpONE(EndCond,
   1408                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1409                                   "loopcond");
   1410 
   1411   // Create the "after loop" block and insert it.
   1412   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1413 
   1414   // Insert the conditional branch into the end of LoopEndBB.
   1415   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1416 
   1417   // Any new code will be inserted in AfterBB.
   1418   Builder.SetInsertPoint(AfterBB);
   1419 
   1420   // Restore the unshadowed variable.
   1421   if (OldVal)
   1422     NamedValues[VarName] = OldVal;
   1423   else
   1424     NamedValues.erase(VarName);
   1425 
   1426 
   1427   // for expr always returns 0.0.
   1428   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1429 }
   1430 
   1431 Value *VarExprAST::Codegen() {
   1432   std::vector<AllocaInst *> OldBindings;
   1433 
   1434   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1435 
   1436   // Register all variables and emit their initializer.
   1437   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
   1438     const std::string &VarName = VarNames[i].first;
   1439     ExprAST *Init = VarNames[i].second;
   1440 
   1441     // Emit the initializer before adding the variable to scope, this prevents
   1442     // the initializer from referencing the variable itself, and permits stuff
   1443     // like this:
   1444     //  var a = 1 in
   1445     //    var a = a in ...   # refers to outer 'a'.
   1446     Value *InitVal;
   1447     if (Init) {
   1448       InitVal = Init->Codegen();
   1449       if (InitVal == 0) return 0;
   1450     } else { // If not specified, use 0.0.
   1451       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
   1452     }
   1453 
   1454     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1455     Builder.CreateStore(InitVal, Alloca);
   1456 
   1457     // Remember the old variable binding so that we can restore the binding when
   1458     // we unrecurse.
   1459     OldBindings.push_back(NamedValues[VarName]);
   1460 
   1461     // Remember this binding.
   1462     NamedValues[VarName] = Alloca;
   1463   }
   1464 
   1465   // Codegen the body, now that all vars are in scope.
   1466   Value *BodyVal = Body->Codegen();
   1467   if (BodyVal == 0) return 0;
   1468 
   1469   // Pop all our variables from scope.
   1470   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
   1471     NamedValues[VarNames[i].first] = OldBindings[i];
   1472 
   1473   // Return the body computation.
   1474   return BodyVal;
   1475 }
   1476 
   1477 Function *PrototypeAST::Codegen() {
   1478   // Make the function type:  double(double,double) etc.
   1479   std::vector<Type*> Doubles(Args.size(),
   1480                              Type::getDoubleTy(getGlobalContext()));
   1481   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1482                                        Doubles, false);
   1483 
   1484   std::string FnName;
   1485   if (UseMCJIT)
   1486     FnName = MakeLegalFunctionName(Name);
   1487   else
   1488     FnName = Name;
   1489 
   1490   Module* M = TheHelper->getModuleForNewFunction();
   1491   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
   1492 
   1493   // FIXME: Implement duplicate function detection.
   1494   // The check below will only work if the duplicate is in the open module.
   1495   // If F conflicted, there was already something named 'Name'.  If it has a
   1496   // body, don't allow redefinition or reextern.
   1497   if (F->getName() != FnName) {
   1498     // Delete the one we just made and get the existing one.
   1499     F->eraseFromParent();
   1500     F = M->getFunction(FnName);
   1501     // If F already has a body, reject this.
   1502     if (!F->empty()) {
   1503       ErrorF("redefinition of function");
   1504       return 0;
   1505     }
   1506     // If F took a different number of args, reject.
   1507     if (F->arg_size() != Args.size()) {
   1508       ErrorF("redefinition of function with different # args");
   1509       return 0;
   1510     }
   1511   }
   1512 
   1513   // Set names for all arguments.
   1514   unsigned Idx = 0;
   1515   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
   1516        ++AI, ++Idx)
   1517     AI->setName(Args[Idx]);
   1518 
   1519   return F;
   1520 }
   1521 
   1522 /// CreateArgumentAllocas - Create an alloca for each argument and register the
   1523 /// argument in the symbol table so that references to it will succeed.
   1524 void PrototypeAST::CreateArgumentAllocas(Function *F) {
   1525   Function::arg_iterator AI = F->arg_begin();
   1526   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
   1527     // Create an alloca for this variable.
   1528     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
   1529 
   1530     // Store the initial value into the alloca.
   1531     Builder.CreateStore(AI, Alloca);
   1532 
   1533     // Add arguments to variable symbol table.
   1534     NamedValues[Args[Idx]] = Alloca;
   1535   }
   1536 }
   1537 
   1538 Function *FunctionAST::Codegen() {
   1539   NamedValues.clear();
   1540 
   1541   Function *TheFunction = Proto->Codegen();
   1542   if (TheFunction == 0)
   1543     return 0;
   1544 
   1545   // If this is an operator, install it.
   1546   if (Proto->isBinaryOp())
   1547     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
   1548 
   1549   // Create a new basic block to start insertion into.
   1550   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1551   Builder.SetInsertPoint(BB);
   1552 
   1553   // Add all arguments to the symbol table and create their allocas.
   1554   Proto->CreateArgumentAllocas(TheFunction);
   1555 
   1556   if (Value *RetVal = Body->Codegen()) {
   1557     // Finish off the function.
   1558     Builder.CreateRet(RetVal);
   1559 
   1560     // Validate the generated code, checking for consistency.
   1561     verifyFunction(*TheFunction);
   1562 
   1563     // Optimize the function.
   1564     if (!UseMCJIT)
   1565       TheHelper->runFPM(*TheFunction);
   1566 
   1567     return TheFunction;
   1568   }
   1569 
   1570   // Error reading body, remove function.
   1571   TheFunction->eraseFromParent();
   1572 
   1573   if (Proto->isBinaryOp())
   1574     BinopPrecedence.erase(Proto->getOperatorName());
   1575   return 0;
   1576 }
   1577 
   1578 //===----------------------------------------------------------------------===//
   1579 // Top-Level parsing and JIT Driver
   1580 //===----------------------------------------------------------------------===//
   1581 
   1582 static void HandleDefinition() {
   1583   if (FunctionAST *F = ParseDefinition()) {
   1584     if (UseMCJIT && EnableLazyCompilation)
   1585       TheHelper->closeCurrentModule();
   1586     Function *LF = F->Codegen();
   1587     if (LF && VerboseOutput) {
   1588       fprintf(stderr, "Read function definition:");
   1589       LF->dump();
   1590     }
   1591   } else {
   1592     // Skip token for error recovery.
   1593     getNextToken();
   1594   }
   1595 }
   1596 
   1597 static void HandleExtern() {
   1598   if (PrototypeAST *P = ParseExtern()) {
   1599     Function *F = P->Codegen();
   1600     if (F && VerboseOutput) {
   1601       fprintf(stderr, "Read extern: ");
   1602       F->dump();
   1603     }
   1604   } else {
   1605     // Skip token for error recovery.
   1606     getNextToken();
   1607   }
   1608 }
   1609 
   1610 static void HandleTopLevelExpression() {
   1611   // Evaluate a top-level expression into an anonymous function.
   1612   if (FunctionAST *F = ParseTopLevelExpr()) {
   1613     if (Function *LF = F->Codegen()) {
   1614       // JIT the function, returning a function pointer.
   1615       void *FPtr = TheHelper->getPointerToFunction(LF);
   1616       // Cast it to the right type (takes no arguments, returns a double) so we
   1617       // can call it as a native function.
   1618       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1619       double Result = FP();
   1620       if (VerboseOutput)
   1621         fprintf(stderr, "Evaluated to %f\n", Result);
   1622     }
   1623   } else {
   1624     // Skip token for error recovery.
   1625     getNextToken();
   1626   }
   1627 }
   1628 
   1629 /// top ::= definition | external | expression | ';'
   1630 static void MainLoop() {
   1631   while (1) {
   1632     if (!SuppressPrompts)
   1633       fprintf(stderr, "ready> ");
   1634     switch (CurTok) {
   1635     case tok_eof:    return;
   1636     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1637     case tok_def:    HandleDefinition(); break;
   1638     case tok_extern: HandleExtern(); break;
   1639     default:         HandleTopLevelExpression(); break;
   1640     }
   1641   }
   1642 }
   1643 
   1644 //===----------------------------------------------------------------------===//
   1645 // "Library" functions that can be "extern'd" from user code.
   1646 //===----------------------------------------------------------------------===//
   1647 
   1648 /// putchard - putchar that takes a double and returns 0.
   1649 extern "C"
   1650 double putchard(double X) {
   1651   putchar((char)X);
   1652   return 0;
   1653 }
   1654 
   1655 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1656 extern "C"
   1657 double printd(double X) {
   1658   printf("%f", X);
   1659   return 0;
   1660 }
   1661 
   1662 extern "C"
   1663 double printlf() {
   1664   printf("\n");
   1665   return 0;
   1666 }
   1667 
   1668 //===----------------------------------------------------------------------===//
   1669 // Main driver code.
   1670 //===----------------------------------------------------------------------===//
   1671 
   1672 int main(int argc, char **argv) {
   1673   InitializeNativeTarget();
   1674   if (UseMCJIT) {
   1675     InitializeNativeTargetAsmPrinter();
   1676     InitializeNativeTargetAsmParser();
   1677   }
   1678   LLVMContext &Context = getGlobalContext();
   1679 
   1680   cl::ParseCommandLineOptions(argc, argv,
   1681                               "Kaleidoscope example program\n");
   1682 
   1683   // Install standard binary operators.
   1684   // 1 is lowest precedence.
   1685   BinopPrecedence['='] = 2;
   1686   BinopPrecedence['<'] = 10;
   1687   BinopPrecedence['+'] = 20;
   1688   BinopPrecedence['-'] = 20;
   1689   BinopPrecedence['/'] = 40;
   1690   BinopPrecedence['*'] = 40;  // highest.
   1691 
   1692   // Make the Helper, which holds all the code.
   1693   if (UseMCJIT)
   1694     TheHelper = new MCJITHelper(Context);
   1695   else
   1696     TheHelper = new JITHelper(Context);
   1697 
   1698   // Prime the first token.
   1699   if (!SuppressPrompts)
   1700     fprintf(stderr, "ready> ");
   1701   getNextToken();
   1702 
   1703   // Run the main "interpreter loop" now.
   1704   MainLoop();
   1705 
   1706   // Print out all of the generated code.
   1707   if (DumpModulesOnExit)
   1708     TheHelper->dump();
   1709 
   1710   return 0;
   1711 }
   1712