Home | History | Annotate | Download | only in Analysis
      1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Calculate a program structure tree built out of single entry single exit
     11 // regions.
     12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
     13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
     14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
     15 // Koehler - 2009".
     16 // The algorithm to calculate these data structures however is completely
     17 // different, as it takes advantage of existing information already available
     18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
     19 // and in practice hopefully better performing algorithm. The runtime of the
     20 // algorithms described in the papers above are both linear in graph size,
     21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
     22 // itself is not, but in practice runtime seems to be in the order of magnitude
     23 // of dominance tree calculation.
     24 //
     25 // WARNING: LLVM is generally very concerned about compile time such that
     26 //          the use of additional analysis passes in the default
     27 //          optimization sequence is avoided as much as possible.
     28 //          Specifically, if you do not need the RegionInfo, but dominance
     29 //          information could be sufficient please base your work only on
     30 //          the dominator tree. Most passes maintain it, such that using
     31 //          it has often near zero cost. In contrast RegionInfo is by
     32 //          default not available, is not maintained by existing
     33 //          transformations and there is no intention to do so.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #ifndef LLVM_ANALYSIS_REGIONINFO_H
     38 #define LLVM_ANALYSIS_REGIONINFO_H
     39 
     40 #include "llvm/ADT/PointerIntPair.h"
     41 #include "llvm/ADT/iterator_range.h"
     42 #include "llvm/Analysis/DominanceFrontier.h"
     43 #include "llvm/Analysis/PostDominators.h"
     44 #include "llvm/Support/Allocator.h"
     45 #include <map>
     46 #include <memory>
     47 
     48 namespace llvm {
     49 
     50 class Region;
     51 class RegionInfo;
     52 class raw_ostream;
     53 class Loop;
     54 class LoopInfo;
     55 
     56 /// @brief Marker class to iterate over the elements of a Region in flat mode.
     57 ///
     58 /// The class is used to either iterate in Flat mode or by not using it to not
     59 /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
     60 /// and the iteration returns every BasicBlock.  If the Flat mode is not
     61 /// selected for SubRegions just one RegionNode containing the subregion is
     62 /// returned.
     63 template <class GraphType>
     64 class FlatIt {};
     65 
     66 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
     67 /// Region.
     68 class RegionNode {
     69   RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION;
     70   const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION;
     71 
     72 protected:
     73   /// This is the entry basic block that starts this region node.  If this is a
     74   /// BasicBlock RegionNode, then entry is just the basic block, that this
     75   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
     76   ///
     77   /// In the BBtoRegionNode map of the parent of this node, BB will always map
     78   /// to this node no matter which kind of node this one is.
     79   ///
     80   /// The node can hold either a Region or a BasicBlock.
     81   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
     82   /// RegionNode.
     83   PointerIntPair<BasicBlock*, 1, bool> entry;
     84 
     85   /// @brief The parent Region of this RegionNode.
     86   /// @see getParent()
     87   Region* parent;
     88 
     89 public:
     90   /// @brief Create a RegionNode.
     91   ///
     92   /// @param Parent      The parent of this RegionNode.
     93   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
     94   ///                    RegionNode represents a BasicBlock, this is the
     95   ///                    BasicBlock itself.  If it represents a subregion, this
     96   ///                    is the entry BasicBlock of the subregion.
     97   /// @param isSubRegion If this RegionNode represents a SubRegion.
     98   inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
     99     : entry(Entry, isSubRegion), parent(Parent) {}
    100 
    101   /// @brief Get the parent Region of this RegionNode.
    102   ///
    103   /// The parent Region is the Region this RegionNode belongs to. If for
    104   /// example a BasicBlock is element of two Regions, there exist two
    105   /// RegionNodes for this BasicBlock. Each with the getParent() function
    106   /// pointing to the Region this RegionNode belongs to.
    107   ///
    108   /// @return Get the parent Region of this RegionNode.
    109   inline Region* getParent() const { return parent; }
    110 
    111   /// @brief Get the entry BasicBlock of this RegionNode.
    112   ///
    113   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
    114   /// itself, otherwise we return the entry BasicBlock of the Subregion
    115   ///
    116   /// @return The entry BasicBlock of this RegionNode.
    117   inline BasicBlock* getEntry() const { return entry.getPointer(); }
    118 
    119   /// @brief Get the content of this RegionNode.
    120   ///
    121   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
    122   /// check the type of the content with the isSubRegion() function call.
    123   ///
    124   /// @return The content of this RegionNode.
    125   template<class T>
    126   inline T* getNodeAs() const;
    127 
    128   /// @brief Is this RegionNode a subregion?
    129   ///
    130   /// @return True if it contains a subregion. False if it contains a
    131   ///         BasicBlock.
    132   inline bool isSubRegion() const {
    133     return entry.getInt();
    134   }
    135 };
    136 
    137 /// Print a RegionNode.
    138 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
    139 
    140 template<>
    141 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
    142   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
    143   return getEntry();
    144 }
    145 
    146 template<>
    147 inline Region* RegionNode::getNodeAs<Region>() const {
    148   assert(isSubRegion() && "This is not a subregion RegionNode!");
    149   return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
    150 }
    151 
    152 //===----------------------------------------------------------------------===//
    153 /// @brief A single entry single exit Region.
    154 ///
    155 /// A Region is a connected subgraph of a control flow graph that has exactly
    156 /// two connections to the remaining graph. It can be used to analyze or
    157 /// optimize parts of the control flow graph.
    158 ///
    159 /// A <em> simple Region </em> is connected to the remaining graph by just two
    160 /// edges. One edge entering the Region and another one leaving the Region.
    161 ///
    162 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
    163 /// transform into a simple Region. The transformation is done by adding
    164 /// BasicBlocks that merge several entry or exit edges so that after the merge
    165 /// just one entry and one exit edge exists.
    166 ///
    167 /// The \e Entry of a Region is the first BasicBlock that is passed after
    168 /// entering the Region. It is an element of the Region. The entry BasicBlock
    169 /// dominates all BasicBlocks in the Region.
    170 ///
    171 /// The \e Exit of a Region is the first BasicBlock that is passed after
    172 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
    173 /// postdominates all BasicBlocks in the Region.
    174 ///
    175 /// A <em> canonical Region </em> cannot be constructed by combining smaller
    176 /// Regions.
    177 ///
    178 /// Region A is the \e parent of Region B, if B is completely contained in A.
    179 ///
    180 /// Two canonical Regions either do not intersect at all or one is
    181 /// the parent of the other.
    182 ///
    183 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
    184 /// Regions in the control flow graph and E is the \e parent relation of these
    185 /// Regions.
    186 ///
    187 /// Example:
    188 ///
    189 /// \verbatim
    190 /// A simple control flow graph, that contains two regions.
    191 ///
    192 ///        1
    193 ///       / |
    194 ///      2   |
    195 ///     / \   3
    196 ///    4   5  |
    197 ///    |   |  |
    198 ///    6   7  8
    199 ///     \  | /
    200 ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
    201 ///        9        Region B: 2 -> 9 {2,4,5,6,7}
    202 /// \endverbatim
    203 ///
    204 /// You can obtain more examples by either calling
    205 ///
    206 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
    207 /// or
    208 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
    209 ///
    210 /// on any LLVM file you are interested in.
    211 ///
    212 /// The first call returns a textual representation of the program structure
    213 /// tree, the second one creates a graphical representation using graphviz.
    214 class Region : public RegionNode {
    215   friend class RegionInfo;
    216   Region(const Region &) LLVM_DELETED_FUNCTION;
    217   const Region &operator=(const Region &) LLVM_DELETED_FUNCTION;
    218 
    219   // Information necessary to manage this Region.
    220   RegionInfo* RI;
    221   DominatorTree *DT;
    222 
    223   // The exit BasicBlock of this region.
    224   // (The entry BasicBlock is part of RegionNode)
    225   BasicBlock *exit;
    226 
    227   typedef std::vector<std::unique_ptr<Region>> RegionSet;
    228 
    229   // The subregions of this region.
    230   RegionSet children;
    231 
    232   typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
    233 
    234   // Save the BasicBlock RegionNodes that are element of this Region.
    235   mutable BBNodeMapT BBNodeMap;
    236 
    237   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
    238   /// if the region is incorrectly built. (EXPENSIVE!)
    239   void verifyBBInRegion(BasicBlock* BB) const;
    240 
    241   /// verifyWalk - Walk over all the BBs of the region starting from BB and
    242   /// verify that all reachable basic blocks are elements of the region.
    243   /// (EXPENSIVE!)
    244   void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
    245 
    246   /// verifyRegionNest - Verify if the region and its children are valid
    247   /// regions (EXPENSIVE!)
    248   void verifyRegionNest() const;
    249 
    250 public:
    251   /// @brief Create a new region.
    252   ///
    253   /// @param Entry  The entry basic block of the region.
    254   /// @param Exit   The exit basic block of the region.
    255   /// @param RI     The region info object that is managing this region.
    256   /// @param DT     The dominator tree of the current function.
    257   /// @param Parent The surrounding region or NULL if this is a top level
    258   ///               region.
    259   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
    260          DominatorTree *DT, Region *Parent = nullptr);
    261 
    262   /// Delete the Region and all its subregions.
    263   ~Region();
    264 
    265   /// @brief Get the entry BasicBlock of the Region.
    266   /// @return The entry BasicBlock of the region.
    267   BasicBlock *getEntry() const { return RegionNode::getEntry(); }
    268 
    269   /// @brief Replace the entry basic block of the region with the new basic
    270   ///        block.
    271   ///
    272   /// @param BB  The new entry basic block of the region.
    273   void replaceEntry(BasicBlock *BB);
    274 
    275   /// @brief Replace the exit basic block of the region with the new basic
    276   ///        block.
    277   ///
    278   /// @param BB  The new exit basic block of the region.
    279   void replaceExit(BasicBlock *BB);
    280 
    281   /// @brief Recursively replace the entry basic block of the region.
    282   ///
    283   /// This function replaces the entry basic block with a new basic block. It
    284   /// also updates all child regions that have the same entry basic block as
    285   /// this region.
    286   ///
    287   /// @param NewEntry The new entry basic block.
    288   void replaceEntryRecursive(BasicBlock *NewEntry);
    289 
    290   /// @brief Recursively replace the exit basic block of the region.
    291   ///
    292   /// This function replaces the exit basic block with a new basic block. It
    293   /// also updates all child regions that have the same exit basic block as
    294   /// this region.
    295   ///
    296   /// @param NewExit The new exit basic block.
    297   void replaceExitRecursive(BasicBlock *NewExit);
    298 
    299   /// @brief Get the exit BasicBlock of the Region.
    300   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
    301   ///         Region.
    302   BasicBlock *getExit() const { return exit; }
    303 
    304   /// @brief Get the parent of the Region.
    305   /// @return The parent of the Region or NULL if this is a top level
    306   ///         Region.
    307   Region *getParent() const { return RegionNode::getParent(); }
    308 
    309   /// @brief Get the RegionNode representing the current Region.
    310   /// @return The RegionNode representing the current Region.
    311   RegionNode* getNode() const {
    312     return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
    313   }
    314 
    315   /// @brief Get the nesting level of this Region.
    316   ///
    317   /// An toplevel Region has depth 0.
    318   ///
    319   /// @return The depth of the region.
    320   unsigned getDepth() const;
    321 
    322   /// @brief Check if a Region is the TopLevel region.
    323   ///
    324   /// The toplevel region represents the whole function.
    325   bool isTopLevelRegion() const { return exit == nullptr; }
    326 
    327   /// @brief Return a new (non-canonical) region, that is obtained by joining
    328   ///        this region with its predecessors.
    329   ///
    330   /// @return A region also starting at getEntry(), but reaching to the next
    331   ///         basic block that forms with getEntry() a (non-canonical) region.
    332   ///         NULL if such a basic block does not exist.
    333   Region *getExpandedRegion() const;
    334 
    335   /// @brief Return the first block of this region's single entry edge,
    336   ///        if existing.
    337   ///
    338   /// @return The BasicBlock starting this region's single entry edge,
    339   ///         else NULL.
    340   BasicBlock *getEnteringBlock() const;
    341 
    342   /// @brief Return the first block of this region's single exit edge,
    343   ///        if existing.
    344   ///
    345   /// @return The BasicBlock starting this region's single exit edge,
    346   ///         else NULL.
    347   BasicBlock *getExitingBlock() const;
    348 
    349   /// @brief Is this a simple region?
    350   ///
    351   /// A region is simple if it has exactly one exit and one entry edge.
    352   ///
    353   /// @return True if the Region is simple.
    354   bool isSimple() const;
    355 
    356   /// @brief Returns the name of the Region.
    357   /// @return The Name of the Region.
    358   std::string getNameStr() const;
    359 
    360   /// @brief Return the RegionInfo object, that belongs to this Region.
    361   RegionInfo *getRegionInfo() const {
    362     return RI;
    363   }
    364 
    365   /// PrintStyle - Print region in difference ways.
    366   enum PrintStyle { PrintNone, PrintBB, PrintRN  };
    367 
    368   /// @brief Print the region.
    369   ///
    370   /// @param OS The output stream the Region is printed to.
    371   /// @param printTree Print also the tree of subregions.
    372   /// @param level The indentation level used for printing.
    373   void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
    374              enum PrintStyle Style = PrintNone) const;
    375 
    376   /// @brief Print the region to stderr.
    377   void dump() const;
    378 
    379   /// @brief Check if the region contains a BasicBlock.
    380   ///
    381   /// @param BB The BasicBlock that might be contained in this Region.
    382   /// @return True if the block is contained in the region otherwise false.
    383   bool contains(const BasicBlock *BB) const;
    384 
    385   /// @brief Check if the region contains another region.
    386   ///
    387   /// @param SubRegion The region that might be contained in this Region.
    388   /// @return True if SubRegion is contained in the region otherwise false.
    389   bool contains(const Region *SubRegion) const {
    390     // Toplevel Region.
    391     if (!getExit())
    392       return true;
    393 
    394     return contains(SubRegion->getEntry())
    395       && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
    396   }
    397 
    398   /// @brief Check if the region contains an Instruction.
    399   ///
    400   /// @param Inst The Instruction that might be contained in this region.
    401   /// @return True if the Instruction is contained in the region otherwise false.
    402   bool contains(const Instruction *Inst) const {
    403     return contains(Inst->getParent());
    404   }
    405 
    406   /// @brief Check if the region contains a loop.
    407   ///
    408   /// @param L The loop that might be contained in this region.
    409   /// @return True if the loop is contained in the region otherwise false.
    410   ///         In case a NULL pointer is passed to this function the result
    411   ///         is false, except for the region that describes the whole function.
    412   ///         In that case true is returned.
    413   bool contains(const Loop *L) const;
    414 
    415   /// @brief Get the outermost loop in the region that contains a loop.
    416   ///
    417   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
    418   /// and is itself contained in the region.
    419   ///
    420   /// @param L The loop the lookup is started.
    421   /// @return The outermost loop in the region, NULL if such a loop does not
    422   ///         exist or if the region describes the whole function.
    423   Loop *outermostLoopInRegion(Loop *L) const;
    424 
    425   /// @brief Get the outermost loop in the region that contains a basic block.
    426   ///
    427   /// Find for a basic block BB the outermost loop L that contains BB and is
    428   /// itself contained in the region.
    429   ///
    430   /// @param LI A pointer to a LoopInfo analysis.
    431   /// @param BB The basic block surrounded by the loop.
    432   /// @return The outermost loop in the region, NULL if such a loop does not
    433   ///         exist or if the region describes the whole function.
    434   Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
    435 
    436   /// @brief Get the subregion that starts at a BasicBlock
    437   ///
    438   /// @param BB The BasicBlock the subregion should start.
    439   /// @return The Subregion if available, otherwise NULL.
    440   Region* getSubRegionNode(BasicBlock *BB) const;
    441 
    442   /// @brief Get the RegionNode for a BasicBlock
    443   ///
    444   /// @param BB The BasicBlock at which the RegionNode should start.
    445   /// @return If available, the RegionNode that represents the subregion
    446   ///         starting at BB. If no subregion starts at BB, the RegionNode
    447   ///         representing BB.
    448   RegionNode* getNode(BasicBlock *BB) const;
    449 
    450   /// @brief Get the BasicBlock RegionNode for a BasicBlock
    451   ///
    452   /// @param BB The BasicBlock for which the RegionNode is requested.
    453   /// @return The RegionNode representing the BB.
    454   RegionNode* getBBNode(BasicBlock *BB) const;
    455 
    456   /// @brief Add a new subregion to this Region.
    457   ///
    458   /// @param SubRegion The new subregion that will be added.
    459   /// @param moveChildren Move the children of this region, that are also
    460   ///                     contained in SubRegion into SubRegion.
    461   void addSubRegion(Region *SubRegion, bool moveChildren = false);
    462 
    463   /// @brief Remove a subregion from this Region.
    464   ///
    465   /// The subregion is not deleted, as it will probably be inserted into another
    466   /// region.
    467   /// @param SubRegion The SubRegion that will be removed.
    468   Region *removeSubRegion(Region *SubRegion);
    469 
    470   /// @brief Move all direct child nodes of this Region to another Region.
    471   ///
    472   /// @param To The Region the child nodes will be transferred to.
    473   void transferChildrenTo(Region *To);
    474 
    475   /// @brief Verify if the region is a correct region.
    476   ///
    477   /// Check if this is a correctly build Region. This is an expensive check, as
    478   /// the complete CFG of the Region will be walked.
    479   void verifyRegion() const;
    480 
    481   /// @brief Clear the cache for BB RegionNodes.
    482   ///
    483   /// After calling this function the BasicBlock RegionNodes will be stored at
    484   /// different memory locations. RegionNodes obtained before this function is
    485   /// called are therefore not comparable to RegionNodes abtained afterwords.
    486   void clearNodeCache();
    487 
    488   /// @name Subregion Iterators
    489   ///
    490   /// These iterators iterator over all subregions of this Region.
    491   //@{
    492   typedef RegionSet::iterator iterator;
    493   typedef RegionSet::const_iterator const_iterator;
    494 
    495   iterator begin() { return children.begin(); }
    496   iterator end() { return children.end(); }
    497 
    498   const_iterator begin() const { return children.begin(); }
    499   const_iterator end() const { return children.end(); }
    500   //@}
    501 
    502   /// @name BasicBlock Iterators
    503   ///
    504   /// These iterators iterate over all BasicBlocks that are contained in this
    505   /// Region. The iterator also iterates over BasicBlocks that are elements of
    506   /// a subregion of this Region. It is therefore called a flat iterator.
    507   //@{
    508   template <bool IsConst>
    509   class block_iterator_wrapper
    510       : public df_iterator<typename std::conditional<IsConst, const BasicBlock,
    511                                                      BasicBlock>::type *> {
    512     typedef df_iterator<typename std::conditional<IsConst, const BasicBlock,
    513                                                   BasicBlock>::type *> super;
    514 
    515   public:
    516     typedef block_iterator_wrapper<IsConst> Self;
    517     typedef typename super::pointer pointer;
    518 
    519     // Construct the begin iterator.
    520     block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry))
    521     {
    522       // Mark the exit of the region as visited, so that the children of the
    523       // exit and the exit itself, i.e. the block outside the region will never
    524       // be visited.
    525       super::Visited.insert(Exit);
    526     }
    527 
    528     // Construct the end iterator.
    529     block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)nullptr)) {}
    530 
    531     /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
    532 
    533     // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
    534     //        This was introduced for backwards compatibility, but should
    535     //        be removed as soon as all users are fixed.
    536     BasicBlock *operator*() const {
    537       return const_cast<BasicBlock*>(super::operator*());
    538     }
    539   };
    540 
    541   typedef block_iterator_wrapper<false> block_iterator;
    542   typedef block_iterator_wrapper<true>  const_block_iterator;
    543 
    544   block_iterator block_begin() {
    545    return block_iterator(getEntry(), getExit());
    546   }
    547 
    548   block_iterator block_end() {
    549    return block_iterator();
    550   }
    551 
    552   const_block_iterator block_begin() const {
    553     return const_block_iterator(getEntry(), getExit());
    554   }
    555   const_block_iterator block_end() const {
    556     return const_block_iterator();
    557   }
    558 
    559   typedef iterator_range<block_iterator> block_range;
    560   typedef iterator_range<const_block_iterator> const_block_range;
    561 
    562   /// @brief Returns a range view of the basic blocks in the region.
    563   inline block_range blocks() {
    564     return block_range(block_begin(), block_end());
    565   }
    566 
    567   /// @brief Returns a range view of the basic blocks in the region.
    568   ///
    569   /// This is the 'const' version of the range view.
    570   inline const_block_range blocks() const {
    571     return const_block_range(block_begin(), block_end());
    572   }
    573   //@}
    574 
    575   /// @name Element Iterators
    576   ///
    577   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
    578   /// are direct children of this Region. It does not iterate over any
    579   /// RegionNodes that are also element of a subregion of this Region.
    580   //@{
    581   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
    582                       GraphTraits<RegionNode*> > element_iterator;
    583 
    584   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
    585                       false, GraphTraits<const RegionNode*> >
    586             const_element_iterator;
    587 
    588   element_iterator element_begin();
    589   element_iterator element_end();
    590 
    591   const_element_iterator element_begin() const;
    592   const_element_iterator element_end() const;
    593   //@}
    594 };
    595 
    596 //===----------------------------------------------------------------------===//
    597 /// @brief Analysis that detects all canonical Regions.
    598 ///
    599 /// The RegionInfo pass detects all canonical regions in a function. The Regions
    600 /// are connected using the parent relation. This builds a Program Structure
    601 /// Tree.
    602 class RegionInfo : public FunctionPass {
    603   typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
    604   typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
    605   typedef SmallPtrSet<Region*, 4> RegionSet;
    606 
    607   RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION;
    608   const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION;
    609 
    610   DominatorTree *DT;
    611   PostDominatorTree *PDT;
    612   DominanceFrontier *DF;
    613 
    614   /// The top level region.
    615   Region *TopLevelRegion;
    616 
    617   /// Map every BB to the smallest region, that contains BB.
    618   BBtoRegionMap BBtoRegion;
    619 
    620   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
    621   // entry, because it was inherited from exit. In the other case there is an
    622   // edge going from entry to BB without passing exit.
    623   bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
    624                            BasicBlock* exit) const;
    625 
    626   // isRegion - Check if entry and exit surround a valid region, based on
    627   // dominance tree and dominance frontier.
    628   bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
    629 
    630   // insertShortCut - Saves a shortcut pointing from entry to exit.
    631   // This function may extend this shortcut if possible.
    632   void insertShortCut(BasicBlock* entry, BasicBlock* exit,
    633                       BBtoBBMap* ShortCut) const;
    634 
    635   // getNextPostDom - Returns the next BB that postdominates N, while skipping
    636   // all post dominators that cannot finish a canonical region.
    637   DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
    638 
    639   // isTrivialRegion - A region is trivial, if it contains only one BB.
    640   bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
    641 
    642   // createRegion - Creates a single entry single exit region.
    643   Region *createRegion(BasicBlock *entry, BasicBlock *exit);
    644 
    645   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
    646   void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
    647 
    648   // scanForRegions - Detects regions in F.
    649   void scanForRegions(Function &F, BBtoBBMap *ShortCut);
    650 
    651   // getTopMostParent - Get the top most parent with the same entry block.
    652   Region *getTopMostParent(Region *region);
    653 
    654   // buildRegionsTree - build the region hierarchy after all region detected.
    655   void buildRegionsTree(DomTreeNode *N, Region *region);
    656 
    657   // Calculate - detecte all regions in function and build the region tree.
    658   void Calculate(Function& F);
    659 
    660   void releaseMemory() override;
    661 
    662   // updateStatistics - Update statistic about created regions.
    663   void updateStatistics(Region *R);
    664 
    665   // isSimple - Check if a region is a simple region with exactly one entry
    666   // edge and exactly one exit edge.
    667   bool isSimple(Region* R) const;
    668 
    669 public:
    670   static char ID;
    671   explicit RegionInfo();
    672 
    673   ~RegionInfo();
    674 
    675   /// @name FunctionPass interface
    676   //@{
    677   bool runOnFunction(Function &F) override;
    678   void getAnalysisUsage(AnalysisUsage &AU) const override;
    679   void print(raw_ostream &OS, const Module *) const override;
    680   void verifyAnalysis() const override;
    681   //@}
    682 
    683   /// @brief Get the smallest region that contains a BasicBlock.
    684   ///
    685   /// @param BB The basic block.
    686   /// @return The smallest region, that contains BB or NULL, if there is no
    687   /// region containing BB.
    688   Region *getRegionFor(BasicBlock *BB) const;
    689 
    690   /// @brief  Set the smallest region that surrounds a basic block.
    691   ///
    692   /// @param BB The basic block surrounded by a region.
    693   /// @param R The smallest region that surrounds BB.
    694   void setRegionFor(BasicBlock *BB, Region *R);
    695 
    696   /// @brief A shortcut for getRegionFor().
    697   ///
    698   /// @param BB The basic block.
    699   /// @return The smallest region, that contains BB or NULL, if there is no
    700   /// region containing BB.
    701   Region *operator[](BasicBlock *BB) const;
    702 
    703   /// @brief Return the exit of the maximal refined region, that starts at a
    704   /// BasicBlock.
    705   ///
    706   /// @param BB The BasicBlock the refined region starts.
    707   BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
    708 
    709   /// @brief Find the smallest region that contains two regions.
    710   ///
    711   /// @param A The first region.
    712   /// @param B The second region.
    713   /// @return The smallest region containing A and B.
    714   Region *getCommonRegion(Region* A, Region *B) const;
    715 
    716   /// @brief Find the smallest region that contains two basic blocks.
    717   ///
    718   /// @param A The first basic block.
    719   /// @param B The second basic block.
    720   /// @return The smallest region that contains A and B.
    721   Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
    722     return getCommonRegion(getRegionFor(A), getRegionFor(B));
    723   }
    724 
    725   /// @brief Find the smallest region that contains a set of regions.
    726   ///
    727   /// @param Regions A vector of regions.
    728   /// @return The smallest region that contains all regions in Regions.
    729   Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
    730 
    731   /// @brief Find the smallest region that contains a set of basic blocks.
    732   ///
    733   /// @param BBs A vector of basic blocks.
    734   /// @return The smallest region that contains all basic blocks in BBS.
    735   Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
    736 
    737   Region *getTopLevelRegion() const {
    738     return TopLevelRegion;
    739   }
    740 
    741   /// @brief Update RegionInfo after a basic block was split.
    742   ///
    743   /// @param NewBB The basic block that was created before OldBB.
    744   /// @param OldBB The old basic block.
    745   void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
    746 
    747   /// @brief Clear the Node Cache for all Regions.
    748   ///
    749   /// @see Region::clearNodeCache()
    750   void clearNodeCache() {
    751     if (TopLevelRegion)
    752       TopLevelRegion->clearNodeCache();
    753   }
    754 };
    755 
    756 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
    757   if (Node.isSubRegion())
    758     return OS << Node.getNodeAs<Region>()->getNameStr();
    759   else
    760     return OS << Node.getNodeAs<BasicBlock>()->getName();
    761 }
    762 } // End llvm namespace
    763 #endif
    764 
    765