Home | History | Annotate | Download | only in Analysis
      1 //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the cost model analysis. It provides a very basic cost
     11 // estimation for LLVM-IR. This analysis uses the services of the codegen
     12 // to approximate the cost of any IR instruction when lowered to machine
     13 // instructions. The cost results are unit-less and the cost number represents
     14 // the throughput of the machine assuming that all loads hit the cache, all
     15 // branches are predicted, etc. The cost numbers can be added in order to
     16 // compare two or more transformation alternatives.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/Analysis/Passes.h"
     22 #include "llvm/Analysis/TargetTransformInfo.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Value.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 using namespace llvm;
     32 
     33 #define CM_NAME "cost-model"
     34 #define DEBUG_TYPE CM_NAME
     35 
     36 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
     37                                      cl::Hidden,
     38                                      cl::desc("Recognize reduction patterns."));
     39 
     40 namespace {
     41   class CostModelAnalysis : public FunctionPass {
     42 
     43   public:
     44     static char ID; // Class identification, replacement for typeinfo
     45     CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
     46       initializeCostModelAnalysisPass(
     47         *PassRegistry::getPassRegistry());
     48     }
     49 
     50     /// Returns the expected cost of the instruction.
     51     /// Returns -1 if the cost is unknown.
     52     /// Note, this method does not cache the cost calculation and it
     53     /// can be expensive in some cases.
     54     unsigned getInstructionCost(const Instruction *I) const;
     55 
     56   private:
     57     void getAnalysisUsage(AnalysisUsage &AU) const override;
     58     bool runOnFunction(Function &F) override;
     59     void print(raw_ostream &OS, const Module*) const override;
     60 
     61     /// The function that we analyze.
     62     Function *F;
     63     /// Target information.
     64     const TargetTransformInfo *TTI;
     65   };
     66 }  // End of anonymous namespace
     67 
     68 // Register this pass.
     69 char CostModelAnalysis::ID = 0;
     70 static const char cm_name[] = "Cost Model Analysis";
     71 INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
     72 INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
     73 
     74 FunctionPass *llvm::createCostModelAnalysisPass() {
     75   return new CostModelAnalysis();
     76 }
     77 
     78 void
     79 CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     80   AU.setPreservesAll();
     81 }
     82 
     83 bool
     84 CostModelAnalysis::runOnFunction(Function &F) {
     85  this->F = &F;
     86  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
     87 
     88  return false;
     89 }
     90 
     91 static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
     92   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
     93     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
     94       return false;
     95   return true;
     96 }
     97 
     98 static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
     99   bool isAlternate = true;
    100   unsigned MaskSize = Mask.size();
    101 
    102   // Example: shufflevector A, B, <0,5,2,7>
    103   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    104     if (Mask[i] < 0)
    105       continue;
    106     isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
    107   }
    108 
    109   if (isAlternate)
    110     return true;
    111 
    112   isAlternate = true;
    113   // Example: shufflevector A, B, <4,1,6,3>
    114   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    115     if (Mask[i] < 0)
    116       continue;
    117     isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
    118   }
    119 
    120   return isAlternate;
    121 }
    122 
    123 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
    124   TargetTransformInfo::OperandValueKind OpInfo =
    125     TargetTransformInfo::OK_AnyValue;
    126 
    127   // Check for a splat of a constant or for a non uniform vector of constants.
    128   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
    129     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
    130     if (cast<Constant>(V)->getSplatValue() != nullptr)
    131       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
    132   }
    133 
    134   return OpInfo;
    135 }
    136 
    137 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
    138                                      unsigned Level) {
    139   // We don't need a shuffle if we just want to have element 0 in position 0 of
    140   // the vector.
    141   if (!SI && Level == 0 && IsLeft)
    142     return true;
    143   else if (!SI)
    144     return false;
    145 
    146   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
    147 
    148   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
    149   // we look at the left or right side.
    150   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
    151     Mask[i] = val;
    152 
    153   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
    154   if (Mask != ActualMask)
    155     return false;
    156 
    157   return true;
    158 }
    159 
    160 static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
    161                                           unsigned Level, unsigned NumLevels) {
    162   // Match one level of pairwise operations.
    163   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
    164   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
    165   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
    166   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
    167   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
    168   if (BinOp == nullptr)
    169     return false;
    170 
    171   assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
    172 
    173   unsigned Opcode = BinOp->getOpcode();
    174   Value *L = BinOp->getOperand(0);
    175   Value *R = BinOp->getOperand(1);
    176 
    177   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
    178   if (!LS && Level)
    179     return false;
    180   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
    181   if (!RS && Level)
    182     return false;
    183 
    184   // On level 0 we can omit one shufflevector instruction.
    185   if (!Level && !RS && !LS)
    186     return false;
    187 
    188   // Shuffle inputs must match.
    189   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
    190   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
    191   Value *NextLevelOp = nullptr;
    192   if (NextLevelOpR && NextLevelOpL) {
    193     // If we have two shuffles their operands must match.
    194     if (NextLevelOpL != NextLevelOpR)
    195       return false;
    196 
    197     NextLevelOp = NextLevelOpL;
    198   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
    199     // On the first level we can omit the shufflevector <0, undef,...>. So the
    200     // input to the other shufflevector <1, undef> must match with one of the
    201     // inputs to the current binary operation.
    202     // Example:
    203     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
    204     //  %BinOp        = fadd          %NextLevelOpL, %R
    205     if (NextLevelOpL && NextLevelOpL != R)
    206       return false;
    207     else if (NextLevelOpR && NextLevelOpR != L)
    208       return false;
    209 
    210     NextLevelOp = NextLevelOpL ? R : L;
    211   } else
    212     return false;
    213 
    214   // Check that the next levels binary operation exists and matches with the
    215   // current one.
    216   BinaryOperator *NextLevelBinOp = nullptr;
    217   if (Level + 1 != NumLevels) {
    218     if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
    219       return false;
    220     else if (NextLevelBinOp->getOpcode() != Opcode)
    221       return false;
    222   }
    223 
    224   // Shuffle mask for pairwise operation must match.
    225   if (matchPairwiseShuffleMask(LS, true, Level)) {
    226     if (!matchPairwiseShuffleMask(RS, false, Level))
    227       return false;
    228   } else if (matchPairwiseShuffleMask(RS, true, Level)) {
    229     if (!matchPairwiseShuffleMask(LS, false, Level))
    230       return false;
    231   } else
    232     return false;
    233 
    234   if (++Level == NumLevels)
    235     return true;
    236 
    237   // Match next level.
    238   return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
    239 }
    240 
    241 static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
    242                                    unsigned &Opcode, Type *&Ty) {
    243   if (!EnableReduxCost)
    244     return false;
    245 
    246   // Need to extract the first element.
    247   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
    248   unsigned Idx = ~0u;
    249   if (CI)
    250     Idx = CI->getZExtValue();
    251   if (Idx != 0)
    252     return false;
    253 
    254   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
    255   if (!RdxStart)
    256     return false;
    257 
    258   Type *VecTy = ReduxRoot->getOperand(0)->getType();
    259   unsigned NumVecElems = VecTy->getVectorNumElements();
    260   if (!isPowerOf2_32(NumVecElems))
    261     return false;
    262 
    263   // We look for a sequence of shuffle,shuffle,add triples like the following
    264   // that builds a pairwise reduction tree.
    265   //
    266   //  (X0, X1, X2, X3)
    267   //   (X0 + X1, X2 + X3, undef, undef)
    268   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
    269   //
    270   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
    271   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
    272   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
    273   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
    274   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
    275   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
    276   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
    277   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
    278   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
    279   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
    280   // %r = extractelement <4 x float> %bin.rdx8, i32 0
    281   if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
    282     return false;
    283 
    284   Opcode = RdxStart->getOpcode();
    285   Ty = VecTy;
    286 
    287   return true;
    288 }
    289 
    290 static std::pair<Value *, ShuffleVectorInst *>
    291 getShuffleAndOtherOprd(BinaryOperator *B) {
    292 
    293   Value *L = B->getOperand(0);
    294   Value *R = B->getOperand(1);
    295   ShuffleVectorInst *S = nullptr;
    296 
    297   if ((S = dyn_cast<ShuffleVectorInst>(L)))
    298     return std::make_pair(R, S);
    299 
    300   S = dyn_cast<ShuffleVectorInst>(R);
    301   return std::make_pair(L, S);
    302 }
    303 
    304 static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
    305                                           unsigned &Opcode, Type *&Ty) {
    306   if (!EnableReduxCost)
    307     return false;
    308 
    309   // Need to extract the first element.
    310   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
    311   unsigned Idx = ~0u;
    312   if (CI)
    313     Idx = CI->getZExtValue();
    314   if (Idx != 0)
    315     return false;
    316 
    317   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
    318   if (!RdxStart)
    319     return false;
    320   unsigned RdxOpcode = RdxStart->getOpcode();
    321 
    322   Type *VecTy = ReduxRoot->getOperand(0)->getType();
    323   unsigned NumVecElems = VecTy->getVectorNumElements();
    324   if (!isPowerOf2_32(NumVecElems))
    325     return false;
    326 
    327   // We look for a sequence of shuffles and adds like the following matching one
    328   // fadd, shuffle vector pair at a time.
    329   //
    330   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
    331   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
    332   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
    333   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
    334   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
    335   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
    336   // %r = extractelement <4 x float> %bin.rdx8, i32 0
    337 
    338   unsigned MaskStart = 1;
    339   Value *RdxOp = RdxStart;
    340   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
    341   unsigned NumVecElemsRemain = NumVecElems;
    342   while (NumVecElemsRemain - 1) {
    343     // Check for the right reduction operation.
    344     BinaryOperator *BinOp;
    345     if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
    346       return false;
    347     if (BinOp->getOpcode() != RdxOpcode)
    348       return false;
    349 
    350     Value *NextRdxOp;
    351     ShuffleVectorInst *Shuffle;
    352     std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
    353 
    354     // Check the current reduction operation and the shuffle use the same value.
    355     if (Shuffle == nullptr)
    356       return false;
    357     if (Shuffle->getOperand(0) != NextRdxOp)
    358       return false;
    359 
    360     // Check that shuffle masks matches.
    361     for (unsigned j = 0; j != MaskStart; ++j)
    362       ShuffleMask[j] = MaskStart + j;
    363     // Fill the rest of the mask with -1 for undef.
    364     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
    365 
    366     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    367     if (ShuffleMask != Mask)
    368       return false;
    369 
    370     RdxOp = NextRdxOp;
    371     NumVecElemsRemain /= 2;
    372     MaskStart *= 2;
    373   }
    374 
    375   Opcode = RdxOpcode;
    376   Ty = VecTy;
    377   return true;
    378 }
    379 
    380 unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
    381   if (!TTI)
    382     return -1;
    383 
    384   switch (I->getOpcode()) {
    385   case Instruction::GetElementPtr:{
    386     Type *ValTy = I->getOperand(0)->getType()->getPointerElementType();
    387     return TTI->getAddressComputationCost(ValTy);
    388   }
    389 
    390   case Instruction::Ret:
    391   case Instruction::PHI:
    392   case Instruction::Br: {
    393     return TTI->getCFInstrCost(I->getOpcode());
    394   }
    395   case Instruction::Add:
    396   case Instruction::FAdd:
    397   case Instruction::Sub:
    398   case Instruction::FSub:
    399   case Instruction::Mul:
    400   case Instruction::FMul:
    401   case Instruction::UDiv:
    402   case Instruction::SDiv:
    403   case Instruction::FDiv:
    404   case Instruction::URem:
    405   case Instruction::SRem:
    406   case Instruction::FRem:
    407   case Instruction::Shl:
    408   case Instruction::LShr:
    409   case Instruction::AShr:
    410   case Instruction::And:
    411   case Instruction::Or:
    412   case Instruction::Xor: {
    413     TargetTransformInfo::OperandValueKind Op1VK =
    414       getOperandInfo(I->getOperand(0));
    415     TargetTransformInfo::OperandValueKind Op2VK =
    416       getOperandInfo(I->getOperand(1));
    417     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
    418                                        Op2VK);
    419   }
    420   case Instruction::Select: {
    421     const SelectInst *SI = cast<SelectInst>(I);
    422     Type *CondTy = SI->getCondition()->getType();
    423     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
    424   }
    425   case Instruction::ICmp:
    426   case Instruction::FCmp: {
    427     Type *ValTy = I->getOperand(0)->getType();
    428     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
    429   }
    430   case Instruction::Store: {
    431     const StoreInst *SI = cast<StoreInst>(I);
    432     Type *ValTy = SI->getValueOperand()->getType();
    433     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
    434                                  SI->getAlignment(),
    435                                  SI->getPointerAddressSpace());
    436   }
    437   case Instruction::Load: {
    438     const LoadInst *LI = cast<LoadInst>(I);
    439     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
    440                                  LI->getAlignment(),
    441                                  LI->getPointerAddressSpace());
    442   }
    443   case Instruction::ZExt:
    444   case Instruction::SExt:
    445   case Instruction::FPToUI:
    446   case Instruction::FPToSI:
    447   case Instruction::FPExt:
    448   case Instruction::PtrToInt:
    449   case Instruction::IntToPtr:
    450   case Instruction::SIToFP:
    451   case Instruction::UIToFP:
    452   case Instruction::Trunc:
    453   case Instruction::FPTrunc:
    454   case Instruction::BitCast:
    455   case Instruction::AddrSpaceCast: {
    456     Type *SrcTy = I->getOperand(0)->getType();
    457     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
    458   }
    459   case Instruction::ExtractElement: {
    460     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
    461     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    462     unsigned Idx = -1;
    463     if (CI)
    464       Idx = CI->getZExtValue();
    465 
    466     // Try to match a reduction sequence (series of shufflevector and vector
    467     // adds followed by a extractelement).
    468     unsigned ReduxOpCode;
    469     Type *ReduxType;
    470 
    471     if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
    472       return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
    473     else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
    474       return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
    475 
    476     return TTI->getVectorInstrCost(I->getOpcode(),
    477                                    EEI->getOperand(0)->getType(), Idx);
    478   }
    479   case Instruction::InsertElement: {
    480     const InsertElementInst * IE = cast<InsertElementInst>(I);
    481     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
    482     unsigned Idx = -1;
    483     if (CI)
    484       Idx = CI->getZExtValue();
    485     return TTI->getVectorInstrCost(I->getOpcode(),
    486                                    IE->getType(), Idx);
    487   }
    488   case Instruction::ShuffleVector: {
    489     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    490     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
    491     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
    492     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    493 
    494     if (NumVecElems == Mask.size()) {
    495       if (isReverseVectorMask(Mask))
    496         return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
    497                                    0, nullptr);
    498       if (isAlternateVectorMask(Mask))
    499         return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
    500                                    VecTypOp0, 0, nullptr);
    501     }
    502 
    503     return -1;
    504   }
    505   case Instruction::Call:
    506     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    507       SmallVector<Type*, 4> Tys;
    508       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
    509         Tys.push_back(II->getArgOperand(J)->getType());
    510 
    511       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
    512                                         Tys);
    513     }
    514     return -1;
    515   default:
    516     // We don't have any information on this instruction.
    517     return -1;
    518   }
    519 }
    520 
    521 void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
    522   if (!F)
    523     return;
    524 
    525   for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
    526     for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
    527       Instruction *Inst = it;
    528       unsigned Cost = getInstructionCost(Inst);
    529       if (Cost != (unsigned)-1)
    530         OS << "Cost Model: Found an estimated cost of " << Cost;
    531       else
    532         OS << "Cost Model: Unknown cost";
    533 
    534       OS << " for instruction: "<< *Inst << "\n";
    535     }
    536   }
    537 }
    538