Home | History | Annotate | Download | only in CodeGen
      1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The inline spiller modifies the machine function directly instead of
     11 // inserting spills and restores in VirtRegMap.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "Spiller.h"
     16 #include "llvm/ADT/SetVector.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/TinyPtrVector.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     21 #include "llvm/CodeGen/LiveRangeEdit.h"
     22 #include "llvm/CodeGen/LiveStackAnalysis.h"
     23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineInstrBundle.h"
     30 #include "llvm/CodeGen/MachineLoopInfo.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/VirtRegMap.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "regalloc"
     42 
     43 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
     44 STATISTIC(NumSnippets,        "Number of spilled snippets");
     45 STATISTIC(NumSpills,          "Number of spills inserted");
     46 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
     47 STATISTIC(NumReloads,         "Number of reloads inserted");
     48 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
     49 STATISTIC(NumFolded,          "Number of folded stack accesses");
     50 STATISTIC(NumFoldedLoads,     "Number of folded loads");
     51 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
     52 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
     53 STATISTIC(NumHoists,          "Number of hoisted spills");
     54 
     55 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
     56                                      cl::desc("Disable inline spill hoisting"));
     57 
     58 namespace {
     59 class InlineSpiller : public Spiller {
     60   MachineFunction &MF;
     61   LiveIntervals &LIS;
     62   LiveStacks &LSS;
     63   AliasAnalysis *AA;
     64   MachineDominatorTree &MDT;
     65   MachineLoopInfo &Loops;
     66   VirtRegMap &VRM;
     67   MachineFrameInfo &MFI;
     68   MachineRegisterInfo &MRI;
     69   const TargetInstrInfo &TII;
     70   const TargetRegisterInfo &TRI;
     71   const MachineBlockFrequencyInfo &MBFI;
     72 
     73   // Variables that are valid during spill(), but used by multiple methods.
     74   LiveRangeEdit *Edit;
     75   LiveInterval *StackInt;
     76   int StackSlot;
     77   unsigned Original;
     78 
     79   // All registers to spill to StackSlot, including the main register.
     80   SmallVector<unsigned, 8> RegsToSpill;
     81 
     82   // All COPY instructions to/from snippets.
     83   // They are ignored since both operands refer to the same stack slot.
     84   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
     85 
     86   // Values that failed to remat at some point.
     87   SmallPtrSet<VNInfo*, 8> UsedValues;
     88 
     89 public:
     90   // Information about a value that was defined by a copy from a sibling
     91   // register.
     92   struct SibValueInfo {
     93     // True when all reaching defs were reloads: No spill is necessary.
     94     bool AllDefsAreReloads;
     95 
     96     // True when value is defined by an original PHI not from splitting.
     97     bool DefByOrigPHI;
     98 
     99     // True when the COPY defining this value killed its source.
    100     bool KillsSource;
    101 
    102     // The preferred register to spill.
    103     unsigned SpillReg;
    104 
    105     // The value of SpillReg that should be spilled.
    106     VNInfo *SpillVNI;
    107 
    108     // The block where SpillVNI should be spilled. Currently, this must be the
    109     // block containing SpillVNI->def.
    110     MachineBasicBlock *SpillMBB;
    111 
    112     // A defining instruction that is not a sibling copy or a reload, or NULL.
    113     // This can be used as a template for rematerialization.
    114     MachineInstr *DefMI;
    115 
    116     // List of values that depend on this one.  These values are actually the
    117     // same, but live range splitting has placed them in different registers,
    118     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
    119     // copies of the current value and phi-kills.  Usually only phi-kills cause
    120     // more than one dependent value.
    121     TinyPtrVector<VNInfo*> Deps;
    122 
    123     SibValueInfo(unsigned Reg, VNInfo *VNI)
    124       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
    125         SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {}
    126 
    127     // Returns true when a def has been found.
    128     bool hasDef() const { return DefByOrigPHI || DefMI; }
    129   };
    130 
    131 private:
    132   // Values in RegsToSpill defined by sibling copies.
    133   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
    134   SibValueMap SibValues;
    135 
    136   // Dead defs generated during spilling.
    137   SmallVector<MachineInstr*, 8> DeadDefs;
    138 
    139   ~InlineSpiller() {}
    140 
    141 public:
    142   InlineSpiller(MachineFunctionPass &pass,
    143                 MachineFunction &mf,
    144                 VirtRegMap &vrm)
    145     : MF(mf),
    146       LIS(pass.getAnalysis<LiveIntervals>()),
    147       LSS(pass.getAnalysis<LiveStacks>()),
    148       AA(&pass.getAnalysis<AliasAnalysis>()),
    149       MDT(pass.getAnalysis<MachineDominatorTree>()),
    150       Loops(pass.getAnalysis<MachineLoopInfo>()),
    151       VRM(vrm),
    152       MFI(*mf.getFrameInfo()),
    153       MRI(mf.getRegInfo()),
    154       TII(*mf.getTarget().getInstrInfo()),
    155       TRI(*mf.getTarget().getRegisterInfo()),
    156       MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
    157 
    158   void spill(LiveRangeEdit &) override;
    159 
    160 private:
    161   bool isSnippet(const LiveInterval &SnipLI);
    162   void collectRegsToSpill();
    163 
    164   bool isRegToSpill(unsigned Reg) {
    165     return std::find(RegsToSpill.begin(),
    166                      RegsToSpill.end(), Reg) != RegsToSpill.end();
    167   }
    168 
    169   bool isSibling(unsigned Reg);
    170   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
    171   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr);
    172   void analyzeSiblingValues();
    173 
    174   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
    175   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
    176 
    177   void markValueUsed(LiveInterval*, VNInfo*);
    178   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
    179   void reMaterializeAll();
    180 
    181   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
    182   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
    183                          MachineInstr *LoadMI = nullptr);
    184   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
    185   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
    186 
    187   void spillAroundUses(unsigned Reg);
    188   void spillAll();
    189 };
    190 }
    191 
    192 namespace llvm {
    193 Spiller *createInlineSpiller(MachineFunctionPass &pass,
    194                              MachineFunction &mf,
    195                              VirtRegMap &vrm) {
    196   return new InlineSpiller(pass, mf, vrm);
    197 }
    198 }
    199 
    200 //===----------------------------------------------------------------------===//
    201 //                                Snippets
    202 //===----------------------------------------------------------------------===//
    203 
    204 // When spilling a virtual register, we also spill any snippets it is connected
    205 // to. The snippets are small live ranges that only have a single real use,
    206 // leftovers from live range splitting. Spilling them enables memory operand
    207 // folding or tightens the live range around the single use.
    208 //
    209 // This minimizes register pressure and maximizes the store-to-load distance for
    210 // spill slots which can be important in tight loops.
    211 
    212 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
    213 /// otherwise return 0.
    214 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
    215   if (!MI->isFullCopy())
    216     return 0;
    217   if (MI->getOperand(0).getReg() == Reg)
    218       return MI->getOperand(1).getReg();
    219   if (MI->getOperand(1).getReg() == Reg)
    220       return MI->getOperand(0).getReg();
    221   return 0;
    222 }
    223 
    224 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
    225 /// It is assumed that SnipLI is a virtual register with the same original as
    226 /// Edit->getReg().
    227 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
    228   unsigned Reg = Edit->getReg();
    229 
    230   // A snippet is a tiny live range with only a single instruction using it
    231   // besides copies to/from Reg or spills/fills. We accept:
    232   //
    233   //   %snip = COPY %Reg / FILL fi#
    234   //   %snip = USE %snip
    235   //   %Reg = COPY %snip / SPILL %snip, fi#
    236   //
    237   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    238     return false;
    239 
    240   MachineInstr *UseMI = nullptr;
    241 
    242   // Check that all uses satisfy our criteria.
    243   for (MachineRegisterInfo::reg_instr_nodbg_iterator
    244        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
    245        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
    246     MachineInstr *MI = &*(RI++);
    247 
    248     // Allow copies to/from Reg.
    249     if (isFullCopyOf(MI, Reg))
    250       continue;
    251 
    252     // Allow stack slot loads.
    253     int FI;
    254     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
    255       continue;
    256 
    257     // Allow stack slot stores.
    258     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
    259       continue;
    260 
    261     // Allow a single additional instruction.
    262     if (UseMI && MI != UseMI)
    263       return false;
    264     UseMI = MI;
    265   }
    266   return true;
    267 }
    268 
    269 /// collectRegsToSpill - Collect live range snippets that only have a single
    270 /// real use.
    271 void InlineSpiller::collectRegsToSpill() {
    272   unsigned Reg = Edit->getReg();
    273 
    274   // Main register always spills.
    275   RegsToSpill.assign(1, Reg);
    276   SnippetCopies.clear();
    277 
    278   // Snippets all have the same original, so there can't be any for an original
    279   // register.
    280   if (Original == Reg)
    281     return;
    282 
    283   for (MachineRegisterInfo::reg_instr_iterator
    284        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
    285     MachineInstr *MI = &*(RI++);
    286     unsigned SnipReg = isFullCopyOf(MI, Reg);
    287     if (!isSibling(SnipReg))
    288       continue;
    289     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    290     if (!isSnippet(SnipLI))
    291       continue;
    292     SnippetCopies.insert(MI);
    293     if (isRegToSpill(SnipReg))
    294       continue;
    295     RegsToSpill.push_back(SnipReg);
    296     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    297     ++NumSnippets;
    298   }
    299 }
    300 
    301 
    302 //===----------------------------------------------------------------------===//
    303 //                            Sibling Values
    304 //===----------------------------------------------------------------------===//
    305 
    306 // After live range splitting, some values to be spilled may be defined by
    307 // copies from sibling registers. We trace the sibling copies back to the
    308 // original value if it still exists. We need it for rematerialization.
    309 //
    310 // Even when the value can't be rematerialized, we still want to determine if
    311 // the value has already been spilled, or we may want to hoist the spill from a
    312 // loop.
    313 
    314 bool InlineSpiller::isSibling(unsigned Reg) {
    315   return TargetRegisterInfo::isVirtualRegister(Reg) &&
    316            VRM.getOriginal(Reg) == Original;
    317 }
    318 
    319 #ifndef NDEBUG
    320 static raw_ostream &operator<<(raw_ostream &OS,
    321                                const InlineSpiller::SibValueInfo &SVI) {
    322   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
    323      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
    324   if (SVI.SpillMBB)
    325     OS << " in BB#" << SVI.SpillMBB->getNumber();
    326   if (SVI.AllDefsAreReloads)
    327     OS << " all-reloads";
    328   if (SVI.DefByOrigPHI)
    329     OS << " orig-phi";
    330   if (SVI.KillsSource)
    331     OS << " kill";
    332   OS << " deps[";
    333   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
    334     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
    335   OS << " ]";
    336   if (SVI.DefMI)
    337     OS << " def: " << *SVI.DefMI;
    338   else
    339     OS << '\n';
    340   return OS;
    341 }
    342 #endif
    343 
    344 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
    345 /// known.  Otherwise remember the dependency for later.
    346 ///
    347 /// @param SVIIter SibValues entry to propagate.
    348 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
    349 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
    350                                           VNInfo *VNI) {
    351   SibValueMap::value_type *SVI = &*SVIIter;
    352 
    353   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
    354   TinyPtrVector<VNInfo*> FirstDeps;
    355   if (VNI) {
    356     FirstDeps.push_back(VNI);
    357     SVI->second.Deps.push_back(VNI);
    358   }
    359 
    360   // Has the value been completely determined yet?  If not, defer propagation.
    361   if (!SVI->second.hasDef())
    362     return;
    363 
    364   // Work list of values to propagate.
    365   SmallSetVector<SibValueMap::value_type *, 8> WorkList;
    366   WorkList.insert(SVI);
    367 
    368   do {
    369     SVI = WorkList.pop_back_val();
    370     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
    371     VNI = nullptr;
    372 
    373     SibValueInfo &SV = SVI->second;
    374     if (!SV.SpillMBB)
    375       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
    376 
    377     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
    378                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
    379 
    380     assert(SV.hasDef() && "Propagating undefined value");
    381 
    382     // Should this value be propagated as a preferred spill candidate?  We don't
    383     // propagate values of registers that are about to spill.
    384     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
    385     unsigned SpillDepth = ~0u;
    386 
    387     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
    388          DepE = Deps->end(); DepI != DepE; ++DepI) {
    389       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
    390       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
    391       SibValueInfo &DepSV = DepSVI->second;
    392       if (!DepSV.SpillMBB)
    393         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
    394 
    395       bool Changed = false;
    396 
    397       // Propagate defining instruction.
    398       if (!DepSV.hasDef()) {
    399         Changed = true;
    400         DepSV.DefMI = SV.DefMI;
    401         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
    402       }
    403 
    404       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
    405       // all predecessors.
    406       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
    407         Changed = true;
    408         DepSV.AllDefsAreReloads = false;
    409       }
    410 
    411       // Propagate best spill value.
    412       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
    413         if (SV.SpillMBB == DepSV.SpillMBB) {
    414           // DepSV is in the same block.  Hoist when dominated.
    415           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
    416             // This is an alternative def earlier in the same MBB.
    417             // Hoist the spill as far as possible in SpillMBB. This can ease
    418             // register pressure:
    419             //
    420             //   x = def
    421             //   y = use x
    422             //   s = copy x
    423             //
    424             // Hoisting the spill of s to immediately after the def removes the
    425             // interference between x and y:
    426             //
    427             //   x = def
    428             //   spill x
    429             //   y = use x<kill>
    430             //
    431             // This hoist only helps when the DepSV copy kills its source.
    432             Changed = true;
    433             DepSV.SpillReg = SV.SpillReg;
    434             DepSV.SpillVNI = SV.SpillVNI;
    435             DepSV.SpillMBB = SV.SpillMBB;
    436           }
    437         } else {
    438           // DepSV is in a different block.
    439           if (SpillDepth == ~0u)
    440             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
    441 
    442           // Also hoist spills to blocks with smaller loop depth, but make sure
    443           // that the new value dominates.  Non-phi dependents are always
    444           // dominated, phis need checking.
    445 
    446           const BranchProbability MarginProb(4, 5); // 80%
    447           // Hoist a spill to outer loop if there are multiple dependents (it
    448           // can be beneficial if more than one dependents are hoisted) or
    449           // if DepSV (the hoisting source) is hotter than SV (the hoisting
    450           // destination) (we add a 80% margin to bias a little towards
    451           // loop depth).
    452           bool HoistCondition =
    453             (MBFI.getBlockFreq(DepSV.SpillMBB) >=
    454              (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
    455             Deps->size() > 1;
    456 
    457           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
    458               HoistCondition &&
    459               (!DepSVI->first->isPHIDef() ||
    460                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
    461             Changed = true;
    462             DepSV.SpillReg = SV.SpillReg;
    463             DepSV.SpillVNI = SV.SpillVNI;
    464             DepSV.SpillMBB = SV.SpillMBB;
    465           }
    466         }
    467       }
    468 
    469       if (!Changed)
    470         continue;
    471 
    472       // Something changed in DepSVI. Propagate to dependents.
    473       WorkList.insert(&*DepSVI);
    474 
    475       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
    476             << DepSVI->first->def << " to:\t" << DepSV);
    477     }
    478   } while (!WorkList.empty());
    479 }
    480 
    481 /// traceSiblingValue - Trace a value that is about to be spilled back to the
    482 /// real defining instructions by looking through sibling copies. Always stay
    483 /// within the range of OrigVNI so the registers are known to carry the same
    484 /// value.
    485 ///
    486 /// Determine if the value is defined by all reloads, so spilling isn't
    487 /// necessary - the value is already in the stack slot.
    488 ///
    489 /// Return a defining instruction that may be a candidate for rematerialization.
    490 ///
    491 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
    492                                                VNInfo *OrigVNI) {
    493   // Check if a cached value already exists.
    494   SibValueMap::iterator SVI;
    495   bool Inserted;
    496   std::tie(SVI, Inserted) =
    497     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
    498   if (!Inserted) {
    499     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
    500                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
    501     return SVI->second.DefMI;
    502   }
    503 
    504   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
    505                << UseVNI->id << '@' << UseVNI->def << '\n');
    506 
    507   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
    508   // processed.
    509   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
    510   WorkList.push_back(std::make_pair(UseReg, UseVNI));
    511 
    512   do {
    513     unsigned Reg;
    514     VNInfo *VNI;
    515     std::tie(Reg, VNI) = WorkList.pop_back_val();
    516     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
    517                  << ":\t");
    518 
    519     // First check if this value has already been computed.
    520     SVI = SibValues.find(VNI);
    521     assert(SVI != SibValues.end() && "Missing SibValues entry");
    522 
    523     // Trace through PHI-defs created by live range splitting.
    524     if (VNI->isPHIDef()) {
    525       // Stop at original PHIs.  We don't know the value at the predecessors.
    526       if (VNI->def == OrigVNI->def) {
    527         DEBUG(dbgs() << "orig phi value\n");
    528         SVI->second.DefByOrigPHI = true;
    529         SVI->second.AllDefsAreReloads = false;
    530         propagateSiblingValue(SVI);
    531         continue;
    532       }
    533 
    534       // This is a PHI inserted by live range splitting.  We could trace the
    535       // live-out value from predecessor blocks, but that search can be very
    536       // expensive if there are many predecessors and many more PHIs as
    537       // generated by tail-dup when it sees an indirectbr.  Instead, look at
    538       // all the non-PHI defs that have the same value as OrigVNI.  They must
    539       // jointly dominate VNI->def.  This is not optimal since VNI may actually
    540       // be jointly dominated by a smaller subset of defs, so there is a change
    541       // we will miss a AllDefsAreReloads optimization.
    542 
    543       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
    544       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
    545       LiveInterval &LI = LIS.getInterval(Reg);
    546       LiveInterval &OrigLI = LIS.getInterval(Original);
    547 
    548       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
    549            VI != VE; ++VI) {
    550         VNInfo *VNI2 = *VI;
    551         if (VNI2->isUnused())
    552           continue;
    553         if (!OrigLI.containsOneValue() &&
    554             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
    555           continue;
    556         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
    557           PHIs.push_back(VNI2);
    558         else
    559           NonPHIs.push_back(VNI2);
    560       }
    561       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
    562                    << " phi-defs, and " << NonPHIs.size()
    563                    << " non-phi/orig defs\n");
    564 
    565       // Create entries for all the PHIs.  Don't add them to the worklist, we
    566       // are processing all of them in one go here.
    567       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    568         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
    569 
    570       // Add every PHI as a dependent of all the non-PHIs.
    571       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
    572         VNInfo *NonPHI = NonPHIs[i];
    573         // Known value? Try an insertion.
    574         std::tie(SVI, Inserted) =
    575           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
    576         // Add all the PHIs as dependents of NonPHI.
    577         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
    578           SVI->second.Deps.push_back(PHIs[pi]);
    579         // This is the first time we see NonPHI, add it to the worklist.
    580         if (Inserted)
    581           WorkList.push_back(std::make_pair(Reg, NonPHI));
    582         else
    583           // Propagate to all inserted PHIs, not just VNI.
    584           propagateSiblingValue(SVI);
    585       }
    586 
    587       // Next work list item.
    588       continue;
    589     }
    590 
    591     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    592     assert(MI && "Missing def");
    593 
    594     // Trace through sibling copies.
    595     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
    596       if (isSibling(SrcReg)) {
    597         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
    598         LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
    599         assert(SrcQ.valueIn() && "Copy from non-existing value");
    600         // Check if this COPY kills its source.
    601         SVI->second.KillsSource = SrcQ.isKill();
    602         VNInfo *SrcVNI = SrcQ.valueIn();
    603         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
    604                      << SrcVNI->id << '@' << SrcVNI->def
    605                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
    606         // Known sibling source value? Try an insertion.
    607         std::tie(SVI, Inserted) = SibValues.insert(
    608             std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
    609         // This is the first time we see Src, add it to the worklist.
    610         if (Inserted)
    611           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
    612         propagateSiblingValue(SVI, VNI);
    613         // Next work list item.
    614         continue;
    615       }
    616     }
    617 
    618     // Track reachable reloads.
    619     SVI->second.DefMI = MI;
    620     SVI->second.SpillMBB = MI->getParent();
    621     int FI;
    622     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
    623       DEBUG(dbgs() << "reload\n");
    624       propagateSiblingValue(SVI);
    625       // Next work list item.
    626       continue;
    627     }
    628 
    629     // Potential remat candidate.
    630     DEBUG(dbgs() << "def " << *MI);
    631     SVI->second.AllDefsAreReloads = false;
    632     propagateSiblingValue(SVI);
    633   } while (!WorkList.empty());
    634 
    635   // Look up the value we were looking for.  We already did this lookup at the
    636   // top of the function, but SibValues may have been invalidated.
    637   SVI = SibValues.find(UseVNI);
    638   assert(SVI != SibValues.end() && "Didn't compute requested info");
    639   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
    640   return SVI->second.DefMI;
    641 }
    642 
    643 /// analyzeSiblingValues - Trace values defined by sibling copies back to
    644 /// something that isn't a sibling copy.
    645 ///
    646 /// Keep track of values that may be rematerializable.
    647 void InlineSpiller::analyzeSiblingValues() {
    648   SibValues.clear();
    649 
    650   // No siblings at all?
    651   if (Edit->getReg() == Original)
    652     return;
    653 
    654   LiveInterval &OrigLI = LIS.getInterval(Original);
    655   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    656     unsigned Reg = RegsToSpill[i];
    657     LiveInterval &LI = LIS.getInterval(Reg);
    658     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
    659          VE = LI.vni_end(); VI != VE; ++VI) {
    660       VNInfo *VNI = *VI;
    661       if (VNI->isUnused())
    662         continue;
    663       MachineInstr *DefMI = nullptr;
    664       if (!VNI->isPHIDef()) {
    665        DefMI = LIS.getInstructionFromIndex(VNI->def);
    666        assert(DefMI && "No defining instruction");
    667       }
    668       // Check possible sibling copies.
    669       if (VNI->isPHIDef() || DefMI->isCopy()) {
    670         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
    671         assert(OrigVNI && "Def outside original live range");
    672         if (OrigVNI->def != VNI->def)
    673           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
    674       }
    675       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
    676         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
    677                      << VNI->def << " may remat from " << *DefMI);
    678       }
    679     }
    680   }
    681 }
    682 
    683 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
    684 /// a spill at a better location.
    685 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
    686   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
    687   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
    688   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
    689   SibValueMap::iterator I = SibValues.find(VNI);
    690   if (I == SibValues.end())
    691     return false;
    692 
    693   const SibValueInfo &SVI = I->second;
    694 
    695   // Let the normal folding code deal with the boring case.
    696   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
    697     return false;
    698 
    699   // SpillReg may have been deleted by remat and DCE.
    700   if (!LIS.hasInterval(SVI.SpillReg)) {
    701     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
    702     SibValues.erase(I);
    703     return false;
    704   }
    705 
    706   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
    707   if (!SibLI.containsValue(SVI.SpillVNI)) {
    708     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
    709     SibValues.erase(I);
    710     return false;
    711   }
    712 
    713   // Conservatively extend the stack slot range to the range of the original
    714   // value. We may be able to do better with stack slot coloring by being more
    715   // careful here.
    716   assert(StackInt && "No stack slot assigned yet.");
    717   LiveInterval &OrigLI = LIS.getInterval(Original);
    718   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    719   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
    720   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
    721                << *StackInt << '\n');
    722 
    723   // Already spilled everywhere.
    724   if (SVI.AllDefsAreReloads) {
    725     DEBUG(dbgs() << "\tno spill needed: " << SVI);
    726     ++NumOmitReloadSpill;
    727     return true;
    728   }
    729   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
    730   // any later spills of the same value.
    731   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
    732 
    733   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
    734   MachineBasicBlock::iterator MII;
    735   if (SVI.SpillVNI->isPHIDef())
    736     MII = MBB->SkipPHIsAndLabels(MBB->begin());
    737   else {
    738     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
    739     assert(DefMI && "Defining instruction disappeared");
    740     MII = DefMI;
    741     ++MII;
    742   }
    743   // Insert spill without kill flag immediately after def.
    744   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
    745                           MRI.getRegClass(SVI.SpillReg), &TRI);
    746   --MII; // Point to store instruction.
    747   LIS.InsertMachineInstrInMaps(MII);
    748   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
    749 
    750   ++NumSpills;
    751   ++NumHoists;
    752   return true;
    753 }
    754 
    755 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
    756 /// redundant spills of this value in SLI.reg and sibling copies.
    757 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
    758   assert(VNI && "Missing value");
    759   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    760   WorkList.push_back(std::make_pair(&SLI, VNI));
    761   assert(StackInt && "No stack slot assigned yet.");
    762 
    763   do {
    764     LiveInterval *LI;
    765     std::tie(LI, VNI) = WorkList.pop_back_val();
    766     unsigned Reg = LI->reg;
    767     DEBUG(dbgs() << "Checking redundant spills for "
    768                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
    769 
    770     // Regs to spill are taken care of.
    771     if (isRegToSpill(Reg))
    772       continue;
    773 
    774     // Add all of VNI's live range to StackInt.
    775     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    776     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
    777 
    778     // Find all spills and copies of VNI.
    779     for (MachineRegisterInfo::use_instr_nodbg_iterator
    780          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
    781          UI != E; ) {
    782       MachineInstr *MI = &*(UI++);
    783       if (!MI->isCopy() && !MI->mayStore())
    784         continue;
    785       SlotIndex Idx = LIS.getInstructionIndex(MI);
    786       if (LI->getVNInfoAt(Idx) != VNI)
    787         continue;
    788 
    789       // Follow sibling copies down the dominator tree.
    790       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
    791         if (isSibling(DstReg)) {
    792            LiveInterval &DstLI = LIS.getInterval(DstReg);
    793            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
    794            assert(DstVNI && "Missing defined value");
    795            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
    796            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
    797         }
    798         continue;
    799       }
    800 
    801       // Erase spills.
    802       int FI;
    803       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
    804         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
    805         // eliminateDeadDefs won't normally remove stores, so switch opcode.
    806         MI->setDesc(TII.get(TargetOpcode::KILL));
    807         DeadDefs.push_back(MI);
    808         ++NumSpillsRemoved;
    809         --NumSpills;
    810       }
    811     }
    812   } while (!WorkList.empty());
    813 }
    814 
    815 
    816 //===----------------------------------------------------------------------===//
    817 //                            Rematerialization
    818 //===----------------------------------------------------------------------===//
    819 
    820 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
    821 /// instruction cannot be eliminated. See through snippet copies
    822 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
    823   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    824   WorkList.push_back(std::make_pair(LI, VNI));
    825   do {
    826     std::tie(LI, VNI) = WorkList.pop_back_val();
    827     if (!UsedValues.insert(VNI))
    828       continue;
    829 
    830     if (VNI->isPHIDef()) {
    831       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
    832       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    833              PE = MBB->pred_end(); PI != PE; ++PI) {
    834         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
    835         if (PVNI)
    836           WorkList.push_back(std::make_pair(LI, PVNI));
    837       }
    838       continue;
    839     }
    840 
    841     // Follow snippet copies.
    842     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    843     if (!SnippetCopies.count(MI))
    844       continue;
    845     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    846     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
    847     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    848     assert(SnipVNI && "Snippet undefined before copy");
    849     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
    850   } while (!WorkList.empty());
    851 }
    852 
    853 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
    854 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
    855                                      MachineBasicBlock::iterator MI) {
    856   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
    857   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
    858 
    859   if (!ParentVNI) {
    860     DEBUG(dbgs() << "\tadding <undef> flags: ");
    861     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    862       MachineOperand &MO = MI->getOperand(i);
    863       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
    864         MO.setIsUndef();
    865     }
    866     DEBUG(dbgs() << UseIdx << '\t' << *MI);
    867     return true;
    868   }
    869 
    870   if (SnippetCopies.count(MI))
    871     return false;
    872 
    873   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
    874   LiveRangeEdit::Remat RM(ParentVNI);
    875   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
    876   if (SibI != SibValues.end())
    877     RM.OrigMI = SibI->second.DefMI;
    878   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
    879     markValueUsed(&VirtReg, ParentVNI);
    880     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
    881     return false;
    882   }
    883 
    884   // If the instruction also writes VirtReg.reg, it had better not require the
    885   // same register for uses and defs.
    886   SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    887   MIBundleOperands::VirtRegInfo RI =
    888     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
    889   if (RI.Tied) {
    890     markValueUsed(&VirtReg, ParentVNI);
    891     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
    892     return false;
    893   }
    894 
    895   // Before rematerializing into a register for a single instruction, try to
    896   // fold a load into the instruction. That avoids allocating a new register.
    897   if (RM.OrigMI->canFoldAsLoad() &&
    898       foldMemoryOperand(Ops, RM.OrigMI)) {
    899     Edit->markRematerialized(RM.ParentVNI);
    900     ++NumFoldedLoads;
    901     return true;
    902   }
    903 
    904   // Alocate a new register for the remat.
    905   unsigned NewVReg = Edit->createFrom(Original);
    906 
    907   // Finally we can rematerialize OrigMI before MI.
    908   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
    909                                            TRI);
    910   (void)DefIdx;
    911   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
    912                << *LIS.getInstructionFromIndex(DefIdx));
    913 
    914   // Replace operands
    915   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    916     MachineOperand &MO = MI->getOperand(Ops[i].second);
    917     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
    918       MO.setReg(NewVReg);
    919       MO.setIsKill();
    920     }
    921   }
    922   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI << '\n');
    923 
    924   ++NumRemats;
    925   return true;
    926 }
    927 
    928 /// reMaterializeAll - Try to rematerialize as many uses as possible,
    929 /// and trim the live ranges after.
    930 void InlineSpiller::reMaterializeAll() {
    931   // analyzeSiblingValues has already tested all relevant defining instructions.
    932   if (!Edit->anyRematerializable(AA))
    933     return;
    934 
    935   UsedValues.clear();
    936 
    937   // Try to remat before all uses of snippets.
    938   bool anyRemat = false;
    939   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    940     unsigned Reg = RegsToSpill[i];
    941     LiveInterval &LI = LIS.getInterval(Reg);
    942     for (MachineRegisterInfo::use_bundle_nodbg_iterator
    943          RI = MRI.use_bundle_nodbg_begin(Reg), E = MRI.use_bundle_nodbg_end();
    944          RI != E; ) {
    945       MachineInstr *MI = &*(RI++);
    946       anyRemat |= reMaterializeFor(LI, MI);
    947     }
    948   }
    949   if (!anyRemat)
    950     return;
    951 
    952   // Remove any values that were completely rematted.
    953   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    954     unsigned Reg = RegsToSpill[i];
    955     LiveInterval &LI = LIS.getInterval(Reg);
    956     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
    957          I != E; ++I) {
    958       VNInfo *VNI = *I;
    959       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
    960         continue;
    961       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    962       MI->addRegisterDead(Reg, &TRI);
    963       if (!MI->allDefsAreDead())
    964         continue;
    965       DEBUG(dbgs() << "All defs dead: " << *MI);
    966       DeadDefs.push_back(MI);
    967     }
    968   }
    969 
    970   // Eliminate dead code after remat. Note that some snippet copies may be
    971   // deleted here.
    972   if (DeadDefs.empty())
    973     return;
    974   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
    975   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
    976 
    977   // Get rid of deleted and empty intervals.
    978   unsigned ResultPos = 0;
    979   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    980     unsigned Reg = RegsToSpill[i];
    981     if (!LIS.hasInterval(Reg))
    982       continue;
    983 
    984     LiveInterval &LI = LIS.getInterval(Reg);
    985     if (LI.empty()) {
    986       Edit->eraseVirtReg(Reg);
    987       continue;
    988     }
    989 
    990     RegsToSpill[ResultPos++] = Reg;
    991   }
    992   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
    993   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
    994 }
    995 
    996 
    997 //===----------------------------------------------------------------------===//
    998 //                                 Spilling
    999 //===----------------------------------------------------------------------===//
   1000 
   1001 /// If MI is a load or store of StackSlot, it can be removed.
   1002 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
   1003   int FI = 0;
   1004   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
   1005   bool IsLoad = InstrReg;
   1006   if (!IsLoad)
   1007     InstrReg = TII.isStoreToStackSlot(MI, FI);
   1008 
   1009   // We have a stack access. Is it the right register and slot?
   1010   if (InstrReg != Reg || FI != StackSlot)
   1011     return false;
   1012 
   1013   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
   1014   LIS.RemoveMachineInstrFromMaps(MI);
   1015   MI->eraseFromParent();
   1016 
   1017   if (IsLoad) {
   1018     ++NumReloadsRemoved;
   1019     --NumReloads;
   1020   } else {
   1021     ++NumSpillsRemoved;
   1022     --NumSpills;
   1023   }
   1024 
   1025   return true;
   1026 }
   1027 
   1028 #if !defined(NDEBUG)
   1029 // Dump the range of instructions from B to E with their slot indexes.
   1030 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
   1031                                                MachineBasicBlock::iterator E,
   1032                                                LiveIntervals const &LIS,
   1033                                                const char *const header,
   1034                                                unsigned VReg =0) {
   1035   char NextLine = '\n';
   1036   char SlotIndent = '\t';
   1037 
   1038   if (std::next(B) == E) {
   1039     NextLine = ' ';
   1040     SlotIndent = ' ';
   1041   }
   1042 
   1043   dbgs() << '\t' << header << ": " << NextLine;
   1044 
   1045   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
   1046     SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
   1047 
   1048     // If a register was passed in and this instruction has it as a
   1049     // destination that is marked as an early clobber, print the
   1050     // early-clobber slot index.
   1051     if (VReg) {
   1052       MachineOperand *MO = I->findRegisterDefOperand(VReg);
   1053       if (MO && MO->isEarlyClobber())
   1054         Idx = Idx.getRegSlot(true);
   1055     }
   1056 
   1057     dbgs() << SlotIndent << Idx << '\t' << *I;
   1058   }
   1059 }
   1060 #endif
   1061 
   1062 /// foldMemoryOperand - Try folding stack slot references in Ops into their
   1063 /// instructions.
   1064 ///
   1065 /// @param Ops    Operand indices from analyzeVirtReg().
   1066 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
   1067 /// @return       True on success.
   1068 bool InlineSpiller::
   1069 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
   1070                   MachineInstr *LoadMI) {
   1071   if (Ops.empty())
   1072     return false;
   1073   // Don't attempt folding in bundles.
   1074   MachineInstr *MI = Ops.front().first;
   1075   if (Ops.back().first != MI || MI->isBundled())
   1076     return false;
   1077 
   1078   bool WasCopy = MI->isCopy();
   1079   unsigned ImpReg = 0;
   1080 
   1081   bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
   1082                        MI->getOpcode() == TargetOpcode::STACKMAP);
   1083 
   1084   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
   1085   // operands.
   1086   SmallVector<unsigned, 8> FoldOps;
   1087   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1088     unsigned Idx = Ops[i].second;
   1089     MachineOperand &MO = MI->getOperand(Idx);
   1090     if (MO.isImplicit()) {
   1091       ImpReg = MO.getReg();
   1092       continue;
   1093     }
   1094     // FIXME: Teach targets to deal with subregs.
   1095     if (!SpillSubRegs && MO.getSubReg())
   1096       return false;
   1097     // We cannot fold a load instruction into a def.
   1098     if (LoadMI && MO.isDef())
   1099       return false;
   1100     // Tied use operands should not be passed to foldMemoryOperand.
   1101     if (!MI->isRegTiedToDefOperand(Idx))
   1102       FoldOps.push_back(Idx);
   1103   }
   1104 
   1105   MachineInstrSpan MIS(MI);
   1106 
   1107   MachineInstr *FoldMI =
   1108                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
   1109                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
   1110   if (!FoldMI)
   1111     return false;
   1112 
   1113   // Remove LIS for any dead defs in the original MI not in FoldMI.
   1114   for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
   1115     if (!MO->isReg())
   1116       continue;
   1117     unsigned Reg = MO->getReg();
   1118     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
   1119         MRI.isReserved(Reg)) {
   1120       continue;
   1121     }
   1122     // Skip non-Defs, including undef uses and internal reads.
   1123     if (MO->isUse())
   1124       continue;
   1125     MIBundleOperands::PhysRegInfo RI =
   1126       MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
   1127     if (RI.Defines)
   1128       continue;
   1129     // FoldMI does not define this physreg. Remove the LI segment.
   1130     assert(MO->isDead() && "Cannot fold physreg def");
   1131     for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
   1132       if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
   1133         SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
   1134         if (VNInfo *VNI = LR->getVNInfoAt(Idx))
   1135           LR->removeValNo(VNI);
   1136       }
   1137     }
   1138   }
   1139 
   1140   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
   1141   MI->eraseFromParent();
   1142 
   1143   // Insert any new instructions other than FoldMI into the LIS maps.
   1144   assert(!MIS.empty() && "Unexpected empty span of instructions!");
   1145   for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
   1146        MII != End; ++MII)
   1147     if (&*MII != FoldMI)
   1148       LIS.InsertMachineInstrInMaps(&*MII);
   1149 
   1150   // TII.foldMemoryOperand may have left some implicit operands on the
   1151   // instruction.  Strip them.
   1152   if (ImpReg)
   1153     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
   1154       MachineOperand &MO = FoldMI->getOperand(i - 1);
   1155       if (!MO.isReg() || !MO.isImplicit())
   1156         break;
   1157       if (MO.getReg() == ImpReg)
   1158         FoldMI->RemoveOperand(i - 1);
   1159     }
   1160 
   1161   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
   1162                                            "folded"));
   1163 
   1164   if (!WasCopy)
   1165     ++NumFolded;
   1166   else if (Ops.front().second == 0)
   1167     ++NumSpills;
   1168   else
   1169     ++NumReloads;
   1170   return true;
   1171 }
   1172 
   1173 void InlineSpiller::insertReload(unsigned NewVReg,
   1174                                  SlotIndex Idx,
   1175                                  MachineBasicBlock::iterator MI) {
   1176   MachineBasicBlock &MBB = *MI->getParent();
   1177 
   1178   MachineInstrSpan MIS(MI);
   1179   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
   1180                            MRI.getRegClass(NewVReg), &TRI);
   1181 
   1182   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
   1183 
   1184   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
   1185                                            NewVReg));
   1186   ++NumReloads;
   1187 }
   1188 
   1189 /// insertSpill - Insert a spill of NewVReg after MI.
   1190 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
   1191                                  MachineBasicBlock::iterator MI) {
   1192   MachineBasicBlock &MBB = *MI->getParent();
   1193 
   1194   MachineInstrSpan MIS(MI);
   1195   TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
   1196                           MRI.getRegClass(NewVReg), &TRI);
   1197 
   1198   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
   1199 
   1200   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
   1201                                            "spill"));
   1202   ++NumSpills;
   1203 }
   1204 
   1205 /// spillAroundUses - insert spill code around each use of Reg.
   1206 void InlineSpiller::spillAroundUses(unsigned Reg) {
   1207   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
   1208   LiveInterval &OldLI = LIS.getInterval(Reg);
   1209 
   1210   // Iterate over instructions using Reg.
   1211   for (MachineRegisterInfo::reg_bundle_iterator
   1212        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
   1213        RegI != E; ) {
   1214     MachineInstr *MI = &*(RegI++);
   1215 
   1216     // Debug values are not allowed to affect codegen.
   1217     if (MI->isDebugValue()) {
   1218       // Modify DBG_VALUE now that the value is in a spill slot.
   1219       bool IsIndirect = MI->isIndirectDebugValue();
   1220       uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
   1221       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
   1222       DebugLoc DL = MI->getDebugLoc();
   1223       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
   1224       MachineBasicBlock *MBB = MI->getParent();
   1225       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
   1226           .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
   1227       continue;
   1228     }
   1229 
   1230     // Ignore copies to/from snippets. We'll delete them.
   1231     if (SnippetCopies.count(MI))
   1232       continue;
   1233 
   1234     // Stack slot accesses may coalesce away.
   1235     if (coalesceStackAccess(MI, Reg))
   1236       continue;
   1237 
   1238     // Analyze instruction.
   1239     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
   1240     MIBundleOperands::VirtRegInfo RI =
   1241       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
   1242 
   1243     // Find the slot index where this instruction reads and writes OldLI.
   1244     // This is usually the def slot, except for tied early clobbers.
   1245     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
   1246     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
   1247       if (SlotIndex::isSameInstr(Idx, VNI->def))
   1248         Idx = VNI->def;
   1249 
   1250     // Check for a sibling copy.
   1251     unsigned SibReg = isFullCopyOf(MI, Reg);
   1252     if (SibReg && isSibling(SibReg)) {
   1253       // This may actually be a copy between snippets.
   1254       if (isRegToSpill(SibReg)) {
   1255         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
   1256         SnippetCopies.insert(MI);
   1257         continue;
   1258       }
   1259       if (RI.Writes) {
   1260         // Hoist the spill of a sib-reg copy.
   1261         if (hoistSpill(OldLI, MI)) {
   1262           // This COPY is now dead, the value is already in the stack slot.
   1263           MI->getOperand(0).setIsDead();
   1264           DeadDefs.push_back(MI);
   1265           continue;
   1266         }
   1267       } else {
   1268         // This is a reload for a sib-reg copy. Drop spills downstream.
   1269         LiveInterval &SibLI = LIS.getInterval(SibReg);
   1270         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
   1271         // The COPY will fold to a reload below.
   1272       }
   1273     }
   1274 
   1275     // Attempt to fold memory ops.
   1276     if (foldMemoryOperand(Ops))
   1277       continue;
   1278 
   1279     // Create a new virtual register for spill/fill.
   1280     // FIXME: Infer regclass from instruction alone.
   1281     unsigned NewVReg = Edit->createFrom(Reg);
   1282 
   1283     if (RI.Reads)
   1284       insertReload(NewVReg, Idx, MI);
   1285 
   1286     // Rewrite instruction operands.
   1287     bool hasLiveDef = false;
   1288     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1289       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
   1290       MO.setReg(NewVReg);
   1291       if (MO.isUse()) {
   1292         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
   1293           MO.setIsKill();
   1294       } else {
   1295         if (!MO.isDead())
   1296           hasLiveDef = true;
   1297       }
   1298     }
   1299     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
   1300 
   1301     // FIXME: Use a second vreg if instruction has no tied ops.
   1302     if (RI.Writes)
   1303       if (hasLiveDef)
   1304         insertSpill(NewVReg, true, MI);
   1305   }
   1306 }
   1307 
   1308 /// spillAll - Spill all registers remaining after rematerialization.
   1309 void InlineSpiller::spillAll() {
   1310   // Update LiveStacks now that we are committed to spilling.
   1311   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
   1312     StackSlot = VRM.assignVirt2StackSlot(Original);
   1313     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
   1314     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
   1315   } else
   1316     StackInt = &LSS.getInterval(StackSlot);
   1317 
   1318   if (Original != Edit->getReg())
   1319     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
   1320 
   1321   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
   1322   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1323     StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
   1324                                      StackInt->getValNumInfo(0));
   1325   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
   1326 
   1327   // Spill around uses of all RegsToSpill.
   1328   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1329     spillAroundUses(RegsToSpill[i]);
   1330 
   1331   // Hoisted spills may cause dead code.
   1332   if (!DeadDefs.empty()) {
   1333     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
   1334     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
   1335   }
   1336 
   1337   // Finally delete the SnippetCopies.
   1338   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
   1339     for (MachineRegisterInfo::reg_instr_iterator
   1340          RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end();
   1341          RI != E; ) {
   1342       MachineInstr *MI = &*(RI++);
   1343       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
   1344       // FIXME: Do this with a LiveRangeEdit callback.
   1345       LIS.RemoveMachineInstrFromMaps(MI);
   1346       MI->eraseFromParent();
   1347     }
   1348   }
   1349 
   1350   // Delete all spilled registers.
   1351   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1352     Edit->eraseVirtReg(RegsToSpill[i]);
   1353 }
   1354 
   1355 void InlineSpiller::spill(LiveRangeEdit &edit) {
   1356   ++NumSpilledRanges;
   1357   Edit = &edit;
   1358   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
   1359          && "Trying to spill a stack slot.");
   1360   // Share a stack slot among all descendants of Original.
   1361   Original = VRM.getOriginal(edit.getReg());
   1362   StackSlot = VRM.getStackSlot(Original);
   1363   StackInt = nullptr;
   1364 
   1365   DEBUG(dbgs() << "Inline spilling "
   1366                << MRI.getRegClass(edit.getReg())->getName()
   1367                << ':' << edit.getParent()
   1368                << "\nFrom original " << PrintReg(Original) << '\n');
   1369   assert(edit.getParent().isSpillable() &&
   1370          "Attempting to spill already spilled value.");
   1371   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
   1372 
   1373   collectRegsToSpill();
   1374   analyzeSiblingValues();
   1375   reMaterializeAll();
   1376 
   1377   // Remat may handle everything.
   1378   if (!RegsToSpill.empty())
   1379     spillAll();
   1380 
   1381   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
   1382 }
   1383