Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a fast scheduler.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/SchedulerRegistry.h"
     15 #include "InstrEmitter.h"
     16 #include "ScheduleDAGSDNodes.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/SelectionDAGISel.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetRegisterInfo.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "pre-RA-sched"
     31 
     32 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     33 STATISTIC(NumDups,       "Number of duplicated nodes");
     34 STATISTIC(NumPRCopies,   "Number of physical copies");
     35 
     36 static RegisterScheduler
     37   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
     38                    createFastDAGScheduler);
     39 static RegisterScheduler
     40   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
     41                         createDAGLinearizer);
     42 
     43 
     44 namespace {
     45   /// FastPriorityQueue - A degenerate priority queue that considers
     46   /// all nodes to have the same priority.
     47   ///
     48   struct FastPriorityQueue {
     49     SmallVector<SUnit *, 16> Queue;
     50 
     51     bool empty() const { return Queue.empty(); }
     52 
     53     void push(SUnit *U) {
     54       Queue.push_back(U);
     55     }
     56 
     57     SUnit *pop() {
     58       if (empty()) return nullptr;
     59       SUnit *V = Queue.back();
     60       Queue.pop_back();
     61       return V;
     62     }
     63   };
     64 
     65 //===----------------------------------------------------------------------===//
     66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
     67 ///
     68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
     69 private:
     70   /// AvailableQueue - The priority queue to use for the available SUnits.
     71   FastPriorityQueue AvailableQueue;
     72 
     73   /// LiveRegDefs - A set of physical registers and their definition
     74   /// that are "live". These nodes must be scheduled before any other nodes that
     75   /// modifies the registers can be scheduled.
     76   unsigned NumLiveRegs;
     77   std::vector<SUnit*> LiveRegDefs;
     78   std::vector<unsigned> LiveRegCycles;
     79 
     80 public:
     81   ScheduleDAGFast(MachineFunction &mf)
     82     : ScheduleDAGSDNodes(mf) {}
     83 
     84   void Schedule() override;
     85 
     86   /// AddPred - adds a predecessor edge to SUnit SU.
     87   /// This returns true if this is a new predecessor.
     88   void AddPred(SUnit *SU, const SDep &D) {
     89     SU->addPred(D);
     90   }
     91 
     92   /// RemovePred - removes a predecessor edge from SUnit SU.
     93   /// This returns true if an edge was removed.
     94   void RemovePred(SUnit *SU, const SDep &D) {
     95     SU->removePred(D);
     96   }
     97 
     98 private:
     99   void ReleasePred(SUnit *SU, SDep *PredEdge);
    100   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
    101   void ScheduleNodeBottomUp(SUnit*, unsigned);
    102   SUnit *CopyAndMoveSuccessors(SUnit*);
    103   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    104                                 const TargetRegisterClass*,
    105                                 const TargetRegisterClass*,
    106                                 SmallVectorImpl<SUnit*>&);
    107   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
    108   void ListScheduleBottomUp();
    109 
    110   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
    111   bool forceUnitLatencies() const override { return true; }
    112 };
    113 }  // end anonymous namespace
    114 
    115 
    116 /// Schedule - Schedule the DAG using list scheduling.
    117 void ScheduleDAGFast::Schedule() {
    118   DEBUG(dbgs() << "********** List Scheduling **********\n");
    119 
    120   NumLiveRegs = 0;
    121   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
    122   LiveRegCycles.resize(TRI->getNumRegs(), 0);
    123 
    124   // Build the scheduling graph.
    125   BuildSchedGraph(nullptr);
    126 
    127   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    128           SUnits[su].dumpAll(this));
    129 
    130   // Execute the actual scheduling loop.
    131   ListScheduleBottomUp();
    132 }
    133 
    134 //===----------------------------------------------------------------------===//
    135 //  Bottom-Up Scheduling
    136 //===----------------------------------------------------------------------===//
    137 
    138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
    141   SUnit *PredSU = PredEdge->getSUnit();
    142 
    143 #ifndef NDEBUG
    144   if (PredSU->NumSuccsLeft == 0) {
    145     dbgs() << "*** Scheduling failed! ***\n";
    146     PredSU->dump(this);
    147     dbgs() << " has been released too many times!\n";
    148     llvm_unreachable(nullptr);
    149   }
    150 #endif
    151   --PredSU->NumSuccsLeft;
    152 
    153   // If all the node's successors are scheduled, this node is ready
    154   // to be scheduled. Ignore the special EntrySU node.
    155   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    156     PredSU->isAvailable = true;
    157     AvailableQueue.push(PredSU);
    158   }
    159 }
    160 
    161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
    162   // Bottom up: release predecessors
    163   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    164        I != E; ++I) {
    165     ReleasePred(SU, &*I);
    166     if (I->isAssignedRegDep()) {
    167       // This is a physical register dependency and it's impossible or
    168       // expensive to copy the register. Make sure nothing that can
    169       // clobber the register is scheduled between the predecessor and
    170       // this node.
    171       if (!LiveRegDefs[I->getReg()]) {
    172         ++NumLiveRegs;
    173         LiveRegDefs[I->getReg()] = I->getSUnit();
    174         LiveRegCycles[I->getReg()] = CurCycle;
    175       }
    176     }
    177   }
    178 }
    179 
    180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    181 /// count of its predecessors. If a predecessor pending count is zero, add it to
    182 /// the Available queue.
    183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
    184   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    185   DEBUG(SU->dump(this));
    186 
    187   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
    188   SU->setHeightToAtLeast(CurCycle);
    189   Sequence.push_back(SU);
    190 
    191   ReleasePredecessors(SU, CurCycle);
    192 
    193   // Release all the implicit physical register defs that are live.
    194   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    195        I != E; ++I) {
    196     if (I->isAssignedRegDep()) {
    197       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
    198         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    199         assert(LiveRegDefs[I->getReg()] == SU &&
    200                "Physical register dependency violated?");
    201         --NumLiveRegs;
    202         LiveRegDefs[I->getReg()] = nullptr;
    203         LiveRegCycles[I->getReg()] = 0;
    204       }
    205     }
    206   }
    207 
    208   SU->isScheduled = true;
    209 }
    210 
    211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    212 /// successors to the newly created node.
    213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
    214   if (SU->getNode()->getGluedNode())
    215     return nullptr;
    216 
    217   SDNode *N = SU->getNode();
    218   if (!N)
    219     return nullptr;
    220 
    221   SUnit *NewSU;
    222   bool TryUnfold = false;
    223   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    224     EVT VT = N->getValueType(i);
    225     if (VT == MVT::Glue)
    226       return nullptr;
    227     else if (VT == MVT::Other)
    228       TryUnfold = true;
    229   }
    230   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    231     const SDValue &Op = N->getOperand(i);
    232     EVT VT = Op.getNode()->getValueType(Op.getResNo());
    233     if (VT == MVT::Glue)
    234       return nullptr;
    235   }
    236 
    237   if (TryUnfold) {
    238     SmallVector<SDNode*, 2> NewNodes;
    239     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    240       return nullptr;
    241 
    242     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
    243     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    244 
    245     N = NewNodes[1];
    246     SDNode *LoadNode = NewNodes[0];
    247     unsigned NumVals = N->getNumValues();
    248     unsigned OldNumVals = SU->getNode()->getNumValues();
    249     for (unsigned i = 0; i != NumVals; ++i)
    250       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    251     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    252                                    SDValue(LoadNode, 1));
    253 
    254     SUnit *NewSU = newSUnit(N);
    255     assert(N->getNodeId() == -1 && "Node already inserted!");
    256     N->setNodeId(NewSU->NodeNum);
    257 
    258     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    259     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    260       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    261         NewSU->isTwoAddress = true;
    262         break;
    263       }
    264     }
    265     if (MCID.isCommutable())
    266       NewSU->isCommutable = true;
    267 
    268     // LoadNode may already exist. This can happen when there is another
    269     // load from the same location and producing the same type of value
    270     // but it has different alignment or volatileness.
    271     bool isNewLoad = true;
    272     SUnit *LoadSU;
    273     if (LoadNode->getNodeId() != -1) {
    274       LoadSU = &SUnits[LoadNode->getNodeId()];
    275       isNewLoad = false;
    276     } else {
    277       LoadSU = newSUnit(LoadNode);
    278       LoadNode->setNodeId(LoadSU->NodeNum);
    279     }
    280 
    281     SDep ChainPred;
    282     SmallVector<SDep, 4> ChainSuccs;
    283     SmallVector<SDep, 4> LoadPreds;
    284     SmallVector<SDep, 4> NodePreds;
    285     SmallVector<SDep, 4> NodeSuccs;
    286     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    287          I != E; ++I) {
    288       if (I->isCtrl())
    289         ChainPred = *I;
    290       else if (I->getSUnit()->getNode() &&
    291                I->getSUnit()->getNode()->isOperandOf(LoadNode))
    292         LoadPreds.push_back(*I);
    293       else
    294         NodePreds.push_back(*I);
    295     }
    296     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    297          I != E; ++I) {
    298       if (I->isCtrl())
    299         ChainSuccs.push_back(*I);
    300       else
    301         NodeSuccs.push_back(*I);
    302     }
    303 
    304     if (ChainPred.getSUnit()) {
    305       RemovePred(SU, ChainPred);
    306       if (isNewLoad)
    307         AddPred(LoadSU, ChainPred);
    308     }
    309     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
    310       const SDep &Pred = LoadPreds[i];
    311       RemovePred(SU, Pred);
    312       if (isNewLoad) {
    313         AddPred(LoadSU, Pred);
    314       }
    315     }
    316     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
    317       const SDep &Pred = NodePreds[i];
    318       RemovePred(SU, Pred);
    319       AddPred(NewSU, Pred);
    320     }
    321     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
    322       SDep D = NodeSuccs[i];
    323       SUnit *SuccDep = D.getSUnit();
    324       D.setSUnit(SU);
    325       RemovePred(SuccDep, D);
    326       D.setSUnit(NewSU);
    327       AddPred(SuccDep, D);
    328     }
    329     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
    330       SDep D = ChainSuccs[i];
    331       SUnit *SuccDep = D.getSUnit();
    332       D.setSUnit(SU);
    333       RemovePred(SuccDep, D);
    334       if (isNewLoad) {
    335         D.setSUnit(LoadSU);
    336         AddPred(SuccDep, D);
    337       }
    338     }
    339     if (isNewLoad) {
    340       SDep D(LoadSU, SDep::Barrier);
    341       D.setLatency(LoadSU->Latency);
    342       AddPred(NewSU, D);
    343     }
    344 
    345     ++NumUnfolds;
    346 
    347     if (NewSU->NumSuccsLeft == 0) {
    348       NewSU->isAvailable = true;
    349       return NewSU;
    350     }
    351     SU = NewSU;
    352   }
    353 
    354   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
    355   NewSU = Clone(SU);
    356 
    357   // New SUnit has the exact same predecessors.
    358   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    359        I != E; ++I)
    360     if (!I->isArtificial())
    361       AddPred(NewSU, *I);
    362 
    363   // Only copy scheduled successors. Cut them from old node's successor
    364   // list and move them over.
    365   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    366   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    367        I != E; ++I) {
    368     if (I->isArtificial())
    369       continue;
    370     SUnit *SuccSU = I->getSUnit();
    371     if (SuccSU->isScheduled) {
    372       SDep D = *I;
    373       D.setSUnit(NewSU);
    374       AddPred(SuccSU, D);
    375       D.setSUnit(SU);
    376       DelDeps.push_back(std::make_pair(SuccSU, D));
    377     }
    378   }
    379   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    380     RemovePred(DelDeps[i].first, DelDeps[i].second);
    381 
    382   ++NumDups;
    383   return NewSU;
    384 }
    385 
    386 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
    387 /// scheduled successors of the given SUnit to the last copy.
    388 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
    389                                               const TargetRegisterClass *DestRC,
    390                                               const TargetRegisterClass *SrcRC,
    391                                               SmallVectorImpl<SUnit*> &Copies) {
    392   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
    393   CopyFromSU->CopySrcRC = SrcRC;
    394   CopyFromSU->CopyDstRC = DestRC;
    395 
    396   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
    397   CopyToSU->CopySrcRC = DestRC;
    398   CopyToSU->CopyDstRC = SrcRC;
    399 
    400   // Only copy scheduled successors. Cut them from old node's successor
    401   // list and move them over.
    402   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    403   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    404        I != E; ++I) {
    405     if (I->isArtificial())
    406       continue;
    407     SUnit *SuccSU = I->getSUnit();
    408     if (SuccSU->isScheduled) {
    409       SDep D = *I;
    410       D.setSUnit(CopyToSU);
    411       AddPred(SuccSU, D);
    412       DelDeps.push_back(std::make_pair(SuccSU, *I));
    413     }
    414   }
    415   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
    416     RemovePred(DelDeps[i].first, DelDeps[i].second);
    417   }
    418   SDep FromDep(SU, SDep::Data, Reg);
    419   FromDep.setLatency(SU->Latency);
    420   AddPred(CopyFromSU, FromDep);
    421   SDep ToDep(CopyFromSU, SDep::Data, 0);
    422   ToDep.setLatency(CopyFromSU->Latency);
    423   AddPred(CopyToSU, ToDep);
    424 
    425   Copies.push_back(CopyFromSU);
    426   Copies.push_back(CopyToSU);
    427 
    428   ++NumPRCopies;
    429 }
    430 
    431 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
    432 /// definition of the specified node.
    433 /// FIXME: Move to SelectionDAG?
    434 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
    435                                  const TargetInstrInfo *TII) {
    436   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    437   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
    438   unsigned NumRes = MCID.getNumDefs();
    439   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
    440     if (Reg == *ImpDef)
    441       break;
    442     ++NumRes;
    443   }
    444   return N->getValueType(NumRes);
    445 }
    446 
    447 /// CheckForLiveRegDef - Return true and update live register vector if the
    448 /// specified register def of the specified SUnit clobbers any "live" registers.
    449 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
    450                                std::vector<SUnit*> &LiveRegDefs,
    451                                SmallSet<unsigned, 4> &RegAdded,
    452                                SmallVectorImpl<unsigned> &LRegs,
    453                                const TargetRegisterInfo *TRI) {
    454   bool Added = false;
    455   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    456     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
    457       if (RegAdded.insert(*AI)) {
    458         LRegs.push_back(*AI);
    459         Added = true;
    460       }
    461     }
    462   }
    463   return Added;
    464 }
    465 
    466 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
    467 /// scheduling of the given node to satisfy live physical register dependencies.
    468 /// If the specific node is the last one that's available to schedule, do
    469 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
    470 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
    471                                               SmallVectorImpl<unsigned> &LRegs){
    472   if (NumLiveRegs == 0)
    473     return false;
    474 
    475   SmallSet<unsigned, 4> RegAdded;
    476   // If this node would clobber any "live" register, then it's not ready.
    477   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    478        I != E; ++I) {
    479     if (I->isAssignedRegDep()) {
    480       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
    481                          RegAdded, LRegs, TRI);
    482     }
    483   }
    484 
    485   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    486     if (Node->getOpcode() == ISD::INLINEASM) {
    487       // Inline asm can clobber physical defs.
    488       unsigned NumOps = Node->getNumOperands();
    489       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
    490         --NumOps;  // Ignore the glue operand.
    491 
    492       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    493         unsigned Flags =
    494           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
    495         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    496 
    497         ++i; // Skip the ID value.
    498         if (InlineAsm::isRegDefKind(Flags) ||
    499             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
    500             InlineAsm::isClobberKind(Flags)) {
    501           // Check for def of register or earlyclobber register.
    502           for (; NumVals; --NumVals, ++i) {
    503             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
    504             if (TargetRegisterInfo::isPhysicalRegister(Reg))
    505               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    506           }
    507         } else
    508           i += NumVals;
    509       }
    510       continue;
    511     }
    512     if (!Node->isMachineOpcode())
    513       continue;
    514     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    515     if (!MCID.ImplicitDefs)
    516       continue;
    517     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
    518       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    519     }
    520   }
    521   return !LRegs.empty();
    522 }
    523 
    524 
    525 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
    526 /// schedulers.
    527 void ScheduleDAGFast::ListScheduleBottomUp() {
    528   unsigned CurCycle = 0;
    529 
    530   // Release any predecessors of the special Exit node.
    531   ReleasePredecessors(&ExitSU, CurCycle);
    532 
    533   // Add root to Available queue.
    534   if (!SUnits.empty()) {
    535     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    536     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    537     RootSU->isAvailable = true;
    538     AvailableQueue.push(RootSU);
    539   }
    540 
    541   // While Available queue is not empty, grab the node with the highest
    542   // priority. If it is not ready put it back.  Schedule the node.
    543   SmallVector<SUnit*, 4> NotReady;
    544   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
    545   Sequence.reserve(SUnits.size());
    546   while (!AvailableQueue.empty()) {
    547     bool Delayed = false;
    548     LRegsMap.clear();
    549     SUnit *CurSU = AvailableQueue.pop();
    550     while (CurSU) {
    551       SmallVector<unsigned, 4> LRegs;
    552       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
    553         break;
    554       Delayed = true;
    555       LRegsMap.insert(std::make_pair(CurSU, LRegs));
    556 
    557       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
    558       NotReady.push_back(CurSU);
    559       CurSU = AvailableQueue.pop();
    560     }
    561 
    562     // All candidates are delayed due to live physical reg dependencies.
    563     // Try code duplication or inserting cross class copies
    564     // to resolve it.
    565     if (Delayed && !CurSU) {
    566       if (!CurSU) {
    567         // Try duplicating the nodes that produces these
    568         // "expensive to copy" values to break the dependency. In case even
    569         // that doesn't work, insert cross class copies.
    570         SUnit *TrySU = NotReady[0];
    571         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
    572         assert(LRegs.size() == 1 && "Can't handle this yet!");
    573         unsigned Reg = LRegs[0];
    574         SUnit *LRDef = LiveRegDefs[Reg];
    575         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    576         const TargetRegisterClass *RC =
    577           TRI->getMinimalPhysRegClass(Reg, VT);
    578         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
    579 
    580         // If cross copy register class is the same as RC, then it must be
    581         // possible copy the value directly. Do not try duplicate the def.
    582         // If cross copy register class is not the same as RC, then it's
    583         // possible to copy the value but it require cross register class copies
    584         // and it is expensive.
    585         // If cross copy register class is null, then it's not possible to copy
    586         // the value at all.
    587         SUnit *NewDef = nullptr;
    588         if (DestRC != RC) {
    589           NewDef = CopyAndMoveSuccessors(LRDef);
    590           if (!DestRC && !NewDef)
    591             report_fatal_error("Can't handle live physical "
    592                                "register dependency!");
    593         }
    594         if (!NewDef) {
    595           // Issue copies, these can be expensive cross register class copies.
    596           SmallVector<SUnit*, 2> Copies;
    597           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
    598           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
    599                        << " to SU #" << Copies.front()->NodeNum << "\n");
    600           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
    601           NewDef = Copies.back();
    602         }
    603 
    604         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
    605                      << " to SU #" << TrySU->NodeNum << "\n");
    606         LiveRegDefs[Reg] = NewDef;
    607         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
    608         TrySU->isAvailable = false;
    609         CurSU = NewDef;
    610       }
    611 
    612       if (!CurSU) {
    613         llvm_unreachable("Unable to resolve live physical register dependencies!");
    614       }
    615     }
    616 
    617     // Add the nodes that aren't ready back onto the available list.
    618     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
    619       NotReady[i]->isPending = false;
    620       // May no longer be available due to backtracking.
    621       if (NotReady[i]->isAvailable)
    622         AvailableQueue.push(NotReady[i]);
    623     }
    624     NotReady.clear();
    625 
    626     if (CurSU)
    627       ScheduleNodeBottomUp(CurSU, CurCycle);
    628     ++CurCycle;
    629   }
    630 
    631   // Reverse the order since it is bottom up.
    632   std::reverse(Sequence.begin(), Sequence.end());
    633 
    634 #ifndef NDEBUG
    635   VerifyScheduledSequence(/*isBottomUp=*/true);
    636 #endif
    637 }
    638 
    639 
    640 namespace {
    641 //===----------------------------------------------------------------------===//
    642 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
    643 // DAG in topological order.
    644 // IMPORTANT: this may not work for targets with phyreg dependency.
    645 //
    646 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
    647 public:
    648   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
    649 
    650   void Schedule() override;
    651 
    652   MachineBasicBlock *
    653     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
    654 
    655 private:
    656   std::vector<SDNode*> Sequence;
    657   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
    658 
    659   void ScheduleNode(SDNode *N);
    660 };
    661 } // end anonymous namespace
    662 
    663 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
    664   if (N->getNodeId() != 0)
    665     llvm_unreachable(nullptr);
    666 
    667   if (!N->isMachineOpcode() &&
    668       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
    669     // These nodes do not need to be translated into MIs.
    670     return;
    671 
    672   DEBUG(dbgs() << "\n*** Scheduling: ");
    673   DEBUG(N->dump(DAG));
    674   Sequence.push_back(N);
    675 
    676   unsigned NumOps = N->getNumOperands();
    677   if (unsigned NumLeft = NumOps) {
    678     SDNode *GluedOpN = nullptr;
    679     do {
    680       const SDValue &Op = N->getOperand(NumLeft-1);
    681       SDNode *OpN = Op.getNode();
    682 
    683       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
    684         // Schedule glue operand right above N.
    685         GluedOpN = OpN;
    686         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
    687         OpN->setNodeId(0);
    688         ScheduleNode(OpN);
    689         continue;
    690       }
    691 
    692       if (OpN == GluedOpN)
    693         // Glue operand is already scheduled.
    694         continue;
    695 
    696       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
    697       if (DI != GluedMap.end() && DI->second != N)
    698         // Users of glues are counted against the glued users.
    699         OpN = DI->second;
    700 
    701       unsigned Degree = OpN->getNodeId();
    702       assert(Degree > 0 && "Predecessor over-released!");
    703       OpN->setNodeId(--Degree);
    704       if (Degree == 0)
    705         ScheduleNode(OpN);
    706     } while (--NumLeft);
    707   }
    708 }
    709 
    710 /// findGluedUser - Find the representative use of a glue value by walking
    711 /// the use chain.
    712 static SDNode *findGluedUser(SDNode *N) {
    713   while (SDNode *Glued = N->getGluedUser())
    714     N = Glued;
    715   return N;
    716 }
    717 
    718 void ScheduleDAGLinearize::Schedule() {
    719   DEBUG(dbgs() << "********** DAG Linearization **********\n");
    720 
    721   SmallVector<SDNode*, 8> Glues;
    722   unsigned DAGSize = 0;
    723   for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
    724          E = DAG->allnodes_end(); I != E; ++I) {
    725     SDNode *N = I;
    726 
    727     // Use node id to record degree.
    728     unsigned Degree = N->use_size();
    729     N->setNodeId(Degree);
    730     unsigned NumVals = N->getNumValues();
    731     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
    732         N->hasAnyUseOfValue(NumVals-1)) {
    733       SDNode *User = findGluedUser(N);
    734       if (User) {
    735         Glues.push_back(N);
    736         GluedMap.insert(std::make_pair(N, User));
    737       }
    738     }
    739 
    740     if (N->isMachineOpcode() ||
    741         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
    742       ++DAGSize;
    743   }
    744 
    745   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
    746     SDNode *Glue = Glues[i];
    747     SDNode *GUser = GluedMap[Glue];
    748     unsigned Degree = Glue->getNodeId();
    749     unsigned UDegree = GUser->getNodeId();
    750 
    751     // Glue user must be scheduled together with the glue operand. So other
    752     // users of the glue operand must be treated as its users.
    753     SDNode *ImmGUser = Glue->getGluedUser();
    754     for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
    755          ui != ue; ++ui)
    756       if (*ui == ImmGUser)
    757         --Degree;
    758     GUser->setNodeId(UDegree + Degree);
    759     Glue->setNodeId(1);
    760   }
    761 
    762   Sequence.reserve(DAGSize);
    763   ScheduleNode(DAG->getRoot().getNode());
    764 }
    765 
    766 MachineBasicBlock*
    767 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
    768   InstrEmitter Emitter(BB, InsertPos);
    769   DenseMap<SDValue, unsigned> VRBaseMap;
    770 
    771   DEBUG({
    772       dbgs() << "\n*** Final schedule ***\n";
    773     });
    774 
    775   // FIXME: Handle dbg_values.
    776   unsigned NumNodes = Sequence.size();
    777   for (unsigned i = 0; i != NumNodes; ++i) {
    778     SDNode *N = Sequence[NumNodes-i-1];
    779     DEBUG(N->dump(DAG));
    780     Emitter.EmitNode(N, false, false, VRBaseMap);
    781   }
    782 
    783   DEBUG(dbgs() << '\n');
    784 
    785   InsertPos = Emitter.getInsertPos();
    786   return Emitter.getBlock();
    787 }
    788 
    789 //===----------------------------------------------------------------------===//
    790 //                         Public Constructor Functions
    791 //===----------------------------------------------------------------------===//
    792 
    793 llvm::ScheduleDAGSDNodes *
    794 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
    795   return new ScheduleDAGFast(*IS->MF);
    796 }
    797 
    798 llvm::ScheduleDAGSDNodes *
    799 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
    800   return new ScheduleDAGLinearize(*IS->MF);
    801 }
    802