Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the VirtRegMap class.
     11 //
     12 // It also contains implementations of the Spiller interface, which, given a
     13 // virtual register map and a machine function, eliminates all virtual
     14 // references by replacing them with physical register references - adding spill
     15 // code as necessary.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/VirtRegMap.h"
     20 #include "LiveDebugVariables.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SparseSet.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     25 #include "llvm/CodeGen/LiveStackAnalysis.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Compiler.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "regalloc"
     43 
     44 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
     45 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
     46 
     47 //===----------------------------------------------------------------------===//
     48 //  VirtRegMap implementation
     49 //===----------------------------------------------------------------------===//
     50 
     51 char VirtRegMap::ID = 0;
     52 
     53 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
     54 
     55 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
     56   MRI = &mf.getRegInfo();
     57   TII = mf.getTarget().getInstrInfo();
     58   TRI = mf.getTarget().getRegisterInfo();
     59   MF = &mf;
     60 
     61   Virt2PhysMap.clear();
     62   Virt2StackSlotMap.clear();
     63   Virt2SplitMap.clear();
     64 
     65   grow();
     66   return false;
     67 }
     68 
     69 void VirtRegMap::grow() {
     70   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
     71   Virt2PhysMap.resize(NumRegs);
     72   Virt2StackSlotMap.resize(NumRegs);
     73   Virt2SplitMap.resize(NumRegs);
     74 }
     75 
     76 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
     77   int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
     78                                                       RC->getAlignment());
     79   ++NumSpillSlots;
     80   return SS;
     81 }
     82 
     83 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
     84   unsigned Hint = MRI->getSimpleHint(VirtReg);
     85   if (!Hint)
     86     return 0;
     87   if (TargetRegisterInfo::isVirtualRegister(Hint))
     88     Hint = getPhys(Hint);
     89   return getPhys(VirtReg) == Hint;
     90 }
     91 
     92 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
     93   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
     94   if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
     95     return true;
     96   if (TargetRegisterInfo::isVirtualRegister(Hint.second))
     97     return hasPhys(Hint.second);
     98   return false;
     99 }
    100 
    101 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
    102   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
    103   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
    104          "attempt to assign stack slot to already spilled register");
    105   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
    106   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
    107 }
    108 
    109 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
    110   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
    111   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
    112          "attempt to assign stack slot to already spilled register");
    113   assert((SS >= 0 ||
    114           (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
    115          "illegal fixed frame index");
    116   Virt2StackSlotMap[virtReg] = SS;
    117 }
    118 
    119 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
    120   OS << "********** REGISTER MAP **********\n";
    121   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    122     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    123     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
    124       OS << '[' << PrintReg(Reg, TRI) << " -> "
    125          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
    126          << MRI->getRegClass(Reg)->getName() << "\n";
    127     }
    128   }
    129 
    130   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    131     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    132     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
    133       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
    134          << "] " << MRI->getRegClass(Reg)->getName() << "\n";
    135     }
    136   }
    137   OS << '\n';
    138 }
    139 
    140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    141 void VirtRegMap::dump() const {
    142   print(dbgs());
    143 }
    144 #endif
    145 
    146 //===----------------------------------------------------------------------===//
    147 //                              VirtRegRewriter
    148 //===----------------------------------------------------------------------===//
    149 //
    150 // The VirtRegRewriter is the last of the register allocator passes.
    151 // It rewrites virtual registers to physical registers as specified in the
    152 // VirtRegMap analysis. It also updates live-in information on basic blocks
    153 // according to LiveIntervals.
    154 //
    155 namespace {
    156 class VirtRegRewriter : public MachineFunctionPass {
    157   MachineFunction *MF;
    158   const TargetMachine *TM;
    159   const TargetRegisterInfo *TRI;
    160   const TargetInstrInfo *TII;
    161   MachineRegisterInfo *MRI;
    162   SlotIndexes *Indexes;
    163   LiveIntervals *LIS;
    164   VirtRegMap *VRM;
    165   SparseSet<unsigned> PhysRegs;
    166 
    167   void rewrite();
    168   void addMBBLiveIns();
    169 public:
    170   static char ID;
    171   VirtRegRewriter() : MachineFunctionPass(ID) {}
    172 
    173   void getAnalysisUsage(AnalysisUsage &AU) const override;
    174 
    175   bool runOnMachineFunction(MachineFunction&) override;
    176 };
    177 } // end anonymous namespace
    178 
    179 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
    180 
    181 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
    182                       "Virtual Register Rewriter", false, false)
    183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    184 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    185 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
    186 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
    187 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
    188 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
    189                     "Virtual Register Rewriter", false, false)
    190 
    191 char VirtRegRewriter::ID = 0;
    192 
    193 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
    194   AU.setPreservesCFG();
    195   AU.addRequired<LiveIntervals>();
    196   AU.addRequired<SlotIndexes>();
    197   AU.addPreserved<SlotIndexes>();
    198   AU.addRequired<LiveDebugVariables>();
    199   AU.addRequired<LiveStacks>();
    200   AU.addPreserved<LiveStacks>();
    201   AU.addRequired<VirtRegMap>();
    202   MachineFunctionPass::getAnalysisUsage(AU);
    203 }
    204 
    205 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
    206   MF = &fn;
    207   TM = &MF->getTarget();
    208   TRI = TM->getRegisterInfo();
    209   TII = TM->getInstrInfo();
    210   MRI = &MF->getRegInfo();
    211   Indexes = &getAnalysis<SlotIndexes>();
    212   LIS = &getAnalysis<LiveIntervals>();
    213   VRM = &getAnalysis<VirtRegMap>();
    214   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
    215                << "********** Function: "
    216                << MF->getName() << '\n');
    217   DEBUG(VRM->dump());
    218 
    219   // Add kill flags while we still have virtual registers.
    220   LIS->addKillFlags(VRM);
    221 
    222   // Live-in lists on basic blocks are required for physregs.
    223   addMBBLiveIns();
    224 
    225   // Rewrite virtual registers.
    226   rewrite();
    227 
    228   // Write out new DBG_VALUE instructions.
    229   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
    230 
    231   // All machine operands and other references to virtual registers have been
    232   // replaced. Remove the virtual registers and release all the transient data.
    233   VRM->clearAllVirt();
    234   MRI->clearVirtRegs();
    235   return true;
    236 }
    237 
    238 // Compute MBB live-in lists from virtual register live ranges and their
    239 // assignments.
    240 void VirtRegRewriter::addMBBLiveIns() {
    241   SmallVector<MachineBasicBlock*, 16> LiveIn;
    242   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
    243     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
    244     if (MRI->reg_nodbg_empty(VirtReg))
    245       continue;
    246     LiveInterval &LI = LIS->getInterval(VirtReg);
    247     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
    248       continue;
    249     // This is a virtual register that is live across basic blocks. Its
    250     // assigned PhysReg must be marked as live-in to those blocks.
    251     unsigned PhysReg = VRM->getPhys(VirtReg);
    252     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
    253 
    254     // Scan the segments of LI.
    255     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
    256          ++I) {
    257       if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
    258         continue;
    259       for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
    260         if (!LiveIn[i]->isLiveIn(PhysReg))
    261           LiveIn[i]->addLiveIn(PhysReg);
    262       LiveIn.clear();
    263     }
    264   }
    265 }
    266 
    267 void VirtRegRewriter::rewrite() {
    268   SmallVector<unsigned, 8> SuperDeads;
    269   SmallVector<unsigned, 8> SuperDefs;
    270   SmallVector<unsigned, 8> SuperKills;
    271   SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
    272 
    273   // Here we have a SparseSet to hold which PhysRegs are actually encountered
    274   // in the MF we are about to iterate over so that later when we call
    275   // setPhysRegUsed, we are only doing it for physRegs that were actually found
    276   // in the program and not for all of the possible physRegs for the given
    277   // target architecture. If the target has a lot of physRegs, then for a small
    278   // program there will be a significant compile time reduction here.
    279   PhysRegs.clear();
    280   PhysRegs.setUniverse(TRI->getNumRegs());
    281 
    282   // The function with uwtable should guarantee that the stack unwinder
    283   // can unwind the stack to the previous frame.  Thus, we can't apply the
    284   // noreturn optimization if the caller function has uwtable attribute.
    285   bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable);
    286 
    287   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
    288        MBBI != MBBE; ++MBBI) {
    289     DEBUG(MBBI->print(dbgs(), Indexes));
    290     bool IsExitBB = MBBI->succ_empty();
    291     for (MachineBasicBlock::instr_iterator
    292            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
    293       MachineInstr *MI = MII;
    294       ++MII;
    295 
    296       // Check if this instruction is a call to a noreturn function.  If this
    297       // is a call to noreturn function and we don't need the stack unwinding
    298       // functionality (i.e. this function does not have uwtable attribute and
    299       // the callee function has the nounwind attribute), then we can ignore
    300       // the definitions set by this instruction.
    301       if (!HasUWTable && IsExitBB && MI->isCall()) {
    302         for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    303                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    304           MachineOperand &MO = *MOI;
    305           if (!MO.isGlobal())
    306             continue;
    307           const Function *Func = dyn_cast<Function>(MO.getGlobal());
    308           if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
    309               // We need to keep correct unwind information
    310               // even if the function will not return, since the
    311               // runtime may need it.
    312               !Func->hasFnAttribute(Attribute::NoUnwind))
    313             continue;
    314           NoReturnInsts.insert(MI);
    315           break;
    316         }
    317       }
    318 
    319       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    320            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    321         MachineOperand &MO = *MOI;
    322 
    323         // Make sure MRI knows about registers clobbered by regmasks.
    324         if (MO.isRegMask())
    325           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
    326 
    327         // If we encounter a VirtReg or PhysReg then get at the PhysReg and add
    328         // it to the physreg bitset.  Later we use only the PhysRegs that were
    329         // actually encountered in the MF to populate the MRI's used physregs.
    330         if (MO.isReg() && MO.getReg())
    331           PhysRegs.insert(
    332               TargetRegisterInfo::isVirtualRegister(MO.getReg()) ?
    333               VRM->getPhys(MO.getReg()) :
    334               MO.getReg());
    335 
    336         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    337           continue;
    338         unsigned VirtReg = MO.getReg();
    339         unsigned PhysReg = VRM->getPhys(VirtReg);
    340         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
    341                "Instruction uses unmapped VirtReg");
    342         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
    343 
    344         // Preserve semantics of sub-register operands.
    345         if (MO.getSubReg()) {
    346           // A virtual register kill refers to the whole register, so we may
    347           // have to add <imp-use,kill> operands for the super-register.  A
    348           // partial redef always kills and redefines the super-register.
    349           if (MO.readsReg() && (MO.isDef() || MO.isKill()))
    350             SuperKills.push_back(PhysReg);
    351 
    352           if (MO.isDef()) {
    353             // The <def,undef> flag only makes sense for sub-register defs, and
    354             // we are substituting a full physreg.  An <imp-use,kill> operand
    355             // from the SuperKills list will represent the partial read of the
    356             // super-register.
    357             MO.setIsUndef(false);
    358 
    359             // Also add implicit defs for the super-register.
    360             if (MO.isDead())
    361               SuperDeads.push_back(PhysReg);
    362             else
    363               SuperDefs.push_back(PhysReg);
    364           }
    365 
    366           // PhysReg operands cannot have subregister indexes.
    367           PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
    368           assert(PhysReg && "Invalid SubReg for physical register");
    369           MO.setSubReg(0);
    370         }
    371         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
    372         // we need the inlining here.
    373         MO.setReg(PhysReg);
    374       }
    375 
    376       // Add any missing super-register kills after rewriting the whole
    377       // instruction.
    378       while (!SuperKills.empty())
    379         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
    380 
    381       while (!SuperDeads.empty())
    382         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
    383 
    384       while (!SuperDefs.empty())
    385         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
    386 
    387       DEBUG(dbgs() << "> " << *MI);
    388 
    389       // Finally, remove any identity copies.
    390       if (MI->isIdentityCopy()) {
    391         ++NumIdCopies;
    392         if (MI->getNumOperands() == 2) {
    393           DEBUG(dbgs() << "Deleting identity copy.\n");
    394           if (Indexes)
    395             Indexes->removeMachineInstrFromMaps(MI);
    396           // It's safe to erase MI because MII has already been incremented.
    397           MI->eraseFromParent();
    398         } else {
    399           // Transform identity copy to a KILL to deal with subregisters.
    400           MI->setDesc(TII->get(TargetOpcode::KILL));
    401           DEBUG(dbgs() << "Identity copy: " << *MI);
    402         }
    403       }
    404     }
    405   }
    406 
    407   // Tell MRI about physical registers in use.
    408   if (NoReturnInsts.empty()) {
    409     for (SparseSet<unsigned>::iterator
    410         RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI)
    411       if (!MRI->reg_nodbg_empty(*RegI))
    412         MRI->setPhysRegUsed(*RegI);
    413   } else {
    414     for (SparseSet<unsigned>::iterator
    415         I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) {
    416       unsigned Reg = *I;
    417       if (MRI->reg_nodbg_empty(Reg))
    418         continue;
    419       // Check if this register has a use that will impact the rest of the
    420       // code. Uses in debug and noreturn instructions do not impact the
    421       // generated code.
    422       for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) {
    423         if (!NoReturnInsts.count(&It)) {
    424           MRI->setPhysRegUsed(Reg);
    425           break;
    426         }
    427       }
    428     }
    429   }
    430 }
    431 
    432