Home | History | Annotate | Download | only in IR
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Constants.h"
     15 #include "ConstantFold.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GetElementPtrTypeIterator.h"
     25 #include "llvm/IR/GlobalValue.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/Support/Compiler.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstdarg>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              Constant Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 void Constant::anchor() { }
     44 
     45 bool Constant::isNegativeZeroValue() const {
     46   // Floating point values have an explicit -0.0 value.
     47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     48     return CFP->isZero() && CFP->isNegative();
     49 
     50   // Equivalent for a vector of -0.0's.
     51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     54         return true;
     55 
     56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
     57   if (getType()->isFPOrFPVectorTy())
     58     return false;
     59 
     60   // Otherwise, just use +0.0.
     61   return isNullValue();
     62 }
     63 
     64 // Return true iff this constant is positive zero (floating point), negative
     65 // zero (floating point), or a null value.
     66 bool Constant::isZeroValue() const {
     67   // Floating point values have an explicit -0.0 value.
     68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     69     return CFP->isZero();
     70 
     71   // Otherwise, just use +0.0.
     72   return isNullValue();
     73 }
     74 
     75 bool Constant::isNullValue() const {
     76   // 0 is null.
     77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     78     return CI->isZero();
     79 
     80   // +0.0 is null.
     81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     82     return CFP->isZero() && !CFP->isNegative();
     83 
     84   // constant zero is zero for aggregates and cpnull is null for pointers.
     85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
     86 }
     87 
     88 bool Constant::isAllOnesValue() const {
     89   // Check for -1 integers
     90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     91     return CI->isMinusOne();
     92 
     93   // Check for FP which are bitcasted from -1 integers
     94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
     96 
     97   // Check for constant vectors which are splats of -1 values.
     98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     99     if (Constant *Splat = CV->getSplatValue())
    100       return Splat->isAllOnesValue();
    101 
    102   // Check for constant vectors which are splats of -1 values.
    103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    104     if (Constant *Splat = CV->getSplatValue())
    105       return Splat->isAllOnesValue();
    106 
    107   return false;
    108 }
    109 
    110 bool Constant::isMinSignedValue() const {
    111   // Check for INT_MIN integers
    112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    113     return CI->isMinValue(/*isSigned=*/true);
    114 
    115   // Check for FP which are bitcasted from INT_MIN integers
    116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    117     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    118 
    119   // Check for constant vectors which are splats of INT_MIN values.
    120   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    121     if (Constant *Splat = CV->getSplatValue())
    122       return Splat->isMinSignedValue();
    123 
    124   // Check for constant vectors which are splats of INT_MIN values.
    125   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    126     if (Constant *Splat = CV->getSplatValue())
    127       return Splat->isMinSignedValue();
    128 
    129   return false;
    130 }
    131 
    132 // Constructor to create a '0' constant of arbitrary type...
    133 Constant *Constant::getNullValue(Type *Ty) {
    134   switch (Ty->getTypeID()) {
    135   case Type::IntegerTyID:
    136     return ConstantInt::get(Ty, 0);
    137   case Type::HalfTyID:
    138     return ConstantFP::get(Ty->getContext(),
    139                            APFloat::getZero(APFloat::IEEEhalf));
    140   case Type::FloatTyID:
    141     return ConstantFP::get(Ty->getContext(),
    142                            APFloat::getZero(APFloat::IEEEsingle));
    143   case Type::DoubleTyID:
    144     return ConstantFP::get(Ty->getContext(),
    145                            APFloat::getZero(APFloat::IEEEdouble));
    146   case Type::X86_FP80TyID:
    147     return ConstantFP::get(Ty->getContext(),
    148                            APFloat::getZero(APFloat::x87DoubleExtended));
    149   case Type::FP128TyID:
    150     return ConstantFP::get(Ty->getContext(),
    151                            APFloat::getZero(APFloat::IEEEquad));
    152   case Type::PPC_FP128TyID:
    153     return ConstantFP::get(Ty->getContext(),
    154                            APFloat(APFloat::PPCDoubleDouble,
    155                                    APInt::getNullValue(128)));
    156   case Type::PointerTyID:
    157     return ConstantPointerNull::get(cast<PointerType>(Ty));
    158   case Type::StructTyID:
    159   case Type::ArrayTyID:
    160   case Type::VectorTyID:
    161     return ConstantAggregateZero::get(Ty);
    162   default:
    163     // Function, Label, or Opaque type?
    164     llvm_unreachable("Cannot create a null constant of that type!");
    165   }
    166 }
    167 
    168 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    169   Type *ScalarTy = Ty->getScalarType();
    170 
    171   // Create the base integer constant.
    172   Constant *C = ConstantInt::get(Ty->getContext(), V);
    173 
    174   // Convert an integer to a pointer, if necessary.
    175   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    176     C = ConstantExpr::getIntToPtr(C, PTy);
    177 
    178   // Broadcast a scalar to a vector, if necessary.
    179   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    180     C = ConstantVector::getSplat(VTy->getNumElements(), C);
    181 
    182   return C;
    183 }
    184 
    185 Constant *Constant::getAllOnesValue(Type *Ty) {
    186   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    187     return ConstantInt::get(Ty->getContext(),
    188                             APInt::getAllOnesValue(ITy->getBitWidth()));
    189 
    190   if (Ty->isFloatingPointTy()) {
    191     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    192                                           !Ty->isPPC_FP128Ty());
    193     return ConstantFP::get(Ty->getContext(), FL);
    194   }
    195 
    196   VectorType *VTy = cast<VectorType>(Ty);
    197   return ConstantVector::getSplat(VTy->getNumElements(),
    198                                   getAllOnesValue(VTy->getElementType()));
    199 }
    200 
    201 /// getAggregateElement - For aggregates (struct/array/vector) return the
    202 /// constant that corresponds to the specified element if possible, or null if
    203 /// not.  This can return null if the element index is a ConstantExpr, or if
    204 /// 'this' is a constant expr.
    205 Constant *Constant::getAggregateElement(unsigned Elt) const {
    206   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
    207     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
    208 
    209   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
    210     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
    211 
    212   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    213     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
    214 
    215   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
    216     return CAZ->getElementValue(Elt);
    217 
    218   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    219     return UV->getElementValue(Elt);
    220 
    221   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    222     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
    223                                        : nullptr;
    224   return nullptr;
    225 }
    226 
    227 Constant *Constant::getAggregateElement(Constant *Elt) const {
    228   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
    229   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    230     return getAggregateElement(CI->getZExtValue());
    231   return nullptr;
    232 }
    233 
    234 
    235 void Constant::destroyConstantImpl() {
    236   // When a Constant is destroyed, there may be lingering
    237   // references to the constant by other constants in the constant pool.  These
    238   // constants are implicitly dependent on the module that is being deleted,
    239   // but they don't know that.  Because we only find out when the CPV is
    240   // deleted, we must now notify all of our users (that should only be
    241   // Constants) that they are, in fact, invalid now and should be deleted.
    242   //
    243   while (!use_empty()) {
    244     Value *V = user_back();
    245 #ifndef NDEBUG      // Only in -g mode...
    246     if (!isa<Constant>(V)) {
    247       dbgs() << "While deleting: " << *this
    248              << "\n\nUse still stuck around after Def is destroyed: "
    249              << *V << "\n\n";
    250     }
    251 #endif
    252     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    253     cast<Constant>(V)->destroyConstant();
    254 
    255     // The constant should remove itself from our use list...
    256     assert((use_empty() || user_back() != V) && "Constant not removed!");
    257   }
    258 
    259   // Value has no outstanding references it is safe to delete it now...
    260   delete this;
    261 }
    262 
    263 static bool canTrapImpl(const Constant *C,
    264                         SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
    265   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    266   // The only thing that could possibly trap are constant exprs.
    267   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    268   if (!CE)
    269     return false;
    270 
    271   // ConstantExpr traps if any operands can trap.
    272   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
    273     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
    274       if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
    275         return true;
    276     }
    277   }
    278 
    279   // Otherwise, only specific operations can trap.
    280   switch (CE->getOpcode()) {
    281   default:
    282     return false;
    283   case Instruction::UDiv:
    284   case Instruction::SDiv:
    285   case Instruction::FDiv:
    286   case Instruction::URem:
    287   case Instruction::SRem:
    288   case Instruction::FRem:
    289     // Div and rem can trap if the RHS is not known to be non-zero.
    290     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    291       return true;
    292     return false;
    293   }
    294 }
    295 
    296 /// canTrap - Return true if evaluation of this constant could trap.  This is
    297 /// true for things like constant expressions that could divide by zero.
    298 bool Constant::canTrap() const {
    299   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
    300   return canTrapImpl(this, NonTrappingOps);
    301 }
    302 
    303 /// Check if C contains a GlobalValue for which Predicate is true.
    304 static bool
    305 ConstHasGlobalValuePredicate(const Constant *C,
    306                              bool (*Predicate)(const GlobalValue *)) {
    307   SmallPtrSet<const Constant *, 8> Visited;
    308   SmallVector<const Constant *, 8> WorkList;
    309   WorkList.push_back(C);
    310   Visited.insert(C);
    311 
    312   while (!WorkList.empty()) {
    313     const Constant *WorkItem = WorkList.pop_back_val();
    314     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
    315       if (Predicate(GV))
    316         return true;
    317     for (const Value *Op : WorkItem->operands()) {
    318       const Constant *ConstOp = dyn_cast<Constant>(Op);
    319       if (!ConstOp)
    320         continue;
    321       if (Visited.insert(ConstOp))
    322         WorkList.push_back(ConstOp);
    323     }
    324   }
    325   return false;
    326 }
    327 
    328 /// Return true if the value can vary between threads.
    329 bool Constant::isThreadDependent() const {
    330   auto DLLImportPredicate = [](const GlobalValue *GV) {
    331     return GV->isThreadLocal();
    332   };
    333   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    334 }
    335 
    336 bool Constant::isDLLImportDependent() const {
    337   auto DLLImportPredicate = [](const GlobalValue *GV) {
    338     return GV->hasDLLImportStorageClass();
    339   };
    340   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    341 }
    342 
    343 /// Return true if the constant has users other than constant exprs and other
    344 /// dangling things.
    345 bool Constant::isConstantUsed() const {
    346   for (const User *U : users()) {
    347     const Constant *UC = dyn_cast<Constant>(U);
    348     if (!UC || isa<GlobalValue>(UC))
    349       return true;
    350 
    351     if (UC->isConstantUsed())
    352       return true;
    353   }
    354   return false;
    355 }
    356 
    357 
    358 
    359 /// getRelocationInfo - This method classifies the entry according to
    360 /// whether or not it may generate a relocation entry.  This must be
    361 /// conservative, so if it might codegen to a relocatable entry, it should say
    362 /// so.  The return values are:
    363 ///
    364 ///  NoRelocation: This constant pool entry is guaranteed to never have a
    365 ///     relocation applied to it (because it holds a simple constant like
    366 ///     '4').
    367 ///  LocalRelocation: This entry has relocations, but the entries are
    368 ///     guaranteed to be resolvable by the static linker, so the dynamic
    369 ///     linker will never see them.
    370 ///  GlobalRelocations: This entry may have arbitrary relocations.
    371 ///
    372 /// FIXME: This really should not be in IR.
    373 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
    374   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    375     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    376       return LocalRelocation;  // Local to this file/library.
    377     return GlobalRelocations;    // Global reference.
    378   }
    379 
    380   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    381     return BA->getFunction()->getRelocationInfo();
    382 
    383   // While raw uses of blockaddress need to be relocated, differences between
    384   // two of them don't when they are for labels in the same function.  This is a
    385   // common idiom when creating a table for the indirect goto extension, so we
    386   // handle it efficiently here.
    387   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    388     if (CE->getOpcode() == Instruction::Sub) {
    389       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    390       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    391       if (LHS && RHS &&
    392           LHS->getOpcode() == Instruction::PtrToInt &&
    393           RHS->getOpcode() == Instruction::PtrToInt &&
    394           isa<BlockAddress>(LHS->getOperand(0)) &&
    395           isa<BlockAddress>(RHS->getOperand(0)) &&
    396           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    397             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    398         return NoRelocation;
    399     }
    400 
    401   PossibleRelocationsTy Result = NoRelocation;
    402   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    403     Result = std::max(Result,
    404                       cast<Constant>(getOperand(i))->getRelocationInfo());
    405 
    406   return Result;
    407 }
    408 
    409 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
    410 /// it.  This involves recursively eliminating any dead users of the
    411 /// constantexpr.
    412 static bool removeDeadUsersOfConstant(const Constant *C) {
    413   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    414 
    415   while (!C->use_empty()) {
    416     const Constant *User = dyn_cast<Constant>(C->user_back());
    417     if (!User) return false; // Non-constant usage;
    418     if (!removeDeadUsersOfConstant(User))
    419       return false; // Constant wasn't dead
    420   }
    421 
    422   const_cast<Constant*>(C)->destroyConstant();
    423   return true;
    424 }
    425 
    426 
    427 /// removeDeadConstantUsers - If there are any dead constant users dangling
    428 /// off of this constant, remove them.  This method is useful for clients
    429 /// that want to check to see if a global is unused, but don't want to deal
    430 /// with potentially dead constants hanging off of the globals.
    431 void Constant::removeDeadConstantUsers() const {
    432   Value::const_user_iterator I = user_begin(), E = user_end();
    433   Value::const_user_iterator LastNonDeadUser = E;
    434   while (I != E) {
    435     const Constant *User = dyn_cast<Constant>(*I);
    436     if (!User) {
    437       LastNonDeadUser = I;
    438       ++I;
    439       continue;
    440     }
    441 
    442     if (!removeDeadUsersOfConstant(User)) {
    443       // If the constant wasn't dead, remember that this was the last live use
    444       // and move on to the next constant.
    445       LastNonDeadUser = I;
    446       ++I;
    447       continue;
    448     }
    449 
    450     // If the constant was dead, then the iterator is invalidated.
    451     if (LastNonDeadUser == E) {
    452       I = user_begin();
    453       if (I == E) break;
    454     } else {
    455       I = LastNonDeadUser;
    456       ++I;
    457     }
    458   }
    459 }
    460 
    461 
    462 
    463 //===----------------------------------------------------------------------===//
    464 //                                ConstantInt
    465 //===----------------------------------------------------------------------===//
    466 
    467 void ConstantInt::anchor() { }
    468 
    469 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
    470   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
    471   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    472 }
    473 
    474 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    475   LLVMContextImpl *pImpl = Context.pImpl;
    476   if (!pImpl->TheTrueVal)
    477     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    478   return pImpl->TheTrueVal;
    479 }
    480 
    481 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    482   LLVMContextImpl *pImpl = Context.pImpl;
    483   if (!pImpl->TheFalseVal)
    484     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    485   return pImpl->TheFalseVal;
    486 }
    487 
    488 Constant *ConstantInt::getTrue(Type *Ty) {
    489   VectorType *VTy = dyn_cast<VectorType>(Ty);
    490   if (!VTy) {
    491     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    492     return ConstantInt::getTrue(Ty->getContext());
    493   }
    494   assert(VTy->getElementType()->isIntegerTy(1) &&
    495          "True must be vector of i1 or i1.");
    496   return ConstantVector::getSplat(VTy->getNumElements(),
    497                                   ConstantInt::getTrue(Ty->getContext()));
    498 }
    499 
    500 Constant *ConstantInt::getFalse(Type *Ty) {
    501   VectorType *VTy = dyn_cast<VectorType>(Ty);
    502   if (!VTy) {
    503     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    504     return ConstantInt::getFalse(Ty->getContext());
    505   }
    506   assert(VTy->getElementType()->isIntegerTy(1) &&
    507          "False must be vector of i1 or i1.");
    508   return ConstantVector::getSplat(VTy->getNumElements(),
    509                                   ConstantInt::getFalse(Ty->getContext()));
    510 }
    511 
    512 
    513 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
    514 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
    515 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
    516 // compare APInt's of different widths, which would violate an APInt class
    517 // invariant which generates an assertion.
    518 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    519   // Get the corresponding integer type for the bit width of the value.
    520   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    521   // get an existing value or the insertion position
    522   LLVMContextImpl *pImpl = Context.pImpl;
    523   ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
    524   if (!Slot) Slot = new ConstantInt(ITy, V);
    525   return Slot;
    526 }
    527 
    528 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    529   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    530 
    531   // For vectors, broadcast the value.
    532   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    533     return ConstantVector::getSplat(VTy->getNumElements(), C);
    534 
    535   return C;
    536 }
    537 
    538 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
    539                               bool isSigned) {
    540   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    541 }
    542 
    543 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
    544   return get(Ty, V, true);
    545 }
    546 
    547 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    548   return get(Ty, V, true);
    549 }
    550 
    551 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
    552   ConstantInt *C = get(Ty->getContext(), V);
    553   assert(C->getType() == Ty->getScalarType() &&
    554          "ConstantInt type doesn't match the type implied by its value!");
    555 
    556   // For vectors, broadcast the value.
    557   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    558     return ConstantVector::getSplat(VTy->getNumElements(), C);
    559 
    560   return C;
    561 }
    562 
    563 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
    564                               uint8_t radix) {
    565   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    566 }
    567 
    568 //===----------------------------------------------------------------------===//
    569 //                                ConstantFP
    570 //===----------------------------------------------------------------------===//
    571 
    572 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    573   if (Ty->isHalfTy())
    574     return &APFloat::IEEEhalf;
    575   if (Ty->isFloatTy())
    576     return &APFloat::IEEEsingle;
    577   if (Ty->isDoubleTy())
    578     return &APFloat::IEEEdouble;
    579   if (Ty->isX86_FP80Ty())
    580     return &APFloat::x87DoubleExtended;
    581   else if (Ty->isFP128Ty())
    582     return &APFloat::IEEEquad;
    583 
    584   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    585   return &APFloat::PPCDoubleDouble;
    586 }
    587 
    588 void ConstantFP::anchor() { }
    589 
    590 /// get() - This returns a constant fp for the specified value in the
    591 /// specified type.  This should only be used for simple constant values like
    592 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
    593 Constant *ConstantFP::get(Type *Ty, double V) {
    594   LLVMContext &Context = Ty->getContext();
    595 
    596   APFloat FV(V);
    597   bool ignored;
    598   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    599              APFloat::rmNearestTiesToEven, &ignored);
    600   Constant *C = get(Context, FV);
    601 
    602   // For vectors, broadcast the value.
    603   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    604     return ConstantVector::getSplat(VTy->getNumElements(), C);
    605 
    606   return C;
    607 }
    608 
    609 
    610 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
    611   LLVMContext &Context = Ty->getContext();
    612 
    613   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    614   Constant *C = get(Context, FV);
    615 
    616   // For vectors, broadcast the value.
    617   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    618     return ConstantVector::getSplat(VTy->getNumElements(), C);
    619 
    620   return C;
    621 }
    622 
    623 Constant *ConstantFP::getNegativeZero(Type *Ty) {
    624   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    625   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
    626   Constant *C = get(Ty->getContext(), NegZero);
    627 
    628   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    629     return ConstantVector::getSplat(VTy->getNumElements(), C);
    630 
    631   return C;
    632 }
    633 
    634 
    635 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
    636   if (Ty->isFPOrFPVectorTy())
    637     return getNegativeZero(Ty);
    638 
    639   return Constant::getNullValue(Ty);
    640 }
    641 
    642 
    643 // ConstantFP accessors.
    644 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    645   LLVMContextImpl* pImpl = Context.pImpl;
    646 
    647   ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
    648 
    649   if (!Slot) {
    650     Type *Ty;
    651     if (&V.getSemantics() == &APFloat::IEEEhalf)
    652       Ty = Type::getHalfTy(Context);
    653     else if (&V.getSemantics() == &APFloat::IEEEsingle)
    654       Ty = Type::getFloatTy(Context);
    655     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    656       Ty = Type::getDoubleTy(Context);
    657     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    658       Ty = Type::getX86_FP80Ty(Context);
    659     else if (&V.getSemantics() == &APFloat::IEEEquad)
    660       Ty = Type::getFP128Ty(Context);
    661     else {
    662       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    663              "Unknown FP format");
    664       Ty = Type::getPPC_FP128Ty(Context);
    665     }
    666     Slot = new ConstantFP(Ty, V);
    667   }
    668 
    669   return Slot;
    670 }
    671 
    672 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    673   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    674   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
    675 
    676   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    677     return ConstantVector::getSplat(VTy->getNumElements(), C);
    678 
    679   return C;
    680 }
    681 
    682 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
    683   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
    684   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    685          "FP type Mismatch");
    686 }
    687 
    688 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    689   return Val.bitwiseIsEqual(V);
    690 }
    691 
    692 //===----------------------------------------------------------------------===//
    693 //                   ConstantAggregateZero Implementation
    694 //===----------------------------------------------------------------------===//
    695 
    696 /// getSequentialElement - If this CAZ has array or vector type, return a zero
    697 /// with the right element type.
    698 Constant *ConstantAggregateZero::getSequentialElement() const {
    699   return Constant::getNullValue(getType()->getSequentialElementType());
    700 }
    701 
    702 /// getStructElement - If this CAZ has struct type, return a zero with the
    703 /// right element type for the specified element.
    704 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
    705   return Constant::getNullValue(getType()->getStructElementType(Elt));
    706 }
    707 
    708 /// getElementValue - Return a zero of the right value for the specified GEP
    709 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    710 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
    711   if (isa<SequentialType>(getType()))
    712     return getSequentialElement();
    713   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    714 }
    715 
    716 /// getElementValue - Return a zero of the right value for the specified GEP
    717 /// index.
    718 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
    719   if (isa<SequentialType>(getType()))
    720     return getSequentialElement();
    721   return getStructElement(Idx);
    722 }
    723 
    724 
    725 //===----------------------------------------------------------------------===//
    726 //                         UndefValue Implementation
    727 //===----------------------------------------------------------------------===//
    728 
    729 /// getSequentialElement - If this undef has array or vector type, return an
    730 /// undef with the right element type.
    731 UndefValue *UndefValue::getSequentialElement() const {
    732   return UndefValue::get(getType()->getSequentialElementType());
    733 }
    734 
    735 /// getStructElement - If this undef has struct type, return a zero with the
    736 /// right element type for the specified element.
    737 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
    738   return UndefValue::get(getType()->getStructElementType(Elt));
    739 }
    740 
    741 /// getElementValue - Return an undef of the right value for the specified GEP
    742 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    743 UndefValue *UndefValue::getElementValue(Constant *C) const {
    744   if (isa<SequentialType>(getType()))
    745     return getSequentialElement();
    746   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    747 }
    748 
    749 /// getElementValue - Return an undef of the right value for the specified GEP
    750 /// index.
    751 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
    752   if (isa<SequentialType>(getType()))
    753     return getSequentialElement();
    754   return getStructElement(Idx);
    755 }
    756 
    757 
    758 
    759 //===----------------------------------------------------------------------===//
    760 //                            ConstantXXX Classes
    761 //===----------------------------------------------------------------------===//
    762 
    763 template <typename ItTy, typename EltTy>
    764 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
    765   for (; Start != End; ++Start)
    766     if (*Start != Elt)
    767       return false;
    768   return true;
    769 }
    770 
    771 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    772   : Constant(T, ConstantArrayVal,
    773              OperandTraits<ConstantArray>::op_end(this) - V.size(),
    774              V.size()) {
    775   assert(V.size() == T->getNumElements() &&
    776          "Invalid initializer vector for constant array");
    777   for (unsigned i = 0, e = V.size(); i != e; ++i)
    778     assert(V[i]->getType() == T->getElementType() &&
    779            "Initializer for array element doesn't match array element type!");
    780   std::copy(V.begin(), V.end(), op_begin());
    781 }
    782 
    783 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    784   // Empty arrays are canonicalized to ConstantAggregateZero.
    785   if (V.empty())
    786     return ConstantAggregateZero::get(Ty);
    787 
    788   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    789     assert(V[i]->getType() == Ty->getElementType() &&
    790            "Wrong type in array element initializer");
    791   }
    792   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    793 
    794   // If this is an all-zero array, return a ConstantAggregateZero object.  If
    795   // all undef, return an UndefValue, if "all simple", then return a
    796   // ConstantDataArray.
    797   Constant *C = V[0];
    798   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    799     return UndefValue::get(Ty);
    800 
    801   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    802     return ConstantAggregateZero::get(Ty);
    803 
    804   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    805   // the element type is compatible with ConstantDataVector.  If so, use it.
    806   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    807     // We speculatively build the elements here even if it turns out that there
    808     // is a constantexpr or something else weird in the array, since it is so
    809     // uncommon for that to happen.
    810     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    811       if (CI->getType()->isIntegerTy(8)) {
    812         SmallVector<uint8_t, 16> Elts;
    813         for (unsigned i = 0, e = V.size(); i != e; ++i)
    814           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    815             Elts.push_back(CI->getZExtValue());
    816           else
    817             break;
    818         if (Elts.size() == V.size())
    819           return ConstantDataArray::get(C->getContext(), Elts);
    820       } else if (CI->getType()->isIntegerTy(16)) {
    821         SmallVector<uint16_t, 16> Elts;
    822         for (unsigned i = 0, e = V.size(); i != e; ++i)
    823           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    824             Elts.push_back(CI->getZExtValue());
    825           else
    826             break;
    827         if (Elts.size() == V.size())
    828           return ConstantDataArray::get(C->getContext(), Elts);
    829       } else if (CI->getType()->isIntegerTy(32)) {
    830         SmallVector<uint32_t, 16> Elts;
    831         for (unsigned i = 0, e = V.size(); i != e; ++i)
    832           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    833             Elts.push_back(CI->getZExtValue());
    834           else
    835             break;
    836         if (Elts.size() == V.size())
    837           return ConstantDataArray::get(C->getContext(), Elts);
    838       } else if (CI->getType()->isIntegerTy(64)) {
    839         SmallVector<uint64_t, 16> Elts;
    840         for (unsigned i = 0, e = V.size(); i != e; ++i)
    841           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    842             Elts.push_back(CI->getZExtValue());
    843           else
    844             break;
    845         if (Elts.size() == V.size())
    846           return ConstantDataArray::get(C->getContext(), Elts);
    847       }
    848     }
    849 
    850     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    851       if (CFP->getType()->isFloatTy()) {
    852         SmallVector<float, 16> Elts;
    853         for (unsigned i = 0, e = V.size(); i != e; ++i)
    854           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    855             Elts.push_back(CFP->getValueAPF().convertToFloat());
    856           else
    857             break;
    858         if (Elts.size() == V.size())
    859           return ConstantDataArray::get(C->getContext(), Elts);
    860       } else if (CFP->getType()->isDoubleTy()) {
    861         SmallVector<double, 16> Elts;
    862         for (unsigned i = 0, e = V.size(); i != e; ++i)
    863           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    864             Elts.push_back(CFP->getValueAPF().convertToDouble());
    865           else
    866             break;
    867         if (Elts.size() == V.size())
    868           return ConstantDataArray::get(C->getContext(), Elts);
    869       }
    870     }
    871   }
    872 
    873   // Otherwise, we really do want to create a ConstantArray.
    874   return pImpl->ArrayConstants.getOrCreate(Ty, V);
    875 }
    876 
    877 /// getTypeForElements - Return an anonymous struct type to use for a constant
    878 /// with the specified set of elements.  The list must not be empty.
    879 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    880                                                ArrayRef<Constant*> V,
    881                                                bool Packed) {
    882   unsigned VecSize = V.size();
    883   SmallVector<Type*, 16> EltTypes(VecSize);
    884   for (unsigned i = 0; i != VecSize; ++i)
    885     EltTypes[i] = V[i]->getType();
    886 
    887   return StructType::get(Context, EltTypes, Packed);
    888 }
    889 
    890 
    891 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    892                                                bool Packed) {
    893   assert(!V.empty() &&
    894          "ConstantStruct::getTypeForElements cannot be called on empty list");
    895   return getTypeForElements(V[0]->getContext(), V, Packed);
    896 }
    897 
    898 
    899 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
    900   : Constant(T, ConstantStructVal,
    901              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
    902              V.size()) {
    903   assert(V.size() == T->getNumElements() &&
    904          "Invalid initializer vector for constant structure");
    905   for (unsigned i = 0, e = V.size(); i != e; ++i)
    906     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
    907            "Initializer for struct element doesn't match struct element type!");
    908   std::copy(V.begin(), V.end(), op_begin());
    909 }
    910 
    911 // ConstantStruct accessors.
    912 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    913   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    914          "Incorrect # elements specified to ConstantStruct::get");
    915 
    916   // Create a ConstantAggregateZero value if all elements are zeros.
    917   bool isZero = true;
    918   bool isUndef = false;
    919 
    920   if (!V.empty()) {
    921     isUndef = isa<UndefValue>(V[0]);
    922     isZero = V[0]->isNullValue();
    923     if (isUndef || isZero) {
    924       for (unsigned i = 0, e = V.size(); i != e; ++i) {
    925         if (!V[i]->isNullValue())
    926           isZero = false;
    927         if (!isa<UndefValue>(V[i]))
    928           isUndef = false;
    929       }
    930     }
    931   }
    932   if (isZero)
    933     return ConstantAggregateZero::get(ST);
    934   if (isUndef)
    935     return UndefValue::get(ST);
    936 
    937   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
    938 }
    939 
    940 Constant *ConstantStruct::get(StructType *T, ...) {
    941   va_list ap;
    942   SmallVector<Constant*, 8> Values;
    943   va_start(ap, T);
    944   while (Constant *Val = va_arg(ap, llvm::Constant*))
    945     Values.push_back(Val);
    946   va_end(ap);
    947   return get(T, Values);
    948 }
    949 
    950 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
    951   : Constant(T, ConstantVectorVal,
    952              OperandTraits<ConstantVector>::op_end(this) - V.size(),
    953              V.size()) {
    954   for (size_t i = 0, e = V.size(); i != e; i++)
    955     assert(V[i]->getType() == T->getElementType() &&
    956            "Initializer for vector element doesn't match vector element type!");
    957   std::copy(V.begin(), V.end(), op_begin());
    958 }
    959 
    960 // ConstantVector accessors.
    961 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
    962   assert(!V.empty() && "Vectors can't be empty");
    963   VectorType *T = VectorType::get(V.front()->getType(), V.size());
    964   LLVMContextImpl *pImpl = T->getContext().pImpl;
    965 
    966   // If this is an all-undef or all-zero vector, return a
    967   // ConstantAggregateZero or UndefValue.
    968   Constant *C = V[0];
    969   bool isZero = C->isNullValue();
    970   bool isUndef = isa<UndefValue>(C);
    971 
    972   if (isZero || isUndef) {
    973     for (unsigned i = 1, e = V.size(); i != e; ++i)
    974       if (V[i] != C) {
    975         isZero = isUndef = false;
    976         break;
    977       }
    978   }
    979 
    980   if (isZero)
    981     return ConstantAggregateZero::get(T);
    982   if (isUndef)
    983     return UndefValue::get(T);
    984 
    985   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    986   // the element type is compatible with ConstantDataVector.  If so, use it.
    987   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    988     // We speculatively build the elements here even if it turns out that there
    989     // is a constantexpr or something else weird in the array, since it is so
    990     // uncommon for that to happen.
    991     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    992       if (CI->getType()->isIntegerTy(8)) {
    993         SmallVector<uint8_t, 16> Elts;
    994         for (unsigned i = 0, e = V.size(); i != e; ++i)
    995           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    996             Elts.push_back(CI->getZExtValue());
    997           else
    998             break;
    999         if (Elts.size() == V.size())
   1000           return ConstantDataVector::get(C->getContext(), Elts);
   1001       } else if (CI->getType()->isIntegerTy(16)) {
   1002         SmallVector<uint16_t, 16> Elts;
   1003         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1004           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1005             Elts.push_back(CI->getZExtValue());
   1006           else
   1007             break;
   1008         if (Elts.size() == V.size())
   1009           return ConstantDataVector::get(C->getContext(), Elts);
   1010       } else if (CI->getType()->isIntegerTy(32)) {
   1011         SmallVector<uint32_t, 16> Elts;
   1012         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1013           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1014             Elts.push_back(CI->getZExtValue());
   1015           else
   1016             break;
   1017         if (Elts.size() == V.size())
   1018           return ConstantDataVector::get(C->getContext(), Elts);
   1019       } else if (CI->getType()->isIntegerTy(64)) {
   1020         SmallVector<uint64_t, 16> Elts;
   1021         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1022           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1023             Elts.push_back(CI->getZExtValue());
   1024           else
   1025             break;
   1026         if (Elts.size() == V.size())
   1027           return ConstantDataVector::get(C->getContext(), Elts);
   1028       }
   1029     }
   1030 
   1031     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   1032       if (CFP->getType()->isFloatTy()) {
   1033         SmallVector<float, 16> Elts;
   1034         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1035           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
   1036             Elts.push_back(CFP->getValueAPF().convertToFloat());
   1037           else
   1038             break;
   1039         if (Elts.size() == V.size())
   1040           return ConstantDataVector::get(C->getContext(), Elts);
   1041       } else if (CFP->getType()->isDoubleTy()) {
   1042         SmallVector<double, 16> Elts;
   1043         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1044           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
   1045             Elts.push_back(CFP->getValueAPF().convertToDouble());
   1046           else
   1047             break;
   1048         if (Elts.size() == V.size())
   1049           return ConstantDataVector::get(C->getContext(), Elts);
   1050       }
   1051     }
   1052   }
   1053 
   1054   // Otherwise, the element type isn't compatible with ConstantDataVector, or
   1055   // the operand list constants a ConstantExpr or something else strange.
   1056   return pImpl->VectorConstants.getOrCreate(T, V);
   1057 }
   1058 
   1059 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
   1060   // If this splat is compatible with ConstantDataVector, use it instead of
   1061   // ConstantVector.
   1062   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
   1063       ConstantDataSequential::isElementTypeCompatible(V->getType()))
   1064     return ConstantDataVector::getSplat(NumElts, V);
   1065 
   1066   SmallVector<Constant*, 32> Elts(NumElts, V);
   1067   return get(Elts);
   1068 }
   1069 
   1070 
   1071 // Utility function for determining if a ConstantExpr is a CastOp or not. This
   1072 // can't be inline because we don't want to #include Instruction.h into
   1073 // Constant.h
   1074 bool ConstantExpr::isCast() const {
   1075   return Instruction::isCast(getOpcode());
   1076 }
   1077 
   1078 bool ConstantExpr::isCompare() const {
   1079   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
   1080 }
   1081 
   1082 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
   1083   if (getOpcode() != Instruction::GetElementPtr) return false;
   1084 
   1085   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
   1086   User::const_op_iterator OI = std::next(this->op_begin());
   1087 
   1088   // Skip the first index, as it has no static limit.
   1089   ++GEPI;
   1090   ++OI;
   1091 
   1092   // The remaining indices must be compile-time known integers within the
   1093   // bounds of the corresponding notional static array types.
   1094   for (; GEPI != E; ++GEPI, ++OI) {
   1095     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
   1096     if (!CI) return false;
   1097     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
   1098       if (CI->getValue().getActiveBits() > 64 ||
   1099           CI->getZExtValue() >= ATy->getNumElements())
   1100         return false;
   1101   }
   1102 
   1103   // All the indices checked out.
   1104   return true;
   1105 }
   1106 
   1107 bool ConstantExpr::hasIndices() const {
   1108   return getOpcode() == Instruction::ExtractValue ||
   1109          getOpcode() == Instruction::InsertValue;
   1110 }
   1111 
   1112 ArrayRef<unsigned> ConstantExpr::getIndices() const {
   1113   if (const ExtractValueConstantExpr *EVCE =
   1114         dyn_cast<ExtractValueConstantExpr>(this))
   1115     return EVCE->Indices;
   1116 
   1117   return cast<InsertValueConstantExpr>(this)->Indices;
   1118 }
   1119 
   1120 unsigned ConstantExpr::getPredicate() const {
   1121   assert(isCompare());
   1122   return ((const CompareConstantExpr*)this)->predicate;
   1123 }
   1124 
   1125 /// getWithOperandReplaced - Return a constant expression identical to this
   1126 /// one, but with the specified operand set to the specified value.
   1127 Constant *
   1128 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   1129   assert(Op->getType() == getOperand(OpNo)->getType() &&
   1130          "Replacing operand with value of different type!");
   1131   if (getOperand(OpNo) == Op)
   1132     return const_cast<ConstantExpr*>(this);
   1133 
   1134   SmallVector<Constant*, 8> NewOps;
   1135   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1136     NewOps.push_back(i == OpNo ? Op : getOperand(i));
   1137 
   1138   return getWithOperands(NewOps);
   1139 }
   1140 
   1141 /// getWithOperands - This returns the current constant expression with the
   1142 /// operands replaced with the specified values.  The specified array must
   1143 /// have the same number of operands as our current one.
   1144 Constant *ConstantExpr::
   1145 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
   1146   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
   1147   bool AnyChange = Ty != getType();
   1148   for (unsigned i = 0; i != Ops.size(); ++i)
   1149     AnyChange |= Ops[i] != getOperand(i);
   1150 
   1151   if (!AnyChange)  // No operands changed, return self.
   1152     return const_cast<ConstantExpr*>(this);
   1153 
   1154   switch (getOpcode()) {
   1155   case Instruction::Trunc:
   1156   case Instruction::ZExt:
   1157   case Instruction::SExt:
   1158   case Instruction::FPTrunc:
   1159   case Instruction::FPExt:
   1160   case Instruction::UIToFP:
   1161   case Instruction::SIToFP:
   1162   case Instruction::FPToUI:
   1163   case Instruction::FPToSI:
   1164   case Instruction::PtrToInt:
   1165   case Instruction::IntToPtr:
   1166   case Instruction::BitCast:
   1167   case Instruction::AddrSpaceCast:
   1168     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
   1169   case Instruction::Select:
   1170     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   1171   case Instruction::InsertElement:
   1172     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
   1173   case Instruction::ExtractElement:
   1174     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   1175   case Instruction::InsertValue:
   1176     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
   1177   case Instruction::ExtractValue:
   1178     return ConstantExpr::getExtractValue(Ops[0], getIndices());
   1179   case Instruction::ShuffleVector:
   1180     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   1181   case Instruction::GetElementPtr:
   1182     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
   1183                                       cast<GEPOperator>(this)->isInBounds());
   1184   case Instruction::ICmp:
   1185   case Instruction::FCmp:
   1186     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
   1187   default:
   1188     assert(getNumOperands() == 2 && "Must be binary operator?");
   1189     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
   1190   }
   1191 }
   1192 
   1193 
   1194 //===----------------------------------------------------------------------===//
   1195 //                      isValueValidForType implementations
   1196 
   1197 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
   1198   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
   1199   if (Ty->isIntegerTy(1))
   1200     return Val == 0 || Val == 1;
   1201   if (NumBits >= 64)
   1202     return true; // always true, has to fit in largest type
   1203   uint64_t Max = (1ll << NumBits) - 1;
   1204   return Val <= Max;
   1205 }
   1206 
   1207 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
   1208   unsigned NumBits = Ty->getIntegerBitWidth();
   1209   if (Ty->isIntegerTy(1))
   1210     return Val == 0 || Val == 1 || Val == -1;
   1211   if (NumBits >= 64)
   1212     return true; // always true, has to fit in largest type
   1213   int64_t Min = -(1ll << (NumBits-1));
   1214   int64_t Max = (1ll << (NumBits-1)) - 1;
   1215   return (Val >= Min && Val <= Max);
   1216 }
   1217 
   1218 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
   1219   // convert modifies in place, so make a copy.
   1220   APFloat Val2 = APFloat(Val);
   1221   bool losesInfo;
   1222   switch (Ty->getTypeID()) {
   1223   default:
   1224     return false;         // These can't be represented as floating point!
   1225 
   1226   // FIXME rounding mode needs to be more flexible
   1227   case Type::HalfTyID: {
   1228     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
   1229       return true;
   1230     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
   1231     return !losesInfo;
   1232   }
   1233   case Type::FloatTyID: {
   1234     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
   1235       return true;
   1236     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
   1237     return !losesInfo;
   1238   }
   1239   case Type::DoubleTyID: {
   1240     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
   1241         &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1242         &Val2.getSemantics() == &APFloat::IEEEdouble)
   1243       return true;
   1244     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
   1245     return !losesInfo;
   1246   }
   1247   case Type::X86_FP80TyID:
   1248     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1249            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1250            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1251            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
   1252   case Type::FP128TyID:
   1253     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1254            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1255            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1256            &Val2.getSemantics() == &APFloat::IEEEquad;
   1257   case Type::PPC_FP128TyID:
   1258     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1259            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1260            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1261            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
   1262   }
   1263 }
   1264 
   1265 
   1266 //===----------------------------------------------------------------------===//
   1267 //                      Factory Function Implementation
   1268 
   1269 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
   1270   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
   1271          "Cannot create an aggregate zero of non-aggregate type!");
   1272 
   1273   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
   1274   if (!Entry)
   1275     Entry = new ConstantAggregateZero(Ty);
   1276 
   1277   return Entry;
   1278 }
   1279 
   1280 /// destroyConstant - Remove the constant from the constant table.
   1281 ///
   1282 void ConstantAggregateZero::destroyConstant() {
   1283   getContext().pImpl->CAZConstants.erase(getType());
   1284   destroyConstantImpl();
   1285 }
   1286 
   1287 /// destroyConstant - Remove the constant from the constant table...
   1288 ///
   1289 void ConstantArray::destroyConstant() {
   1290   getType()->getContext().pImpl->ArrayConstants.remove(this);
   1291   destroyConstantImpl();
   1292 }
   1293 
   1294 
   1295 //---- ConstantStruct::get() implementation...
   1296 //
   1297 
   1298 // destroyConstant - Remove the constant from the constant table...
   1299 //
   1300 void ConstantStruct::destroyConstant() {
   1301   getType()->getContext().pImpl->StructConstants.remove(this);
   1302   destroyConstantImpl();
   1303 }
   1304 
   1305 // destroyConstant - Remove the constant from the constant table...
   1306 //
   1307 void ConstantVector::destroyConstant() {
   1308   getType()->getContext().pImpl->VectorConstants.remove(this);
   1309   destroyConstantImpl();
   1310 }
   1311 
   1312 /// getSplatValue - If this is a splat vector constant, meaning that all of
   1313 /// the elements have the same value, return that value. Otherwise return 0.
   1314 Constant *Constant::getSplatValue() const {
   1315   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
   1316   if (isa<ConstantAggregateZero>(this))
   1317     return getNullValue(this->getType()->getVectorElementType());
   1318   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
   1319     return CV->getSplatValue();
   1320   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
   1321     return CV->getSplatValue();
   1322   return nullptr;
   1323 }
   1324 
   1325 /// getSplatValue - If this is a splat constant, where all of the
   1326 /// elements have the same value, return that value. Otherwise return null.
   1327 Constant *ConstantVector::getSplatValue() const {
   1328   // Check out first element.
   1329   Constant *Elt = getOperand(0);
   1330   // Then make sure all remaining elements point to the same value.
   1331   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1332     if (getOperand(I) != Elt)
   1333       return nullptr;
   1334   return Elt;
   1335 }
   1336 
   1337 /// If C is a constant integer then return its value, otherwise C must be a
   1338 /// vector of constant integers, all equal, and the common value is returned.
   1339 const APInt &Constant::getUniqueInteger() const {
   1340   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
   1341     return CI->getValue();
   1342   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
   1343   const Constant *C = this->getAggregateElement(0U);
   1344   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
   1345   return cast<ConstantInt>(C)->getValue();
   1346 }
   1347 
   1348 
   1349 //---- ConstantPointerNull::get() implementation.
   1350 //
   1351 
   1352 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1353   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
   1354   if (!Entry)
   1355     Entry = new ConstantPointerNull(Ty);
   1356 
   1357   return Entry;
   1358 }
   1359 
   1360 // destroyConstant - Remove the constant from the constant table...
   1361 //
   1362 void ConstantPointerNull::destroyConstant() {
   1363   getContext().pImpl->CPNConstants.erase(getType());
   1364   // Free the constant and any dangling references to it.
   1365   destroyConstantImpl();
   1366 }
   1367 
   1368 
   1369 //---- UndefValue::get() implementation.
   1370 //
   1371 
   1372 UndefValue *UndefValue::get(Type *Ty) {
   1373   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
   1374   if (!Entry)
   1375     Entry = new UndefValue(Ty);
   1376 
   1377   return Entry;
   1378 }
   1379 
   1380 // destroyConstant - Remove the constant from the constant table.
   1381 //
   1382 void UndefValue::destroyConstant() {
   1383   // Free the constant and any dangling references to it.
   1384   getContext().pImpl->UVConstants.erase(getType());
   1385   destroyConstantImpl();
   1386 }
   1387 
   1388 //---- BlockAddress::get() implementation.
   1389 //
   1390 
   1391 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1392   assert(BB->getParent() && "Block must have a parent");
   1393   return get(BB->getParent(), BB);
   1394 }
   1395 
   1396 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1397   BlockAddress *&BA =
   1398     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1399   if (!BA)
   1400     BA = new BlockAddress(F, BB);
   1401 
   1402   assert(BA->getFunction() == F && "Basic block moved between functions");
   1403   return BA;
   1404 }
   1405 
   1406 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1407 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1408            &Op<0>(), 2) {
   1409   setOperand(0, F);
   1410   setOperand(1, BB);
   1411   BB->AdjustBlockAddressRefCount(1);
   1412 }
   1413 
   1414 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
   1415   if (!BB->hasAddressTaken())
   1416     return nullptr;
   1417 
   1418   const Function *F = BB->getParent();
   1419   assert(F && "Block must have a parent");
   1420   BlockAddress *BA =
   1421       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
   1422   assert(BA && "Refcount and block address map disagree!");
   1423   return BA;
   1424 }
   1425 
   1426 // destroyConstant - Remove the constant from the constant table.
   1427 //
   1428 void BlockAddress::destroyConstant() {
   1429   getFunction()->getType()->getContext().pImpl
   1430     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1431   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1432   destroyConstantImpl();
   1433 }
   1434 
   1435 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
   1436   // This could be replacing either the Basic Block or the Function.  In either
   1437   // case, we have to remove the map entry.
   1438   Function *NewF = getFunction();
   1439   BasicBlock *NewBB = getBasicBlock();
   1440 
   1441   if (U == &Op<0>())
   1442     NewF = cast<Function>(To->stripPointerCasts());
   1443   else
   1444     NewBB = cast<BasicBlock>(To);
   1445 
   1446   // See if the 'new' entry already exists, if not, just update this in place
   1447   // and return early.
   1448   BlockAddress *&NewBA =
   1449     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1450   if (!NewBA) {
   1451     getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1452 
   1453     // Remove the old entry, this can't cause the map to rehash (just a
   1454     // tombstone will get added).
   1455     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1456                                                             getBasicBlock()));
   1457     NewBA = this;
   1458     setOperand(0, NewF);
   1459     setOperand(1, NewBB);
   1460     getBasicBlock()->AdjustBlockAddressRefCount(1);
   1461     return;
   1462   }
   1463 
   1464   // Otherwise, I do need to replace this with an existing value.
   1465   assert(NewBA != this && "I didn't contain From!");
   1466 
   1467   // Everyone using this now uses the replacement.
   1468   replaceAllUsesWith(NewBA);
   1469 
   1470   destroyConstant();
   1471 }
   1472 
   1473 //---- ConstantExpr::get() implementations.
   1474 //
   1475 
   1476 /// This is a utility function to handle folding of casts and lookup of the
   1477 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1478 static inline Constant *getFoldedCast(
   1479   Instruction::CastOps opc, Constant *C, Type *Ty) {
   1480   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1481   // Fold a few common cases
   1482   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1483     return FC;
   1484 
   1485   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1486 
   1487   // Look up the constant in the table first to ensure uniqueness.
   1488   ExprMapKeyType Key(opc, C);
   1489 
   1490   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1491 }
   1492 
   1493 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
   1494   Instruction::CastOps opc = Instruction::CastOps(oc);
   1495   assert(Instruction::isCast(opc) && "opcode out of range");
   1496   assert(C && Ty && "Null arguments to getCast");
   1497   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1498 
   1499   switch (opc) {
   1500   default:
   1501     llvm_unreachable("Invalid cast opcode");
   1502   case Instruction::Trunc:    return getTrunc(C, Ty);
   1503   case Instruction::ZExt:     return getZExt(C, Ty);
   1504   case Instruction::SExt:     return getSExt(C, Ty);
   1505   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
   1506   case Instruction::FPExt:    return getFPExtend(C, Ty);
   1507   case Instruction::UIToFP:   return getUIToFP(C, Ty);
   1508   case Instruction::SIToFP:   return getSIToFP(C, Ty);
   1509   case Instruction::FPToUI:   return getFPToUI(C, Ty);
   1510   case Instruction::FPToSI:   return getFPToSI(C, Ty);
   1511   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
   1512   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
   1513   case Instruction::BitCast:  return getBitCast(C, Ty);
   1514   case Instruction::AddrSpaceCast:  return getAddrSpaceCast(C, Ty);
   1515   }
   1516 }
   1517 
   1518 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1519   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1520     return getBitCast(C, Ty);
   1521   return getZExt(C, Ty);
   1522 }
   1523 
   1524 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1525   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1526     return getBitCast(C, Ty);
   1527   return getSExt(C, Ty);
   1528 }
   1529 
   1530 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1531   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1532     return getBitCast(C, Ty);
   1533   return getTrunc(C, Ty);
   1534 }
   1535 
   1536 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1537   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1538   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   1539           "Invalid cast");
   1540 
   1541   if (Ty->isIntOrIntVectorTy())
   1542     return getPtrToInt(S, Ty);
   1543 
   1544   unsigned SrcAS = S->getType()->getPointerAddressSpace();
   1545   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
   1546     return getAddrSpaceCast(S, Ty);
   1547 
   1548   return getBitCast(S, Ty);
   1549 }
   1550 
   1551 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
   1552                                                          Type *Ty) {
   1553   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1554   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
   1555 
   1556   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
   1557     return getAddrSpaceCast(S, Ty);
   1558 
   1559   return getBitCast(S, Ty);
   1560 }
   1561 
   1562 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
   1563                                        bool isSigned) {
   1564   assert(C->getType()->isIntOrIntVectorTy() &&
   1565          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1566   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1567   unsigned DstBits = Ty->getScalarSizeInBits();
   1568   Instruction::CastOps opcode =
   1569     (SrcBits == DstBits ? Instruction::BitCast :
   1570      (SrcBits > DstBits ? Instruction::Trunc :
   1571       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1572   return getCast(opcode, C, Ty);
   1573 }
   1574 
   1575 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1576   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1577          "Invalid cast");
   1578   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1579   unsigned DstBits = Ty->getScalarSizeInBits();
   1580   if (SrcBits == DstBits)
   1581     return C; // Avoid a useless cast
   1582   Instruction::CastOps opcode =
   1583     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1584   return getCast(opcode, C, Ty);
   1585 }
   1586 
   1587 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
   1588 #ifndef NDEBUG
   1589   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1590   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1591 #endif
   1592   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1593   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1594   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1595   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1596          "SrcTy must be larger than DestTy for Trunc!");
   1597 
   1598   return getFoldedCast(Instruction::Trunc, C, Ty);
   1599 }
   1600 
   1601 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
   1602 #ifndef NDEBUG
   1603   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1604   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1605 #endif
   1606   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1607   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1608   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1609   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1610          "SrcTy must be smaller than DestTy for SExt!");
   1611 
   1612   return getFoldedCast(Instruction::SExt, C, Ty);
   1613 }
   1614 
   1615 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
   1616 #ifndef NDEBUG
   1617   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1618   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1619 #endif
   1620   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1621   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1622   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1623   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1624          "SrcTy must be smaller than DestTy for ZExt!");
   1625 
   1626   return getFoldedCast(Instruction::ZExt, C, Ty);
   1627 }
   1628 
   1629 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
   1630 #ifndef NDEBUG
   1631   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1632   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1633 #endif
   1634   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1635   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1636          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1637          "This is an illegal floating point truncation!");
   1638   return getFoldedCast(Instruction::FPTrunc, C, Ty);
   1639 }
   1640 
   1641 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
   1642 #ifndef NDEBUG
   1643   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1644   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1645 #endif
   1646   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1647   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1648          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1649          "This is an illegal floating point extension!");
   1650   return getFoldedCast(Instruction::FPExt, C, Ty);
   1651 }
   1652 
   1653 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
   1654 #ifndef NDEBUG
   1655   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1656   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1657 #endif
   1658   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1659   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1660          "This is an illegal uint to floating point cast!");
   1661   return getFoldedCast(Instruction::UIToFP, C, Ty);
   1662 }
   1663 
   1664 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
   1665 #ifndef NDEBUG
   1666   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1667   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1668 #endif
   1669   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1670   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1671          "This is an illegal sint to floating point cast!");
   1672   return getFoldedCast(Instruction::SIToFP, C, Ty);
   1673 }
   1674 
   1675 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
   1676 #ifndef NDEBUG
   1677   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1678   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1679 #endif
   1680   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1681   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1682          "This is an illegal floating point to uint cast!");
   1683   return getFoldedCast(Instruction::FPToUI, C, Ty);
   1684 }
   1685 
   1686 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
   1687 #ifndef NDEBUG
   1688   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1689   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1690 #endif
   1691   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1692   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1693          "This is an illegal floating point to sint cast!");
   1694   return getFoldedCast(Instruction::FPToSI, C, Ty);
   1695 }
   1696 
   1697 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
   1698   assert(C->getType()->getScalarType()->isPointerTy() &&
   1699          "PtrToInt source must be pointer or pointer vector");
   1700   assert(DstTy->getScalarType()->isIntegerTy() &&
   1701          "PtrToInt destination must be integer or integer vector");
   1702   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1703   if (isa<VectorType>(C->getType()))
   1704     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1705            "Invalid cast between a different number of vector elements");
   1706   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
   1707 }
   1708 
   1709 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
   1710   assert(C->getType()->getScalarType()->isIntegerTy() &&
   1711          "IntToPtr source must be integer or integer vector");
   1712   assert(DstTy->getScalarType()->isPointerTy() &&
   1713          "IntToPtr destination must be a pointer or pointer vector");
   1714   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1715   if (isa<VectorType>(C->getType()))
   1716     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1717            "Invalid cast between a different number of vector elements");
   1718   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
   1719 }
   1720 
   1721 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
   1722   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1723          "Invalid constantexpr bitcast!");
   1724 
   1725   // It is common to ask for a bitcast of a value to its own type, handle this
   1726   // speedily.
   1727   if (C->getType() == DstTy) return C;
   1728 
   1729   return getFoldedCast(Instruction::BitCast, C, DstTy);
   1730 }
   1731 
   1732 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
   1733   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
   1734          "Invalid constantexpr addrspacecast!");
   1735 
   1736   // Canonicalize addrspacecasts between different pointer types by first
   1737   // bitcasting the pointer type and then converting the address space.
   1738   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
   1739   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
   1740   Type *DstElemTy = DstScalarTy->getElementType();
   1741   if (SrcScalarTy->getElementType() != DstElemTy) {
   1742     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
   1743     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
   1744       // Handle vectors of pointers.
   1745       MidTy = VectorType::get(MidTy, VT->getNumElements());
   1746     }
   1747     C = getBitCast(C, MidTy);
   1748   }
   1749   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
   1750 }
   1751 
   1752 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1753                             unsigned Flags) {
   1754   // Check the operands for consistency first.
   1755   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1756          Opcode <  Instruction::BinaryOpsEnd   &&
   1757          "Invalid opcode in binary constant expression");
   1758   assert(C1->getType() == C2->getType() &&
   1759          "Operand types in binary constant expression should match");
   1760 
   1761 #ifndef NDEBUG
   1762   switch (Opcode) {
   1763   case Instruction::Add:
   1764   case Instruction::Sub:
   1765   case Instruction::Mul:
   1766     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1767     assert(C1->getType()->isIntOrIntVectorTy() &&
   1768            "Tried to create an integer operation on a non-integer type!");
   1769     break;
   1770   case Instruction::FAdd:
   1771   case Instruction::FSub:
   1772   case Instruction::FMul:
   1773     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1774     assert(C1->getType()->isFPOrFPVectorTy() &&
   1775            "Tried to create a floating-point operation on a "
   1776            "non-floating-point type!");
   1777     break;
   1778   case Instruction::UDiv:
   1779   case Instruction::SDiv:
   1780     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1781     assert(C1->getType()->isIntOrIntVectorTy() &&
   1782            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1783     break;
   1784   case Instruction::FDiv:
   1785     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1786     assert(C1->getType()->isFPOrFPVectorTy() &&
   1787            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1788     break;
   1789   case Instruction::URem:
   1790   case Instruction::SRem:
   1791     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1792     assert(C1->getType()->isIntOrIntVectorTy() &&
   1793            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1794     break;
   1795   case Instruction::FRem:
   1796     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1797     assert(C1->getType()->isFPOrFPVectorTy() &&
   1798            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1799     break;
   1800   case Instruction::And:
   1801   case Instruction::Or:
   1802   case Instruction::Xor:
   1803     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1804     assert(C1->getType()->isIntOrIntVectorTy() &&
   1805            "Tried to create a logical operation on a non-integral type!");
   1806     break;
   1807   case Instruction::Shl:
   1808   case Instruction::LShr:
   1809   case Instruction::AShr:
   1810     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1811     assert(C1->getType()->isIntOrIntVectorTy() &&
   1812            "Tried to create a shift operation on a non-integer type!");
   1813     break;
   1814   default:
   1815     break;
   1816   }
   1817 #endif
   1818 
   1819   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1820     return FC;          // Fold a few common cases.
   1821 
   1822   Constant *ArgVec[] = { C1, C2 };
   1823   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
   1824 
   1825   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1826   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1827 }
   1828 
   1829 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1830   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1831   // Note that a non-inbounds gep is used, as null isn't within any object.
   1832   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1833   Constant *GEP = getGetElementPtr(
   1834                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1835   return getPtrToInt(GEP,
   1836                      Type::getInt64Ty(Ty->getContext()));
   1837 }
   1838 
   1839 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1840   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1841   // Note that a non-inbounds gep is used, as null isn't within any object.
   1842   Type *AligningTy =
   1843     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
   1844   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
   1845   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1846   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1847   Constant *Indices[2] = { Zero, One };
   1848   Constant *GEP = getGetElementPtr(NullPtr, Indices);
   1849   return getPtrToInt(GEP,
   1850                      Type::getInt64Ty(Ty->getContext()));
   1851 }
   1852 
   1853 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1854   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1855                                            FieldNo));
   1856 }
   1857 
   1858 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1859   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1860   // Note that a non-inbounds gep is used, as null isn't within any object.
   1861   Constant *GEPIdx[] = {
   1862     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1863     FieldNo
   1864   };
   1865   Constant *GEP = getGetElementPtr(
   1866                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1867   return getPtrToInt(GEP,
   1868                      Type::getInt64Ty(Ty->getContext()));
   1869 }
   1870 
   1871 Constant *ConstantExpr::getCompare(unsigned short Predicate,
   1872                                    Constant *C1, Constant *C2) {
   1873   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1874 
   1875   switch (Predicate) {
   1876   default: llvm_unreachable("Invalid CmpInst predicate");
   1877   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1878   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1879   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1880   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1881   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1882   case CmpInst::FCMP_TRUE:
   1883     return getFCmp(Predicate, C1, C2);
   1884 
   1885   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1886   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1887   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1888   case CmpInst::ICMP_SLE:
   1889     return getICmp(Predicate, C1, C2);
   1890   }
   1891 }
   1892 
   1893 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
   1894   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1895 
   1896   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1897     return SC;        // Fold common cases
   1898 
   1899   Constant *ArgVec[] = { C, V1, V2 };
   1900   ExprMapKeyType Key(Instruction::Select, ArgVec);
   1901 
   1902   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1903   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1904 }
   1905 
   1906 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
   1907                                          bool InBounds) {
   1908   assert(C->getType()->isPtrOrPtrVectorTy() &&
   1909          "Non-pointer type for constant GetElementPtr expression");
   1910 
   1911   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
   1912     return FC;          // Fold a few common cases.
   1913 
   1914   // Get the result type of the getelementptr!
   1915   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
   1916   assert(Ty && "GEP indices invalid!");
   1917   unsigned AS = C->getType()->getPointerAddressSpace();
   1918   Type *ReqTy = Ty->getPointerTo(AS);
   1919   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
   1920     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
   1921 
   1922   // Look up the constant in the table first to ensure uniqueness
   1923   std::vector<Constant*> ArgVec;
   1924   ArgVec.reserve(1 + Idxs.size());
   1925   ArgVec.push_back(C);
   1926   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1927     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
   1928            "getelementptr index type missmatch");
   1929     assert((!Idxs[i]->getType()->isVectorTy() ||
   1930             ReqTy->getVectorNumElements() ==
   1931             Idxs[i]->getType()->getVectorNumElements()) &&
   1932            "getelementptr index type missmatch");
   1933     ArgVec.push_back(cast<Constant>(Idxs[i]));
   1934   }
   1935   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1936                            InBounds ? GEPOperator::IsInBounds : 0);
   1937 
   1938   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1939   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1940 }
   1941 
   1942 Constant *
   1943 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1944   assert(LHS->getType() == RHS->getType());
   1945   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   1946          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   1947 
   1948   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1949     return FC;          // Fold a few common cases...
   1950 
   1951   // Look up the constant in the table first to ensure uniqueness
   1952   Constant *ArgVec[] = { LHS, RHS };
   1953   // Get the key type with both the opcode and predicate
   1954   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
   1955 
   1956   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1957   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1958     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1959 
   1960   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1961   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1962 }
   1963 
   1964 Constant *
   1965 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1966   assert(LHS->getType() == RHS->getType());
   1967   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   1968 
   1969   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1970     return FC;          // Fold a few common cases...
   1971 
   1972   // Look up the constant in the table first to ensure uniqueness
   1973   Constant *ArgVec[] = { LHS, RHS };
   1974   // Get the key type with both the opcode and predicate
   1975   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
   1976 
   1977   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1978   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1979     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1980 
   1981   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1982   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1983 }
   1984 
   1985 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
   1986   assert(Val->getType()->isVectorTy() &&
   1987          "Tried to create extractelement operation on non-vector type!");
   1988   assert(Idx->getType()->isIntegerTy() &&
   1989          "Extractelement index must be an integer type!");
   1990 
   1991   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   1992     return FC;          // Fold a few common cases.
   1993 
   1994   // Look up the constant in the table first to ensure uniqueness
   1995   Constant *ArgVec[] = { Val, Idx };
   1996   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
   1997 
   1998   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1999   Type *ReqTy = Val->getType()->getVectorElementType();
   2000   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2001 }
   2002 
   2003 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   2004                                          Constant *Idx) {
   2005   assert(Val->getType()->isVectorTy() &&
   2006          "Tried to create insertelement operation on non-vector type!");
   2007   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
   2008          "Insertelement types must match!");
   2009   assert(Idx->getType()->isIntegerTy() &&
   2010          "Insertelement index must be i32 type!");
   2011 
   2012   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   2013     return FC;          // Fold a few common cases.
   2014   // Look up the constant in the table first to ensure uniqueness
   2015   Constant *ArgVec[] = { Val, Elt, Idx };
   2016   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
   2017 
   2018   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2019   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   2020 }
   2021 
   2022 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   2023                                          Constant *Mask) {
   2024   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   2025          "Invalid shuffle vector constant expr operands!");
   2026 
   2027   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   2028     return FC;          // Fold a few common cases.
   2029 
   2030   unsigned NElts = Mask->getType()->getVectorNumElements();
   2031   Type *EltTy = V1->getType()->getVectorElementType();
   2032   Type *ShufTy = VectorType::get(EltTy, NElts);
   2033 
   2034   // Look up the constant in the table first to ensure uniqueness
   2035   Constant *ArgVec[] = { V1, V2, Mask };
   2036   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
   2037 
   2038   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   2039   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   2040 }
   2041 
   2042 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   2043                                        ArrayRef<unsigned> Idxs) {
   2044   assert(Agg->getType()->isFirstClassType() &&
   2045          "Non-first-class type for constant insertvalue expression");
   2046 
   2047   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   2048                                           Idxs) == Val->getType() &&
   2049          "insertvalue indices invalid!");
   2050   Type *ReqTy = Val->getType();
   2051 
   2052   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
   2053     return FC;
   2054 
   2055   Constant *ArgVec[] = { Agg, Val };
   2056   const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
   2057 
   2058   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2059   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2060 }
   2061 
   2062 Constant *ConstantExpr::getExtractValue(Constant *Agg,
   2063                                         ArrayRef<unsigned> Idxs) {
   2064   assert(Agg->getType()->isFirstClassType() &&
   2065          "Tried to create extractelement operation on non-first-class type!");
   2066 
   2067   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   2068   (void)ReqTy;
   2069   assert(ReqTy && "extractvalue indices invalid!");
   2070 
   2071   assert(Agg->getType()->isFirstClassType() &&
   2072          "Non-first-class type for constant extractvalue expression");
   2073   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
   2074     return FC;
   2075 
   2076   Constant *ArgVec[] = { Agg };
   2077   const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
   2078 
   2079   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2080   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2081 }
   2082 
   2083 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   2084   assert(C->getType()->isIntOrIntVectorTy() &&
   2085          "Cannot NEG a nonintegral value!");
   2086   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   2087                 C, HasNUW, HasNSW);
   2088 }
   2089 
   2090 Constant *ConstantExpr::getFNeg(Constant *C) {
   2091   assert(C->getType()->isFPOrFPVectorTy() &&
   2092          "Cannot FNEG a non-floating-point value!");
   2093   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   2094 }
   2095 
   2096 Constant *ConstantExpr::getNot(Constant *C) {
   2097   assert(C->getType()->isIntOrIntVectorTy() &&
   2098          "Cannot NOT a nonintegral value!");
   2099   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   2100 }
   2101 
   2102 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   2103                                bool HasNUW, bool HasNSW) {
   2104   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2105                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2106   return get(Instruction::Add, C1, C2, Flags);
   2107 }
   2108 
   2109 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   2110   return get(Instruction::FAdd, C1, C2);
   2111 }
   2112 
   2113 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   2114                                bool HasNUW, bool HasNSW) {
   2115   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2116                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2117   return get(Instruction::Sub, C1, C2, Flags);
   2118 }
   2119 
   2120 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   2121   return get(Instruction::FSub, C1, C2);
   2122 }
   2123 
   2124 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   2125                                bool HasNUW, bool HasNSW) {
   2126   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2127                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2128   return get(Instruction::Mul, C1, C2, Flags);
   2129 }
   2130 
   2131 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   2132   return get(Instruction::FMul, C1, C2);
   2133 }
   2134 
   2135 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   2136   return get(Instruction::UDiv, C1, C2,
   2137              isExact ? PossiblyExactOperator::IsExact : 0);
   2138 }
   2139 
   2140 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   2141   return get(Instruction::SDiv, C1, C2,
   2142              isExact ? PossiblyExactOperator::IsExact : 0);
   2143 }
   2144 
   2145 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   2146   return get(Instruction::FDiv, C1, C2);
   2147 }
   2148 
   2149 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   2150   return get(Instruction::URem, C1, C2);
   2151 }
   2152 
   2153 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   2154   return get(Instruction::SRem, C1, C2);
   2155 }
   2156 
   2157 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   2158   return get(Instruction::FRem, C1, C2);
   2159 }
   2160 
   2161 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   2162   return get(Instruction::And, C1, C2);
   2163 }
   2164 
   2165 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   2166   return get(Instruction::Or, C1, C2);
   2167 }
   2168 
   2169 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   2170   return get(Instruction::Xor, C1, C2);
   2171 }
   2172 
   2173 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   2174                                bool HasNUW, bool HasNSW) {
   2175   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2176                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2177   return get(Instruction::Shl, C1, C2, Flags);
   2178 }
   2179 
   2180 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   2181   return get(Instruction::LShr, C1, C2,
   2182              isExact ? PossiblyExactOperator::IsExact : 0);
   2183 }
   2184 
   2185 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   2186   return get(Instruction::AShr, C1, C2,
   2187              isExact ? PossiblyExactOperator::IsExact : 0);
   2188 }
   2189 
   2190 /// getBinOpIdentity - Return the identity for the given binary operation,
   2191 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
   2192 /// returns null if the operator doesn't have an identity.
   2193 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
   2194   switch (Opcode) {
   2195   default:
   2196     // Doesn't have an identity.
   2197     return nullptr;
   2198 
   2199   case Instruction::Add:
   2200   case Instruction::Or:
   2201   case Instruction::Xor:
   2202     return Constant::getNullValue(Ty);
   2203 
   2204   case Instruction::Mul:
   2205     return ConstantInt::get(Ty, 1);
   2206 
   2207   case Instruction::And:
   2208     return Constant::getAllOnesValue(Ty);
   2209   }
   2210 }
   2211 
   2212 /// getBinOpAbsorber - Return the absorbing element for the given binary
   2213 /// operation, i.e. a constant C such that X op C = C and C op X = C for
   2214 /// every X.  For example, this returns zero for integer multiplication.
   2215 /// It returns null if the operator doesn't have an absorbing element.
   2216 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
   2217   switch (Opcode) {
   2218   default:
   2219     // Doesn't have an absorber.
   2220     return nullptr;
   2221 
   2222   case Instruction::Or:
   2223     return Constant::getAllOnesValue(Ty);
   2224 
   2225   case Instruction::And:
   2226   case Instruction::Mul:
   2227     return Constant::getNullValue(Ty);
   2228   }
   2229 }
   2230 
   2231 // destroyConstant - Remove the constant from the constant table...
   2232 //
   2233 void ConstantExpr::destroyConstant() {
   2234   getType()->getContext().pImpl->ExprConstants.remove(this);
   2235   destroyConstantImpl();
   2236 }
   2237 
   2238 const char *ConstantExpr::getOpcodeName() const {
   2239   return Instruction::getOpcodeName(getOpcode());
   2240 }
   2241 
   2242 
   2243 
   2244 GetElementPtrConstantExpr::
   2245 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
   2246                           Type *DestTy)
   2247   : ConstantExpr(DestTy, Instruction::GetElementPtr,
   2248                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
   2249                  - (IdxList.size()+1), IdxList.size()+1) {
   2250   OperandList[0] = C;
   2251   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   2252     OperandList[i+1] = IdxList[i];
   2253 }
   2254 
   2255 //===----------------------------------------------------------------------===//
   2256 //                       ConstantData* implementations
   2257 
   2258 void ConstantDataArray::anchor() {}
   2259 void ConstantDataVector::anchor() {}
   2260 
   2261 /// getElementType - Return the element type of the array/vector.
   2262 Type *ConstantDataSequential::getElementType() const {
   2263   return getType()->getElementType();
   2264 }
   2265 
   2266 StringRef ConstantDataSequential::getRawDataValues() const {
   2267   return StringRef(DataElements, getNumElements()*getElementByteSize());
   2268 }
   2269 
   2270 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
   2271 /// formed with a vector or array of the specified element type.
   2272 /// ConstantDataArray only works with normal float and int types that are
   2273 /// stored densely in memory, not with things like i42 or x86_f80.
   2274 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
   2275   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
   2276   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
   2277     switch (IT->getBitWidth()) {
   2278     case 8:
   2279     case 16:
   2280     case 32:
   2281     case 64:
   2282       return true;
   2283     default: break;
   2284     }
   2285   }
   2286   return false;
   2287 }
   2288 
   2289 /// getNumElements - Return the number of elements in the array or vector.
   2290 unsigned ConstantDataSequential::getNumElements() const {
   2291   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
   2292     return AT->getNumElements();
   2293   return getType()->getVectorNumElements();
   2294 }
   2295 
   2296 
   2297 /// getElementByteSize - Return the size in bytes of the elements in the data.
   2298 uint64_t ConstantDataSequential::getElementByteSize() const {
   2299   return getElementType()->getPrimitiveSizeInBits()/8;
   2300 }
   2301 
   2302 /// getElementPointer - Return the start of the specified element.
   2303 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
   2304   assert(Elt < getNumElements() && "Invalid Elt");
   2305   return DataElements+Elt*getElementByteSize();
   2306 }
   2307 
   2308 
   2309 /// isAllZeros - return true if the array is empty or all zeros.
   2310 static bool isAllZeros(StringRef Arr) {
   2311   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
   2312     if (*I != 0)
   2313       return false;
   2314   return true;
   2315 }
   2316 
   2317 /// getImpl - This is the underlying implementation of all of the
   2318 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
   2319 /// the correct element type.  We take the bytes in as a StringRef because
   2320 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
   2321 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
   2322   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
   2323   // If the elements are all zero or there are no elements, return a CAZ, which
   2324   // is more dense and canonical.
   2325   if (isAllZeros(Elements))
   2326     return ConstantAggregateZero::get(Ty);
   2327 
   2328   // Do a lookup to see if we have already formed one of these.
   2329   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
   2330     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
   2331 
   2332   // The bucket can point to a linked list of different CDS's that have the same
   2333   // body but different types.  For example, 0,0,0,1 could be a 4 element array
   2334   // of i8, or a 1-element array of i32.  They'll both end up in the same
   2335   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
   2336   ConstantDataSequential **Entry = &Slot.getValue();
   2337   for (ConstantDataSequential *Node = *Entry; Node;
   2338        Entry = &Node->Next, Node = *Entry)
   2339     if (Node->getType() == Ty)
   2340       return Node;
   2341 
   2342   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
   2343   // and return it.
   2344   if (isa<ArrayType>(Ty))
   2345     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
   2346 
   2347   assert(isa<VectorType>(Ty));
   2348   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
   2349 }
   2350 
   2351 void ConstantDataSequential::destroyConstant() {
   2352   // Remove the constant from the StringMap.
   2353   StringMap<ConstantDataSequential*> &CDSConstants =
   2354     getType()->getContext().pImpl->CDSConstants;
   2355 
   2356   StringMap<ConstantDataSequential*>::iterator Slot =
   2357     CDSConstants.find(getRawDataValues());
   2358 
   2359   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
   2360 
   2361   ConstantDataSequential **Entry = &Slot->getValue();
   2362 
   2363   // Remove the entry from the hash table.
   2364   if (!(*Entry)->Next) {
   2365     // If there is only one value in the bucket (common case) it must be this
   2366     // entry, and removing the entry should remove the bucket completely.
   2367     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
   2368     getContext().pImpl->CDSConstants.erase(Slot);
   2369   } else {
   2370     // Otherwise, there are multiple entries linked off the bucket, unlink the
   2371     // node we care about but keep the bucket around.
   2372     for (ConstantDataSequential *Node = *Entry; ;
   2373          Entry = &Node->Next, Node = *Entry) {
   2374       assert(Node && "Didn't find entry in its uniquing hash table!");
   2375       // If we found our entry, unlink it from the list and we're done.
   2376       if (Node == this) {
   2377         *Entry = Node->Next;
   2378         break;
   2379       }
   2380     }
   2381   }
   2382 
   2383   // If we were part of a list, make sure that we don't delete the list that is
   2384   // still owned by the uniquing map.
   2385   Next = nullptr;
   2386 
   2387   // Finally, actually delete it.
   2388   destroyConstantImpl();
   2389 }
   2390 
   2391 /// get() constructors - Return a constant with array type with an element
   2392 /// count and element type matching the ArrayRef passed in.  Note that this
   2393 /// can return a ConstantAggregateZero object.
   2394 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
   2395   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
   2396   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2397   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2398 }
   2399 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2400   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
   2401   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2402   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2403 }
   2404 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2405   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
   2406   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2407   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2408 }
   2409 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2410   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
   2411   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2412   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2413 }
   2414 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2415   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2416   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2417   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2418 }
   2419 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2420   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2421   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2422   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2423 }
   2424 
   2425 /// getString - This method constructs a CDS and initializes it with a text
   2426 /// string. The default behavior (AddNull==true) causes a null terminator to
   2427 /// be placed at the end of the array (increasing the length of the string by
   2428 /// one more than the StringRef would normally indicate.  Pass AddNull=false
   2429 /// to disable this behavior.
   2430 Constant *ConstantDataArray::getString(LLVMContext &Context,
   2431                                        StringRef Str, bool AddNull) {
   2432   if (!AddNull) {
   2433     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
   2434     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
   2435                Str.size()));
   2436   }
   2437 
   2438   SmallVector<uint8_t, 64> ElementVals;
   2439   ElementVals.append(Str.begin(), Str.end());
   2440   ElementVals.push_back(0);
   2441   return get(Context, ElementVals);
   2442 }
   2443 
   2444 /// get() constructors - Return a constant with vector type with an element
   2445 /// count and element type matching the ArrayRef passed in.  Note that this
   2446 /// can return a ConstantAggregateZero object.
   2447 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
   2448   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
   2449   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2450   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2451 }
   2452 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2453   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
   2454   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2455   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2456 }
   2457 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2458   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
   2459   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2460   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2461 }
   2462 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2463   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
   2464   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2465   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2466 }
   2467 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2468   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2469   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2470   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2471 }
   2472 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2473   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2474   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2475   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2476 }
   2477 
   2478 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
   2479   assert(isElementTypeCompatible(V->getType()) &&
   2480          "Element type not compatible with ConstantData");
   2481   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2482     if (CI->getType()->isIntegerTy(8)) {
   2483       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
   2484       return get(V->getContext(), Elts);
   2485     }
   2486     if (CI->getType()->isIntegerTy(16)) {
   2487       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
   2488       return get(V->getContext(), Elts);
   2489     }
   2490     if (CI->getType()->isIntegerTy(32)) {
   2491       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
   2492       return get(V->getContext(), Elts);
   2493     }
   2494     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
   2495     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
   2496     return get(V->getContext(), Elts);
   2497   }
   2498 
   2499   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2500     if (CFP->getType()->isFloatTy()) {
   2501       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
   2502       return get(V->getContext(), Elts);
   2503     }
   2504     if (CFP->getType()->isDoubleTy()) {
   2505       SmallVector<double, 16> Elts(NumElts,
   2506                                    CFP->getValueAPF().convertToDouble());
   2507       return get(V->getContext(), Elts);
   2508     }
   2509   }
   2510   return ConstantVector::getSplat(NumElts, V);
   2511 }
   2512 
   2513 
   2514 /// getElementAsInteger - If this is a sequential container of integers (of
   2515 /// any size), return the specified element in the low bits of a uint64_t.
   2516 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
   2517   assert(isa<IntegerType>(getElementType()) &&
   2518          "Accessor can only be used when element is an integer");
   2519   const char *EltPtr = getElementPointer(Elt);
   2520 
   2521   // The data is stored in host byte order, make sure to cast back to the right
   2522   // type to load with the right endianness.
   2523   switch (getElementType()->getIntegerBitWidth()) {
   2524   default: llvm_unreachable("Invalid bitwidth for CDS");
   2525   case 8:
   2526     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
   2527   case 16:
   2528     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
   2529   case 32:
   2530     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
   2531   case 64:
   2532     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
   2533   }
   2534 }
   2535 
   2536 /// getElementAsAPFloat - If this is a sequential container of floating point
   2537 /// type, return the specified element as an APFloat.
   2538 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
   2539   const char *EltPtr = getElementPointer(Elt);
   2540 
   2541   switch (getElementType()->getTypeID()) {
   2542   default:
   2543     llvm_unreachable("Accessor can only be used when element is float/double!");
   2544   case Type::FloatTyID: {
   2545       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
   2546       return APFloat(*const_cast<float *>(FloatPrt));
   2547     }
   2548   case Type::DoubleTyID: {
   2549       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
   2550       return APFloat(*const_cast<double *>(DoublePtr));
   2551     }
   2552   }
   2553 }
   2554 
   2555 /// getElementAsFloat - If this is an sequential container of floats, return
   2556 /// the specified element as a float.
   2557 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
   2558   assert(getElementType()->isFloatTy() &&
   2559          "Accessor can only be used when element is a 'float'");
   2560   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
   2561   return *const_cast<float *>(EltPtr);
   2562 }
   2563 
   2564 /// getElementAsDouble - If this is an sequential container of doubles, return
   2565 /// the specified element as a float.
   2566 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
   2567   assert(getElementType()->isDoubleTy() &&
   2568          "Accessor can only be used when element is a 'float'");
   2569   const double *EltPtr =
   2570       reinterpret_cast<const double *>(getElementPointer(Elt));
   2571   return *const_cast<double *>(EltPtr);
   2572 }
   2573 
   2574 /// getElementAsConstant - Return a Constant for a specified index's element.
   2575 /// Note that this has to compute a new constant to return, so it isn't as
   2576 /// efficient as getElementAsInteger/Float/Double.
   2577 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
   2578   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
   2579     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
   2580 
   2581   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
   2582 }
   2583 
   2584 /// isString - This method returns true if this is an array of i8.
   2585 bool ConstantDataSequential::isString() const {
   2586   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
   2587 }
   2588 
   2589 /// isCString - This method returns true if the array "isString", ends with a
   2590 /// nul byte, and does not contains any other nul bytes.
   2591 bool ConstantDataSequential::isCString() const {
   2592   if (!isString())
   2593     return false;
   2594 
   2595   StringRef Str = getAsString();
   2596 
   2597   // The last value must be nul.
   2598   if (Str.back() != 0) return false;
   2599 
   2600   // Other elements must be non-nul.
   2601   return Str.drop_back().find(0) == StringRef::npos;
   2602 }
   2603 
   2604 /// getSplatValue - If this is a splat constant, meaning that all of the
   2605 /// elements have the same value, return that value. Otherwise return NULL.
   2606 Constant *ConstantDataVector::getSplatValue() const {
   2607   const char *Base = getRawDataValues().data();
   2608 
   2609   // Compare elements 1+ to the 0'th element.
   2610   unsigned EltSize = getElementByteSize();
   2611   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
   2612     if (memcmp(Base, Base+i*EltSize, EltSize))
   2613       return nullptr;
   2614 
   2615   // If they're all the same, return the 0th one as a representative.
   2616   return getElementAsConstant(0);
   2617 }
   2618 
   2619 //===----------------------------------------------------------------------===//
   2620 //                replaceUsesOfWithOnConstant implementations
   2621 
   2622 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
   2623 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   2624 /// etc.
   2625 ///
   2626 /// Note that we intentionally replace all uses of From with To here.  Consider
   2627 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   2628 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
   2629 /// single invocation handles all 1000 uses.  Handling them one at a time would
   2630 /// work, but would be really slow because it would have to unique each updated
   2631 /// array instance.
   2632 ///
   2633 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2634                                                 Use *U) {
   2635   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2636   Constant *ToC = cast<Constant>(To);
   2637 
   2638   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
   2639 
   2640   SmallVector<Constant*, 8> Values;
   2641   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
   2642   Lookup.first = cast<ArrayType>(getType());
   2643   Values.reserve(getNumOperands());  // Build replacement array.
   2644 
   2645   // Fill values with the modified operands of the constant array.  Also,
   2646   // compute whether this turns into an all-zeros array.
   2647   unsigned NumUpdated = 0;
   2648 
   2649   // Keep track of whether all the values in the array are "ToC".
   2650   bool AllSame = true;
   2651   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2652     Constant *Val = cast<Constant>(O->get());
   2653     if (Val == From) {
   2654       Val = ToC;
   2655       ++NumUpdated;
   2656     }
   2657     Values.push_back(Val);
   2658     AllSame &= Val == ToC;
   2659   }
   2660 
   2661   Constant *Replacement = nullptr;
   2662   if (AllSame && ToC->isNullValue()) {
   2663     Replacement = ConstantAggregateZero::get(getType());
   2664   } else if (AllSame && isa<UndefValue>(ToC)) {
   2665     Replacement = UndefValue::get(getType());
   2666   } else {
   2667     // Check to see if we have this array type already.
   2668     Lookup.second = makeArrayRef(Values);
   2669     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
   2670       pImpl->ArrayConstants.find(Lookup);
   2671 
   2672     if (I != pImpl->ArrayConstants.map_end()) {
   2673       Replacement = I->first;
   2674     } else {
   2675       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2676       // creating a new constant array, inserting it, replaceallusesof'ing the
   2677       // old with the new, then deleting the old... just update the current one
   2678       // in place!
   2679       pImpl->ArrayConstants.remove(this);
   2680 
   2681       // Update to the new value.  Optimize for the case when we have a single
   2682       // operand that we're changing, but handle bulk updates efficiently.
   2683       if (NumUpdated == 1) {
   2684         unsigned OperandToUpdate = U - OperandList;
   2685         assert(getOperand(OperandToUpdate) == From &&
   2686                "ReplaceAllUsesWith broken!");
   2687         setOperand(OperandToUpdate, ToC);
   2688       } else {
   2689         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   2690           if (getOperand(i) == From)
   2691             setOperand(i, ToC);
   2692       }
   2693       pImpl->ArrayConstants.insert(this);
   2694       return;
   2695     }
   2696   }
   2697 
   2698   // Otherwise, I do need to replace this with an existing value.
   2699   assert(Replacement != this && "I didn't contain From!");
   2700 
   2701   // Everyone using this now uses the replacement.
   2702   replaceAllUsesWith(Replacement);
   2703 
   2704   // Delete the old constant!
   2705   destroyConstant();
   2706 }
   2707 
   2708 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2709                                                  Use *U) {
   2710   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2711   Constant *ToC = cast<Constant>(To);
   2712 
   2713   unsigned OperandToUpdate = U-OperandList;
   2714   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
   2715 
   2716   SmallVector<Constant*, 8> Values;
   2717   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
   2718   Lookup.first = cast<StructType>(getType());
   2719   Values.reserve(getNumOperands());  // Build replacement struct.
   2720 
   2721   // Fill values with the modified operands of the constant struct.  Also,
   2722   // compute whether this turns into an all-zeros struct.
   2723   bool isAllZeros = false;
   2724   bool isAllUndef = false;
   2725   if (ToC->isNullValue()) {
   2726     isAllZeros = true;
   2727     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2728       Constant *Val = cast<Constant>(O->get());
   2729       Values.push_back(Val);
   2730       if (isAllZeros) isAllZeros = Val->isNullValue();
   2731     }
   2732   } else if (isa<UndefValue>(ToC)) {
   2733     isAllUndef = true;
   2734     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2735       Constant *Val = cast<Constant>(O->get());
   2736       Values.push_back(Val);
   2737       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
   2738     }
   2739   } else {
   2740     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
   2741       Values.push_back(cast<Constant>(O->get()));
   2742   }
   2743   Values[OperandToUpdate] = ToC;
   2744 
   2745   LLVMContextImpl *pImpl = getContext().pImpl;
   2746 
   2747   Constant *Replacement = nullptr;
   2748   if (isAllZeros) {
   2749     Replacement = ConstantAggregateZero::get(getType());
   2750   } else if (isAllUndef) {
   2751     Replacement = UndefValue::get(getType());
   2752   } else {
   2753     // Check to see if we have this struct type already.
   2754     Lookup.second = makeArrayRef(Values);
   2755     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
   2756       pImpl->StructConstants.find(Lookup);
   2757 
   2758     if (I != pImpl->StructConstants.map_end()) {
   2759       Replacement = I->first;
   2760     } else {
   2761       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2762       // creating a new constant struct, inserting it, replaceallusesof'ing the
   2763       // old with the new, then deleting the old... just update the current one
   2764       // in place!
   2765       pImpl->StructConstants.remove(this);
   2766 
   2767       // Update to the new value.
   2768       setOperand(OperandToUpdate, ToC);
   2769       pImpl->StructConstants.insert(this);
   2770       return;
   2771     }
   2772   }
   2773 
   2774   assert(Replacement != this && "I didn't contain From!");
   2775 
   2776   // Everyone using this now uses the replacement.
   2777   replaceAllUsesWith(Replacement);
   2778 
   2779   // Delete the old constant!
   2780   destroyConstant();
   2781 }
   2782 
   2783 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2784                                                  Use *U) {
   2785   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2786 
   2787   SmallVector<Constant*, 8> Values;
   2788   Values.reserve(getNumOperands());  // Build replacement array...
   2789   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2790     Constant *Val = getOperand(i);
   2791     if (Val == From) Val = cast<Constant>(To);
   2792     Values.push_back(Val);
   2793   }
   2794 
   2795   Constant *Replacement = get(Values);
   2796   assert(Replacement != this && "I didn't contain From!");
   2797 
   2798   // Everyone using this now uses the replacement.
   2799   replaceAllUsesWith(Replacement);
   2800 
   2801   // Delete the old constant!
   2802   destroyConstant();
   2803 }
   2804 
   2805 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   2806                                                Use *U) {
   2807   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2808   Constant *To = cast<Constant>(ToV);
   2809 
   2810   SmallVector<Constant*, 8> NewOps;
   2811   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2812     Constant *Op = getOperand(i);
   2813     NewOps.push_back(Op == From ? To : Op);
   2814   }
   2815 
   2816   Constant *Replacement = getWithOperands(NewOps);
   2817   assert(Replacement != this && "I didn't contain From!");
   2818 
   2819   // Everyone using this now uses the replacement.
   2820   replaceAllUsesWith(Replacement);
   2821 
   2822   // Delete the old constant!
   2823   destroyConstant();
   2824 }
   2825 
   2826 Instruction *ConstantExpr::getAsInstruction() {
   2827   SmallVector<Value*,4> ValueOperands;
   2828   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
   2829     ValueOperands.push_back(cast<Value>(I));
   2830 
   2831   ArrayRef<Value*> Ops(ValueOperands);
   2832 
   2833   switch (getOpcode()) {
   2834   case Instruction::Trunc:
   2835   case Instruction::ZExt:
   2836   case Instruction::SExt:
   2837   case Instruction::FPTrunc:
   2838   case Instruction::FPExt:
   2839   case Instruction::UIToFP:
   2840   case Instruction::SIToFP:
   2841   case Instruction::FPToUI:
   2842   case Instruction::FPToSI:
   2843   case Instruction::PtrToInt:
   2844   case Instruction::IntToPtr:
   2845   case Instruction::BitCast:
   2846   case Instruction::AddrSpaceCast:
   2847     return CastInst::Create((Instruction::CastOps)getOpcode(),
   2848                             Ops[0], getType());
   2849   case Instruction::Select:
   2850     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
   2851   case Instruction::InsertElement:
   2852     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
   2853   case Instruction::ExtractElement:
   2854     return ExtractElementInst::Create(Ops[0], Ops[1]);
   2855   case Instruction::InsertValue:
   2856     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
   2857   case Instruction::ExtractValue:
   2858     return ExtractValueInst::Create(Ops[0], getIndices());
   2859   case Instruction::ShuffleVector:
   2860     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
   2861 
   2862   case Instruction::GetElementPtr:
   2863     if (cast<GEPOperator>(this)->isInBounds())
   2864       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
   2865     else
   2866       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
   2867 
   2868   case Instruction::ICmp:
   2869   case Instruction::FCmp:
   2870     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
   2871                            getPredicate(), Ops[0], Ops[1]);
   2872 
   2873   default:
   2874     assert(getNumOperands() == 2 && "Must be binary operator?");
   2875     BinaryOperator *BO =
   2876       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
   2877                              Ops[0], Ops[1]);
   2878     if (isa<OverflowingBinaryOperator>(BO)) {
   2879       BO->setHasNoUnsignedWrap(SubclassOptionalData &
   2880                                OverflowingBinaryOperator::NoUnsignedWrap);
   2881       BO->setHasNoSignedWrap(SubclassOptionalData &
   2882                              OverflowingBinaryOperator::NoSignedWrap);
   2883     }
   2884     if (isa<PossiblyExactOperator>(BO))
   2885       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
   2886     return BO;
   2887   }
   2888 }
   2889