Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZInstrInfo.h"
     15 #include "SystemZInstrBuilder.h"
     16 #include "SystemZTargetMachine.h"
     17 #include "llvm/CodeGen/LiveVariables.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 
     20 using namespace llvm;
     21 
     22 #define GET_INSTRINFO_CTOR_DTOR
     23 #define GET_INSTRMAP_INFO
     24 #include "SystemZGenInstrInfo.inc"
     25 
     26 // Return a mask with Count low bits set.
     27 static uint64_t allOnes(unsigned int Count) {
     28   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
     29 }
     30 
     31 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
     32 // than a low register.
     33 static bool isHighReg(unsigned int Reg) {
     34   if (SystemZ::GRH32BitRegClass.contains(Reg))
     35     return true;
     36   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
     37   return false;
     38 }
     39 
     40 // Pin the vtable to this file.
     41 void SystemZInstrInfo::anchor() {}
     42 
     43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
     44   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
     45     RI(), STI(sti) {
     46 }
     47 
     48 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
     49 // each having the opcode given by NewOpcode.
     50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
     51                                  unsigned NewOpcode) const {
     52   MachineBasicBlock *MBB = MI->getParent();
     53   MachineFunction &MF = *MBB->getParent();
     54 
     55   // Get two load or store instructions.  Use the original instruction for one
     56   // of them (arbitrarily the second here) and create a clone for the other.
     57   MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
     58   MBB->insert(MI, EarlierMI);
     59 
     60   // Set up the two 64-bit registers.
     61   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
     62   MachineOperand &LowRegOp = MI->getOperand(0);
     63   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
     64   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
     65 
     66   // The address in the first (high) instruction is already correct.
     67   // Adjust the offset in the second (low) instruction.
     68   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
     69   MachineOperand &LowOffsetOp = MI->getOperand(2);
     70   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
     71 
     72   // Set the opcodes.
     73   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
     74   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
     75   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
     76 
     77   EarlierMI->setDesc(get(HighOpcode));
     78   MI->setDesc(get(LowOpcode));
     79 }
     80 
     81 // Split ADJDYNALLOC instruction MI.
     82 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
     83   MachineBasicBlock *MBB = MI->getParent();
     84   MachineFunction &MF = *MBB->getParent();
     85   MachineFrameInfo *MFFrame = MF.getFrameInfo();
     86   MachineOperand &OffsetMO = MI->getOperand(2);
     87 
     88   uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
     89                      SystemZMC::CallFrameSize +
     90                      OffsetMO.getImm());
     91   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
     92   assert(NewOpcode && "No support for huge argument lists yet");
     93   MI->setDesc(get(NewOpcode));
     94   OffsetMO.setImm(Offset);
     95 }
     96 
     97 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
     98 // if the first operand is a low GR32 and HighOpcode if the first operand
     99 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
    100 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
    101 // MI has the same kind of operand as LowOpcode, so needs to be converted
    102 // if HighOpcode is used.
    103 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
    104                                       unsigned HighOpcode,
    105                                       bool ConvertHigh) const {
    106   unsigned Reg = MI->getOperand(0).getReg();
    107   bool IsHigh = isHighReg(Reg);
    108   MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
    109   if (IsHigh && ConvertHigh)
    110     MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
    111 }
    112 
    113 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
    114 // LowOpcode3 if the registers are both low GR32s, otherwise use a move
    115 // followed by HighOpcode or LowOpcode, depending on whether the target
    116 // is a high or low GR32.
    117 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
    118                                        unsigned LowOpcodeK,
    119                                        unsigned HighOpcode) const {
    120   unsigned DestReg = MI->getOperand(0).getReg();
    121   unsigned SrcReg = MI->getOperand(1).getReg();
    122   bool DestIsHigh = isHighReg(DestReg);
    123   bool SrcIsHigh = isHighReg(SrcReg);
    124   if (!DestIsHigh && !SrcIsHigh)
    125     MI->setDesc(get(LowOpcodeK));
    126   else {
    127     emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
    128                   DestReg, SrcReg, SystemZ::LR, 32,
    129                   MI->getOperand(1).isKill());
    130     MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
    131     MI->getOperand(1).setReg(DestReg);
    132   }
    133 }
    134 
    135 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
    136 // if the first operand is a low GR32 and HighOpcode if the first operand
    137 // is a high GR32.
    138 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
    139                                        unsigned HighOpcode) const {
    140   unsigned Reg = MI->getOperand(0).getReg();
    141   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
    142                                        MI->getOperand(2).getImm());
    143   MI->setDesc(get(Opcode));
    144 }
    145 
    146 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
    147 // of one GRX32 into another.  Replace it with LowOpcode if both operands
    148 // are low registers, otherwise use RISB[LH]G.
    149 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
    150                                         unsigned Size) const {
    151   emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
    152                 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
    153                 LowOpcode, Size, MI->getOperand(1).isKill());
    154   MI->eraseFromParent();
    155 }
    156 
    157 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
    158 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
    159 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
    160 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
    161 // KillSrc is true if this move is the last use of SrcReg.
    162 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
    163                                      MachineBasicBlock::iterator MBBI,
    164                                      DebugLoc DL, unsigned DestReg,
    165                                      unsigned SrcReg, unsigned LowLowOpcode,
    166                                      unsigned Size, bool KillSrc) const {
    167   unsigned Opcode;
    168   bool DestIsHigh = isHighReg(DestReg);
    169   bool SrcIsHigh = isHighReg(SrcReg);
    170   if (DestIsHigh && SrcIsHigh)
    171     Opcode = SystemZ::RISBHH;
    172   else if (DestIsHigh && !SrcIsHigh)
    173     Opcode = SystemZ::RISBHL;
    174   else if (!DestIsHigh && SrcIsHigh)
    175     Opcode = SystemZ::RISBLH;
    176   else {
    177     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
    178       .addReg(SrcReg, getKillRegState(KillSrc));
    179     return;
    180   }
    181   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
    182   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
    183     .addReg(DestReg, RegState::Undef)
    184     .addReg(SrcReg, getKillRegState(KillSrc))
    185     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
    186 }
    187 
    188 // If MI is a simple load or store for a frame object, return the register
    189 // it loads or stores and set FrameIndex to the index of the frame object.
    190 // Return 0 otherwise.
    191 //
    192 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
    193 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
    194                         unsigned Flag) {
    195   const MCInstrDesc &MCID = MI->getDesc();
    196   if ((MCID.TSFlags & Flag) &&
    197       MI->getOperand(1).isFI() &&
    198       MI->getOperand(2).getImm() == 0 &&
    199       MI->getOperand(3).getReg() == 0) {
    200     FrameIndex = MI->getOperand(1).getIndex();
    201     return MI->getOperand(0).getReg();
    202   }
    203   return 0;
    204 }
    205 
    206 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    207                                                int &FrameIndex) const {
    208   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
    209 }
    210 
    211 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    212                                               int &FrameIndex) const {
    213   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
    214 }
    215 
    216 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
    217                                        int &DestFrameIndex,
    218                                        int &SrcFrameIndex) const {
    219   // Check for MVC 0(Length,FI1),0(FI2)
    220   const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
    221   if (MI->getOpcode() != SystemZ::MVC ||
    222       !MI->getOperand(0).isFI() ||
    223       MI->getOperand(1).getImm() != 0 ||
    224       !MI->getOperand(3).isFI() ||
    225       MI->getOperand(4).getImm() != 0)
    226     return false;
    227 
    228   // Check that Length covers the full slots.
    229   int64_t Length = MI->getOperand(2).getImm();
    230   unsigned FI1 = MI->getOperand(0).getIndex();
    231   unsigned FI2 = MI->getOperand(3).getIndex();
    232   if (MFI->getObjectSize(FI1) != Length ||
    233       MFI->getObjectSize(FI2) != Length)
    234     return false;
    235 
    236   DestFrameIndex = FI1;
    237   SrcFrameIndex = FI2;
    238   return true;
    239 }
    240 
    241 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    242                                      MachineBasicBlock *&TBB,
    243                                      MachineBasicBlock *&FBB,
    244                                      SmallVectorImpl<MachineOperand> &Cond,
    245                                      bool AllowModify) const {
    246   // Most of the code and comments here are boilerplate.
    247 
    248   // Start from the bottom of the block and work up, examining the
    249   // terminator instructions.
    250   MachineBasicBlock::iterator I = MBB.end();
    251   while (I != MBB.begin()) {
    252     --I;
    253     if (I->isDebugValue())
    254       continue;
    255 
    256     // Working from the bottom, when we see a non-terminator instruction, we're
    257     // done.
    258     if (!isUnpredicatedTerminator(I))
    259       break;
    260 
    261     // A terminator that isn't a branch can't easily be handled by this
    262     // analysis.
    263     if (!I->isBranch())
    264       return true;
    265 
    266     // Can't handle indirect branches.
    267     SystemZII::Branch Branch(getBranchInfo(I));
    268     if (!Branch.Target->isMBB())
    269       return true;
    270 
    271     // Punt on compound branches.
    272     if (Branch.Type != SystemZII::BranchNormal)
    273       return true;
    274 
    275     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
    276       // Handle unconditional branches.
    277       if (!AllowModify) {
    278         TBB = Branch.Target->getMBB();
    279         continue;
    280       }
    281 
    282       // If the block has any instructions after a JMP, delete them.
    283       while (std::next(I) != MBB.end())
    284         std::next(I)->eraseFromParent();
    285 
    286       Cond.clear();
    287       FBB = nullptr;
    288 
    289       // Delete the JMP if it's equivalent to a fall-through.
    290       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
    291         TBB = nullptr;
    292         I->eraseFromParent();
    293         I = MBB.end();
    294         continue;
    295       }
    296 
    297       // TBB is used to indicate the unconditinal destination.
    298       TBB = Branch.Target->getMBB();
    299       continue;
    300     }
    301 
    302     // Working from the bottom, handle the first conditional branch.
    303     if (Cond.empty()) {
    304       // FIXME: add X86-style branch swap
    305       FBB = TBB;
    306       TBB = Branch.Target->getMBB();
    307       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
    308       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
    309       continue;
    310     }
    311 
    312     // Handle subsequent conditional branches.
    313     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
    314 
    315     // Only handle the case where all conditional branches branch to the same
    316     // destination.
    317     if (TBB != Branch.Target->getMBB())
    318       return true;
    319 
    320     // If the conditions are the same, we can leave them alone.
    321     unsigned OldCCValid = Cond[0].getImm();
    322     unsigned OldCCMask = Cond[1].getImm();
    323     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
    324       continue;
    325 
    326     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
    327     return false;
    328   }
    329 
    330   return false;
    331 }
    332 
    333 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    334   // Most of the code and comments here are boilerplate.
    335   MachineBasicBlock::iterator I = MBB.end();
    336   unsigned Count = 0;
    337 
    338   while (I != MBB.begin()) {
    339     --I;
    340     if (I->isDebugValue())
    341       continue;
    342     if (!I->isBranch())
    343       break;
    344     if (!getBranchInfo(I).Target->isMBB())
    345       break;
    346     // Remove the branch.
    347     I->eraseFromParent();
    348     I = MBB.end();
    349     ++Count;
    350   }
    351 
    352   return Count;
    353 }
    354 
    355 bool SystemZInstrInfo::
    356 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    357   assert(Cond.size() == 2 && "Invalid condition");
    358   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
    359   return false;
    360 }
    361 
    362 unsigned
    363 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    364                                MachineBasicBlock *FBB,
    365                                const SmallVectorImpl<MachineOperand> &Cond,
    366                                DebugLoc DL) const {
    367   // In this function we output 32-bit branches, which should always
    368   // have enough range.  They can be shortened and relaxed by later code
    369   // in the pipeline, if desired.
    370 
    371   // Shouldn't be a fall through.
    372   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    373   assert((Cond.size() == 2 || Cond.size() == 0) &&
    374          "SystemZ branch conditions have one component!");
    375 
    376   if (Cond.empty()) {
    377     // Unconditional branch?
    378     assert(!FBB && "Unconditional branch with multiple successors!");
    379     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
    380     return 1;
    381   }
    382 
    383   // Conditional branch.
    384   unsigned Count = 0;
    385   unsigned CCValid = Cond[0].getImm();
    386   unsigned CCMask = Cond[1].getImm();
    387   BuildMI(&MBB, DL, get(SystemZ::BRC))
    388     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
    389   ++Count;
    390 
    391   if (FBB) {
    392     // Two-way Conditional branch. Insert the second branch.
    393     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
    394     ++Count;
    395   }
    396   return Count;
    397 }
    398 
    399 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
    400                                       unsigned &SrcReg, unsigned &SrcReg2,
    401                                       int &Mask, int &Value) const {
    402   assert(MI->isCompare() && "Caller should have checked for a comparison");
    403 
    404   if (MI->getNumExplicitOperands() == 2 &&
    405       MI->getOperand(0).isReg() &&
    406       MI->getOperand(1).isImm()) {
    407     SrcReg = MI->getOperand(0).getReg();
    408     SrcReg2 = 0;
    409     Value = MI->getOperand(1).getImm();
    410     Mask = ~0;
    411     return true;
    412   }
    413 
    414   return false;
    415 }
    416 
    417 // If Reg is a virtual register, return its definition, otherwise return null.
    418 static MachineInstr *getDef(unsigned Reg,
    419                             const MachineRegisterInfo *MRI) {
    420   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    421     return nullptr;
    422   return MRI->getUniqueVRegDef(Reg);
    423 }
    424 
    425 // Return true if MI is a shift of type Opcode by Imm bits.
    426 static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) {
    427   return (MI->getOpcode() == Opcode &&
    428           !MI->getOperand(2).getReg() &&
    429           MI->getOperand(3).getImm() == Imm);
    430 }
    431 
    432 // If the destination of MI has no uses, delete it as dead.
    433 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
    434   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
    435     MI->eraseFromParent();
    436 }
    437 
    438 // Compare compares SrcReg against zero.  Check whether SrcReg contains
    439 // the result of an IPM sequence whose input CC survives until Compare,
    440 // and whether Compare is therefore redundant.  Delete it and return
    441 // true if so.
    442 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
    443                                   const MachineRegisterInfo *MRI,
    444                                   const TargetRegisterInfo *TRI) {
    445   MachineInstr *LGFR = nullptr;
    446   MachineInstr *RLL = getDef(SrcReg, MRI);
    447   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
    448     LGFR = RLL;
    449     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
    450   }
    451   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
    452     return false;
    453 
    454   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
    455   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
    456     return false;
    457 
    458   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
    459   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
    460     return false;
    461 
    462   // Check that there are no assignments to CC between the IPM and Compare,
    463   if (IPM->getParent() != Compare->getParent())
    464     return false;
    465   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
    466   for (++MBBI; MBBI != MBBE; ++MBBI) {
    467     MachineInstr *MI = MBBI;
    468     if (MI->modifiesRegister(SystemZ::CC, TRI))
    469       return false;
    470   }
    471 
    472   Compare->eraseFromParent();
    473   if (LGFR)
    474     eraseIfDead(LGFR, MRI);
    475   eraseIfDead(RLL, MRI);
    476   eraseIfDead(SRL, MRI);
    477   eraseIfDead(IPM, MRI);
    478 
    479   return true;
    480 }
    481 
    482 bool
    483 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
    484                                        unsigned SrcReg, unsigned SrcReg2,
    485                                        int Mask, int Value,
    486                                        const MachineRegisterInfo *MRI) const {
    487   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
    488   bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
    489   if (Value == 0 &&
    490       !IsLogical &&
    491       removeIPMBasedCompare(Compare, SrcReg, MRI, &RI))
    492     return true;
    493   return false;
    494 }
    495 
    496 // If Opcode is a move that has a conditional variant, return that variant,
    497 // otherwise return 0.
    498 static unsigned getConditionalMove(unsigned Opcode) {
    499   switch (Opcode) {
    500   case SystemZ::LR:  return SystemZ::LOCR;
    501   case SystemZ::LGR: return SystemZ::LOCGR;
    502   default:           return 0;
    503   }
    504 }
    505 
    506 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
    507   unsigned Opcode = MI->getOpcode();
    508   if (STI.hasLoadStoreOnCond() &&
    509       getConditionalMove(Opcode))
    510     return true;
    511   return false;
    512 }
    513 
    514 bool SystemZInstrInfo::
    515 isProfitableToIfCvt(MachineBasicBlock &MBB,
    516                     unsigned NumCycles, unsigned ExtraPredCycles,
    517                     const BranchProbability &Probability) const {
    518   // For now only convert single instructions.
    519   return NumCycles == 1;
    520 }
    521 
    522 bool SystemZInstrInfo::
    523 isProfitableToIfCvt(MachineBasicBlock &TMBB,
    524                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
    525                     MachineBasicBlock &FMBB,
    526                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
    527                     const BranchProbability &Probability) const {
    528   // For now avoid converting mutually-exclusive cases.
    529   return false;
    530 }
    531 
    532 bool SystemZInstrInfo::
    533 PredicateInstruction(MachineInstr *MI,
    534                      const SmallVectorImpl<MachineOperand> &Pred) const {
    535   assert(Pred.size() == 2 && "Invalid condition");
    536   unsigned CCValid = Pred[0].getImm();
    537   unsigned CCMask = Pred[1].getImm();
    538   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
    539   unsigned Opcode = MI->getOpcode();
    540   if (STI.hasLoadStoreOnCond()) {
    541     if (unsigned CondOpcode = getConditionalMove(Opcode)) {
    542       MI->setDesc(get(CondOpcode));
    543       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    544         .addImm(CCValid).addImm(CCMask)
    545         .addReg(SystemZ::CC, RegState::Implicit);
    546       return true;
    547     }
    548   }
    549   return false;
    550 }
    551 
    552 void
    553 SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    554 			      MachineBasicBlock::iterator MBBI, DebugLoc DL,
    555 			      unsigned DestReg, unsigned SrcReg,
    556 			      bool KillSrc) const {
    557   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
    558   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
    559     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
    560                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
    561     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
    562                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
    563     return;
    564   }
    565 
    566   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
    567     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
    568     return;
    569   }
    570 
    571   // Everything else needs only one instruction.
    572   unsigned Opcode;
    573   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
    574     Opcode = SystemZ::LGR;
    575   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
    576     Opcode = SystemZ::LER;
    577   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
    578     Opcode = SystemZ::LDR;
    579   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
    580     Opcode = SystemZ::LXR;
    581   else
    582     llvm_unreachable("Impossible reg-to-reg copy");
    583 
    584   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
    585     .addReg(SrcReg, getKillRegState(KillSrc));
    586 }
    587 
    588 void
    589 SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
    590 				      MachineBasicBlock::iterator MBBI,
    591 				      unsigned SrcReg, bool isKill,
    592 				      int FrameIdx,
    593 				      const TargetRegisterClass *RC,
    594 				      const TargetRegisterInfo *TRI) const {
    595   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
    596 
    597   // Callers may expect a single instruction, so keep 128-bit moves
    598   // together for now and lower them after register allocation.
    599   unsigned LoadOpcode, StoreOpcode;
    600   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
    601   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
    602 		    .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
    603 }
    604 
    605 void
    606 SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
    607 				       MachineBasicBlock::iterator MBBI,
    608 				       unsigned DestReg, int FrameIdx,
    609 				       const TargetRegisterClass *RC,
    610 				       const TargetRegisterInfo *TRI) const {
    611   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
    612 
    613   // Callers may expect a single instruction, so keep 128-bit moves
    614   // together for now and lower them after register allocation.
    615   unsigned LoadOpcode, StoreOpcode;
    616   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
    617   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
    618                     FrameIdx);
    619 }
    620 
    621 // Return true if MI is a simple load or store with a 12-bit displacement
    622 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
    623 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
    624   const MCInstrDesc &MCID = MI->getDesc();
    625   return ((MCID.TSFlags & Flag) &&
    626           isUInt<12>(MI->getOperand(2).getImm()) &&
    627           MI->getOperand(3).getReg() == 0);
    628 }
    629 
    630 namespace {
    631 struct LogicOp {
    632   LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
    633   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
    634     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
    635 
    636   operator bool() const { return RegSize; }
    637 
    638   unsigned RegSize, ImmLSB, ImmSize;
    639 };
    640 } // end anonymous namespace
    641 
    642 static LogicOp interpretAndImmediate(unsigned Opcode) {
    643   switch (Opcode) {
    644   case SystemZ::NILMux: return LogicOp(32,  0, 16);
    645   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
    646   case SystemZ::NILL64: return LogicOp(64,  0, 16);
    647   case SystemZ::NILH64: return LogicOp(64, 16, 16);
    648   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
    649   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
    650   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
    651   case SystemZ::NILF64: return LogicOp(64,  0, 32);
    652   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
    653   default:              return LogicOp();
    654   }
    655 }
    656 
    657 // Used to return from convertToThreeAddress after replacing two-address
    658 // instruction OldMI with three-address instruction NewMI.
    659 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
    660                                                  MachineInstr *NewMI,
    661                                                  LiveVariables *LV) {
    662   if (LV) {
    663     unsigned NumOps = OldMI->getNumOperands();
    664     for (unsigned I = 1; I < NumOps; ++I) {
    665       MachineOperand &Op = OldMI->getOperand(I);
    666       if (Op.isReg() && Op.isKill())
    667         LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
    668     }
    669   }
    670   return NewMI;
    671 }
    672 
    673 MachineInstr *
    674 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    675                                         MachineBasicBlock::iterator &MBBI,
    676                                         LiveVariables *LV) const {
    677   MachineInstr *MI = MBBI;
    678   MachineBasicBlock *MBB = MI->getParent();
    679   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
    680 
    681   unsigned Opcode = MI->getOpcode();
    682   unsigned NumOps = MI->getNumOperands();
    683 
    684   // Try to convert something like SLL into SLLK, if supported.
    685   // We prefer to keep the two-operand form where possible both
    686   // because it tends to be shorter and because some instructions
    687   // have memory forms that can be used during spilling.
    688   if (STI.hasDistinctOps()) {
    689     MachineOperand &Dest = MI->getOperand(0);
    690     MachineOperand &Src = MI->getOperand(1);
    691     unsigned DestReg = Dest.getReg();
    692     unsigned SrcReg = Src.getReg();
    693     // AHIMux is only really a three-operand instruction when both operands
    694     // are low registers.  Try to constrain both operands to be low if
    695     // possible.
    696     if (Opcode == SystemZ::AHIMux &&
    697         TargetRegisterInfo::isVirtualRegister(DestReg) &&
    698         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    699         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
    700         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
    701       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
    702       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
    703     }
    704     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
    705     if (ThreeOperandOpcode >= 0) {
    706       MachineInstrBuilder MIB =
    707         BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
    708         .addOperand(Dest);
    709       // Keep the kill state, but drop the tied flag.
    710       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
    711       // Keep the remaining operands as-is.
    712       for (unsigned I = 2; I < NumOps; ++I)
    713         MIB.addOperand(MI->getOperand(I));
    714       return finishConvertToThreeAddress(MI, MIB, LV);
    715     }
    716   }
    717 
    718   // Try to convert an AND into an RISBG-type instruction.
    719   if (LogicOp And = interpretAndImmediate(Opcode)) {
    720     uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
    721     // AND IMMEDIATE leaves the other bits of the register unchanged.
    722     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
    723     unsigned Start, End;
    724     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
    725       unsigned NewOpcode;
    726       if (And.RegSize == 64)
    727         NewOpcode = SystemZ::RISBG;
    728       else {
    729         NewOpcode = SystemZ::RISBMux;
    730         Start &= 31;
    731         End &= 31;
    732       }
    733       MachineOperand &Dest = MI->getOperand(0);
    734       MachineOperand &Src = MI->getOperand(1);
    735       MachineInstrBuilder MIB =
    736         BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
    737         .addOperand(Dest).addReg(0)
    738         .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
    739         .addImm(Start).addImm(End + 128).addImm(0);
    740       return finishConvertToThreeAddress(MI, MIB, LV);
    741     }
    742   }
    743   return nullptr;
    744 }
    745 
    746 MachineInstr *
    747 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
    748                                         MachineInstr *MI,
    749                                         const SmallVectorImpl<unsigned> &Ops,
    750                                         int FrameIndex) const {
    751   const MachineFrameInfo *MFI = MF.getFrameInfo();
    752   unsigned Size = MFI->getObjectSize(FrameIndex);
    753   unsigned Opcode = MI->getOpcode();
    754 
    755   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
    756     if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
    757         isInt<8>(MI->getOperand(2).getImm()) &&
    758         !MI->getOperand(3).getReg()) {
    759       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
    760       return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI))
    761         .addFrameIndex(FrameIndex).addImm(0)
    762         .addImm(MI->getOperand(2).getImm());
    763     }
    764     return nullptr;
    765   }
    766 
    767   // All other cases require a single operand.
    768   if (Ops.size() != 1)
    769     return nullptr;
    770 
    771   unsigned OpNum = Ops[0];
    772   assert(Size == MF.getRegInfo()
    773          .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
    774          "Invalid size combination");
    775 
    776   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
    777       OpNum == 0 &&
    778       isInt<8>(MI->getOperand(2).getImm())) {
    779     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
    780     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
    781     return BuildMI(MF, MI->getDebugLoc(), get(Opcode))
    782       .addFrameIndex(FrameIndex).addImm(0)
    783       .addImm(MI->getOperand(2).getImm());
    784   }
    785 
    786   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
    787     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
    788     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
    789     // If we're spilling the destination of an LDGR or LGDR, store the
    790     // source register instead.
    791     if (OpNum == 0) {
    792       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
    793       return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
    794         .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
    795         .addImm(0).addReg(0);
    796     }
    797     // If we're spilling the source of an LDGR or LGDR, load the
    798     // destination register instead.
    799     if (OpNum == 1) {
    800       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
    801       unsigned Dest = MI->getOperand(0).getReg();
    802       return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
    803         .addFrameIndex(FrameIndex).addImm(0).addReg(0);
    804     }
    805   }
    806 
    807   // Look for cases where the source of a simple store or the destination
    808   // of a simple load is being spilled.  Try to use MVC instead.
    809   //
    810   // Although MVC is in practice a fast choice in these cases, it is still
    811   // logically a bytewise copy.  This means that we cannot use it if the
    812   // load or store is volatile.  We also wouldn't be able to use MVC if
    813   // the two memories partially overlap, but that case cannot occur here,
    814   // because we know that one of the memories is a full frame index.
    815   //
    816   // For performance reasons, we also want to avoid using MVC if the addresses
    817   // might be equal.  We don't worry about that case here, because spill slot
    818   // coloring happens later, and because we have special code to remove
    819   // MVCs that turn out to be redundant.
    820   if (OpNum == 0 && MI->hasOneMemOperand()) {
    821     MachineMemOperand *MMO = *MI->memoperands_begin();
    822     if (MMO->getSize() == Size && !MMO->isVolatile()) {
    823       // Handle conversion of loads.
    824       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
    825         return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
    826           .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
    827           .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
    828           .addMemOperand(MMO);
    829       }
    830       // Handle conversion of stores.
    831       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
    832         return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
    833           .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
    834           .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
    835           .addMemOperand(MMO);
    836       }
    837     }
    838   }
    839 
    840   // If the spilled operand is the final one, try to change <INSN>R
    841   // into <INSN>.
    842   int MemOpcode = SystemZ::getMemOpcode(Opcode);
    843   if (MemOpcode >= 0) {
    844     unsigned NumOps = MI->getNumExplicitOperands();
    845     if (OpNum == NumOps - 1) {
    846       const MCInstrDesc &MemDesc = get(MemOpcode);
    847       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
    848       assert(AccessBytes != 0 && "Size of access should be known");
    849       assert(AccessBytes <= Size && "Access outside the frame index");
    850       uint64_t Offset = Size - AccessBytes;
    851       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
    852       for (unsigned I = 0; I < OpNum; ++I)
    853         MIB.addOperand(MI->getOperand(I));
    854       MIB.addFrameIndex(FrameIndex).addImm(Offset);
    855       if (MemDesc.TSFlags & SystemZII::HasIndex)
    856         MIB.addReg(0);
    857       return MIB;
    858     }
    859   }
    860 
    861   return nullptr;
    862 }
    863 
    864 MachineInstr *
    865 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
    866                                         const SmallVectorImpl<unsigned> &Ops,
    867                                         MachineInstr* LoadMI) const {
    868   return nullptr;
    869 }
    870 
    871 bool
    872 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    873   switch (MI->getOpcode()) {
    874   case SystemZ::L128:
    875     splitMove(MI, SystemZ::LG);
    876     return true;
    877 
    878   case SystemZ::ST128:
    879     splitMove(MI, SystemZ::STG);
    880     return true;
    881 
    882   case SystemZ::LX:
    883     splitMove(MI, SystemZ::LD);
    884     return true;
    885 
    886   case SystemZ::STX:
    887     splitMove(MI, SystemZ::STD);
    888     return true;
    889 
    890   case SystemZ::LBMux:
    891     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
    892     return true;
    893 
    894   case SystemZ::LHMux:
    895     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
    896     return true;
    897 
    898   case SystemZ::LLCRMux:
    899     expandZExtPseudo(MI, SystemZ::LLCR, 8);
    900     return true;
    901 
    902   case SystemZ::LLHRMux:
    903     expandZExtPseudo(MI, SystemZ::LLHR, 16);
    904     return true;
    905 
    906   case SystemZ::LLCMux:
    907     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
    908     return true;
    909 
    910   case SystemZ::LLHMux:
    911     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
    912     return true;
    913 
    914   case SystemZ::LMux:
    915     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
    916     return true;
    917 
    918   case SystemZ::STCMux:
    919     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
    920     return true;
    921 
    922   case SystemZ::STHMux:
    923     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
    924     return true;
    925 
    926   case SystemZ::STMux:
    927     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
    928     return true;
    929 
    930   case SystemZ::LHIMux:
    931     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
    932     return true;
    933 
    934   case SystemZ::IIFMux:
    935     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
    936     return true;
    937 
    938   case SystemZ::IILMux:
    939     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
    940     return true;
    941 
    942   case SystemZ::IIHMux:
    943     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
    944     return true;
    945 
    946   case SystemZ::NIFMux:
    947     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
    948     return true;
    949 
    950   case SystemZ::NILMux:
    951     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
    952     return true;
    953 
    954   case SystemZ::NIHMux:
    955     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
    956     return true;
    957 
    958   case SystemZ::OIFMux:
    959     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
    960     return true;
    961 
    962   case SystemZ::OILMux:
    963     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
    964     return true;
    965 
    966   case SystemZ::OIHMux:
    967     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
    968     return true;
    969 
    970   case SystemZ::XIFMux:
    971     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
    972     return true;
    973 
    974   case SystemZ::TMLMux:
    975     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
    976     return true;
    977 
    978   case SystemZ::TMHMux:
    979     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
    980     return true;
    981 
    982   case SystemZ::AHIMux:
    983     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
    984     return true;
    985 
    986   case SystemZ::AHIMuxK:
    987     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
    988     return true;
    989 
    990   case SystemZ::AFIMux:
    991     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
    992     return true;
    993 
    994   case SystemZ::CFIMux:
    995     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
    996     return true;
    997 
    998   case SystemZ::CLFIMux:
    999     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
   1000     return true;
   1001 
   1002   case SystemZ::CMux:
   1003     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
   1004     return true;
   1005 
   1006   case SystemZ::CLMux:
   1007     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
   1008     return true;
   1009 
   1010   case SystemZ::RISBMux: {
   1011     bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
   1012     bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
   1013     if (SrcIsHigh == DestIsHigh)
   1014       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
   1015     else {
   1016       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
   1017       MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
   1018     }
   1019     return true;
   1020   }
   1021 
   1022   case SystemZ::ADJDYNALLOC:
   1023     splitAdjDynAlloc(MI);
   1024     return true;
   1025 
   1026   default:
   1027     return false;
   1028   }
   1029 }
   1030 
   1031 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
   1032   if (MI->getOpcode() == TargetOpcode::INLINEASM) {
   1033     const MachineFunction *MF = MI->getParent()->getParent();
   1034     const char *AsmStr = MI->getOperand(0).getSymbolName();
   1035     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1036   }
   1037   return MI->getDesc().getSize();
   1038 }
   1039 
   1040 SystemZII::Branch
   1041 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
   1042   switch (MI->getOpcode()) {
   1043   case SystemZ::BR:
   1044   case SystemZ::J:
   1045   case SystemZ::JG:
   1046     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
   1047                              SystemZ::CCMASK_ANY, &MI->getOperand(0));
   1048 
   1049   case SystemZ::BRC:
   1050   case SystemZ::BRCL:
   1051     return SystemZII::Branch(SystemZII::BranchNormal,
   1052                              MI->getOperand(0).getImm(),
   1053                              MI->getOperand(1).getImm(), &MI->getOperand(2));
   1054 
   1055   case SystemZ::BRCT:
   1056     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
   1057                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
   1058 
   1059   case SystemZ::BRCTG:
   1060     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
   1061                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
   1062 
   1063   case SystemZ::CIJ:
   1064   case SystemZ::CRJ:
   1065     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
   1066                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1067 
   1068   case SystemZ::CLIJ:
   1069   case SystemZ::CLRJ:
   1070     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
   1071                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1072 
   1073   case SystemZ::CGIJ:
   1074   case SystemZ::CGRJ:
   1075     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
   1076                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1077 
   1078   case SystemZ::CLGIJ:
   1079   case SystemZ::CLGRJ:
   1080     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
   1081                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1082 
   1083   default:
   1084     llvm_unreachable("Unrecognized branch opcode");
   1085   }
   1086 }
   1087 
   1088 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
   1089                                            unsigned &LoadOpcode,
   1090                                            unsigned &StoreOpcode) const {
   1091   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
   1092     LoadOpcode = SystemZ::L;
   1093     StoreOpcode = SystemZ::ST;
   1094   } else if (RC == &SystemZ::GRH32BitRegClass) {
   1095     LoadOpcode = SystemZ::LFH;
   1096     StoreOpcode = SystemZ::STFH;
   1097   } else if (RC == &SystemZ::GRX32BitRegClass) {
   1098     LoadOpcode = SystemZ::LMux;
   1099     StoreOpcode = SystemZ::STMux;
   1100   } else if (RC == &SystemZ::GR64BitRegClass ||
   1101              RC == &SystemZ::ADDR64BitRegClass) {
   1102     LoadOpcode = SystemZ::LG;
   1103     StoreOpcode = SystemZ::STG;
   1104   } else if (RC == &SystemZ::GR128BitRegClass ||
   1105              RC == &SystemZ::ADDR128BitRegClass) {
   1106     LoadOpcode = SystemZ::L128;
   1107     StoreOpcode = SystemZ::ST128;
   1108   } else if (RC == &SystemZ::FP32BitRegClass) {
   1109     LoadOpcode = SystemZ::LE;
   1110     StoreOpcode = SystemZ::STE;
   1111   } else if (RC == &SystemZ::FP64BitRegClass) {
   1112     LoadOpcode = SystemZ::LD;
   1113     StoreOpcode = SystemZ::STD;
   1114   } else if (RC == &SystemZ::FP128BitRegClass) {
   1115     LoadOpcode = SystemZ::LX;
   1116     StoreOpcode = SystemZ::STX;
   1117   } else
   1118     llvm_unreachable("Unsupported regclass to load or store");
   1119 }
   1120 
   1121 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
   1122                                               int64_t Offset) const {
   1123   const MCInstrDesc &MCID = get(Opcode);
   1124   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
   1125   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
   1126     // Get the instruction to use for unsigned 12-bit displacements.
   1127     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
   1128     if (Disp12Opcode >= 0)
   1129       return Disp12Opcode;
   1130 
   1131     // All address-related instructions can use unsigned 12-bit
   1132     // displacements.
   1133     return Opcode;
   1134   }
   1135   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
   1136     // Get the instruction to use for signed 20-bit displacements.
   1137     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
   1138     if (Disp20Opcode >= 0)
   1139       return Disp20Opcode;
   1140 
   1141     // Check whether Opcode allows signed 20-bit displacements.
   1142     if (MCID.TSFlags & SystemZII::Has20BitOffset)
   1143       return Opcode;
   1144   }
   1145   return 0;
   1146 }
   1147 
   1148 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
   1149   switch (Opcode) {
   1150   case SystemZ::L:    return SystemZ::LT;
   1151   case SystemZ::LY:   return SystemZ::LT;
   1152   case SystemZ::LG:   return SystemZ::LTG;
   1153   case SystemZ::LGF:  return SystemZ::LTGF;
   1154   case SystemZ::LR:   return SystemZ::LTR;
   1155   case SystemZ::LGFR: return SystemZ::LTGFR;
   1156   case SystemZ::LGR:  return SystemZ::LTGR;
   1157   case SystemZ::LER:  return SystemZ::LTEBR;
   1158   case SystemZ::LDR:  return SystemZ::LTDBR;
   1159   case SystemZ::LXR:  return SystemZ::LTXBR;
   1160   default:            return 0;
   1161   }
   1162 }
   1163 
   1164 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
   1165 // have already been filtered out.  Store the first set bit in LSB and
   1166 // the number of set bits in Length if so.
   1167 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
   1168   unsigned First = findFirstSet(Mask);
   1169   uint64_t Top = (Mask >> First) + 1;
   1170   if ((Top & -Top) == Top) {
   1171     LSB = First;
   1172     Length = findFirstSet(Top);
   1173     return true;
   1174   }
   1175   return false;
   1176 }
   1177 
   1178 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
   1179                                    unsigned &Start, unsigned &End) const {
   1180   // Reject trivial all-zero masks.
   1181   if (Mask == 0)
   1182     return false;
   1183 
   1184   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
   1185   // the msb and End specifies the index of the lsb.
   1186   unsigned LSB, Length;
   1187   if (isStringOfOnes(Mask, LSB, Length)) {
   1188     Start = 63 - (LSB + Length - 1);
   1189     End = 63 - LSB;
   1190     return true;
   1191   }
   1192 
   1193   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
   1194   // of the low 1s and End specifies the lsb of the high 1s.
   1195   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
   1196     assert(LSB > 0 && "Bottom bit must be set");
   1197     assert(LSB + Length < BitSize && "Top bit must be set");
   1198     Start = 63 - (LSB - 1);
   1199     End = 63 - (LSB + Length);
   1200     return true;
   1201   }
   1202 
   1203   return false;
   1204 }
   1205 
   1206 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
   1207                                                const MachineInstr *MI) const {
   1208   switch (Opcode) {
   1209   case SystemZ::CR:
   1210     return SystemZ::CRJ;
   1211   case SystemZ::CGR:
   1212     return SystemZ::CGRJ;
   1213   case SystemZ::CHI:
   1214     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
   1215   case SystemZ::CGHI:
   1216     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
   1217   case SystemZ::CLR:
   1218     return SystemZ::CLRJ;
   1219   case SystemZ::CLGR:
   1220     return SystemZ::CLGRJ;
   1221   case SystemZ::CLFI:
   1222     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
   1223   case SystemZ::CLGFI:
   1224     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
   1225   default:
   1226     return 0;
   1227   }
   1228 }
   1229 
   1230 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
   1231                                      MachineBasicBlock::iterator MBBI,
   1232                                      unsigned Reg, uint64_t Value) const {
   1233   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
   1234   unsigned Opcode;
   1235   if (isInt<16>(Value))
   1236     Opcode = SystemZ::LGHI;
   1237   else if (SystemZ::isImmLL(Value))
   1238     Opcode = SystemZ::LLILL;
   1239   else if (SystemZ::isImmLH(Value)) {
   1240     Opcode = SystemZ::LLILH;
   1241     Value >>= 16;
   1242   } else {
   1243     assert(isInt<32>(Value) && "Huge values not handled yet");
   1244     Opcode = SystemZ::LGFI;
   1245   }
   1246   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
   1247 }
   1248